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Abstract

We propose a novel methodology for solving Heterogeneous Agents New Keynesian

(HANK) models with aggregate uncertainty and the Zero Lower Bound (ZLB) on

nominal interest rates. Our solution strategy combines the Sequence-Space Jaco-

bian methodology in Auclert et al. (2021) with a tractable structure for aggregate

uncertainty by means of a two-regimes shock structure. Using our methodology, we

show that: 1) in the presence of the ZLB, a dichotomy emerges between the econ-

omy’s impulse responses under aggregate uncertainty against the deterministic case;

2) aggregate uncertainty amplifies downturns at the ZLB, and household heterogene-

ity increases the strength of this amplification; 3) the impact of forward guidance is

stronger when there is aggregate uncertainty.
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1 Introduction
The two most recent recessions in the United States were characterized by: 1) a dra-

matic spike in aggregate uncertainty; 2) a sharp increase in the unemployment rate above

its natural level; and 3) the collapse of monetary policy rates to the Zero Lower Bound

(ZLB). The literature has well documented that measures of aggregate uncertainty (Bloom

et al., 2018; Bloom, 2014) and of idiosyncratic income risk increase during recessions

(Guvenen, Ozkan and Song, 2014; Shimer, 2005). At the same time, it has been shown,

both theoretically and empirically, that there are strong interactions between aggregate

uncertainty and the ZLB (Basu and Bundick, 2016, 2017; Caggiano, Castelnuovo and Pel-

legrino, 2017). Yet there is little work in understanding the interactions between the ZLB

and uncertainty both at macro and micro levels. This literature is still at its dawn, partic-

ularly because solving models that display those features is challenging.1 Our work fills

this gap.

In this paper, we investigate the macroeconomic interactions between aggregate un-

certainty, heterogeneity at the micro level, and the ZLB. We first propose a novel solution

strategy for Heterogeneous Agents New Keynesian models (HANK) with aggregate uncer-

tainty and occasionally binding constraints at the aggregate level.2 We then employ our

methodology to quantify how the effects of a negative demand shock are amplified due to

the combination of uncertainty and monetary policy inaction. We find that such amplifi-

cation is much stronger in heterogeneous-agents economies, relative to a representative-

agent setting.

We extend the method by Eggertsson et al. (2021) to accommodate heterogeneity at

the micro level and, at the same time, deal with the aggregate curse of dimensionality

problems arising due to aggregate uncertainty in a tractable way. In this setup we assume

1Recent developments in this direction are Fernández-Villaverde et al. (2023) and Kase, Melosi and

Rottner (2022), who use neural networks techniques, and Schaab (2020), who develops an adaptive grid

methodology.
2Although our applications concerns the ZLB, the methodology can be easily used in the presence of

aggregate nonlinearities other than the ZLB. For instance, nonlinear Phillips curves in the presence of

inflationary shocks (Benigno and Eggertsson, 2023; Gitti, 2023), downward wage rigidities (Eggertsson,

Mehrotra and Robbins, 2019), and leverage constraints among others.
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that the economy is subject to a shock in the form a two-states Markov process with one

absorbing state. In particular, the economy begins in the steady state and is hit by a

shock which pushes it into a “bad” state. From then on it can either remain in there, or

enter a (perfect-foresight) path back to the steady state. The proposed structure allows

us to represent the equilibrium as a finite number of sequences, which we group under

two regimes. In the first, labeled TS, the shock has not yet subsided and, thus, there

is aggregate uncertainty. The second regime, labeled PF, consists of a series of possible

paths, distinct from each other, the economy can follow after the shock subsides.

We then develop a method that iteratively solves the equilibrium in one regime at

the time, taking the other as given. First, we guess the aggregate state variables (e.g.:

the outstanding amount of public debt) and the sequence of distributions of households

over individual states in the TS regime. These serve as initial conditions for each perfect-

foresight branch. To solve for the equilibrium in each branch, we introduce a novel way

to deal with the perturbations caused by changes in the initial conditions, essentially

treating them as exogenous. Once those are accounted for, we solve for the equilibrium

in each branch computing heterogeneous-agents Jacobians as in Auclert et al. (2021) and

dealing with occasionally binding constraints as in Guerrieri and Iacoviello (2015).

The second step takes the values of all forward-looking equilibrium variables in the PF

regime, including households’ (expected) value functions, and solves for the equilibrium

in the TS regime. Here, we again devise a novel way to deal with perturbations caused

by changes in forward-looking variables, treating those as exogenous. We then solve for

the equilibrium adapting the heterogeneous-agent Jacobians in Auclert et al. (2021) to ac-

count for aggregate uncertainty, and again dealing with occasionally binding constraints

as in Guerrieri and Iacoviello (2015). The resulting set of state variables is then fed into

the first step, until a fixed point is achieved.

The key advantage of our methodology is that, unlike existing projection methods

(Schaab, 2020; Fernández-Villaverde et al., 2023), we solve the model in the space of se-

quences. Thus, problems that would arise due to the curse of dimensionality are muted.

As a result, our method can be applied in models with a rich set of state variables, includ-

ing multidimensional distributions of households over idiosyncratic states, such as Bayer
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et al. (2019) (two-asset HANK), Birinci et al. (2022) (job ladder), and Kekre (2022) (rich

description of unemployment insurance policies), to name a few.

One potential caveat is that the two-states nature of our shock could be restrictive. We

believe that this concern is mitigated by two facts. First, it can in fact accommodate arbi-

trary paths for exogenous variables, with the only restriction being that the probability of

exiting the “bad” state needs to be constant.3 Second, we argue that this framework can

represent how economic agents interpret certain macroeconomic shocks: the economy

undergoes a recession, yet there is an anticipation of eventual recovery. For instance, dur-

ing Covid in 2020, uncertainty surrounded vaccine availability, yet there was a consensus

that once they were accessible, economic recovery would ensue.

Our second contribution is to investigate the interaction between aggregate uncer-

tainty and the ZLB in heterogeneous-agents economies. To do so, we consider a standard

“one-asset HANK” model calibrated to the US and study the effects of a discount factor

shock that depresses aggregate demand and that follows our proposed two-states Markov

structure. As its duration is uncertain, we refer to it as the stochastic shock. The shock

leads the central bank to reduce nominal rates down to the ZLB. We then compare it

with its “deterministic counterpart”, i.e. a shock whose magnitude matches the average

of the stochastic one, but whose path is certain and known by economic agents. Finally,

we quantify the amplification due to aggregate uncertainty, which we measure as the dif-

ference between the average impact of the stochastic shock and that of its deterministic

counterpart (measured in present-discounted terms).

We show that if the central bank were unconstrained in its capacity to determine short-

term nominal rates, the impact of aggregate uncertainty is nearly trivial: the average

impact of the stochastic shock is essentially identical to the deterministic case, a result

known as certainty equivalence (Boppart, Krusell and Mitman, 2018). However, when

the ZLB can be binding, the average decline in output caused by the stochastic shock

is more than twice as large as in the deterministic case. This result indicates that the

3We may however – as usual in models of this class – run into stability problems when choosing those

values. See Ascari and Mavroeidis (2022) and Holden (2023) for a discussion on existence and uniqueness

of equilibrium at the ZLB under perfect foresight.
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interactions between aggregate uncertainty and nonlinearities such as the ZLB might be

sizable in amplifying and prolonging recessions.

What is the role of household heterogeneity in determining this amplification? To

answer this question, we repeat the experiment in a comparable Representative Agent

(RANK) economy. When we introduce the ZLB, we find that the output loss is also signif-

icantly larger with the stochastic shock, compared to the deterministic scenario. However,

the amplification in HANK is about twice as large as in RANK. Thus, we conclude that

household heterogeneity amplifies the effect of aggregate uncertainty at the ZLB.

Our results can be explained by two facts. First, they are linked to the presence of both

high-MPC and forward-looking (locally unconstrained) individuals in heterogeneous-

agents economies. As argued by Kaplan, Moll and Violante (2018), income effects are

paramount in HANK: for a given aggregate income fall, the overall consumption response

is larger in HANK, as opposed to RANK. Second, the nonlinearity introduced by the ZLB

interacts with the aggregate uncertainty. That is, the average effect of the stochastic shock

differs significantly from the effect of the average shock, implying a larger aggregate income

decline. Taken together, these two facts explain the amplifications we documented.

Finally, to illustrate how our solution method can be used to study several policy al-

ternatives, we consider the impact of forward guidance. We find that it is more effective

under the stochastic shock against the deterministic scenario, suggesting that this policy

can be particularly strong in uncertain environments. The reason is that forward guid-

ance keeps interests rate at the lower bound regardless of the shock realization, essentially

removing the regime uncertainty and, thus, its consequences, in the first place.

Related Literature. Our paper is most closely connected to a set of works developing so-

lution methods for HANK economies in the presence of both nonlinearities at the aggre-

gate levels and aggregate uncertainty. This literature attempts to depart from first-order

perturbation solutions (e.g. Reiter, 2009; Boppart, Krusell and Mitman, 2018; Winberry,

2018; Bayer and Luetticke, 2020) to be able to capture higher-order nonlinear effects, such

as those arising from aggregate uncertainty.

The closest papers to ours are Fernández-Villaverde, Hurtado and Nuño (2023), Kase,

Melosi and Rottner (2022), and Fernández-Villaverde et al. (2023), which use different
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machine learning techniques to solve heterogeneous-agents models with aggregate non-

linearities and uncertainty. Our work is also related to Schaab (2020), who uses an adap-

tive sparse grid approach. Relative to those, our key advantage is that we solve the model

in the space of sequences. This, in turn, allows us to address issues concerning the curse

of dimensionality. In addition, in our main application, as opposed to Schaab (2020), we

show that the strong interaction between aggregate uncertainty and the ZLB is indepen-

dent of cyclical earnings risk.

Finally, our solution methodology is also related to the Extended Path Algorithm (Ad-

jemian and Juillard, 2013), where, contrary to our setup, the uncertainty only lasts for

a few periods before the economy reverts to a perfect-foresight path towards the steady

state. We conjecture that some of the techniques we introduce in this work, particularly

those related to heterogeneous-agents Jacobians, can be adapted to the Extended Path

Algorithm, and leave that for future work.4

One last word of caution: we refrain from asserting superiority over any of the afore-

mentioned methods. Determining the most suitable approach for a specific question has

to be done on a case-by-case basis. Our method has the advantages of being simple,

relatively tractable, and sufficiently flexible to address a specific type of uncertainty fre-

quently used in the literature.

2 A Simple Model
This section illustrates the key interaction between a tractable stochastic shock and

the ZLB in the context of the textbook Representative Agent New Keynesian model. Ag-

gregate uncertainty displays a simple a simple two-states structure.

Environment. Consider the textbook New Keynesian model (Galı́, 2015; Woodford, 2003).

The economy is populated by a representative agent who makes standard intertemporal

consumption-savings decisions to maximize her expected lifetime log-utility, with dis-

count factor βt. She can take a non-negative position in the liquid bond that pays a risk-

4Our method is also closely related to that of Bigio, Nuño and Passadore (2019), who study debt maturity

management. Their shock structure is similar to ours, with the difference that the economy begins at a

“risky” steady state. It is worth mentioning that our method can be easily adapted to cases where the

economy initially features initial conditions for state variables that differ from their the steady state values.
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less interest rate and is in zero supply. Prices are fully rigid. There is a central bank that

chooses the gross nominal interest rate Rt following a simple interest rate rule that reacts

to output Yt and is subject to a lower bound R.

Equilibrium. The equilibrium at any point in time is characterized by an aggregate Euler

equation and the interest rate rule:

Yt
−1 = βtRtEtY

−1
t+1 =

βtRt
βRss

EtY
−1
t+1, (1)

Rt = max
{
R,RssYt

φ
}
, (2)

where Et is the expectation operator, φ governs the reactivity of the central bank and is

assumed to satisfy the Taylor principle, β is the steady-state value of the discount factor,

and Rss = 1
β is the steady-state gross interest rate.5

For a given value of expected future marginal utility EtY
−1
t+1, the solution is as follows:

Yt =


(
βt
β EtY

−1
t+1

)− 1
1+φ if βt ≤ β

(
Rss
R

) 1+φ
φ

(
EtY

−1
t+1

)−1

(
βt
β

R
Rss

EtY
−1
t+1

)−1
otherwise

, (3)

Rt =


Rss

(
βt
β EtY

−1
t+1

)− φ
1+φ if βt ≤ β

(
Rss
R

) 1+φ
φ

(
EtY

−1
t+1

)−1

R otherwise
. (4)

Note that the higher the expected future marginal utility, the larger the current recession.

We will therefore focus on the effects of aggregate uncertainty on the expected future

marginal utility and then move to the actual effects on current output.

A Stochastic Shock. We consider the following chain of events. The economy begins at

t = 0 and households enter with no wealth. Households know their discount factor β0 ≥ β

and βt = β for any t > 1. They also know that there is a probability µ that the discount

factor at t = 1 will be β1 = β1L > β, β1 = β otherwise.

The assumption on the stochastic structure allows us to divide into only two possible

paths that the economy can follow in the aggregate: 1) the history in which at t = 1 the

discount factor is back to its stationary level, β1 = β, or 2) the one in which agents are

more patient with β1 = β1L. We will refer to the first case as contingency 1, indicating the

5The notation R generalizes the possibility of an effective lower bound (ELB) as opposed to the ZLB.
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time at which the shock dissipates. Similarly, the second history is denoted as contingency

2 because the discount factor goes back to its steady-state level at t = 2.

Solution - Without the ZLB. The model is purely forward looking and simple enough

that the solution at t = 2 is the steady state, meaning that, in both contingencies Y2 =

Yss = 1 and R2 = Rss.

Now consider the solution at a generic t = 1 under the assumption that the lower

bound on interest rates does not exist (i.e. R = −∞). It is represented by function of the

discount factor at t = 1 only. We write it in terms of marginal utility:

Y −1
1 =

(
β1

β

) 1
1+φ

.

Output at t = 0 is in turn given by:

Y −1
0 =

(
β0

β

) 1
1+φ [

µY −1
1L + (1−µ)Y −1

ss

]
=

(
β0

β

) 1
1+φ

µ(βL1

β

) 1
1+φ

+ (1−µ)

︸                     ︷︷                     ︸
E0Y

−1
1

, (5)

where Y1L denotes the output at t = 1 in contingency 2. The top-left panel in Figure

1 shows the equilibrium marginal utilities at t = 1 as a function of the discount factor

β1. A larger the discount factor leads to a larger marginal utility, in turn implying a

larger output loss. The plot also reports the expected future marginal utility on the red

dotted line, corresponding to a linear combination between the marginal utilities in the

two contingencies. Finally, expected marginal utility at t = 1 on the top left is mapped

into output at t = 0, shown in the bottom-left, via the Euler Equation. Higher expected

marginal utilities at t = 1 imply lower output at t = 0.

The Deterministic Counterpart. Our goal is to study the effects of a demand shock with

uncertainty, relative to the deterministic case. To that end, we consider a similar economy

whose only difference is the discount factor at t = 1 will be β1DET with probability 1, such

that the effect at t = 0 is the same in the absence of the ZLB, meaning that the expected

future marginal utilities are equalized:

µY −1
1L + (1−µ)Y −1

ss = Y −1
1DET =⇒ µ

(
βL1

β

) 1
1+φ

+ (1−µ) =
(
β1DET

β

) 1
1+φ

. (6)
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The deterministic case is illustrated by the dashed line in the top-left panel of Figure 1.

Note that if, when we introduce the ZLB, the impact of the shock is larger in the uncertain

environment than in the deterministic case, we can say that uncertainty is amplifying the

recession. We are now ready to perform this comparison.

Figure 1: Equilibrium in the Simple Model

(a) Outside the ZLB: R = −∞

Y −1
1

β1

Y −1
ss

β

Y −1
1L

β1L

E0β1

E0Y
−1
1

Y −1
1DET

β1DET

E0Y
−1
1

Y

E0Y
−1
1

Y0

(b) With the ZLB: R = 1

Y −1
1

β1

Y −1
ss

β

Y −1
1L

β1L

E0Y
−1
1

E0β1

Y −1
1DET

β1DET

E0Y
−1
1

Y

Y −1
1DET

Y0P F

E0Y
−1
1

Y0

Notes: The figure shows the equilibrium of the simple model without the ZLB (left column, R = −∞)

and with the ZLB (right column, R = 1). The top panels report the equilibria at t = 1. The blue

solid lines show the relationship between the discount factor β1 on the y-axis and the corresponding

marginal utility Y −1
1 on the x-axis. They also report the corresponding expected value E0Y

−1
1 , obtained

with a linear combination along the red dotted line. The blue dotted line on the top-right panel is

reported for comparison. The bottom panels report the equilibria at t = 0. The blue solid lines show

the relationship between output Y0 on the y-axis and expected future marginal utility E0Y
−1
1 on the

x-axis.

Introducing the ZLB. We now show that the introduction of the ZLB generates different

responses in the two economies. To this end, we use the same shocks as in the previous

exercise but with R = 1. Once monetary policy becomes inactive, the slope of equation
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(3) becomes steeper (in the graph, the slope is flatter, as the axis are inverted), as shown

in the top-right panel of Figure 1. Intuitively, the central bank is unable to counteract the

initial decline in aggregate demand induced by the shock by cutting interest rates, so the

total impact of the shock is larger.

Consider the case in which the ZLB binds at t = 1, both under aggregate uncertainty

(contingency 2) and in the deterministic case. That leads to increases in both the expected

future marginal utility (E0Y
−1
1 ) for the stochastic shock and for the future marginal util-

ity Y −1
1DET in the deterministic case. This is depicted in Figure 1 on the top and bottom

right panels. On the top, the expected marginal utility is larger under uncertainty.6 In-

tuitively, households foresee a chance that the economy ends up in a very deep recession

(contingency 2), with ensuing large impact on expected marginal utility, and react by re-

ducing consumption today. Alternatively, in the deterministic counterpart, the incoming

recession is not as severe, so the reduction in consumption at t = 0 is not as strong.

The resulting amplification due to the interaction between the ZLB and aggregate

uncertainty can be seen on the bottom-right plot. In the stochastic economic, output Y0

is lower than its deterministic counterpart. Note that the ZLB also binds at t = 0, as

illustrated by the kink. This amplification, however, is also present even if monetary

policy were active at t = 0 (see Figure D.5 in the Appendix).

In conclusion, we have shown that aggregate uncertainty interacts with the ZLB to

amplify recessions. The current section laid the basics of the mechanisms at play, but to

understand how household heterogeneity determines the magnitude of that amplifica-

tion, we now turn our attention to a quantitative HANK model.

3 A HANK Model with Aggregate Uncertainty
This section describes a richer HANK model that we use to illustrate our solution

strategy and, later, will serve as our benchmark model in investigating the interaction

between the ZLB and aggregate uncertainty. In addition, we explain the notion of aggre-

gate uncertainty that we use, and introduce the notational convention employed in later

sections.
6We provide the analytical proof, under a general CRRA utility, for E0Y

−σ
1 > Y −σ1DET in Appendix D.

10



3.1 Model

The model economy is populated by households, intermediate producers, a final goods

aggregator, and fiscal and monetary authorities.

Households. There is a unit measure of infinitely lived households i who maximize their

discounted lifetime utility from consumption, Et
∑∞
s=t

(∏s
j=t βj

) c1−σ
it

1−σ . Households inelas-

tically supply labor nt demanded by firms and receive labor income zitwtnt, where wt

is the real wage rate per efficient hour and zit is the household idiosyncratic productiv-

ity. The matrix Qt (·) disciplines the transition between productivity states. We assume

a time-invariant transition matrix (Qt = Q), implying that individual risk is acyclical.

This is a rather conservative assumption, taken to avoid further amplifications due to the

(empirically observed) counter-cyclicality of earnings risk (Guvenen et al., 2017). This

assumption is by no means required by our solution strategy.

The productivity level also determines dividend payments zitdt and taxation zittt,

where dt and tt are aggregate profits from the firm sector and aggregate taxation from

the fiscal authority.7 Those assumptions imply that the income flow is proportional to

aggregate output Yt net of taxation, zit (Yt − tt). Households can save in nominal riskless

bonds ait (in real terms), whose price is the inverse of risk-free gross nominal interest rate

Rt. Finally, households can only borrow up to a limit a.

Consider a household with idiosyncratic state zit and initial savings ait−1, whose real

value is depreciated by (gross) current inflation Πt. Its problem is given by:

Vt (zit, ait−1) = max
cit ,ait

c1−σ
it

1− σ
+ βtEtVt+1 (zit+1, at) , (7)

s.t. cit +
ait
Rt

=
ait−1

Πt
+ zit (Yt − tt) ,

ait ≥ a.

Note that the expectation operator Et embeds both the aggregate and idiosyncratic un-

certainty.8 The optimization problem yields the standard Euler equation optimality con-

7This is a practical and conservative assumption. Similarly to our assumption about the idiosyncratic

productivity shocks, it deals with the problems resulting from countercyclical dividend dynamics that has

been shown to be counterfactual.
8The time dependence of the value function captures all the variations in aggregate variables (Yt , Πt ,

11



dition and individual asset demand, which we write in the individual state space.

ct (zit, ait−1)−σ

Πt
≥ βt

Rt
Πt

Et

[
ct+1 (zit, ait−1)−σ

1
Πt+1

]
(8)

at (zit, ait−1) = Rt

[
ait−1

Πt
+ zit (Yt − tt)− ct (zit, ait−1)

]
(9)

We denote the beginning-of-period distribution over individual states by Dt (zit, ait−1).

The solution to the household problem yields two aggregates, consumption and asset

demand, determined as follows:

Ct ≡
∫
ct (zit, ait−1)dDt,

At ≡
∫
at (zit, ait−1)dDt.

Supply Side. The supply side follows the New Keynesian tradition with a continuum of

intermediate producers with monopolistic power and quadratic price adjustment costs,

a competitive final goods producer, and labor supply union that allocates hours equally

across households.9 Intermediate producers are subject to sales subsidy to eliminate mo-

nopolistic distortions, with proceeds rebated lump-sum to firms. The final goods pro-

ducer combines intermediate varieties into the final goods in a competitive market. We

relegate details to Appendix E.

The supply side is ultimately summarized by a New Keynesian Phillips curve, with

the Frisch elasticity of labor supply represented by ω and the slope parameter κ being

inversely related to the degree of price adjustment.

(
Πt −Π

)
Πt = βtEt

(Yt+1

Yt

)1−σ (
Πt+1 −Π

)
Πt+1

+κ
[
Yω+σ
t − 1

]
(10)

Fiscal Policy. The government imposes lump-sum taxes to ensure a balanced budget,

given by:

tt +
bt
Rt

=
bt−1

Πt
. (11)

Rt , and tt).
9The resulting aggregate labor supply curve is given by wt = Nω

t Y
σ
t , where ω is the Frisch elasticity of

labor supply. This formulation is equivalent to, for instance, Auclert, Bardóczy and Rognlie (2023) with

flexible wages and unit markdown.
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In addition, the government sets the supply of bonds according to a fiscal rule:

bt = b(Yt,bt−1). (12)

Monetary Policy. The central bank follows a standard Taylor rule, reacting to deviations

of inflation and output from their respective steady state values, Π and Y , and is subject

to the ZLB. It is given by:

Rt = max

R,R
(
Πt

Π

)φπ (Yt
Y

)φy . (13)

Market Clearing Conditions. Assets and goods markets clearing conditions are:

bt = At, (14)

Ct = Yt. (15)

General Description of an Equilibrium. An equilibrium in this economy is represented

by a series of stochastic processes for the aggregate variables Xt = {Yt,Πt,bt, tt,Rt}, a series

of stochastic functions for the individual choices gt (zit, ait−1) = {ct (zit, ait−1) , at (zit, ait−1)},

given an initial distribution D0, government debt b0, and a stochastic process for the dis-

count factor βt, such that (i) individual policy functions solve the household maximiza-

tion problem (7); (ii) the distribution law of motion is consistent with individual policy

functions (8-9); and (iii) equations (10-15) hold at all times.

3.2 Aggregate Uncertainty

Solution methodologies for models similar to ours are potentially burdensome for sev-

eral reasons. First, one needs to keep track of the evolution of distribution over individual

states, which is itself a state variable.10 Second, the possibility of many different possi-

ble trajectories for the economy increases the complexity in the aggregate variables (since

one needs to consider all possible future realizations for a variable at a certain period)

10There are a few exceptions to this problem. Acharya and Dogra (2020) and Acharya, Challe and Dogra

(2023) work around it by assuming CARA utility functions, which allows for linear aggregation of individ-

ual policies. There is also a strand of the literature that uses continuous time techniques to work around

some of the computational hurdles. See for instance Achdou et al. (2022), Ahn et al. (2018), and Kaplan,

Moll and Violante (2018) among others.
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and exacerbates the first problem. Third, the presence of aggregate nonlinearities such as

the ZLB renders standard perturbation techniques inadequate.

In this subsection we introduce our notion of aggregate uncertainty, which allows

us to significantly reduce the severity of the computational burdens described above,

even in heterogeneous-agents models with a rich micro structure. To that end, our key

assumption is that the shock follows a two-states Markov process with an absorbing state.

Even though, at first, this assumption can sound restrictive, we believe it consists of a

fairly accurate representation of the events following macroeconomic disruptions.

Most recessions can be viewed as a consequence of an unexpected event whose pre-

cise duration is unknown from an ex-ante perspective. Once such shock dissipates, then

the economy moves “back on track”. One prominent example is COVID-19. On the on-

set of the pandemic, the timing frame for the availability of vaccines was far from clear.

However, the consensus was that, once a considerable portion of the population would be

vaccinated, normalcy would be restored and the economy would recover to pre-pandemic

levels (see for instance Pinsker, 2020). A second example is the Great Recession, in which

uncertainty about the speed of recovery was also high, but there was little disagreement

about the fact that the economy would eventually be back on track. Finally, during the

post-pandemic bout of inflation, even though long-term inflation expectations remained

fairly stable, there was substantial uncertainty with regards to when inflation would re-

turn to near-target levels. In all cases, the uncertainty regarding future economy dy-

namics was large and we believe that our assumptions and solution strategy are able to

adequately capture their economic effects.

Assumptions. Our uncertainty structure follows that of Eggertsson and Woodford (2003)

and Eggertsson et al. (2021), among others. We assume that the economy begins at its sta-

tionary equilibrium and at time t = 0 the discount factor unexpectedly becomes βL > β,

i.e. there is an increased desire to save. From then on, in every period there is a fixed

probability µ that it remains in this “bad regime”. Alternatively, with probability 1−µ, it

reverts back to its steady-state value and the economy moves towards the stationary equi-
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librium.11 For simplicity, in this exposition, we assume that once the economy departs

the bad regime, the value of βt reverts immediately to its steady-state value.12

Formally we have the following expression for the discount factor at t > 0:

βt =


β if βt−1 = β

β w.p. (1−µ) if βt−1 = βL

βL w.p. µ if βt−1 = βL

. (16)

Figure 2 represents the possible paths βt can follow (blue lines) and the thickness cor-

responds to their unconditional probability. The red line represents the unconditional

expectation.13 The figure also reports a black dashed line, which represents a determin-

istic counterpart to the whole stochastic structure. In the case of the shock, the deter-

ministic counterpart coincides with the unconditional expectation. However, this is not

necessarily true for endogenous variables.14

Notation and Terminology. We refer to a contingency as the time τ when the shock switches

back to its steady state value as well as the equilibrium dynamics of the economy follow-

ing such event. As an example, if the discount factor in our model switches back to its

steady-state value β at time 8, the economy’s trajectory following this event is what we

refer to as contingency 8, i.e. τ = 8. Note that this convention implies that there is no

such thing as contingency 0.

We use the notation xτt to indicate the value of variable x (say, inflation), at time t,

11A more structured shock process (a convolution of an AR(1) process together with a two-states Markov

process) can be found in Lin (2020).
12This assumption, however, is not required for our solution method to be implemented. A necessary

condition is that the discount factor eventually returns to its steady-state value, but it can assume arbi-

trary values after the economy departs the bad regime as long as the system does not violate the solution

uniqueness conditions. See Ascari and Mavroeidis (2022) and Holden (2023) for a discussion on existence

and uniqueness of equilibrium at the ZLB under perfect foresight.
13To construct the unconditional expectation we weight each possible profile by its corresponding prob-

ability. This is also what applies to households, that is, they have rational expectations. In principle, our

solution strategy allows us to depart from rational expectations but only in the particular way in which

agents just apply a different probability than µ to the aggregate process.
14It is worth mentioning that the stochastic structure in our setup is fundamentally different from the

standard shock structure present in most DSGE models, where every period there is a random disturbance

drawn from a normal distribution.
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Figure 2: Graphical Representation of Shock

t

βt

Notes: The figure represents the shock structure and its average (red line). The black dashed line being

the deterministic counterpart.

under contingency τ , and xt to indicate the value of variable x, at time t, when the shock

has not yet reverted. Note that, in case the shock has reverted, it must be that t ≥ τ . As an

example of what this notation aims to represent, consider inflation at time t = 2. In our

setup, there are three distinct “inflation-at-time-2” economic objects that are relevant:

time 2 in contingency 1, Π1
2; time 2 in contingency 2, Π2

2; and time 2 in any contingency

larger than 2, Π2.

We also define the collection of aggregate variables at time t before the shock regime

reverts as Xt ≡ {Yt,Πt,Rt, tt,bt} and the corresponding set of variables in contingency τ

at time t as Xτt ≡ {Y τt ,Πτ
t ,R

τ
t , t

τ
t ,b

τ
t }. Similarly, we denote the distribution over individual

states and the value functions at the beginning of the period t in contingency τ respec-

tively byDτ
t and V τ

t , and at the beginning of period t, when the shock has not yet reverted,

by Dt and Vt.

Implications of the Two-States Shock Structure. The shock structure assumption has

three main implications in our model. First, the assumption of the two-states structure

significantly reduces the multiplicity of the economic objects that can affect agents’ deci-

sions at any point in time. Specifically, it implies that there are only t + 1 possible values

for a certain aggregate variable at time t. Back to our example of inflation, note that at

t = 2 it can assume t + 1 = 3 different values, depending on the realizations of the shock.

The second implication is that, once in a contingency (i.e. the bad regime reverts),

predetermined variables at the moment of reversion such as the initial distribution Dτ
τ ,
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or past aggregate variables Xτ−1, can be taken as given and, from that point on, aggre-

gate variables follow a deterministic path. In fact, we will heavily exploit this fact to

make our solution strategy more efficient. Additionally, note that, conditional on those

pre-determined variables, contingencies are independent of each other. Thus, their equi-

librium solution can be parallelized, yielding further computational efficiency.

The third implication relates to forward-looking variables during the periods in which

the shock has not yet reverted, in which case we need to explicitly take the uncertainty

into account. The simple structure allows us to write expectations in a compact way. Con-

sider inflation at t = 1, from the perspective of t = 0. The expectation of one period ahead

inflation can be compactly written as µΠ1 + (1−µ)Π1
1. Now consider the consumption

Euler equation (8) at time 0, when households are aware of the uncertainty:

c0 (z,a−1)−σ

Π0
≥ β0

R0

Π0

(1−µ)

∑
z′
Qz,z′c

1
1 (z′, a)−σ

1

Π1
1

+µ

∑
z′
Qz,z′c1 (z′, a)−σ

1
Π1


 ,

We will use this fact when adapting the Algorithm in Auclert et al. (2021) to compute

heterogeneous-agents Jacobians, as we explain in Section 4.

3.3 Calibration

The calibration we use is summarized in Table 1. In the steady state, quarterly output

is normalized to 1, the annualized inflation rate is set to 2%, and the supply of liquid

bonds equals 25% of yearly GDP, yielding a quarterly average marginal propensity to

consume of 0.44. The discount factor is set to clear the asset market at an annualized

nominal rate of 2.5%, thus the real rate is 0.5% per anuum.

The CRRA utility parameter is set to 1.5 as in Smets and Wouters (2007). The Frisch

elasticity is set to ω = 1. We set the monetary policy parameters to standard values,

φπ = 1.5 and φy = 0.125. The idiosyncratic risk process is taken from McKay, Nakamura

and Steinsson (2016). Further, as a benchmark we set our fiscal rule to a constant amount

of debt, i.e. bt = b̄, where b̄ represents the steady-state level of bond supply.

We calibrate the shock size βL = 0.993 and the slope of the New Keynesian Phillips

curve (κ (ω+ σ )) to 0.01 to obtain initial output and inflation, in the HANK model with

the ZLB, that match those of the Great Recession. The shock reversal parameter µ is taken

from Eggertsson et al. (2021).
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Table 1: Calibration

Parameter Value Source Note

σ 1.5 Smets and Wouters (2007) EIS Parameter

β 0.9805 Calibrated Discount Factor

ω 1 Standard Frisch elasticity

κ × (ω+ σ ) 0.01 Calibrated Slope of Phillips Curve

Π 1.020.25 Standard Inflation target

φπ 1.5 Standard Monetary Policy

φy 0.125 Standard Monetary Policy

z McKay, Nakamura and Steinsson (2016) Idiosyncratic Shocks

Q McKay, Nakamura and Steinsson (2016) Transition Matrix

µ 0.9 Eggertsson et al. (2021) Switching Probability

βL 0.993 Calibrated Shock Size

Notes: the table reports the calibration used in the paper. See text for more details.

The calibration above is used to obtain our benchmark results in Section 5. At the end

of that section, however, we consider several robustness exercises in which we use the

earnings risk process by Krueger and Perri (2005) and different assumptions regarding

the risk-aversion, the credit limit, and the total bond supply. Further, we truncate the

uncertainty by setting τmax = 100, and report nearly unchanged results for τmax = 200 in

Appendix G.

4 Solution Approach
Our solution methodology can also accommodate the presence of nonlinearities on the

behavior of the (macro) economy. In our applications, the central bank is constrained by

the ZLB on nominal interest rates. Other applications of our solution algorithm include,

but are not limited to, aggregate financial constraints, downward wage rigitidies (see

Eggertsson, Mehrotra and Robbins, 2019), or nonlinear Phillips curves (see Benigno and

Eggertsson, 2023; Comin, Johnson and Jones, 2023; Gitti, 2023).

We distinguish between the types of paths the economy can take into two: the (two-

states “bad regime”) (henceforth TS), where uncertainty has yet to be resolved, and the

set of perfect-foresight paths (henceforth PF), where no uncertainty remains. Figure 3

illustrates the classification. The TS path is represented by the diagonal line, highlighted
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in red, whereas the PF paths are highlighted in green. In the diagram, the vertical axis

represents contingencies τ , whereas the horizontal axis indicates actual time t.

Figure 3: Representation of the Economy under the Two-States Shock Structure

Notes: Time, measured by t, is represented on the horizontal axis. Different contingencies, represented

by the vertical axis, are enumerated by τ .

We impose two technical assumptions to implement our methodology. First, there is

a period τmax at which the shock reverts with probability one. And second, we assume

that the economy returns to its steady state within T periods after the resolution of the

aggregate uncertainty.

Before proceeding to the solution methodology, we need to define further notation.

Along the TS path, we define X
T S as the (stacked) vector of equilibrium aggregate vari-

ables {Xt}τ
max−1

t=0 , DT S as a matrix made of τmax distributions over individual states
(
{Dt}τ

max−1

t=0

)
,

and, similarly, V T S as a matrix of τmax value functions
(
{Vt}τ

max−1
t=0

)
. For each PF contin-

gency τ , we let Xτ , Dτ , and V
τ respectively represent the set of equilibrium aggregate

variables
(
{Xτt }

T+τ−1
t=τ

)
, distributions

(
{Dτ

t }
T+τ−1
t=τ

)
, and value functions

(
{V τ
t }
T+τ−1
t=τ

)
along

contingency τ . Furthermore, we denote X
P F , DP F , and V

P F as respectively the com-

plete set of the equilibrium aggregate variables
(
{Xτ }τmax

τ=1

)
, distributions

(
{Dτ }τmax

τ=1

)
, and

value functions
(
{V τ }τmax

τ=1

)
along the entire set of PF branches. Lastly, let XT S

ss and X
P F
ss be

the (stacked) vectors of steady-state values with respective dimension nx × τmax × 1 and

nx × T × 1, where nx represents the number of endogenous variables in our equilibrium

system. In our benchmark case, nx = 5. Refer to Appendix A for a more detailed overview
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on our notation.

Our solution methodology iterates between solutions of the TS and the PF paths until

a fixed point of all state variables - including the entire distribution of households over

individual states - along the diagonal path is achieved. A brief description is provided in

Algorithm 1 below:

Algorithm 1 Broad Overview of the Solution Methodology

1. Provide a guess for the economy’s state variables at the initial period in each PF path,{
{Dτ

τ }τ
max

τ=1 , {Xτ }
τmax−1
τ=0

}n
, with n = 0.

2. Equilibrium in PF Contingencies. The guess consists of a set of initial conditions in

each PF path. Conditional on those, solve for the equilibrium in each of the contingencies.

Collect the forward-looking variables that are relevant for each node along the diagonal

path,
{
{V τ
τ }τ

max

τ=1 , {Xττ }
τmax

τ=1

}
.

3. Equilibrium in TS. Keeping the forward looking variables fixed, solve for the equi-

librium along the TS path. Obtain a new set of initial conditions for each PF path,{
{Dτ

τ }τ
max

τ=1 , {Xτ }
τmax−1
τ=0

}n+1
.

4. If the newly obtained state variables are sufficiently close to the guess, an equilibrium for

the economy is found. Otherwise, return to step 2.

General Equilibrium Representation. Let Z
TS = {Zt}τ

max−1
t=0 represent the dynamics of

exogenous disturbances along the diagonal path. In our baseline model, this is given by

βt = βL for t ∈ {0,1..., τmax−1}. For simplicity, we have assumed that once the shock reverts

the shock is immediately back to its steady-state value.15 Following Auclert et al. (2021),

the general equilibrium in our model can be expressed by the system of equations:

F
(
X

TS,XPF,ZTS
)

= 0, (17)

In the model laid out in Section 3, F(·) consists of equations (10-14) at each period of both

the TS and the PF paths.

15As pointed out earlier, this is not necessary for implementation of our solution strategy. In partic-

ular, if there are still shocks once the uncertainty has been resolved, equation (17) would instead read

F
(
X

TS,XPF,ZTS,ZPF
)

= 0.
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The system of equations (17) is of high dimension, due to all the possible combinations

of time and contingencies. In particular, its dimensions are nx × (T + 1) × τmax. We set

τmax = 100 and T = 300, meaning that in our baseline implementation F(·) has around 150

thousand rows. Our methodology involves computing the Jacobian of the equilibrium

system (17). Even though we are dealing with a relatively simple HANK model, this

matrix would contain more than 90 million entries. Dividing the equilibrium conditions

in two groups, one corresponding to the TS branch, and one corresponding to the entire

set of PF branches, allows us to circumvent that problem.

From inputs to outputs. Similar to Auclert et al. (2021), we recast the representation of

a heterogeneous-agent model with aggregate uncertainty of the type proposed in Section

3 as a mapping from aggregate variables (inputs) Xt and Xτt into outputs Yt and Yτt . Each

component of Xt, as well as Xτt , has nx inputs, while each component of Yt, as well as Yτt ,

displays ny outputs.16 We assume the existence of functions y(·) and yT S(·), functions v(·)

and vT S(·), and transition matrices Λ(·) and ΛT S(·) such that, conditional on the initial

distribution D0, the set of outcomes Yt and Yτt solve the following system of equations:17

V τ
t = v

(
V τ
t+1,X

τ
t
)

(18)

Dτ
t+1 = Λ

(
V τ
t+1,X

τ
t
)′Dτ

t (19)

Yτt = y
(
V τ
t+1,X

τ
t
)′Dτ

t (20)

Vt = vT S
(
Vt+1,V

t+1
t+1 ,Xt

)
(21)

Dt+1
t+1 =Dt+1 = ΛT S

(
Vt+1,V

t+1
t+1 ,Xt

)′
Dt (22)

Yt = yT S
(
Vt+1,V

t+1
t+1 ,Xt

)′
Dt (23)

16The number of inputs can be reduced with the help of a Directed Acyclic graph (DAG), as suggested in

Auclert et al. (2021).
17With some abuse of notation, the distributions and the value functions are henceforth defined over a

discretized grid of assets and idiosyncratic productivity.
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Equations (18-20) are analogue to equations (10-12) in Auclert et al. (2021).18 How-

ever, in our case, because there is uncertainty regarding when the regime will revert the

economy can follow τmax possible perfect-foresight paths, indexed by τ . Equation (18)

translates future value functions and current inputs into current value functions; equa-

tion (19) in turn provides a (linear) mapping between today’s and tomorrow’s distribu-

tions, through the matrix Λ
(
V τ
t+1X

τ
t

)
; and equation (20) computes (aggregate) outcomes

Yτt based on individual decisions y
(
V τ
t+1,X

τ
t

)
, aggregated using the distribution over in-

dividual states.

Equations (21-23), on the other hand, are unique to our setup. They explicitly take

uncertainty into account: the first two arguments of the functions vT S(·), ΛT S(·), and

yT S(·) correspond to the two distinct future value functions, on the TS path and on the

“t + 1” PF path respectively. In addition, note that the future distribution determined by

equation (22) will be the same if the economy continues in the TS branch (Dt+1) or if the

shock reverts (Dt+1
t+1 ).

In the model presented in Section 3, the five inputs are Xt = {Yt,Πt,bt, tt,Rt} (and

similarly for Xτt ). The only output is aggregate savings, the relevant variable for market

clearing. Thus Yt = ya(Vt+1,V
t+1
t+1 ,Xt)

′Dt, with ya representing the asset policy function

(and similarly for Yτt ). Finally, the asset market clearing is given by bt = Yt (and bτt = Yτt ).

4.1 Solving for the Equilibrium in Perfect Foresight

Consider the situation in which the shock has just reverted at time τ (i.e. t = τ and

agents know the economy is under contingency τ). The state of the economy in the first

period of contingency τ is characterized by the vector Xτ−1 and the distribution Dτ
τ . The

equilibrium in a generic contingency τ can be summarized by the following system of

equations:

FPF (Xτ |Dτ
τ ,Xτ−1) = 0. (24)

As each contingency features distinct initial conditions, the set of values Xτ that solves

(24) in each of them is distinct. Thus, our task is to solve τmax different perfect-foresight

18Our method also accommodates the case when the entire distribution Dt affects optimal policies, such

as in Marbet (2023) and Birinci et al. (2022). The latter shows how to adapt the methodology by Auclert

et al. (2021) for those cases.
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equilibria, which is done in parallel using a quasi-Newton method similarly to Auclert

et al. (2021), Section H. For further speed gains, we treat the initial state of the economy

similarly to how we treat shocks, as exogenous arguments of FP F . This is a key contribu-

tion of our methodology.

We begin by solving (24) via first-order perturbation. We later return to explain how

we obtain the exact (nonlinear) solution. The first-order approximation of (24) around

the steady state is given by:

FP F
X
dXτ + FP FD dDτ

τ + FP FX−1
dXτ−1 = 0. (25)

In the equation above, differentials (d) are taken relative to the steady state, i.e. dXτ =

X
τ −Xss, dDτ

τ =Dτ
τ −Dss, and dXτ−1 = Xτ−1−Xss. FP F

X
represents the steady-state Jacobian

of equilibrium conditions with respect to aggregates in contingency τ , whose dimensions

are nx ×T . Finally, the term FP FD dDτ
τ evaluates how equilibrium conditions at each period

of the contingency are impacted by changes in the distribution Dτ
τ only, while the term

FP FX−1
dXτ−1 evaluates the impact of pre-determined variables Xτ−1.

Rearranging equation (25), we obtain:

dXτ =
(
FP F
X

)−1 (
FP FD dDτ

τ + FP FX−1
dXτ−1

)
(26)

We directly employ the methodology in Auclert et al. (2021) to compute the heterogeneous-

agents part (corresponding to equation 14) of the Jacobian FP F
X

, and compute the Jacobians

of equations (10-13) analytically. The novelty of our method involves the terms in paren-

thesis, FP FD dDτ
τ and FP FX−1

dXτ−1.19 We compute the first as the right-hand-side of:

FP FD dDτ
τ ≈ FP F

(
X
P F
ss

∣∣∣Dτ
τ ,Xss

)
−FP F

(
X
P F
ss

∣∣∣Dss,Xss) (27)

An analogue expression applies to FP FX−1
dXτ−1.20 To obtain (27), we again follow a key

insight from Auclert et al. (2021): as we treat changes in initial conditions as a one-time

shock, and simulate the effect of that shock conditional on other inputs (and policies)

remaining at their steady-state values.

19If shocks also occur in the perfect-foresight paths, equation (25) is substituted by: dXτ =

(FP F
X

)−1
(
F
Z
dZτ + FP FD dDτ

τ + FP FX−1
dXτ−1

)
, where Zτ would represent the entire sequence of shocks along con-

tingency τ .
20Given our assumed fiscal rule, our baseline model does not feature pre-determined aggregate variables.
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Changes in the initial distribution of households will directly affect only the total

supply of savings at all periods in a given contingency τ , as this is the only endogenous

household decision the model features. Let Fτt be the one entry of FP F representing the

asset market clearing condition at time t, contingency τ :

Fτt (Xτ ,Dτ
τ ) = ya

(
V τ
t+1,X

τ
t
)′Dτ

τ − bτt ≡ Yτt − bτt

The term bτt equation above is independent of the heterogeneous-agents block. The chal-

lenge is computing derivatives of the first term. For that, we use:

dYτt = yass
′(Λ′ss)

t−τdDτ
τ ≡ E ′t−τdDτ

τ , (28)

where Ej ≡ (Λss)jyass is the expectation vector defined by Auclert et al. (2021). In our

example, it represents the asset demand for when households display their steady-state

policies yass for j + 1 periods, but the initial distribution has changed to Dτ
τ .21 The key

advantage of exploiting equation (28) is that the linear transformation E ′t−τ can be pre-

computed and therefore recycled at each iteration of step 1 in algorithm 1, thus yielding

speed gains.

With all terms of the right-hand-side of equation (26) at hand, we can easily compute

dXτ for each τ . We turn our attention to dealing with the Zero Lower Bound.

Occasionally Binding Constraints - The Zero Lower Bound. We follow the approach of

Guerrieri and Iacoviello (2015): in each branch, we first compute dXτ without imposing

the bound. This gives us the shadow rates SRτ ≡ {SRτt }T+τ−1
t=τ - the nominal rates the

central bank would select if it were unconstrained. Finally, we then reset Rτt = R at each

period in which SRt ≤ R and adjust the Jacobian FP F
X

to account for the fact that the central

bank is constrained in those periods. We repeat the approach until the set of periods in

which the ZLB binds is stable. The procedure, which consists of step 2 of Algorithm 1, is

described below:

21The intuition for (28) is the following: even though at date zero, the distribution over individual states

is different than the steady-state one, moving forward households maintain policies unchanged (as the

Jacobian is evaluated at the steady state), and thus the distribution D converges back to the Dss over time,

the convergence being dictated by the transition matrix Λss.
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Algorithm 2 (Step 2 of Algorithm 1) Equilibrium PF Contingencies with Occasionally

Binding ZLB. Given {Dτ
τ }τ

max

τ=1 and {Xτ }τmax−1
τ=0 , initialize the sets of periods in which the ZLB

binds onτ = ∅, n = 0. For each contingency τ :

1. Compute dXτ following (26).

2. Compute the shadow rates SRτt for each t.

3. Compute on+1
τ = {t} such that SRτt ≤ R. In the set of model equilibrium equations, substi-

tute the Taylor Rule for all {t} ∈ on+1
τ for Rτt = R. Modify the Jacobian FP F

X
accordingly.

4. If onτ , o
n+1
τ , return to 1.

5. Proceed to step 3 in Algorithm 1.

Fully Nonlinear Solution PF Contigencies. Equation (26) computes the equilibrium

variables in each contingency using a first-order perturbation, which approximates the

solution to the system of equations (24). As the asset demand function is nonlinear, there

might be an approximation inaccuracy. This is likely to happen if the initial distribution

Dτ
τ is too distant from steady state, or with strong nonlinearities in the economy.

It is straightforward to test if our approximated solution, Xτ ≡X
P F
ss +dXτ , is accurate,

i.e. approximates well the solution to (24). We can forward-simulate the economy along

each contingency τ and evaluate the whole set of equilibrium conditions. This, however,

can be a burdensome step, as it involves the computation of several transition matrices Λ

along each of the τmax PF paths. Yet the procedure can be parallelized.

Finally, we can use the Jacobians FP F
X

in a quasi-Newton method to solve for the fully

nonlinear equilibrium along each perfect-foresight branch. In fact, the first step of Algo-

rithm 2 consists of the first iteration of such method, which finds the nonlinear solution

to the system of equations (24). In Appendix F, we describe it in detail.

4.2 Solving for the Equilibrium in the TS Path

Due to the recursive nature of consumer’s problem, solving the equilibrium in the TS

path only requires knowledge of the value functions and the set of aggregate variables

in the initial period of each perfect-foresight contingency, which are taken as given in

step 3 of Algorithm 1. We denote the (stacked) vector of value functions ({V τ
τ }τ

max

τ=1 ) in the
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initial period of each contingency by V
P F

1 and the analogue stacked vector of aggregates

({Xττ }τ
max

τ=1 ) by X
P F
1 . Given those, the equilibrium in the T S branch is characterized by:

FTS
(
X
T S ,ZT S

∣∣∣XP F
1 ,V P F

1

)
= 0, (29)

given the initial conditions D0 =Dss and X−1 = Xss.

As before, we first describe how we solve find the equilibrium in TS by first-order

approximation. In this case:

FT S
X
dXT S + FT S

Z
dZT S + FT S

X1
dXP F

1 + FT S
V
dV P F

1 = 0

And rearranging:

dXT S = (FT S
X

)−1
(
FT S
Z
dZT S + FT S

X1
dXP F

1 + FT S
V
dV P F

1

)
(30)

Note that we treat future conditions the same way we treat initial conditions in equation

(25), as exogenous shocks.

The last term in equation (30) represents the impact of changes in households’ future

value functions - at the initial period of the PF branches - on equilibrium conditions along

the TS branch. We compute it making use of the following:

FT S
V
dV P F

1 ≈ FT S
(
X
T S
ss ,Zss

∣∣∣XP F
1 = X

T S
ss ,V

P F
1

)
−FT S

(
X
T S
ss ,Zss

∣∣∣XP F
1 = X

T S
ss ,Vss

)
,

where Zss represent a stacked vector of shocks at their steady-state values.

The computation of the expression above is done by solving the households’ problem

and forward-simulating the economy along the two-states branch in response only to the

changes in V
T S

1 , with all other inputs at their steady-state values. At each iteration of

Algorithm 1, it has to be done once, but this is not a costly step, since there is only a

single TS path.

As changes in future inputs (Xττ ) on current household policies can only have an effect

through changes in future value functions, the term FT S
X1
dXP F

1 only refers to aggregate

equations and, thus, is computed analytically. In the case of our baseline model, the

only analytical equilibrium equation with a forward-looking term is the New Keynesian
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Phillips Curve (10). Solving the expectations term in this expression along the TS branch

yields:

(
Πt −Π

)
Πt = βtµ

(
Yt+1

Yt

)1−σ (
Πt+1 −Π

)
Πt+1+

+ βt(1−µ)
(
Y t+1
t+1

Yt

)1−σ (
Πt+1
t+1 −Π

)
Πt+1
t+1 +κ

[
Yω+σ
t − 1

]
We use the expression above to compute how changes in the initial period of each PF

branch (in this case Πt+1
t+1 and Y t+1

t+1 ) impact equilibrium conditions on the TS branch.

Another novelty of our methodology is in computing the heterogeneous-agent part of

the term FT S
X

.22 For that, we adapt the “Fake News Algorithm” by Auclert et al. (2021)

to account for aggregate uncertainty. First, we simulate the response of households to an

announced shock s periods ahead. The difference to Auclert et al. (2021) is that, in our

case, agents take the aggregate uncertainty into account. In particular, there is a proba-

bility 1−µ that the economy will leave the TS branch at any point in time, and they react

accordingly (see equation 8). The remaining steps of the algorithm are unchanged. In

the interest of space, we relegate the discussion about how aggregate uncertainty affects

heterogeneous-agents Jacobians to Appendix F.3.

Zero Lower Bound, Fully Nonlinear Equilibria, and Implementation. Along the TS

path, we deal with occasionally binding ZLB in the same way as in the PF branches, by

following Guerrieri and Iacoviello (2015) (see Algorithm 2). In addition, to compute the

exact equilibrium along the TS branch, the steps are analogue to Algorithm 3 in Appendix

F.1. Finally, in Appendix F.2, we provide additional implementation details, together with

running times for our benchmark model and calibration, along with more sophisticated

model versions such as a two-asset HANK model as in Bayer et al. (2019).

5 Aggregate Uncertainty at the ZLB
In this section, we show that aggregate uncertainty interacts with the ZLB, and this

interaction is amplified with household heterogeneity. To do so, we perform three ex-

22The remaining term of equation (30), FT S
Z
dZT S , corresponds to the partial equilibrium impact of

shocks. Obtaining FT S
Z

is similar to computing the Jacobian of equilibrium conditions with respect to

inputs, FT S
X

.
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periments. First, we use the model described in Section 3 and compare the effects of

a stochastic shock (blue lines in Figure 2) and its deterministic counterpart (black line

in Figure 2) in the absence of the ZLB. Second, we repeat the experiment but imposing

the lower bound, i.e. R = 1. This experiment quantifies the interaction between aggre-

gate uncertainty and the ZLB. Third, after constructing a RANK economy whose demand

shocks imply observational equivalence with the HANK model without lower bound, we

repeat the experiment of introducing the ZLB. This exercise quantifies the role of house-

hold heterogeneity in determining the interaction between aggregate uncertainty and the

ZLB.

The magnitude of the shock is set to 0.0125, generating output and inflation responses

of 8.1% and -0.6% respectively, roughly matching the case in the US during the financial

crisis. Our qualitative results are robust to the magnitude of the shock. Later, we explain

how we construct this shock counterpart in the representative-agent economy.

Impulse Responses and Amplification Measure. In what follows, we display graphs

containing (i) all the possible paths the economy can follow under the stochastic shock,

(ii) the impulse-response-function of the deterministic shock, and (iii) the unconditional

average of the stochastic paths. We henceforth refer to the latter as the IRF of the stochas-

tic shock.

Broadly speaking, we consider aggregate uncertainty to amplify a shock when the

average impact of the stochastic shock is larger than the impact of its deterministic counterpart.

Specifically, we measure amplification by comparing the present-discount value of the

impulse responses, i.e. comparing E0
∑∞
t=0β

t (Xt −Xss) for a certain variable Xt, under

each type of shock.

5.1 IRFs when the Central Bank is not constrained

We consider our HANK economy subject to the stochastic shock, as described by

equation (16), and compare it with the same economy subject to a deterministic shock.

We set the sequence of demand shocks in the deterministic case to be equal to the un-

conditional expectation of the stochastic case (see Section 3.2 for details). Formally,

βDETt = µtβL +
(
1−µt

)
β.
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The left column panels of Figure 4 show the effects on output, inflation, and nomi-

nal rates, of the stochastic and deterministic shocks, plotting contingencies (blue solid

lines), the impulse-response-function of the deterministic shock (black dotted line), and

the unconditional average of the stochastic paths, represented by the red solid line. The

impulse responses under the two shocks are identical, with a 3.75% recession on impact

and inflation at 0.8% (below the 2% target). Also, note that nominal rates become neg-

ative (bottom-left panel). Since the average responses are nearly same, their discounted

sums are also identical, as we report in the first column of Figure 7, which plots the

discounted IRFs for output (left) and inflation (right) relative to the corresponding ones

under a deterministic shock (blue bar, first column).

This result confirms that certainty equivalence holds in our model, despite the non-

linearities at the individual level. Certainty equivalence states that “the average impact

of stochastic shock on the economy is the same as the impact of its deterministic coun-

terpart”. This is not a novel result, since Achdou et al. (2022) have shown, under more

classical shock structures (e.g. AR(1) processes), that certainty equivalence survives the

introduction of rich household heterogeneity. The equivalence partly relies on the fact

that the response of aggregate variables in the model are approximately linear, a fact

noted by Boppart, Krusell and Mitman (2018).

5.2 Introducing the ZLB

To assess the interaction between aggregate uncertainty and the ZLB, we repeat the

previous experiment with the only difference that the lower bound to nominal rates is

now set to 0 (R = 1). The right column panels of Figure 4 display the results.

By preventing nominal rates from entering negative territory, the ZLB generates an

unwarranted tightening and a dichotomy between the impulse responses under the two

shocks. The recession on impact under the stochastic shock (8%) is about double the size

of that under the deterministic shock (4%). Similarly, while the price dynamics implies an

inflation level of 0.7% under the deterministic shock, the model predicts a mild deflation

on impact under the stochastic shock.

The introduction of the ZLB increases the present-discounted expected output losses

by 4.5% in the deterministic case and by 125% in the stochastic case. For inflation the
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Figure 4: IRF and Contingencies
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Notes: The figure reports the effect of a stochastic demand shock as defined in equation (16) and

its deterministic counterpart (black dotted line), in our baseline HANK model without the ZLB (left

panels) and with the ZLB (right panels), i.e. R = 1. Each blue line corresponds to one individual

contingency, with thickness proportional to its unconditional probability, and red solid line is the

impulse response function obtained as a weighted average across all contingencies. The first row

reports the effects on output, in deviation from steady state. The second and third rows correspond to

annualized inflation and nominal interest rate levels. The black vertical solid line reports the expected

duration of the ZLB under the stochastic shock. The x-axis in all panels measures time in quarters.

corresponding numbers are 1.9% and 127%. Thus, the impacts, as well as the duration of

the liquidity trap, are (greatly) amplified under aggregate uncertainty.23

We then conduct the same exercise but with varying shock sizes. Figure 5 summarizes

the amplification by reporting output (left) and inflation (right) on impact as a function

of the shock size (βL − β). We compare the responses of the economies with and without

imposing the ZLB, both for the deterministic and stochastic shocks.

Larger shock sizes generate a larger recession and stronger downward pressure on

inflation, in the four cases considered. When we ignore the ZLB (or when the shock is

sufficiently small), the effect is linear in the shock size, but most importantly identical

23By merely looking at the IRF for nominal rates, one could be misled to believe that, with the stochastic

shock, the expected duration of the liquidity trap would be 0. Instead, the actual expected duration is at

least twice as large when compared to the deterministic case. This can be seen in the bottom panel of Figure

4, where the vertical line corresponds to the expected time of lift-off for policy rates under the stochastic

case and is about twice as large when compared to the deterministic case.
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in the stochastic (red solid line) and deterministic case (black dotted line). On the other

hand, once the ZLB is taken into account, the linearity breaks once the economy enters

the liquidity trap, i.e. the shock is sufficiently large.

Furthermore, there are shock values that trigger the liquidity trap under the stochastic

shock (red circles) but not under the deterministic shock (black stars).24 In other words,

the threshold shock value such that the central bank becomes constrained with positive

probability is lower with aggregate uncertainty. This is at the heart of the mechanism

behind why the aggregate uncertainty interacts with the ZLB to amplify the shock. Fi-

nally, note that the marginal effects are much larger under the stochastic shock, as can

be seen by the steeper slope of the red circles when compared to the black stars. Thus,

the amplification (here measured as the difference between the red circles and the black

stars) is not only robust to shock size, but also grows bigger with the size of the shock.

This suggests that the mechanisms we investigate in this paper are particularly important

when recessions are deep.

Figure 5: Effects on Output and Inflation on Impact
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Notes: The figure plots the effects on output (in deviation from steady state) and inflation (in annu-

alized levels) of a demand shock as described in equation (16). The shock size, βL − β, varies on the

x-axis. The red solid (black dotted) line corresponds to the HANK model, with the stochastic (deter-

ministic) shock and without the ZLB. The red circles (black stars) correspond to the HANK model,

with the stochastic (deterministic) shock and with the ZLB.

5.3 The Role of Heterogeneous Agents

What is the role of household heterogeneity in the results above? We now quantify the

role of heterogeneity by studying a RANK model, replicating the experiments done in the

24See Figure D.4 for such example in light of the simple model presented in Section 2.
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previous two subsections, and comparing the results with those of the HANK model. We

substitute the heterogeneous agents by a single representative consumer, whose intertem-

poral optimization condition, i.e. the consumption Euler equation is:

C−σt = βRANKt RtEt
C−σt+1

Πt+1
. (31)

To set our benchmark comparison, we calibrate the discount factors βRANKt under the

stochastic case so that they exactly replicate the effects on output and inflation in all

contingencies observed in the HANK model. As a deterministic shock, we consider the

unconditional expectations of the stochastic shocks, as done in the previous exercise.25

Figure 6: IRF and Contingencies - With the ZLB
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Notes: The figure reports the effect of a stochastic demand shock calibrated as described in the text

(each blue line corresponds to one individual contingency and its thickness is proportional to its

unconditional probability, the red solid line is the impulse response function obtained as a weighted

average across all contingencies) and its deterministic counterpart (black dotted line), in a standard

RANK model with the ZLB (i.e. imposing R = 1). The first panel reports the effects on output, in

deviation from steady state. The second and third panels correspond to annualized inflation and

nominal interest rate levels. The black vertical solid line reports the expected duration of the ZLB

under the stochastic shock. The x-axis in all panels measures time in quarters.

When we ignore the ZLB, the resulting simulations in the RANK model are, by con-

struction, identical to the corresponding ones in the HANK model, both under the stochas-

tic shock (by construction) and the deterministic shock (due to certainty equivalence).

Once we introduce the ZLB, as in the HANK case, a dichotomy emerges between the im-

pulse responses under the two shocks. Quantitatively, the recession on impact under the

25The resulting shock process retains the uncertainty structure with the same fixed probability of reversal

µ. It is, however, slightly different from a purely two-states Markov process, in that the discount factor will

also vary along the PF paths. As previously mentioned, our solution method can also accommodate this

situation.
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stochastic shock (6%) is larger than that under the deterministic shock (4%), while infla-

tion declines to 0.7% under the deterministic shock and to near 0% on impact under the

stochastic shock.

Figure 7 compares the magnitudes of amplification due to aggregate uncertainty with

and without the ZLB in different models. Blue bars correspond to the deterministic case,

and red bars corresponds to the stochastic shock. In each panel, the first set of columns

plot the discounted IRFs absent the ZLB (which are the same in the HANK and RANK

models), the second set plots the (discounted) IRFs with the ZLB in the HANK model,

and the the third plots discounted IRFs of the RANK model with ZLB. The left panel

displays the IRFs for output, and the right panel displays those for inflation. All bars are

normalized with respect to the deterministic case absent the ZLB.

While the introduction of the ZLB in the RANK model increases the expected loss in

terms of output by 2.3% in the deterministic case and by 66.7% in the stochastic case,

the corresponding numbers for the HANK model are 4.5% and by 125% Thus, this am-

plification, resulting from the interaction between aggregate uncertainty and the ZLB, is

much stronger in the presence of heterogeneous agents.

Figure 7: Discounted IRF - Output and Inflation
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Notes: The figure reports the implied discounted impulse response functions for output (left panel)

and inflation (right panel) under the HANK model without the ZLB (first column), the HANK model

with the ZLB (second column), and the RANK model with the ZLB (third column). Within each

column, the blue (red) bar corresponds to the deterministic (stochastic) case. All bars are relative to

the one in the HANK model without the ZLB, under the deterministic shock (left most blue bar).

Robustness. Figure 8 shows that the result shown in Figure 7, i.e. that the interaction

between aggregate uncertainty and the ZLB is larger in HANK compared to RANK, is ro-
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bust to different specifications of the heterogeneous-agents economy. In particular, Figure

8 reports the difference between the gaps among the “ZLB” and “ZLB - RA” red and blue

bars in Figure 7, but for different values of the earnings process variance (left panel) and

the total supply of bonds b̄ (right panel). On the former, we re-calibrate the model using

the log-normal earnings process of Krueger and Perri (2005), using 41 grid points, and

repeat our main exercise in this section for different values of the variance of the shock.

In addition, Appendix G shows that our results are also robust to different values of the

debt limit a, risk aversion coefficient, and to setting τmax = 200.

Figure 8: Amplification due to Aggregate Uncertainty and ZLB - HANK vs. RANK -

Earnings Risk and Bond Supply

Notes: The figure plots the difference between the gaps among the “ZLB” and “ZLB - RA” red and

blue bars in Figure 7, but for different degrees of earnings risk (left) and bond supply (right). For each

different value of the parameters considered, β is recalibrated so that the steady-state nominal interest

rate is unchanged. Except for the earnings process on the left panel, the remaining parameters are the

same as in Table 1. Vertical lines denote the baseline calibration values.

The left panel of Figure 8 shows that, as the variance of the earnings shock approaches

zero, i.e. as the model approaches the representative-agent one, the amplification due to

aggregate uncertainty and the ZLB is reduced in HANK, relative to RANK. Note that it

is not monotone: it reaches its maximum at a point below the baseline earnings risk cali-

bration of Krueger and Perri (2005). Yet it remains substantial at all empirically plausible

values.

5.4 Intuition

Why is the amplification of the demand shock due to uncertainty at the ZLB larger

in HANK relative to RANK? To answer this question, we impose additional assumptions
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that enable us to derive analytical expressions for the response of both model economies

to the type of demand shock considered in Section 5.

Consider our baseline model as presented in Section 3. We begin by proposing the

following simplifying assumptions:

Assumption 1 The net supply of assets b̄ is null.

Assumption 2 The asset distribution has a negligible impact on the dynamics of the economy.

Assumption 3 φy = 0, the monetary policy rule is given by Rt = max{R,R+φπ(Πt − Π̄)}

Assumption 1 simplifies the analytical expressions, but is not necessary for our results, as

we show in Appendix H. Assumption 2 is at the core of the method proposed Krusell and

Smith (1998). In our main exercises in Section 5, the distribution evolves over time and

can certainly have an impact on the economy. In the current section, however, we will

consider shocks of short duration (one period), and thus the impact of the distribution on

aggregates is unlikely to be relevant. This allows us to obtain analytical expressions for

the effect of the demand shock. Finally, we assume that the central bank follows a Taylor

rule that only responds to inflation deviations and is constrained by an effective lower

bound set to equal the steady-state nominal rate R.26

We begin by investigating the impact of a one-time contemporaneous shock to β0, in

an economy without aggregate uncertainty.

Proposition 1 (Response of the Economy Under Perfect Foresight.) Let the economy be

in its steady state and consider an unexpected infinitesimal shock to the discount factor at the

initial period, dβ0. Under Assumptions 1-3, to a first order, the general-equilibrium impact of

the shock on output in the initial period, Y0, is given by:

dY0

dβ0
=

(
1

1−MPCz +κMPCa

)∫
∂ci,0
∂β0

di ≡M
∫
∂ci,0
∂β0

di, (32)

with MPCz ≡
∫
ziMPCidi and MPCa ≡

∫
aiMPCidi respectively representing the (steady-

state) labor-productivity- and the asset-weighted averages of individual marginal propensities

to consume.
26The analogue to (32) when the central bank is not constrained by the lower bound is shown and ex-

plained in Appendix H.

35



The right hand-side of (32) can be divided into two terms. The latter,
∫ ∂ci,0
∂β0

, corre-

sponds to the partial equilibrium consumption response to the shock. The former, in

parenthesis, is a general equilibrium multiplier, which we denote by M. The key to

understand the differences in equilibrium responses is to compare these terms across

economies. In Figure 9, we consider how they vary in economies with different degrees

of earnings risk, as in the left panel of Figure 8.

First, we focus on the partial equilibrium term. In the heterogeneous-agents economy,

only a portion of households reacts to changes in the discount factor, precisely those

who, in equilibrium, are unconstrained in their asset choice. In the representative-agent

model, instead, all households are unconstrained and thus react to the changes in β.

Figure 9 shows that the term
∫ ∂ci,0
∂β0

is linked to the share of constrained individuals in the

economy (top- and bottom-left panels). With a low degree of idiosyncratic risk, only a

few individuals are constrained, and the response is relatively strong. On the other hand,

very high risk levels also induce households to save away from the constraint, resulting in

an inverse-U-shaped pattern of the share of constrained individuals. Consequently, the

partial equilibrium response exhibits a similar behavior. In all though, over a wide range

around our preferred calibration, the partial equilibrium response remains well below

that of the representative agent.

The multiplierM features two distinct channels. The first is the classic consumption

multiplier of changes in income, represented by MPCz. A decline in output will induce

a further decline in consumption, which feeds back into output. Because changes in in-

dividual income resulting from changes in output are proportional to labor productivity,

the magnitude of this mechanism depends on the MPCz, or the aggregate MPC of this

economy. The second term, κMPCa, represents the impact of changes in the real value

of assets due to inflation, i.e. the Fisher channel. An unexpected fall in inflation re-

values household assets, redistributing wealth in the economy, thus affecting aggregate

consumption.

The size of M depends on how reactive consumption is to changes in income and

wealth. Figure 9 shows that, as we depart from the RANK case (from the left), house-

holds’ sensitivity to consumption rises quickly, with MPCz rising fast and MPCa’s de-
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Figure 9: Decomposition of Equation (32)

Notes: The figures show the different terms of (32), together with the share of constrained households

(bottom left), and the output response at t = 0. See text for explanations for each term. The x-axis

displays different values for the earnings variance.

clining fast. Note that the latter is negative due to the fact that high-MPC households

are debtors in this economy, which further contributes to amplifying the shock. Finally,

if risk becomes sufficiently high, the sensitivity of consumption begins to decline, as, in

equilibrium, low-income individuals hold relatively more savings compared to the case

with low risk. In all, though, the multiplierM follows a similar pattern as the MPCz’s,

as the Fisher channel has limited impact.27

In sum, the multiplier is more important in HANK relative to RANK.28 Yet the overall

response also depends on the partial equilibrium effect of the shock. To contrast those

offsetting forces, the bottom right panel of Figure 9 displays the impact of a one-period

shock to β0 under Assumptions 1-3. Note that the response of the economy is well ap-

proximated by (32), suggesting that, for a one-period shock, Assumption 2 is a satis-

factory. In this case, as earnings dispersion increases, so does the overall impact of the

27In the classic version of the representative-agent model, where the net supply of assets is null, the MPC

equal 1−β, thus the multiplier equals 1
β ≈ 1. Instead, in our baseline calibration of Section 3, MPCz = 0.15,

MPCa = −0.20, yielding a multiplier of 1.18.
28This fact is qualitatively unchanged when we consider the role of active monetary policy, as we show

in Appendix H. However, in that case, the quantitative importance of MPCs in determining the response

of the economy is much smaller than in the case when the lower bound is active.
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shock. In other words, although the change in the PE response partially compensates for

the change in the multiplier, the net effect is still a relatively stronger impact of the shock

in the heterogeneous-agent economy.29 In all, the movement in MPCs and the ensuing

indirect effects dominate the partial equilibrium direct effect of the shock, which explains

the larger impact of the shock in the heterogeneous-agent model.

Aggregate Uncertainty. We now evaluate the implications of Proposition 1 in light of

the uncertainty structure proposed in Section 2. Consider an economy similar to that

proposed in Proposition 1, but it can instead follow two possible branches (τmax = 2). In

the first, entered with a probability 1−µ, no shocks are expected, nor will ever realize. In

the second branch, τ = 2, a shock to β2
1 , dβ2

1 is expected at time t = 1.30

Thus, the impact of a shock to β2
1 on output at period 1, branch τ = 2 is given by the

expression in Proposition 1, evaluated at τ = 2, t = 1. Thus, if the economy reaches the

branch τ = 2, it will enter a recession. Naturally, the recession will be deeper if the central

bank is constrained by the lower bound. What is more, this amplification is stronger in

HANK, as shown in Proposition 1. The recession, in turn, feeds back into period one, as

individuals increase their savings and consequently aggregate demand is reduced.

The strength of the feedback mechanism depends on how strongly forward-looking

households in the economy are. This, in turn, is related to the share of constrained indi-

viduals, which is higher in HANK (relative to RANK). In the interest of space, we relegate

this discussion to Appendix H. In all, though, as we have seen in Figure 8, the mechanisms

associated to Proposition 1 prevail, and the amplification caused by aggregate uncertainty

is larger in HANK.

Finally, note that the effects described above occur at every node along the diagonal

TS path (Figure 3). That is, whenever the ZLB binds at a node τ , forward-looking indi-

29Consider a Two-Asset New-Keynesian model (Bilbiie, 2008), where there are two types of agents: savers

(low MPC) and hand-to-mouth (unit MPC) agents, and assets are in zero net supply. In this case, a higher

proportion of hand-to-mouth agents increases the aggregate MPC of the economy, but also reduces the

partial equilibrium term
∫ ∂ci,0
∂β0

, as these agents are credit-constrained. It turns out that, in this model, these

effects exactly offset each other (Kaplan, Moll and Violante, 2018). As a result, the amplification at the lower

bound is similar to that in RANK.
30In this explanation, similarly to Section 2, we do not consider changes to β0, the arguments are com-

pletely unchanged in that case.
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viduals at note τ − 1 increase their savings, leading to a recession. This process proceeds

backwards, amplifying the recession at every node.

6 Application - Forward Guidance
In this section, we study the effect of forward guidance in our HANK model and the

differential effects between the stochastic and deterministic environment. This analysis,

as the one highlighted in Figure 5 requires multiple simulations of our model, which is

rendered feasible by our solution methodology.

We consider the following forward guidance policy: the central bank credibly an-

nounces that it will set the nominal interest rate to 0 for q additional quarters, relative to

what would be implied by the Taylor rule. The extra stimulus q is unconditional on the

specific contingency realization, implying that this policy increases the expected duration

of the of the ZLB periods exactly by q quarters. This analysis is similar to what McKay,

Nakamura and Steinsson (2016) label as extended policy (where they choose q to mini-

mize output loss on impact in a RANK economy) and to some extent goes in the direction

of the state-contingency mentioned by Woodford (2012). Under the deterministic shock,

such policy also corresponds to the “fixed length forward guidance” policy in Eggertsson

et al. (2021). However, the equivalence does not hold with the stochastic shock as the

actual duration of the aggregate shock is unknown until the reversion is realized.

Figure 10 shows the effects, on the discounted impulse response of output, of forward

guidance under the deterministic (blue bars) and stochastic (red bars) shocks as a func-

tion of the q quarters of extra stimulus. All bars are relative to the no forward guidance

policy under the deterministic case. The plot reveals that forward guidance is more ef-

fective under the stochastic case: with the calibrated shock, it takes 6 quarters of extra

stimulus to actually flip the output loss to an output gain. The same does not happen

under the deterministic shock, despite the fact that the output loss is smaller under it

than under the stochastic shock to begin with. The reason is that forward guidance keeps

interests rate at the lower bound regardless of the shock realization, essentially remov-

ing the nonlinearity and, thus, its interactions with the aggregate uncertainty, in the first

place.
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Figure 10: Discounted IRF and Forward Guidance - Output

0 1 2 3 4 5 6 7 8 9 10

q

-300

-200

-100

0

100

200

300

400
Discounted IRF - y

Det.

Stoch.

Notes: The figure reports the implied discounted impulse response functions for output under the

HANK model with the ZLB, in the forward guidance experiment. The order of the columns corre-

sponds to the quarters of extra stimulus under the forward guidance policy. Within each column, the

blue (red) bar corresponds to the deterministic (stochastic) case. All bars are relative to the one in the

HANK model with the ZLB, under the deterministic shock and with no extra stimulus (left most blue

bar).

7 Conclusions
We develop a novel methodology to solve heterogeneous agents models with aggregate

uncertainty and a Zero Lower Bound on nominal interest rates. By considering a two-

states Markov shock structure as in Eggertsson et al. (2021), our methodology exploits

and expands the techniques proposed by Auclert et al. (2021) and Guerrieri and Iacoviello

(2015). Its efficiency and flexibility let us consider several counterfactual policies and

robustness scenarios.

We show that, when the Zero Lower Bound binds, aggregate uncertainty amplifies

a demand shock, and this amplification is much stronger if we consider a HANK econ-

omy. In our benchmark calibration, household heterogeneity nearly doubles the ampli-

fication that takes place due to aggregate uncertainty at the ZLB. However, if the mone-

tary authority is unconstrained, no amplification takes place, either in RANK or HANK

economies. The increased amplification in HANK is robust to several calibrations and

choice of parameters. We show that this result is linked to the presence of both high-

MPC and forward-looking (locally unconstrained) individuals in heterogeneous-agents

economies.
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Finally, we also use our solution methodology to study the impact of forward guid-

ance. The model simulations indicate that the marginal effects of a promise to keep in-

terest rates at the lower bound for an extra quarter are larger when there is aggregate

uncertainty.

We hope that our methodology allows future researchers to better understand the

role of uncertainty both in the micro and macro level, and to study other types of policy

such as government transfers and the impact of other nonlinearities at the macro level

such as occasionally binding constraints in the financial sector. Our results concerning

amplification in heterogeneous-agents economies are certainly a step in that direction.
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Bayer, Christian, Ralph Lütticke, Lien Pham-Dao, and Volker Tjaden. 2019. “Precau-

tionary savings, illiquid assets, and the aggregate consequences of shocks to household

income risk.” Econometrica, 87(1): 255–290.

Benigno, Pierpaolo, and Gauti B Eggertsson. 2023. “It’s Baaack: The Surge in Inflation

in the 2020s and the Return of the Non-Linear Phillips Curve.” National Bureau of

Economic Research WP 31197.

Bigio, Saki, Galo Nuño, and Juan Passadore. 2019. “A framework for debt-maturity

management.”

Bilbiie, Florin O. 2008. “Limited asset markets participation, monetary policy and (in-

verted) aggregate demand logic.” Journal of Economic Theory, 140(1): 162–196.

Birinci, Serdar, Fatih Karahan, Yusuf Mercan, and Kurt See. 2022. “Labor market

shocks and monetary policy.” FRB St. Louis Working Paper, , (2022-16).

Bloom, Nicholas. 2014. “Fluctuations in uncertainty.” Journal of Economic Perspectives,

28(2): 153–76.

42



Bloom, Nicholas, Max Floetotto, Nir Jaimovich, Itay Saporta-Eksten, and Stephen J

Terry. 2018. “Really uncertain business cycles.” Econometrica, 86(3): 1031–1065.

Boppart, Timo, Per Krusell, and Kurt Mitman. 2018. “Exploiting MIT shocks in

heterogeneous-agent economies: the impulse response as a numerical derivative.” Jour-

nal of Economic Dynamics and Control, 89: 68–92.

Caggiano, Giovanni, Efrem Castelnuovo, and Giovanni Pellegrino. 2017. “Estimating

the real effects of uncertainty shocks at the zero lower bound.” European Economic Re-

view, 100: 257–272.

Carroll, Christopher D. 2006. “The method of endogenous gridpoints for solving dy-

namic stochastic optimization problems.” Economics Letters, 91(3): 312–320.

Comin, Diego A, Robert C Johnson, and Callum J Jones. 2023. “Supply Chain Con-

straints and Inflation.” National Bureau of Economic Research WP 31179.

Eggertsson, Gauti B, and Micheal Woodford. 2003. “Zero bound on interest rates and

optimal monetary policy.” Brookings papers on economic activity, 2003(1): 139–233.

Eggertsson, Gauti B, Neil R Mehrotra, and Jacob A Robbins. 2019. “A model of secular

stagnation: Theory and quantitative evaluation.” American Economic Journal: Macroeco-

nomics, 11(1): 1–48.

Eggertsson, Gauti B, Sergey K Egiev, Alessandro Lin, Josef Platzer, and Luca Riva.

2021. “A Toolkit for Solving Models with a Lower Bound on Interest Rates of Stochastic

Duration.” Review of Economic Dynamics.

Fernández-Villaverde, Jesús, Joël Marbet, Galo Nuño, and Omar Rachedi. 2023. “In-

equality and the Zero Lower Bound.” National Bureau of Economic Research WP

31282.
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Marbet, Joël. 2023. “A hank model with monetary search frictions.” manuscript, CEMFI.

McKay, Alisdair, Emi Nakamura, and Jón Steinsson. 2016. “The power of forward guid-

ance revisited.” American Economic Review, 106(10): 3133–58.

Mendicino, Caterina, Lukas Nord, and Marcel Peruffo. 2021. “Distributive Effects of

Banking Sector Losses.”

Pinsker, Joe. 2020. “The Four Possible Timelines for Life Returning to Normal.” The At-

lantic.

Reiter, Michael. 2009. “Solving heterogeneous-agent models by projection and perturba-

tion.” Journal of Economic Dynamics and Control, 33(3): 649–665.

Schaab, Andreas. 2020. “Micro and macro uncertainty.” Working Paper.

Shimer, Robert. 2005. “The Cyclical Behavior of Equilibrium Unemployment and Vacan-

cies.” American Economic Review, 95(1): 25–49.

Smets, Frank, and Rafael Wouters. 2007. “Shocks and frictions in US business cycles: A

Bayesian DSGE approach.” American Economic Review, 97(3): 586–606.

Werning, Iván. 2015. “Incomplete markets and aggregate demand.” National Bureau of

Economic Research.

Winberry, Thomas. 2018. “A method for solving and estimating heterogeneous agent

macro models.” Quantitative Economics, 9(3): 1123–1151.

Woodford, Michael. 2003. “Interest and prices.”

Woodford, Michael. 2012. “Methods of Policy Accommodation at the Interest-rate Lower

Bound.” Proceedings - Economic Policy Symposium - Jackson Hole, 185–288.

45



Appendix

A Notation List
• Xt and Xτt are vectors of 5 entries (output, inflation, nominal rates, taxes, govern-

ment debt)

• Dt andDτ
t are vectors of na×nz entries, representing the distribution over individual

states at the beginning of period t.

• Vt and V τ
t are vectors of na ×nz entries, representing the value function at period t.

• X
T S is a stacked vector made of τmax vectors of 5 entries representing inputs along

the TS branch. XT S = {Xt}τ
max−1

t=0

• D
T S is a stacked vector made of τmax vectors of na × nz entries representing the

distribution at the beginning of each period along the TS branch. DT S = {Xt}τ
max−1
t=0

• V
T S is a stacked vector made of τmax vectors of na×nz entries representing the value

functions the TS branch. V T S = {Vt}τ
max−1
t=0 .

• X
τ is a stacked vector made of T vectors of 5 entries representing inputs along one

of the PF branches. Xτ = {Xτt }
T+τ−1
t=τ .

• D
τ is a stacked vector made of T vectors of na×nz entries representing the distribu-

tion at the beginning of each period of the perfect foresight branch. Dτ = {Dτ
t }
T+τ−1
t=τ .

• V
τ is a stacked vector made of τmax vectors of na ×nz entries representing the value

functions in one of the PF branches. In loose sense V
τ = {V τ

t }
T+τ−1
t=τ

• X
P F = {Xτ }τmax

τ=1 , DP F = {Dτ }τmax

τ=1 , V P F = {V τ }τmax

τ=1 .

• X
P F
1 = {Xττ }τ

max

τ=1 is the collection of 5x1 vectors of inputs in the first period of each PF

path.

• V
P F

1 = {V τ
τ }τ

max

τ=1 .

46



B Technical Details

B.1 Aggregate State Variables

One of the arguments in equation (26) is the vector of aggregate variables Xτ−1, during

the period right before the contingency is revealed. Those are initial conditions for the

τ-th PF branch under consideration. Given the dynamic programming structure for the

households’ problem, those initial conditions do not enter the heterogeneous-agent block.

However, they might enter some aggregate equilibrium conditions. One example is the

stock of public debt bτ−1. This is an initial condition that should be taken into account

under a more general fiscal policy rule. We account for the effects of aggregate state

variables in equation (26) by deriving the (analytical) Jacobian of aggregate equilibrium

conditions with respect to these variables.

B.2 Lags

In our model economy, there were no significant variables that entered with a lag

larger than 1. This might not be true for more complex models. For instance, if one was

to study the new Average Inflation Targeting framework (AIT) of the Federal Reserve,

we need to keep track of many past levels of inflation. In particular, once entering a

contingency τ , it would not be sufficient to carry over the information in Xτ−1 as it is

currently defined. The solution is to define an aggregate variable which at time t takes

the value of the lag variable of interest. To give a practical example, if the model requires

to keep track of inflation 2 periods in the past, define ΠLag2,t = ΠLag1,t−1 and ΠLag1,t =

Πt−1, and use them as other structural equation. The variable ΠLag2,t corresponds to the

inflation with two lags.

B.3 Leads

Some models might require to form expectations of future variables with lead larger

than 1. As an example, suppose that we are interested in considering in the equilibrium

conditions the expectations for a variable x in l quarters in the future. The solution is to

define l auxiliary variables as follows. ΠLead1,t = EtΠt+1, ΠLead2,t = EtΠLead1,t+1, ΠLeadl,t =

EtΠLeadl−1,t+1.
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C Other Figures

Figure C.1: Discounted IRF and Forward Guidance - Inflation
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Notes: The figure reports the implied discounted impulse response functions for inflation under the

HANK model with the ZLB, in the forward guidance experiment. The order of the columns corre-

sponds to the quarters of extra stimulus under the forward guidance policy. Within each column, the

blue (red) bar corresponds to the deterministic (stochastic) case. All bars are relative to the one in the

HANK model with the ZLB, under the deterministic shock and with no extra stimulus (left most blue

bar).
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Figure C.2: Discounted IRF - Decomposition - D and g

All D g
-120

-100

-80

-60

-40

-20

0

20
Discounted IRF - C

Perf. Fores.

Agg. Unc.

Notes: The figure reports the implied discounted impulse response functions for consumption under

the HANK model with the ZLB. The columns correspond to the full effects, the effects of the distribu-

tion, and the effects of the individual policies. Within each column, the blue (red) bar corresponds to

the deterministic (stochastic) case. All bars are relative to the one in the HANK model with the ZLB,

under the deterministic shock and with no extra stimulus (left most blue bar).

Figure C.3: Discounted IRF - Decomposition - Prices
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Notes: The figure reports the implied discounted impulse response functions for consumption under

the HANK model with the ZLB. The columns correspond to the full effects, the effects of nominal rate,

discount factor, inflation, taxes, incomes. Within each column, the blue (red) bar corresponds to the

deterministic (stochastic) case. The yellow bar corresponds to a deterministic counterfactual where

agents are given the average of the prices in the stochastic case. All bars are relative to the one in the

HANK model with the ZLB, under the deterministic shock and with no extra stimulus (left most blue

bar).
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D Simple Model - Additional Proofs and Results
The proofs and generalizations below refer to the simple model presented in Section

2. In addition, in what follows we generalize the utility function to a CRRA form with

coefficient σ , of which log utility is a special case.

D.1 Amplification at t = 0
Proposition D.2 If the ZLB binds, the marginal utility at t = 1 in the stochastic economy is

always larger than its deterministic counterpart, i.e. E0Y
−σ
1 > Y −σ1DET , where the demand shock

for the deterministic economy is constructed according to (6):

Proof.

E0Y
−σ
1 > Y −σ1DET ⇐⇒

(1−µ) +µ
β1L

β
>
β1DET

β
=

µ(β1L

β

) σ
σ+φ

+ (1−µ)


σ+φ
σ

⇐⇒(
(1−µ) +µ

β1L

β

) σ
σ+φ

> µ

(
β1L

β

) σ
σ+φ

+ (1−µ)

The last inequality is simply Jensen’s inequality, given that σ
σ+φ ∈ (0,1). Note that E0Y

−σ
1 >

Y −σ1DET implies that, at t = 0, output in the stochastic economy is lower than its determin-

istic counterpart (see equation 5).

D.2 The case where the ZLB does not bind at t = 1 in the Deterministic

Economy

In Figure 1 in the main text, we considered a shock β1L that was sufficiently large

so that, in the deterministic case, the ecomomy subject to β1DET reached the zero lower

bound at t = 1. That does not need to be the case if β is sufficiently low. Figure D.4,

analogue to Figure 1, shows a situation in which β1L is sufficiently large so that R1L = R,

but the deterministic economy does not reach the ZLB at t = 1 (i.e. R1DET > R). We lay out

the formal conditions over β1L below. Note that, in this case, there is amplification due to

the ZLB in the economy with aggregate uncertainty, but there is no such amplification in

the deterministic economy, as it does not reach the ZLB.
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D.3 The Case when the ZLB does not Bind at t = 0

Figure D.5 below shows the case in which the ZLB does not bind at t = 0. Note that

the curve on the bottom-right panel exhibits no kink, yet output is still lower in the

stochastic economy. This happens because the expected marginal utility is higher under

the stochastic shock.

D.4 Conditions over β1L for ZLB binding at t = 1 in the Deterministic

Economy

Consider the deterministic economy at t = 1, with discount factor β1DET . In all t > 1,

the economy returns to the steady state. Thus, following equations (3) and (4), we have

that the economy will reach the ZLB if at t = 1 if

β1DET ≥ βR
σ+φ
φ
ss .

In the equation above, we used R = 1. Using the definition of β1DET , we obtain:

β

µ(βL1

β

) σ
σ+φ

+ (1−µ)


σ+φ
σ

≥ βR
σ+φ
φ
ss ,µ(βL1

β

) σ
σ+φ

+ (1−µ)

 ≥ Rss,
βL1 ≥ β

(
Rss − (1−µ)

µ

) σ+φ
σ

≡ β̂L1. (D.1)

Conditions over β1L for ZLB binding at t = 1, Contingency 2 For the ZLB to bind under

contingency 2 in the stochastic economy, we have a condition similar to the one above,

but over β1L

β1L ≥ βR
σ+φ
φ
ss ≡ β∗1L.
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We can now compare β∗1L and β̂1L

β∗1L < β̂1L ⇐⇒

βR
σ+φ
φ
ss < β

(
Rss − (1−µ)

µ

) σ+φ
σ

⇐⇒

Rss <

(
Rss − (1−µ)

µ

)
⇐⇒

µRss < Rss − (1−µ) ⇐⇒

(1−µ) < Rss(1−µ) ⇐⇒

1 < Rss,

which is always true. Thus, it is always the case that there are values of β1 such that, if

β1 ∈ (β∗1L, β̂1L), the stochastic economy at t = 1 and contingency 2 will hit the ZLB, but

its deterministic counterpart will not. This is the case depicted in Figure D.4. Further,

if β1 > β̂1L, then the ZLB will be reached in both cases, which is the scenario depicted in

Figure 1.
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Figure D.4: Equilibrium in the Simple Model

(a) Outside the ZLB: R = −∞

Y −σ1

β1

Y −σss

β

Y −σ1L

β1L

E0β1

E0Y
−σ
1

Y −σ1DET

β1DET

E0Y
−σ
1

Y

E0Y
−σ
1

Y0

(b) With the ZLB: R = 1
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Notes: The figure shows the equilibrium of the simple model without the ZLB (left column, R = −∞)

and with the ZLB (right column, R = 1). The top panels report the equilibria at t = 1. The blue

solid lines show the relationship between the discount factor β1 on the y-axis and the correspond-

ing marginal utility Y −σ1 on the x-axis. They also report the corresponding expected value E0Y
−σ
1 ,

obtained with a linear combination along the red dotted line. The blue dotted line on the top-right

panel is reported for comparison. The bottom panels report the equilibria at t = 0. The blue solid lines

show the relationship between output Y0 on the y-axis and expected future marginal utility E0Y
−σ
1

on the x-axis. The kink on the bottom right panel corresponds to the level value of future expected

marginal utility above which the ZLB binds at t = 0. Y0P F denotes output at t = 0 without uncertainty,

whereas Y0 refers to that in the economy with uncertainty.
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Figure D.5: Equilibrium in the Simple Model

(a) Outside the ZLB: R = −∞
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(b) With the ZLB: R = 1
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Notes: The figure shows the equilibrium of the simple model without the ZLB (left column, R = −∞)

and with the ZLB (right column, R = 1). The top panels report the equilibria at t = 1. The blue

solid lines show the relationship between the discount factor β1 on the y-axis and the correspond-

ing marginal utility Y −σ1 on the x-axis. They also report the corresponding expected value E0Y
−σ
1 ,

obtained with a linear combination along the red dotted line. The blue dotted line on the top-right

panel is reported for comparison. The bottom panels report the equilibria at t = 0. where we assume

that the ZLB does not bind. The blue solid lines show the relationship between output Y0 on the y-

axis and expected future marginal utility E0Y
−σ
1 on the x-axis. Y0P FNZ corresponds to output at t = 0

without uncertainty, whereas Y0NZ corresponds to the economy with uncertainty.
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E Additional Model Derivations - Algorithms

E.1 Final Good Producer

A competitive representative final good producer transforms intermediate goods from

a continuum of firms indexed by j ∈ [0,1], using the following technology:

Yt =
[∫ 1

0
y
θ−1
θ
jt dj

] θ
θ−1

,

where θ > 1 is a parameter that governs the substitutability across different types of inter-

mediate goods. The final good producer sells the homogeneous good Yt to the consumers

for a price Pt and pays inputs with their individual price Pjt. The price index Pt is defined

as:

Pt ≡
(∫ 1

0
P 1−θ
jt dj

) 1
1−θ

.

The Lagrangian of the problem faced by the final good producer follows.

L =
∫ 1

0
Pjtyjtdj −λ


[∫ 1

0
y
θ−1
θ
jt dj

] θ
θ−1

−Yt

 .
Taking the first-order condition for an arbitrary j ′:

Pj ′t = λ
[∫ 1

0
Y

θ−1
θ

jt dj

] 1
θ−1

y
− 1
θ

j ′t .

The above condition implies

yjt = P θj ′tyj ′tP
−θ
jt

for any j and j ′. By substituting the above condition into the production function, one

obtains the following. [∫ 1

0

[
P θj ′tyj ′tP

−θ
jt

]θ−1
θ dj

] θ
θ−1

= Yt

P θj ′tyj ′t

[∫ 1

0
P 1−θ
jt dj

] −θ
1−θ

= Yt

Yj ′t =
(
Pj ′t
Pt

)−θ
Yt.

55



E.2 Intermediate Good Producer

The profits maximization problem of an intermediate producer j can be simplified to

the following:

max
(
1 + τd

)
Pjtyjt −WtNjt −

ψ

2

(
Pjt
Pjt−1

−Π
)2

PtYt + τdPtYt+

+ βtEt

(
Yt+1

Yt

)−σ
Pt
Pt+1

(1 + τd
)
Pjt+1yjt+1 −Wt+1Njt+1 −

ψ

2

(
Pjt+1

Pjt
−Π

)2

Pt+1Yt+1 + τdPt+1Yt+1


s.t. yjt =Njt

yjt =
(
Pjt
Pt

)−θ
Yt,

where ψ > 0 governs the strength of the quadratic adjustment costs, Wt is the nominal

wage rate, and τd is a standard subsidy that corrects the steady-state markup distortion.

We substitute the production function and the demand function.

(
1 + τd

)
Pjt

(
Pjt
Pt

)−θ
Yt −Wt

(PjtPt
)−θ

Yt

− ψ2
(
Pjt
Pjt−1

−Π
)2

PtYt + τdPtYt+

+ βtEt

(
Yt+1

Yt

)−σ
Pt
Pt+1

(
1 + τd

)
Pjt+1

(
Pjt+1

Pt+1

)−θ
Yt+1

−Wt+1

(Pjt+1

Pt+1

)−θ
Yt+1

− ψ2
(
Pjt+1

Pjt
−Π

)2

Pt+1Yt+1 + τdPt+1Yt+1

.
Taking the FOC one obtains the following condition.

(
1 + τd

)
(1−θ)

(
Pjt
Pt

)−θ
Yt +θWt

(PjtPt
)−θ

Yt

P −1
jt −ψ

(
Pjt
Pjt−1

−Π
)
PtYt

1
Pjt−1

+

+βtEt

(
Yt+1

Yt

)−σ
Pt
Pt+1

ψ

(
Pjt+1

Pjt
−Π

)
Pt+1Yt+1

Pjt+1

P 2
jt

= 0

Assuming symmetry (i.e. Pjt = Pj ′t = Pt), the above simplifies to:

(
1 + τd

)
(1−θ)Yt +θWtYtP

−1
t −ψ

(
Πt −Π

)
ΠtYt + βtEt

(
Yt+1

Yt

)−σ
ψ
(
Πt+1 −Π

)
Yt+1Πt+1 = 0.

Rearranging the above expression one obtains:.(
Πt −Π

)
Πt = βtEt

(
Yt+1

Yt

)−σ (
Πt+1 −Π

) Yt+1

Yt
Πt+1 +

θ
ψ

[
wt −

(
1 + τd

) θ − 1
θ

]
(E.2)
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Substituting the markup
(
τd = θ

θ−1

)
and the aggregate labor supply condition yields:

(
Πt −Π

)
Πt = βtEt

(Yt+1

Yt

)1−σ (
Πt+1 −Π

)
Πt+1

+κ
[
Yω+σ
t − 1

]
Finally, aggregate dividends and the production function are given by:

dt = Yt −wtNt (E.3)

Yt =Nt. (E.4)

F Additional Information - Solution Method

F.1 Computation of Exact Equilibrium

Below we describe how to compute the exact equilibrium in the perfect-foresight con-

tingencies of our economy, with the possibility of a binding Zero Lower Bound.

Algorithm 3 Perfect-Foresight Contingencies - Exact Equilibriumwith ZLB. Given {Dτ
τ }τ

max

τ=1

and {Xτ }τmax−1
τ=0 , initialize the set of periods in which the ZLB binds on = ∅, n = 0.

1. Perform step 1 in Algorithm 2, obtaining X
τ,0 = Xss + dXτ .

2. Compute FPF (Xτ |Dτ
τ ,Xτ−1) by forward-simulating the economy along all contingencies.

3. If ||FPF (Xτ |Dτ
τ ,Xτ−1) || ≤ ϵ for a given ϵ > 0, conditional on on, the exact equilibrium is

found (up to the tolerance ϵ). If not, update the endogenous variables in each contingency

according to the formula:

X
τ,m+1 = X

τ,m −
(
FP F
X

)−1
FPF (Xτ |Dτ

τ ,Xτ−1)

and return to step 2.

4. Using the resulting X
τ , perform steps 2-3 in Algorithm 2.

5. If on , on+1, return to step 1. Else, Xτ represents the exact equilibrium inputs for contin-

gency τ , given on pre-set initial conditions.

F.2 Running Times and Additional Implementation Details

To solve the household problem in the model described in Section 3, we discretize the

asset grid in na points and the income grid in nz points, and employ the endogenous grid

method proposed by Carroll (2006).
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In Table F.1 we show the running times for each distinct specification, together with

the maximum deviation of equilibrium conditions (17). The benchmark model features

nz = 3 and na = 100. In addition, we include a case with nz = 15 where earnings follow

an AR(1) process whose innovations are drawn from a mix of normal distributions, and

calibrate the parameters as in Mendicino, Nord and Peruffo (2021), matching high-order

moments of the distribution of earnings changes.31 Finally, the last two columns present

the algorithm performance in a basic two-asset model, whose details are relegated to

Appendix I. In this case, grids feature nz = 7,na = 31, and 30 points for the illiquid asset.

We keep the aggregate shock structure the same as in the benchmark. Codes are written

in Matlab and were ran on an Aurora Desktop with 3.00Ghz processor and 32GB RAM.32

Table F.1: Running Times

Specification Benchmark MNP Two Asset

Step Time Max. Err. Time Max. Err. Time Max. Err.

Steady State 1.22 - 0.58 - 82 -

All Jacobians 1.25 - 13.7 - 21.4 -

Algo. 1 (Step) - First-Order 2.6 0.5% 3.3 0.5% - -

Algo. 1 (Step) - Exact only on TS 2.8 0.004% 6.1 0.0006% 40.0 1.2%

Algo. 1 (Step) - Exact Equilibrium 4.6 0.000006% 39.9 0.000001% 163 0.06%

Notes: Times are given in seconds. “Benchmark” refers to the model calibrated as in Section 3, while “MNP”

stands for the model calibrated as in Mendicino, Nord and Peruffo (2021), and “Two Asset” refers to the

two-asset HANK model presented in Appendix I. The row “Algo. 1 - First-Order” refers to the solution of

both PF and TS branches via first-order perturbation. The row “Algo. 1 - Exact only on TS” refers to the

solution of PF paths via perturbation but the exact equilibrium computed in the TS branch. The row “Algo.

1 - Exact Equilibrium” solves for the exact equilibrium in the economy. For the latter three rows, the time

is given in seconds per iteration of Algorithm 1. Max errors correspond the maximum absolute value of the

asset market clearing equilibrium condition, given as a percentage of steady-state total asset holdings.

The runs in Table F.1 correspond to the equilibrium of the economy in response to

a shock to the discount factor β that introduces uncertainty in the economy. For the

two versions of the one-asset economy, the shock is the same as in Section 5 (µ = 0.9,

dβ = 0.0125), whereas for the two-asset economy µ = 0.75 and dβ = 0.0250, ensuring that

31Specifically, their estimation targets the cross-sectional variance of log annual earnings, the standard

deviation, the skewness and kurtosis of log annual earnings changes, and the ratio of the 90th to the 10th

percentile of log changes.
32Parallelization with 12 cores is used in Step 2 of Algorithm 1.
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the ZLB also binds.

For the two versions of the one-asset model, we see that under all scenarios the max-

imum errors are small, even with the first-order solution. The main results we present

in Section 5 are in practice unchanged quantitatively for any of the setup choices. The

initial impact of the shock on output equals -8.02% in the first-order approximation and

-8.10% in the other two cases. On the other hand, precision is somewhat reduced for the

case two-asset model when we do not enforce the exact equilibrium in the two types of

branches.33

F.3 Heterogeneous-Agents Jacobian with Aggregate Uncertainty - An

Example

How does aggregate uncertainty affect the heterogeneous-agents Jacobians? Intu-

itively, it affects the reaction to news regarding changes in future inputs. In particular,

because households attribute a probability µs < 1 that a node in the TS branch s periods

ahead will be reached, they under-react to future news, relative to the case in which µ = 1.

Figure F.6 plots the response of aggregate savings to changes in output, i.e. a partial equi-

librium change in Ys, at different horizons s, for different degrees of uncertainty µ, i.e.{
dYt
dYs

}τmax−1

t=0
, where Yt representing aggregate savings. Recall that changes in output Ys

have a direct impact on individual labor income, as household i’s gross earnings is given

by ziYs.

33The two-asset model requires the computation of the exact equilibrium in the TS branch to ensure

convergence, hence the row for “First-Order” is unfilled.
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Figure F.6: Asset Market Clearing Jacobian
(
dYt
dYs

τmax−1

t=0

)
for Distinct µ’s

0 10 20 30 40 50 60 70 80

Time (t)

-0.5

0

0.5

1

Notes: The figure displays the columns of the heterogeneous-agent Jacobians for changes in aggregate
savings (A) in response to news about changes in income (Ys) at different times (s) under different

degrees of uncertainty (as governed by µ). The black-solid lines represent the case of contemporaneous

income changes, thus the degree of uncertainty is immaterial.

Note that, because contemporaneous changes in inputs are certain, different values for

the uncertainty parameter µ have no impact on the change in households savings (black

line) when s = 0. At horizons s > 0, though, uncertainty matters. Recall that agents are

informed of a state of the world in which income is higher at some future point s, so

in the times leading to such period, they start consuming part of this future income by

tapping on their savings stock. The lower µ is, the weaker is the reduction in savings

in anticipation of changes in output, as households attribute low probabilities to that

event. The anticipation is particularly muted for distant horizons. This can be seen, for

instance, in the solid red line: there is essentially no reaction to news of a potential change
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in output happening 25 periods ahead, because the perceived probability of this event

actually taking place is negligible. On the other hand, in the case of µ = 1 (dotted line),

households immediately react to the certain expectation of a change in output happening

even 25 periods ahead.

When the shock materializes (t ≥ s) the impact on savings is stronger with aggre-

gate uncertainty, relative to the case when µ = 1. This can be seen by comparing the

solid and dashed blue and red lines with their dotted counterparts. The intuition is

that, when µ = 1, households front-load the consumption a relatively large portion of

the expected income windfall. Instead, with uncertainty, consumption front-loading is

relatively muted, and a relatively larger portion of the windfall is consumed after it ma-

terializes.

G Robustness Exercises
Figure G.7 below examines the robustness of our results in Section 5 with respect to

different calibrations of the debt limit (left panel) and the parameter σ , measuring the

curvature of the utility function.

Figure G.7: Amplification due to Aggregate Uncertainty and ZLB - HANK vs. RANK -

Debt Limit and σ

Notes: The figure plots the difference between the gaps among the “ZLB” and “ZLB - RA” red and

blue bars in Figure 7, but for different credit limits (left) and parameter σ (right). For each different

value of the parameters considered, β is recalibrated so that the steady-state nominal interest rate is

unchanged. The remaining parameters are the same as in Table 1. Vertical lines denote the baseline

calibration values.

In all cases considered, the differences in amplification remain positive. Note that,
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as σ increases, the difference is smaller. This is because, for high values of σ ,the partial

equilibrium impact of the shock gets muted, as the elasticity of intertemporal substitution

is low. As a result, the recession is less deep and, for sufficiently high values, the Zero

Lower Bound does not bind and no amplification is observed whatsoever.

G.1 Sensitivity - τmax

To ensure that we selected a sufficiently large horizon τmax, we re-run our main ex-

ercise with τmax = 200. Results are nearly unchanged (quantitatively), with the expected

loss in terms of output at 2.2% in the deterministic case and by 68.0% in the stochastic

case, while the corresponding numbers for the HANK model at 4.8% and 145%.

Figure G.8: Discounted IRF - Output and Inflation (τmax = 200)

NOZLB ZLB ZLB - RA

-250
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-100

-50
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Discounted IRF - Output

Det.

Stoch.
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-300
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-50

0
Discounted IRF - Inflation

Notes: The figure reports the implied discounted impulse response functions for output (left panel)

and inflation (right panel) under the HANK model without the ZLB (first column), the HANK model

with the ZLB (second column), and the RANK model with the ZLB (third column). Within each

column, the blue (red) bar corresponds to the deterministic (stochastic) case. All bars are relative to

the one in the HANK model without the ZLB, under the deterministic shock (left most blue bar). τmax

is set to 200.

H Proofs and Derivations - Section 5.4

H.1 Replication of Proposition 1 without a Lower Bound to Nominal

Rates
Proposition H.3 Consider the shock described in Proposition 1, but now assume that R is

larger than R, thus the lower bound is not achieved for infinitesimal shocks. Then, the response

62



of the economy is given by:

dY0 =

 1

1− (1−κ(φ− 1) + τ̄)MPCz +κMPCa −κφπ
∫ ∂ci,0
∂R0

di

∫
∂ci,0
∂β0

di

dβ0. (H.5)

Note that the conditions outlined above are analogue to those in which the economy’s

steady-state interest rate is the lower bound itself. We thus interpret the difference be-

tween (32) and (H.5) as the impact of the lower bound to nominal rates. Further, note

that Proposition is a generalization of Proposition 1 for when (i) φπ , 0 (i.e. monetary

policy is active) and b̄ , 0. Accordingly, we offer a proof for the latter.

Given the simplifications, household i consumption function at the initial period can

be written as:

ci0 ≡ c({β0,xi ,Y0,π0,R0, τ0}, {Xss,βss}), (H.6)

where xi is the household individual state variable (z0, a−1) and π0 = Π0 − 1. In what

follows, we also define rt ≡ Rt −1 as the net nominal rate. In addition, variables with bars

refer to their steady-state values.

Take the total derivative with respect to variables at t = 0, as those at t = 1 onward are

unchanged.

dci0 =
(
∂ci0
∂β

+
∂ci0
∂Y0

dY0

dβ0
+
∂ci0
∂π0

dπ0

dβ0
+
∂ci0
∂R0

dR0

dβ
+
∂ci0
∂τ0

dτ0

dβ0

)
dβ0.

Aggregate and use market clearing (C0 = Y0):∫
dci0di = dY0 =

(∫
∂ci0
∂β

di +
∫
∂ci0
∂Y0

dY0

dβ
di +

∫
∂ci0
∂π0

dπ0

dβ
di +

∫
∂ci0
∂τ0

dτ0

dβ
+
∂ci0
∂R0

dR0

dβ
di

)
dβ.

(H.7)

Our goal is to simplify some elements on the right-hand-side. First, the term ∂ci0
∂Y0

is related

to the individual marginal propensity to consume. Recall that individual income yit =

zit(Yt − τt). Let MPCi be the change in consumption for individual i with respect to an

infinitesimal increase in the right-hand-side of the budget constraint in the steady state.

We have:

∂ci0
∂Y0

=
∂ci0
∂yi0

∂yi0
∂Y0

= ziMP ci .
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The term ∂ci0
∂π0

represents the Fisher channel, i.e. the change in consumption due to a

revaluation of nominal assets via inflation. It is also related to the marginal propensity to

consume of agent i:

∂ci0
∂π0

dπ0

dβ0
=
∂ci0
∂π0

dπ0

dY0

dY0

dβ
=
∂ci0
∂π0

κ
dY0

dβ0
.

To understand how individual consumption changes with current inflation (in a partial

sense), return to the budget constraint:

ct +
at
Rt

= zi(Yt − τt) +
at−1

1 +πt
.

We can also use the definition of MPCi :

MPCi0 ≡
∂ci0
∂ a

1+π0

=
∂ci0
∂π0

∂π0

∂ a
1+π0

≈ ∂ci0
∂π0

∂π0

∂(1−π0)a
.

where the approximation is valid for small values of π0. Inverting the equation above, we

obtain:

∂ci0
∂π0

≈MPCi0
∂(1−π0)ai

∂π0
= −aiMPCi0. (H.8)

Government Budget and Taxes. The government budget constraint, given the fiscal rule,

is:

b̄
R0

+ τ0Y0 =
b̄

1 +π0
.

Using a similar approximation to before:

−b̄dr0 + dτ0Ȳ + dY0τ̄ ≈ −b̄dπ0,

where r0 = R0 − 1 is (net) nominal rate. Note that dr0 = dR0. Isolating dτ0 (ignoring the

approximation):

dτ0 =
−b̄dπ0 + b̄dr0 − τ̄dY0

Ȳ

=
b̄(dr0 − dπ0)− τ̄dY0

Ȳ
.
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That is, taxes need to increase if r increases, they are reduced if inflation rises (due to

the Fisher channel), and they are also fall if income rises. Using (i) dr0 = φκdY0 and (ii)

dπ0 = κdY0:

dτ0 =
(
b̄κ(φπ − 1)− τ̄

) dY0

Ȳ
(H.9)

Thus, taxes increase to the extent that output falls (so that debt-to-GDP rises) and to

compensate the Fisher Channel, as a higher-than-expected inflation reduces the real value

of government debt if b̄ > 0, requiring lower taxes to service it.34

Plugging equations (H.9) and (H.8) and using the definition of MPC in (H.10), we

obtain:

dY0 =
(∫

∂ci0
∂β0

di +
∫
∂ci0
∂Y0

dY0

dβ0
di +

∫
∂ci0
∂π0

dπ0

dβ0
di +

∫
∂ci0
∂τ0

dτ0

dβ0
+
∂ci0
∂R0

dR0

dβ0
di

)
dβ0 (H.10)

Recasting the equation above in terms of dY and using the definitions of MPC’s and the

chain rule, we obtain:

dY0 =
(∫

∂ci0
∂β0

di +MPCz
dY0

dβ
−κMPCa

dY0

dβ0
−MPCz(κ(φ− 1)− τ̄)

dY0

dβ0
+
∫
∂ci0
∂R0

diκφ
dY0

dβ

)
dβ0,

where MPCz ≡
∫
i
ziMP ci0di and MPCa ≡

∫
i
aiMP ci0di are respectively the z− and asset-

weighted ecomomy-wide marginal propensity to consume. Reorganizing:

dY
dβ

=
1

1− (1−κ(φ− 1) + τ)MPCz +κMPCa −κφ
∫
∂ci0
∂R0

di

∫
∂ci0
∂β0

di (H.11)

Relative to (32) in Proposition 1, there are two new terms:

1. The impact of taxes through interest rates and the fiscal rule given by the term φ

that multiplies MPCz.

2. The direct impact of interest rates on consumption. This is the impact of reactive

monetary policy, given by the term κφ
∫
∂ci0
∂R0

di, where
∫
∂ci0
∂R0

di < 0.

Note that, if φπ = 0 and b̄ = 0, so that τ̄ = 0, we are back to (32) in Proposition 1, complet-

ing the proof.

34The effect due to the decline in output would be absent if debt to GDP were constant.
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H.2 Impact of Declines in Future Aggregate Demand

The impact of aggregate uncertainty operates through changes in the expected value

of the future marginal utility, as shown in Section 2. In this section, we show how that

effect propagates in a more complicated setup, allowing for consumer heterogeneity. To

be clear, this section’s goal is not to study how aggregate uncertainty in itself amplifies

recessions. This, we have explored in Section 2. Instead, what we seek to understand

here is how the strength of backward propagation of future shocks depends on features

of the economy linked to the presence of heterogeneous agents. To that end, we consider

a setup with aggregate uncertainty but, as will become clear, the insights obtained are

independent of that particular feature.

We employ a similar model to the previous section to study the impact of aggre-

gate uncertainty. To simplify the exposition, we begin by studying assume a “partial-

general” equilibrium setup, in which changes in future output affect current outcomes.

This change can be certain or uncertain, but there is no need to take a stand on it. We

then study how this change affects current output via endogenous transmission to current

(t = 0) general equilibrium variables, but not future variables (which, by assumption, are

fixed). This analysis is intended to be a middle step – once completed, we move to a full

general equilibrium analysis.

The setup is the same as the one laid out in Section 2, except that now we consider a

richer economy populated by heterogeneous agents. It begins at its steady-state equilib-

rium. Households then become aware of a possible change in output one period ahead

(t = 1). If this shock materializes, which happens with probability µ, the economy enters

contingency 2, and output is Y 2
1 . With probability 1 − µ, instead, all the exogenous vari-

ables remain at their state-state values forever. If this is the case, the economy enters (or

remains at) branch 1.

In branch 1, t = 1, the economy will start with a potential new state D1
1 (and implied

b1
1). As before, we assume that the distribution of households is irrelevant for the dynam-

ics of the economy. The absence of any state variables and shocks, in turn, means that, if

the economy enters branch 1, it will be back at its stationary equilibrium for t ≥ 1.

In branch 2, we assume that at t = 1 the endogenous variables are fixed, except for Y1L.

66



At t = 2, branch 2, using a similar argument as before, and given the absence of further

shocks, the economy is back at the steady state.

Given these simplifying assumptions, the individual consumption function in period

t = 0 can be written as:

ci0 ≡ c({xi ,Y0,π0,R0, τ0,Y
1
2 }, {Xss,βss}).

Note that, for now, we are assuming that variables at t = 1 are exogenous, but variables

at t = 0 are endogenous.

The total derivative, when aggregated, is similar to equation (H.10):∫
dci0di = dY 2

1 =
(∫

∂ci0
∂Y 2

1

di +
∫
∂ci0
∂Y0

dY0

dY 2
1

di +
∫
∂ci0
∂π0

dπ0

dY 2
1

di +
∫
∂ci0
∂τ0

dτ0

dY 2
1

di

)
dY 2

1 .

(H.12)

The first term in the parenthesis represents the partial equilibrium response of house-

holds to declines in future income. This is determined by the Euler Equation and by the

probability attributed to the economy entering branch 2, µ. As stated before, we do not

explicitly need to account for µ in expression (H.12), but it implicitly determines the im-

pact of the derivatives presented. In our model presented in Section 3, the impact of µ is

shown in Figure F.6.

The other three terms correspond to general equilibrium responses, or multipliers.

We can treat them in a completely analogue way to before. Assuming the ZLB binds at

t = 0, we obtain:

dY0 =
(∫

∂ci0
∂Y 2

1

di +
∫
ziMPCi

dY0

dY 2
1

di −
∫
aiMPCiκ

dY0

dY 2
1

di +
∫
i
τ̄ziMPCi (1 +κ)

dY0

dY 2
1

)
dY 2

1 .

(H.13)

We can then rearrange it to obtain:

dY0

dY 2
1

=
(

1

1− (1 + (1 +κ)τ̄)MPCz +κMPCa

)∫
∂ci0
∂Y 2

1

di. (H.14)

This is analogue to equation (H.10), only that the “shock” is to Y 2
1 and the ZLB binds at

t = 0. We now proceed to a full general equilibrium analysis, where (H.14) will make a

reappearance.
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General Equilibrium. We now allow for changes in all endogenous variables in t = 1,

branch 2. The rest of the setup is unchanged. In particular, t = 1, branch 1, we assume

that the economy is back at the steady-state equilibrium. We now consider a shock to β2
1

only.35

In this case, focusing on period 1, the consumption function is:

ci0 ≡ ci0 = c({xi ,Y0,π0,R0, τ0,Y
2
1 ,π

2
1,R

2
1, τ

2
1 ,β

2
1}, {Xss,βss}),

where all variables with superscript 2 refer to branch 2 (under which the shock material-

izes). The total change with respect to β2 is:

dci0 =

∂ci0∂β2
+
∂ci0
∂Y0

dY0

dβ2
1

+
∂ci0
∂π0

dπ0

dβ2
1

+
∂ci0
∂τ0

dτ0

dβ2
1

+
∂ci0
∂Y 2

1

dY 2
1

dβ2
1

+
∂ci0
∂π2

1

dπ2
1

dβ2
1

+
∂ci0
∂τ2

dτ2

dβ2
1

dβ2
1 .

Rearrange it slightly:

dci0 =

∂ci0∂β2
+
∂ci0
∂Y0

dY0

dβ2
1

+
∂ci0
∂π0

dπ0

dβ2
1

+
∂ci0
∂τ0

dτ0

dβ2
1

dβ2
1

+

∂ci0∂Y 2
1

dY 2
1

dβ2
1

+
∂ci0
∂π2

1

dπ2
1

dβ2
1

+
∂ci0
∂τ2

dτ2

dβ2
1

dβ2
1 .

Note the similarity between the first line of equation above and (H.12). Both refer to

changes in consumption at t = 0 due to the shock, all else equal (although, in equation

H.12, we assumed the shock was to dY 2
1 ). In addition, note that (i) π0 is immediately

determined by Y0 via the Phillips Curve and (ii) τ0 is determined by π0 and Y0. As a

result, analogue derivations to those in Section H.1 can be applied to the first line of the

equation above.

Integrating, we obtain:

dY0 =
(∫

∂ci0
∂β2

1

di +
∫
ziMP ci0

dY0

dβ2
1

di −
∫
aiMPCi0κ

dY0

dβ2
1

di +
∫
i
τ̄ziMPCi (1 +κ)

dY0

dβ2
1

)
dβ2

1

(H.15)

+
∫
i

∂ci0∂Y 2
1

dY 2
1

dβ2
1

+
∂ci0
∂π2

1

dπ2
1

dβ2
1

+
∂ci0
∂τ2

dτ2

dβ2
1

dβ2
1 .

35Including changes in β1
1 would add no further intuition to our results, and would make the algebraic

expressions longer and less tractable. We thus abstract from it.
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We now proceed to simplify the second line. Note that, due to our assumptions, there

is no dependence of any variable at time t = 2, branch 2, on outcomes in period 1.

It will be useful, at this stage, to recast the second line in terms of changes in Y 2
1 . The

goal is to obtain an equation similar to (H.13), and this is the reason we, at first, assumed

Y 2
1 as a shock. First, note that:

∂ci0
∂π2

1

dπ2
1

dβ2
1

=
∂ci0
∂π2

1

dπ2
1

dY 2
1

dY 2
1

dβ2
1

=
∂ci0
∂π2

1

κ
dY 2

1

dβ2
1

.

The term ∂ci0
∂π2

1
cannot be recast in terms of consumer reaction to changes in the budget

constraint. In our framework, it would be determined by the Euler Equation, with an

influence of the intertemporal elasticity of substitution.36 Recall that π2
1 directly affects

the real interest rate in period 1. We leave this term as is, as it is not our particular goal

to investigate it.37

Moving to the last term, recall that dτ2
1

dY 2
1

= −1− dπ2
1

dY 2
1

= −1−κ. We can use this below:

∂ci0
∂τ2

1

dτ2
1

dβ2
1

=
∂ci0
∂τ2

1

dτ2
1

dY 2
1

dY 2
1

dβ2
1

= (−1−κ)
∂ci0
∂τ2

1

dY 2
1

dβ2
1

.

One additional step is to note that τ2
1 and Y 2

1 affect household consumption via the budget

constraint in period 2:

c2 +
a3

R2
= zi(Y

2
1 − τ

2
1 ) +

a2

1 +π2
1

.

Thus, a unit change in Y 2
1 has (exactly) the opposite effect on the RHS of the budget

constraint than a unit change in τ2
2 . Assuming that the only partial impact of those

variables on consumption in period 1 is through its impact on the budget constraint at

36In addition, π2
1 also affects wealth in period 2 via the Fisher channel, which also appears in the Euler

Equation.
37Werning (2015) explores how consumption in heterogeneous- versus representative-agents models re-

acts to changes in the real interest rate.

69



t = 2 (which in our model, with the Euler Equation, is true), we have:

∂ci0
∂τ2

1

= −∂ci0
∂Y 2

1

.

The second line of (H.15) then becomes:∫
i

∂ci0∂Y 2
1

dY 2
1

dβ2
1

+
∂ci0
∂π2

1

dπ2
1

dβ2
1

+
∂ci0
∂τ2

dτ2

dβ2
1

dβ2
1 =

∫
i

∂ci0∂Y 2
1

dY 2
1

dβ2
1

+
∂ci0
∂π2

1

κ
dY 2

1

dβ2
1

+ (1 +κ)
∂ci0
∂Y 2

1

dY 2
1

dβ2
1

dβ2
1

=
∫
i

∂ci0∂π2
1

κ
dY 2

1

dβ2
1

+ (2 +κ)
∂ci0
∂Y 2

1

dY 2
1

dβ2
1

dβ2
1

=
∫
i

∂ci0∂π2
1

κ+ (2 +κ)
∂ci0
∂Y 2

1

dY 2
1

dβ2
1

dβ2
1 .

Each term of this expression has a very intuitive interpretation. The impact of a shock to

β2
1 on consumption in the initial period through changes in output in period 2 occur via:

1. Uncertain net-of-taxes income:

• Gross income in period 2 affects consumption in period 1 via precautionary

savings. This is part of the “2” (one of the 1+1 multiplying ∂ci0
∂Y 2

1
) in the expres-

sion above).

• The tax affects net income one to one (another of the 1’s) and indirectly via

changes in inflation affecting the burden of debt, which in turn impacts house-

holds budgets. This is the κ, in 2 +κ.

2. Inflation: changes in expected future output are linked to future inflation via κ.

This has two effects: intertemporal substitution, via the real interest rate, and an

indirect impact through the Fisher channel in t = 1 affecting households’ budgets.

Both are contained within ∂ci0
∂π2

1
, happening through the Euler Equation.

Equation (H.15) becomes:

dY0 =
(∫

∂ci0
∂β2

di +
[
(1 + (1 +κ)τ̄)MPCz −κMPCa

] dY0

dβ2
1

)
dβ2

1

+
∫
i

∂ci0∂π2
1

κ+ (2 +κ)
∂ci0
∂Y 2

1

dY 2
1

dβ2
1

dβ2
1 .
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And reorganizing:

dY0

dβ2
1

=
1

1−
[
(1 + (1 +κ)τ̄)MPCz −κMPCa

] ∫ ∂ci0∂β2
+

∂ci0∂π2
1

κ+ (2 +κ)
∂ci0
∂Y 2

1

dY 2
1

dβ2
1

di.
(H.16)

Finally, recall that dY 2
1

dβ2
1

is given by (H.12) (evaluated at t = 1). In itself, this derivative

depends on multipliers related to the heterogeneity structure of the economy.

Equation (H.16) features many components on which the micro structure of the econ-

omy plays a role. The first is the multiplier M = 1
1−[(1+(1+κ)τ̄)MPCz+κMPCa]

, discussed at

length in Section 5.4. The total impact also depends on a series of forward-looking vari-

ables: the impacts of future inflation and output, as well as the impact of the partial

equilibrium shock. All of those depend on the underlying heterogeneity structure, for

instance via the share of constrained individuals (Figure 9) and wealth effects (Werning,

2015). Finally, there is also the general equilibrium impact of the shock on output at t = 1,

given by dY 2
1

dβ2
1

, which in itself depends on the multiplier (H.14).

We can re-write (H.16) and a quadratic term ofM will appear:

dY0

dβ2
1

=
∫ M∂ci0

∂β2
+

∂ci0∂π2
1

κ+ (2 +κ)
∂ci0
∂Y 2

1

M2
∫
i

∂dc2
i1

dβ2
1

di
The expression above can indicate why the backward-propagation of uncertainty at the

ZLB is stronger in heterogeneous agents economies, as the multiplier is larger due to high

MPCs.38

In conclusion, Section 2 in the main text show why aggregate uncertainty at the ZLB

leads to a deeper recession, while the current exposition highlights the mechanisms that

determine the strength of that mechanism, and why it is stronger in heterogeneous-agents

economies.

I Two-Asset Model
This section describes the two-asset model used in our simulations in Appendix F.

We select a standard version in which households have access to two assets, capital and
38A similar result also holds for perfect-foresight economies.
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government bonds. The latter is liquid and its holdings can be adjusted costlessly, while

households face a probability θ of being able to adjust their capital holdings. The model

also features a production sector that combines capital and labor to produce an interme-

diate good, retailers that produce a final good, a labor union that faces nominal wage

adjustment costs, and a capital producer.

I.1 Households

Households are ex-ante identical but ex-post heterogeneous due to idiosyncratic shocks

to their labor productivity.

Earnings. Households supply labor n (decided by the union) and receive wz per unit of

labor supplied, depending on the market wagew, idiosyncratic productivity z. Dividends

are paid proportionately to labor income.

Savings. Households can freely adjust their liquid assets a, which are supplied by the

government. In addition, households can invest directly in capital k, but they at any

period there is only a probability θ that they can adjust their capital holdings.

Non-adjusting. A non-adjusting household keeps capital holdings constant at kt = kt−1.

It solves the dynamic optimization problem given by

V n
t (at−1, kt−1, zt) = max

ct≥0,at≥a

u(ct,nt) + βEtVt+1(at, kt−1, zt+1)

 (I.17)

s.t. ct +
at
Rt
≤ at−1

Πt
+ (rKt − δ)kt−1 +wtztnt + dtzt − Ttzt,

with a as the (exogenous) borrowing limit and β as the discount factor. rKt −δ is the return

to capital holdings.

Adjusting. The problem of households that can adjust their capital is:

V a
t (at−1, kt−1, zt) = max

ct≥0,at≥a,kt≥0

u(ct,nt) + βEtVt+1(at, kt, zt+1)

 (I.18)

(I.19)

s.t. ct +
at
Rt

+ qtkt ≤
at−1

Πt
+ (rKt + qt − δ)kt−1 +wtztnt + dtzt − Ttzt.
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Finally, the value function Vt is given by:

Vt(at−1, kt−1, zt) = θV a
t (at−1, kt−1, zt) + (1−θ)V n

t (at−1, kt−1, zt). (I.20)

I.2 Production

Intermediate Goods Producers. A continuum of identical production firms combine K

efficiency units of capital and labor input N to produce intermediate goods using pro-

duction technology

Yt = AtK
α
t−1N

1−α
t , (I.21)

where At represents total factor productivity.

Denote the rental rate per efficiency unit of capital as rKt and the wage per unit of la-

bor as wt. Production firms sell the intermediate consumption good at price pIt to retail-

ers. Assuming competitive input and output markets, profit maximization of production

firms yields factor prices as

wt = pIt (1−α)AtK
α
t−1N

−α
t (I.22)

rKt = pItαAtK
α−1
t−1 N

1−α
t . (I.23)

Final Good Production. We keep the production structure unchanged from that de-

scribed in Appendix E.1.

Capital Producers. Capital producers transform the final consumption good into the

next period’s capital, sold at price qt. They are subject to adjustment costs on to the

net-of-depreciation investment. At each period, they select net investment to maximize:

max
Int

E0

∑
t=0

βt
(qt − 1)Int −

φK
2

(
Int + I ss

In,t−1 + I ss

)2

(Int + I ss)

 , (I.24)

where Int ≡ It − δKt−1 and investment is defined is It = Kt − (1 − δ)Kt−1. Note that net

investment is nil in steady state, while gross steady-state I ss refurbishes existing capital,

thus I ss = δKss. The resulting optimality condition yields the price of capital as

qt = 1 +φk
(
Int + Iss
In,t−1 + I ss

− 1
)2

+
φk

2
·
(
Int + I ss

In,t−1 + I ss
− 1

)2

(I.25)

− βφk
(

(In,t+1 + Iss)
(In,t + Iss)

− 1
)(
In,t+1 + I ss

In,t + I ss

)2

.
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The profits from capital production given by (I.24) are distributed to households as divi-

dends divIt .

I.3 Union

We take an off-the-shelf setup from Auclert, Bardóczy and Rognlie (2023), consisting

of a union that sets wages with potential adjustments costs. Importantly, it sets wages on

behalf of and allocates labor hours equally across households. Households are assumed

to supply a continuum of differentiated labor services, indexed by k, aggregated with

a CES function and supplied to the intermediate producer. The union for labor type k

maximizes the following problem:

max
Wt

E0

∞∑
t=0

∫
βt [(Uc(cit,nit)wktNktzit +Un(cit,nit)Nkt)di] .

In the expression above, Uc and Un represent respectively the marginal utilities of con-

sumption and labor, andWkt andwkt are respectively the nominal and real wages for type

k. The demand curve is:

Nkt =
(
wkt
wt

)−εw
Nt,

wherewt is the aggregate wage index consistent with CES demand, which is the real wage

paid to households.

The first-order conditions for the union yields (see Appendix F.2 in Auclert, Bardóczy

and Rognlie, 2023):

0 =
[
−Nt

∫
Un(cit,nit)di −wtNt

εw − 1
εw

∫
zitUc(cit,nit)

]
. (I.26)

I.4 Central Bank

We assume the same targeting rule as in in our benchmark model of Section 3.

I.5 Government

We assume the presence of a fiscal entity that supplies bonds at a constant level Bt = 1.

Taxes are given by:

Tt =
Bt−1

Πt
− Bt
Rt
.
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I.6 Market Clearing

Define λ(a,k,z) as the beginning of period distribution of households over the state

space. For bonds, we have:

Bt =
∫

(a,k,z)
at(a,k,z)λt(a,k,z). (I.27)

In addition, aggregate capital holdings are given by

Kt =
∫

(a,k,z)
kt(a,k,z)λt(a,k,z). (I.28)

Total dividends are the sum of dividends from retailers and capital producers, distributed

among all households proportionately to zt:

divt =
divYt + divIt∫

(a,k,z) zλt(a,k,z)
. (I.29)

Market clearing in the goods market requires

Ct + It +Ξt = Yt, (I.30)

where Ξt consists of deadweight losses from the cost of capital adjustment, given by:

Ξt =
φk

2

(
Int + I ss

In,t−1 + I ss

)2

(Int + I ss). (I.31)

Finally, labor market clearing is given by

Nt =
∫

(a,k,z)
znt(a,k,z)λt(a,k,z).

I.7 Calibration

Our exercise is meant to be illustrative of our method, so we take most of our pa-

rameters from the existing literature and only calibrate β and θ internally to match a

liquid-asset-to-GDP ratio of 1 (given the same nominal rate and inflation target as in our

benchmark model) and a capital-to-output ratio of 3.

Table I.2 summarizes the parameters that do not overlap with those of our benchmark

model in Section 3:
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Table I.2: Externally Calibrated Parameters - Two-Asset Model

Parameter Value

α 1
3

Earnings Process Mendicino, Nord and Peruffo (2021)

Preferences Separable, Inv Frisch Elasticity = 2

φk 11.4

µ 1.1

Ass 1

εw →∞ (no wage markdown)
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