
Principal Components Analysis – F Murtagh 1�

�

�

�

Principal Components Analysis

Topics:

• Reference: F Murtagh and A Heck, Multivariate Data Analysis, Kluwer, 1987.

• Preliminary example: globular clusters.

• Data, space, metric, projection, eigenvalues and eigenvectors, dual spaces,

linear combinations.

• Practical aspects – nonlinear terms, standardization, list of objectives, procedure

followed.

• Image multiband compression, “eigen-faces”.

• Software: http://astro.u-strasbg.fr/∼fmurtagh/mda-sw



Principal Components Analysis – F Murtagh 2�

�

�

�

Example: analysis of globular clusters

• M. Capaccioli, S. Ortolani and G. Piotto, “Empirical correlation between

globular cluster parameters and mass function morphology”, AA, 244,

298–302, 1991.

• 14 globular clusters, 8 measurement variables.

• Data collected in earlier CCD (digital detector) photometry studies.

• Pairwise plots of the variables.

• PCA of the variables.

• PCA of the objects (globular clusters).
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Object t_rlx Rgc Zg log(M/ c [Fe/H] x x0

years Kpc Kpc M.)

M15 1.03e+8 10.4 4.5 5.95 2.54 -2.15 2.5 1.4

M68 2.59e+8 10.1 5.6 5.1 1.6 -2.09 2.0 1.0

M13 2.91e+8 8.9 4.6 5.82 1.35 -1.65 1.5 0.7

M3 3.22e+8 12.6 10.2 5.94 1.85 -1.66 1.5 0.8

M5 2.21e+8 6.6 5.5 5.91 1.4 -1.4 1.5 0.7

M4 1.12e+8 6.8 0.6 5.15 1.7 -1.28 -0.5 -0.7

47 Tuc 1.02e+8 8.1 3.2 6.06 2.03 -0.71 0.2 -0.1

M30 1.18e+7 7.2 5.3 5.18 2.5 -2.19 1.0 0.7

NGC 6397 1.59e+7 6.9 0.5 4.77 1.63 -2.2 0.0 -0.2

M92 7.79e+7 9.8 4.4 5.62 1.7 -2.24 0.5 0.5

M12 3.26e+8 5.0 2.3 5.39 1.7 -1.61 -0.4 -0.4

NGC 6752 8.86e+7 5.9 1.8 5.33 1.59 -1.54 0.9 0.5

M10 1.50e+8 5.3 1.8 5.39 1.6 -1.6 0.5 0.4

M71 8.14e+7 7.4 0.3 4.98 1.5 -0.58 -0.4 -0.4
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Hierarchical clustering (Ward’s) of globular clusters
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Principal plane (48%, 24% of variance)

Principal component 1
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Data

• Matrix X defines a set ofn vectors inm-dimensional space:

xi = {xi1, xi2, . . . , xim} for 1 ≤ i ≤ n.

• We have:xi ∈ IRm

• Matrix X also defines a set ofm column vectors inn-dimensional space:

xj = {x1j , x2j , . . . , xnj} for 1 ≤ j ≤ m.

• We have:xj ∈ IRn

• By convention we usually take the space of row points, i.e.IRm, asX; and the

space of column points, i.e.IRn, as the transpose ofX, i.e.X ′ or Xt.

• The row points define a cloud ofn points inIRm.

• The column points define a cloud ofm points inIRn.
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Metrics

• The notion of distance is crucial, since we want to investigate relationships

between observations and/or variables.

• Recall:x = {3, 4, 1, 2}, y = {1, 3, 0, 1}, then: scalar product

〈x, y〉 = 〈y, x〉 = x′y = xy′ = 3 × 1 + 4 × 3 + 1 × 0 + 2 × 1.

• Euclidean norm:‖x‖2 = 3 × 3 + 4 × 4 + 1 × 1 + 2 × 2.

• Euclidean distance:d(x, y) = ‖x − y‖. The squared Euclidean distance is:

3 − 1 + 4 − 3 + 1 − 0 + 2 − 1

• Orthogonality:x is orthogonal toy if 〈x, y〉 = 0.

• Distance is symmetric (d(x, y) = d(y, x)), positive (d(x, y) ≥ 0), and definite

(d(x, y) = 0 =⇒ x = y).
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Metrics (cont’d.)

• Any symmetric, positive, definite matrixM defines a generalized Euclidean

space. Scalar product is〈x, y〉M = x′My, norm is‖x‖2 = x′Mx, and

Euclidean distance isd(x, y) = ‖x − y‖M .

• Classical case:M = In, the identity matrix.

• Normalization to unit variance:M is diagonal matrix withith diagonal term

1/σ2
i .

• Mahalanobis distance:M is inverse variance-covariance matrix.

• Next topic: Scalar product defines orthogonal projection.
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Metrics (cont’d.)

• Projected value, projection, coordinate:x1 = (x′Mu/u′Mu)u. Herex1 andu

are both vectors.

• Norm of vectorx1 = (x′Mu/u′Mu)‖u‖ = (x′Mu)/‖u‖.

• The quantity(x′Mu)/(‖x‖‖u‖) can be interpreted as the cosine of the anglea

between vectorsx andu.

+ x

/|

/ |

/ |

/ |

/a |

+-----+----- u

O x1
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Least Squares Optimal Projection of Points

• Plot of 3 points inIR2 (see following slides).

• PCA: determine best fitting axes.

• Examples follow.

• Note: optimization means either (i) closest axis to points, or (ii) maximum

elongation of projections of points on the axis.

• This follows from Pythagoras’s theorem:x2 + y2 = z2. Call z the distance

from the origin to a point. Letx be the distance of the projection of the point

from the origin. Theny is the perpendicular distance from the axis to to the

point.

• Minimizing y is the same as maximizingx (becausez is fixed).
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Examples of Optimal Projection




1 2

2 4

3 5
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Questions We Will Now Address

• How is the PCA of ann × m matrix related to the PCA of the transposed

m × n matrix ?

• How may the new axes derived – the principal components – be said to be linear

combinations of the original axes ?

• How may PCA be understood as a series expansion ?

• In what sense does PCA provide a lower-dimensional approximation to the

original data ?
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PCA Algorithm

• The projection of vectorx onto axisu is y = x′Mu
‖u‖M

u

• I.e. the coordinate of the projection on the axis isx′Mu/‖u‖M .

• This becomesx′Mu when the vectoru is of unit length.

• The cosine of the angle between vectorsx andy in the usual Euclidean space is

x′y/‖x‖‖y‖.

• That is to say, we make use of the triangle whose vertices are the origin, the

projection ofx ontoy, and vectorx.

• The cosine of the angle betweenx andy is then the coordinate of the projection

of x ontoy, divided by the – hypotenuse – length ofx.

• The correlation coefficient between two vectors is then simply the cosine of the

angle between them, when the vectors have first been centred (i.e.x − g and

y − g are used, whereg is the overall centre of gravity.
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PCA Algorithm 2

• X = {xij}
• In IRm, the space of objects, PCA searches for the best–fitting set of orthogonal

axes to replace the initially–given set ofm axes in this space.

• An analogous procedure is simultaneously carried out for the dual space,IRn.

• First, the axis which best fits the objects/points inIRm is determined.

• If u is this vector, and is of unit length, then the productXu of n × m matrix

by m × 1 vector gives the projections of then objects onto this axis.

• The sum of squared projections of points on the new axis, for all points, is

(Xu)′(Xu).

• Such a quadratic form would increase indefinitely ifu were arbitrarily large, so

u is taken to be of unit length, i.e.u′u = 1.

• We seek a maximum of the quadratic formu′Su (whereS = X ′X) subject to
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the constraint thatu′u = 1.

• This is done by setting the derivative of the Lagrangian equal to zero.

• Differentiation ofu′Su − λ(u′u − 1) whereλ is a Lagrange multiplier gives

2Su − 2λu.

• The optimal value ofu (let us call itu1) is the solution ofSu = λu.

• The solution of this equation is well–known:u is the eigenvector associated

with the eigenvalueλ of matrixS.

• Therefore the eigenvector ofX ′X, u1, is the axis sought, and the

corresponding largest eigenvalue,λ1, is a figure of merit for the axis, – it

indicates the amount of variance explained by the axis.

• The second axis is to be orthogonal to the first, i.e.u′u1 = 0.

• The second axis satisfies the equation

u′X ′Xu − λ2(u
′u − 1) − µ2(u

′u1) whereλ2 andµ2 are Lagrange

multipliers.



Principal Components Analysis – F Murtagh 22�

�

�

�

• Differentiating gives2Su − 2λ2u − µ2u1.

• This term is set equal to zero. Multiplying across byu′
1 implies thatµ2 must

equal 0.

• Therefore the optimal value ofu, u2, arises as another solution ofSu = λu.

• Thusλ2 andu2 are the second largest eigenvalue and associated eigenvector of

S.

• The eigenvectors ofS = X′X, arranged in decreasing order of corresponding

eigenvalues, give the line of best fit to the cloud of points, the plane of best fit,

the three–dimensional hyperplane of best fit, and so on for higher–dimensional

subspaces of best fit.

• X ′X is referred to as thesums of squares and cross productsmatrix.
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Eigenvalues

• Eigenvalues are decreasing in value.

• λi = λi′? Then equally privileged directions of elongation have been found.

• λi = 0? Space is actually of dimensionality less than expected. Example: in

3D, points actually lie on a plane.

• Since PCA inIRn and inIRm lead respectively to the finding ofn and ofm

eigenvalues, and since in addition it has been seen that these eigenvalues are

identical, it follows that the number ofnon-zero eigenvaluesobtained in either

space is less than or equal tomin(n, m).

• The eigenvectors associated with thep largest eigenvalues yield the best-fitting

p-dimensional subspace ofIRm. A measure of the approximation is the

percentage of variance explained by the subspace
∑

k≤p
λk/

∑n

k=1
λk

expressed as a percentage.
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Dual Spaces

• In the dual space of attributes,IRn, a PCA may equally well be carried out.

• For the line of best fit,v, the following is maximized:(X′v)′(X ′v) subject to

v′v = 1.

• In IRm we arrived atX ′Xu1 = λ1u1.

• In IRn, we haveXX ′v1 = µ1v1.

• Premultiplying the first of these relationships byX yields

(XX ′)(Xu1) = λ1(Xu1).

• Henceλ1 = µ1 because we have now arrived at two eigenvalue equations

which are identical in form.

• Relationship between the eigenvectors in the two spaces: these must be of unit

length.
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• Find: v1 = 1√
λ1

Xu1.

• λ > 0 since ifλ = 0 eigenvectors are not defined.

• Forλk: vk = 1√
λk

Xuk

• And: uk = 1√
λk

X ′vk

• TakingXuk =
√

λk vk, postmultiplying byu′
k , and summing gives:

X
∑n

k=1
uku

′
k =

∑n

k=1

√
λk vku

′
k.

• LHS gives the identity matrix (due to orthogonality of eigenvectors). Hence:

• X =
∑n

k=1

√
λk vku

′
k

• This is termed: Karhunen-Loève expansion or transform.

• We can approximate the data,X, by choosing some eigenvalues/vectors only.
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Linear Combinations

• The variance of the projections on a given axis inIRm is given by(Xu)′(Xu),

which by the eigenvector equation, is seen to equalλ.

• In some software packages, the eigenvectors are rescaled so that
√

λu and√
λv are used instead ofu andv. In this case, thefactor

√
λu gives the new,

rescaled projections of the points in the spaceIRn (i.e.
√

λu = X ′v).

• The coordinates of the new axes can be written in terms of the old coordinate

system. Sinceu = 1√
λ
X ′v each coordinate of the new vectoru is defined as a

linear combination of the initially–given vectors:

uj =
∑n

i=1
1√
λ
vixij =

∑n

i=1
cixij (wherei ≤ j ≤ m andxij is the(i, j)th

element of matrixX).

• Thus thejth coordinate of the new vector is asyntheticvalue formed from the

jth coordinates of the given vectors (i.e.xij for all 1 ≤ i ≤ n).
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Finding Linear Combinations in Practice

• Sayλk = 0.

• ThenXu = λu = 0

• Hence:
∑

j
ujxj = 0

• This allows redundancy in the form of linear combinations to be found.

• PCA is a linear transformation analysis method.

• But let’s say we have three variables,y1, y2, andy3.

• We would also input the variablesy2
1 , y2

2 , y2
3 , y1y2, y1y3, andy2y3.

• If the linear combinationy1 = c1y
2
2 + c2y1y2 exists, then we would find it

using PCA.

• Similarly we could feed in the logarithms or other functions of variables.



Principal Components Analysis – F Murtagh 28�

�

�

�

Finding Linear Combinations: Example

Thirty objects were used, and 5 variables defined as followsq.

y1j = −1.4,−1.3, . . . , 1.5

y2j = 2.0 − y2
1j

y3j = y2
1j

y4j = y2
2j

y5j = y1jy2j

COVARIANCE MATRIX FOLLOWS.

22.4750

-2.2475 13.6498

2.2475 -13.6498 13.6498

-2.9262 28.0250 -28.0250 62.2917

14.5189 0.5619 -0.5619 0.7316 17.3709
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Finding Linear Combinations: Example

EIGENVALUES FOLLOW.

Eigenvalues As Percentages Cumul. Percentages

----------- -------------- ------------------

88.3852 68.2842 68.2842

34.5579 26.6985 94.9828

5.2437 4.0512 99.0339

1.2505 0.9661 100.0000

0.0000 0.0000 100.0000

The fifth eigenvalue is zero.
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Finding Linear Combinations: Example

EIGENVECTORS FOLLOW.

VBLE. EV-1 EV-2 EV-3 EV-4 EV-5

------ ------ ------ ------ ------ ------

1 -0.0630 0.7617 0.6242 -0.1620 0.0000

2 0.3857 0.0067 -0.1198 -0.5803 0.7071

3 -0.3857 -0.0067 0.1198 0.5803 0.7071

4 0.8357 0.0499 0.1593 0.5232 0.0000

5 0.0018 0.6460 -0.7458 0.1627 0.0000

Since we know that the eigenvectors are centred, we have the equation:

0.7071y2 + 0.7071y3 = 0.0
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Normalization or Standardization

• Let rij be the original measurements.

• Then define:xij =
rij−rj

sj
√

n

• rj = 1
n

∑n

i=1
rij

• s2
j = 1

n

∑n

i=1
(rij − rj)

2

• Then te matrix to be diagonalized,X′X, is of (j, k)th term:

ρjk =
∑n

i=1
xijxik = 1

n

∑n

i=1
(rij − rj)(rik − rk)/sjsk

• This is the correlation coefficient between variablesj andk.

• Have distance

d2(j, k) =
∑n

i=1
(xij − xik)2 =

∑n

i=1
x2

ij +
∑n

i=1
x2

ik − 2
∑n

i=1
xijxik

• First two terms both yield 1. Hence:

• d2(j, k) = 2(1 − ρjk)
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• Thus the distance between variables is directly proportional to the correlation

between them.

• For row points (objects, observations):

d2(i, h) =
∑

j
(xij − xhj)

2 =
∑

j
(

rij−rhj√
nsj

)2 = (ri − rh)′M(ri − rh)

• ri andrh are column vectors (of dimensionsm × 1) andM is them × m

diagonal matrix ofjth element1/ns2
j .

• Therefored is a Euclidean distance associated with matrixM .

• Note that the row points are now centred but the column points are not:

therefore the latter may well appear in one quadrant on output listings.
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Implications of Standardization

• Analysis of the matrix of(j, k)th termρjk as defined above is PCA on a

correlationmatrix.

• The row vectors are centred and reduced.

• Centring alone used, and not the rescaling of the variance: matrix of(j, k)th

termcjk = 1
n

∑n

i=1
(rij − rj)(rik − rk)

• In this case we have PCA of thevariance-covariancematrix.

• If we use no normalization, we have PCA of thesums of squares and

cross-productsmatrix. That was what we used to begin with.

• Usually it is best to carry out analysis on correlations.
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Iterative Solution of Eigenvalue Equations

• Solve:Au = λu

• Choose some trial vector,t0 : e.g.(1, 1, . . . , 1).

• Then definet1, t2, . . .:

•
At0 = x0 t1 = x0/

√
x′

0x0

At1 = x1 t2 = x1/
√

x′
1x1

At2 = x2 t3 = . . .

• Halt when there is convergence.

• |tn − tn+1| ≤ ε

• At convergence,tn = tn+1

• Hence:Atn = xn

• tn+1 = xn/
√

x′
nxn.
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• Substituting forxn in the first of these two equations gives:

• Atn =
√

x′
nxn tn+1.

• Hencetn = tn+1, tn is the eigenvector, and the associated eigenvalue is√
x′

nxn.

• The second eigenvector and associated eigenvalue may be found by carrying out

a similar iterative algorithm on a matrix where the effects ofu1 andλ1 have

beenpartialled out:

• A(2) = A − λ1u1u
′
1.

• Let us prove thatA(2) removes the effects due to the first eigenvector and

eigenvalue.

• We haveAu = λu.

• ThereforeAuu′ = λuu′;

• Or equivalently,Auku
′
k = λkuku

′
k for each eigenvalue.

• Summing overk gives:A
∑

k
uku

′
k =

∑
k

λkuku
′
k.
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• The summed term on the left hand side equals the identity matrix.

• ThereforeA = λ1u1u
′
1 + λ2u2u

′
2 + . . .

• From thisspectral decompositionof matrix A, we may successively remove the

effects of the eigenvectors and eigenvalues as they are obtained.

• See Press et al., Numerical Recipes, Cambridge Univ. Press, for other (better!)

algorithms.
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Objectives of PCA

• dimensionality reduction;

• the determining of linear combinations of variables;

• feature selection: the choosing of the most useful variables;

• visualization of multidimensional data;

• identification of underlying variables;

• identification of groups of objects or of outliers.
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Indicative Procedure Followed

• Ignore principal components if the new axes retained explain> 75% of the

variance.

• Look at projections of rows, or columns, in planes (1,2), (1,3), (2,3), etc.

• Projections of correlated variables are close (if we have carried out a PCA on

correlations).

• PCA is sometimes motivated by the search for latent variables: i.e.

characterization of principal components.

• Highest or lowest projection values may help with this.

• Clusters and outliers can be found using planar projections.
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PCA with Multiband Data

• Consider a set of image bands (from a multiband or multispectral or hyspectral)

data set, or frames (from video). Say we havep images, each of dimensions

n × m.

• We define the “eigen-images” as follows.

• Each pixel can be considered as associated with a vector of dimensionp. We

can take this as defining a matrix for analysis of number of rows= n.m, and

number of columns =p.

• Carry out a PCA. The row projections define a matrix withn.m rows and

p′ < p columns. If we keep just the first eigenvector, then we have a matrix of

dimensionsn.m × 1.

• Sayn = 512, m = 512, p = 6. The eigenvalue/vector finding is carried out on

ap × p correlation matrix. Eigenvector/value finding has computational cost

O(p3).
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• For just one principal component,p′ = 1, convert the matrix of dimensions

n.m × 1 back to an image of dimensionsn × m pixels.

• Applications: finding typical or “eigen” face in face recognition; or finding

typical or “eigen” galaxy in galaxy morphology.

• What are the conditions for such a procedure to work well?
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