

- Minimum variance criterion

- Factors, decomposition of inertia, contributions, dual spaces
- Metrics, clouds of points, masses, inertia
Topics:

in all the subjects.
same total.

- The notion of distance is crucial, since we want to investigate relationships
between observations and/or variables.
- Recall: $x=\{3,4,1,2\}, y=\{1,3,0,1\}$, then: scalar product
- $x, y\rangle=\langle y, x\rangle=x^{\prime} y=x y^{\prime}=3 \times 1+4 \times 3+1 \times 0+2 \times 1$.
- Euclidean norm: $\|x\|^{2}=3 \times 3+4 \times 4+1 \times 1+2 \times 2$.
- Euclidean distance: $d(x, y)=\|x-y\|$. The squared Euclidean distance is:
$3-1+4-3+1-0+2-1$
- Orthogonality: x is orthogonal to y if $\langle x, y\rangle=0$.
- Distance is symmetric $(d(x, y)=d(y, x))$, positive $(d(x, y) \geq 0)$, and definite
($d(x, y)=0 \Longrightarrow x=y)$.

=

 -sə!!! - Id əมนขว 	

әриodsә.ıo

$$
\begin{aligned}
& \text { Input data table, marginals, and masses } \\
& \text { - The given contingency table data are denoted } \\
& k_{I J}=\left\{k_{I J}(i, j)=k(i, j) ; i \in I, j \in J\right\} \text {. } \\
& \text { - We have } k(i)=\sum_{j \in J} k(i, j) \text {. Analogously } k(j) \text { is defined, and } \\
& k=\sum_{i \in I, j \in J} k(i, j) \text {. } \\
& \text { - From frequencies to probabilities: } \\
& f_{I J}=\left\{f_{i j}=k(i, j) / k ; i \in I, j \in J\right\} \subset \mathbb{R}_{I \times J} \text {, similarly } f_{I} \text { is defined as } \\
& \left\{f_{i}=k(i) / k ; i \in I, j \in J\right\} \subset \mathbb{R}_{I} \text {, and } f_{J} \text { analogously. } \\
& \text { - The conditional distribution of } f_{J} \text { knowing } i \in I \text {, also termed the } j \text { th profile } \\
& \text { with coordinates indexed by the elements of } I \text {, is } \\
& f_{J}^{i}=\left\{f_{j}^{i}=f_{i j} / f_{i}=\left(k_{i j} / k\right) /\left(k_{i} / k\right) ; f_{i} \neq 0 ; j \in J\right\} \text { and likewise for } f_{I}^{j} \text {. }
\end{aligned}
$$

- Correspondence Analysis produces an ordered sequence of pairs, called factors,
$\left(F_{\alpha}, G_{\alpha}\right)$ associated with real numbers called eigenvalues $0 \leq \lambda_{\alpha} \leq 1$.
- We denote $F_{\alpha}(I)$ the value of the factor of rank α for element i of I; and
similarly $G_{\alpha}(J)$ is the value of the factor of rank α for element j of J.
- We see that F is a function on I, and G is a function on J.
- The number of eigenvalues and associated factor couples is:
$\alpha=1,2, \ldots, N=\inf (|I|-1,|J|-1)$, where \mid. \mid denotes set cardinality.

- Decomposition of inertia
- The distance of a point from the centre of gravity of the cloud is as follows.
- $\rho^{2}(i)=\left\|f_{J}^{i}-f_{J}\right\|^{2}=\sum_{j \in J}\left(f_{j}^{i}-f_{j}\right)^{2} / f_{j}$
- Decomposition of the cloud's inertia is as follows.
- $M^{2}\left(N_{J}(I)\right)=\sum_{\alpha=1 . . N} \lambda_{\alpha}=\sum_{i \in I} f_{i} \rho^{2}(i)$
- In greater detail, we have the following for this decomposition.
- $\lambda_{\alpha}=\sum_{i \in I} f_{i} F_{\alpha}^{2}(i)$ and $\rho^{2}(i)=\sum_{\alpha=1 . . N} F_{\alpha}^{2}(i)$

observations and attributes.

r

: u YI วつedS

agglomeration carried out.

- ๑!
fles.
fields
!̣ [е!̣әds
әoeds
[n uV

 nnb

-E66I 's!̣æ d 'pound
- H. Rouanet and B. Le Roux, Analyse des Données Multidimensionnelles,
- F. Murtagh and A. Heck, Multivariate Data Analysis, Kluwer, 1987.
- F. Murtagh, Multidimensional Clustering Algorithms, COMPSTAT Lectures
Volume 4, Physica-Verlag, Vienna, 1985.
The Computer Journal, 26, 354-359, 1983.

