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C
orrespondence

A
nalysis

Topics:

�

B
asics,and

prelim
inary

exam
ple

(studentexam
scores)

�

M
etrics,clouds

of
points,m

asses,inertia

�

Factors,decom
position

of
inertia,contributions,dualspaces

�

H
ierarchicalagglom

erative
clustering

�

M
inim

um
variance

criterion

�

E
xam

ples
in

depth
(pptfile)

�

Java
application:

http://astro.u-strasbg.fr/�

fm
urtagh/m

da-sw
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B
asics

�

O
bservations�

variables
m

atrix.

�

T
hrough

display
and

through
quantitative

m
easures,investigate

relationships

betw
een

observations,and
betw

een
variables.

�

Sim
ilar

in
these

objectives
to

principalcom
ponents

analysis,m
ultidim

ensional

scaling,K
ohonen

self-organizing
feature

m
ap,and

others.

�

C
orrespondence

analysis
is

often
used

in
conjunction

w
ith

clustering.

�

Inputdata,and
inputdata

coding,are
the

m
ajor

issues
w

hich
distinguish

correspondence
analysis

from
other

algorithm
ically-sim

ilar
(or

alternative

algorithm
ic)

m
ethods.
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Scores
5

students
in

6
subjects

C
S
c

C
P
g

C
G
r

C
N
w

D
b
M

S
w
E

A
5
4

5
5

3
1

3
6

4
6

4
0

B
3
5

5
6

2
0

2
0

4
9

4
5

C
4
7

7
3

3
9

3
0

4
8

5
7

D
5
4

7
2

3
3

4
2

5
7

2
1

E
1
8

2
4

1
1

1
4

1
9

7

C
S
c

C
P
g

C
G
r

C
N
w

D
b
M

S
w
E

m
e
a
n

p
r
o
f
i
l
e
:

.
1
8

.
2
4

.
1
2

.
1
2

.
1
9

.
1
5

p
r
o
f
i
l
e

o
f

D
:

.
1
9

.
2
6

.
1
2

.
1
5

.
2
0

.
0
8

p
r
o
f
i
l
e

o
f

E
:

.
1
9

.
2
6

.
1
2

.
1
5

.
2
0

.
0
8

Scores
(outof

100)
of

5
students,A

–E
,in

6
subjects.

Subjects:
C
S
c

:
C

om
puter

Science
Proficiency,C

P
g

:
C

om
puter

Program
m

ing,C
G
r

:
C

om
puter

G
raphics,C

N
w

:

C
om

puter
N

etw
orks,D

b
M

:D
atabase

M
anagem

ent,S
w
E

:Softw
are

E
ngineering.
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Scores
5

students
in

6
subjects

(C
ont’d.)

�

C
orrespondence

analysis
highlights

the
sim

ilarities
and

the
differences

in
the

profiles.

�

N
ote

thatallthe
scores

of
D

and
E

are
in

the
sam

e
proportion

(E
’s

scores
are

one-third
those

of
D

).

�

N
ote

also
thatE

has
the

low
estscores

both
in

absolute
and

relative
term

s
in

all

the
subjects.

�

D
and

E
have

identicalprofiles:
w

ithoutdata
coding

they
w

ould
be

located
at

the
sam

e
location

in
the

outputdisplay.

�

B
oth

D
and

E
show

a
positive

association
w

ith
C
N
w

(com
puter

netw
orks)

and
a

negative
association

w
ith

S
w
E

(softw
are

engineering)
because

in
com

parison

w
ith

the
m

ean
profile,D

and
E

have,in
their

profile,a
relatively

larger

com
ponentof

C
N
w

and
a

relatively
sm

aller
com

ponentof
S
w
E

.
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�

W
e

need
to

clearly
differentiate

betw
een

the
profiles

of
D

and
E

,w
hich

w
e

do

by
doubling

the
data.

�

D
oubling:

w
e

attribute
tw

o
scores

per
subjectinstead

of
a

single
score.

T
he

“score
aw

arded”,
�
����
�
�,is

equalto
the

initialscore.
T

he
“score

not

aw
arded”,�

����
�
�,is

equalto
its

com
plem

ent,i.e.,�
�
��
�
����
�
�.

�

L
ever

principle:
a

“�

”
variable

and
its

corresponding
“�

”
variable

lie
on

the

opposite
sides

of
the

origin
and

collinear
w

ith
it.

�

A
nd:

if
the

m
ass

of
the

profile
of

�
�

is
greater

than
the

m
ass

of
the

profile
of

�
�

(w
hich

m
eans

thatthe
average

score
for

the
subject

�

w
as

greater
than

50
outof

100),the
point

�
�

is
closer

to
the

origin
than

�
�

.

�

W
e

w
illfind

thatexceptin
C
P
g

,the
average

score
of

the
students

w
as

below
50

in
allthe

subjects.
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D
ata

coding:
D

oubling

C
S
c
+

C
S
c
-

C
P
g
+

C
P
g
-
C
G
r
+

C
G
r
-

C
N
w
+

C
N
w
-

D
b
M
+

D
b
M
-

S
w
E
+

S
w
E
-

A
5
4

4
6

5
5

4
5

3
1

6
9

3
6

6
4

4
6

5
4

4
0

6
0

B
3
5

6
5

5
6

4
4

2
0

8
0

2
0

8
0

4
9

5
1

4
5

5
5

C
4
7

5
3

7
3

2
7

3
9

6
1

3
0

7
0

4
8

5
2

5
7

4
3

D
5
4

4
6

7
2

2
8

3
3

6
7

4
2

5
8

5
7

4
3

2
1

7
9

E
1
8

8
2

2
4

7
6

1
1

8
9

1
4

8
6

1
9

8
1

7
9
3

D
oubled

table
of

scores
derived

from
previous

table.
N

ote:
allrow

s
now

have
the

sam
e

total.
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F
actor 1 (77%

 inertia)

Factor 2 (18% inertia)

-0.4
-0.2

0.0
0.2

0.4

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4

A

B
C

D

E

C
S

c+

C
S

c-

C
P

g+

C
P

g-

C
G

r+

C
G

r-

C
N

w
+

C
N

w
-

D
bM

+

D
bM

-

S
w

E
+

S
w

E
-
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M
etrics

�

T
he

notion
of

distance
is

crucial,since
w

e
w

antto
investigate

relationships

betw
een

observations
and/or

variables.

�

R
ecall:

�
�
�
�
��
��
�	�
��
�
�
�
��
��
���,then:

scalar
product

��
���
�
��
���
�
�
��
�
�
�
�
�
��
�
�
��
�
�
��
�
�
	�
�.

�

E
uclidean

norm
:	

�	
�
�
��
�
�
��
�
�
��
�
�
	�
	.

�

E
uclidean

distance:

�
��
��
�
�
	
��
�	.T

he
squared

E
uclidean

distance
is:

��
�
�
��
�
�
��
�
�
	�
�

�

O
rthogonality:

�

is
orthogonalto

�

if��
���
�
�.

�

D
istance

is
sym

m
etric

(�
��
��
�
�
�
��
��
�),positive

(�
��
��
�

�),and

definite

( �
��
��
�
�
�
��
�
�
�).
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M
etrics

(cont’d.)

�

A
ny

sym
m

etric,positive,definite
m

atrix

�

defines
a

generalized
E

uclidean

space.
Scalar

productis ��
���
�

�
�
��
�,norm

is	
�	
�
�
�
��
�

,and

E
uclidean

distance
is

�
��
��
�
�
	
��
�	
�

.

�

C
lassicalcase:

�

�
	
�

,the
identity

m
atrix.

�

N
orm

alization
to

unitvariance:

�

is
diagonalm

atrix
w

ith

�th
diagonalterm

�


�
�� .

�

M
ahalanobis

distance:

�

is
inverse

variance-covariance
m

atrix.

�

N
exttopic:

Scalar
productdefines

orthogonalprojection.
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M
etrics

(cont’d.)

�

Projected
value,projection,coordinate:

�
�
�
��
��
�


�
��
�
��

.H
ere

�
�

and

�

are
both

vectors.

�

N
orm

of
vector

�
�
�
��
��
�


�
��
�
�	
�	
�
��
��
�
�
	
�	.

�

T
he

quantity

��
��
�
�

�	
�		
�	
can

be
interpreted

as
the

cosine
of

the
angle



betw
een

vectors

�

and

�

.

+
x

/
|

/
|

/
|

/
|

/
a

|

+
-
-
-
-
-
+
-
-
-
-
-

u

O
x
1
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M
etrics

(cont’d.)

�

C
onsider

the
case

of
centred

�

-valued
coordinates

or
variables,

�
� .

�

T
he

sum
of

variable
vectors

is
a

constant,proportionalto
the

m
ean

variable.

�

T
herefore

the
centred

vectors
lie

on
a

hyperplane

�

,or
a

sub-space,of

dim
ension

��
�.

�

C
onsider

a
probability

distribution
�

defined
on

	,i.e.for
all

�

w
e

have

�
�
�
�

(note:

�
�

to
avoid

inconvenience
of

low
er

dim
.subspace)

and �
��
�
�
�
�
� .

�

C
ovariance

m
atrix:

�
�
� ,diagonalm

atrix
w

ith
diagonalelem

ents
consisting

of

the

�

term
s.

�

H
ave:

�
��

�
�
�
�
�

��
�
�
� �
��
�

var��
�;and

�
��

�
�
�
�
�

��
�
�
� �
� �
�
�

cov

��
��
�.
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M
etrics

(cont’d.)

�

U
se

of
m

etric
�
�
�

on

	

is
associated

w
ith

the
follow

ing

�
�

distance
relative

to

centre

�
� .

�

T
his

new
distance

is
a

generalized
E

uclidean

�
�
�
�
�

m
etric.

�

L
etboth

�
�

and

�
�

be
probability

densities.

�

T
hen:	

�
�
� �
�
�
� 	
��

�
�

�
�

��	

��
�
�
�
��
�
 �
�
� �

 �
�

�
� �

 .

�

L
ink

w
ith

�
�

statistic:
let

�
�
�

be
a

data
table

of
probabilities

derived
from

frequencies
or

counts.

�
�
�

�
�
�
�
 ��
	
��
��.

�

M
arginals

of
this

table
are

�
�

and

�
�

.C
onsider

independence
of

effects
w

here

the
data

table
is

�
�
�

�
�
� �
�

.

�

T
hen

the

�
�

distance
of

centre

�
�
�

betw
een

the
densities

�
�
�

and

�
�
�

is

	
�
�
� �
�
�
� 	
��

�
�

�
�

��	

��
�
�
�
��
�
 �
�
� �

 �
�

�
� �

 .
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�

W
ith

the
coefficient �

�
,this

is
the

quantity
w

hich
can

be
assessed

w
ith

a

�
�

testw
ith

��
�

degrees
of

freedom
.

�

T
he

�
�

distance
is

used
in

correspondence
analysis.

�

C
learly,under

appropriate
circum

stances
(w

hen

�
�
�
�
�

�

constant)
then

it

becom
es

a
classicalE

uclidean
distance.
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Input
data

table,m
arginals,and

m
asses

�

T
he

given
contingency

table
data

are
denoted

�
�
�

�
�
�
�
�
�����
�
�
�����
�
	
��
��.

�

W
e

have

�
���
�
�



�
�
�
�����.
A

nalogously

�
���

is
defined,and

�
�
�

��
�
	

�
�
�
�����.

�

From
frequencies

to
probabilities:

�
�
�

�
�
�
�

�
�
�����

�

�
	
��
���
��
�
�
�

,sim
ilarly

�
�

is
defined

as

�
�
�
�
�
���

�

�
	
��
���
��
� ,and
�
�

analogously.

�

T
he

conditionaldistribution
of

�
�

know
ing

�
	,also

term
ed

the

�th
profile

w
ith

coordinates
indexed

by
the

elem
ents

of

	,is

�
��

�
�
�
�

�
�
�
 

�
�
�
��
�
 

�
�

��
� 

�
�
�
� ��
�

�
��

and
likew

ise
for

�

� .
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C
louds

of
points,m

asses,and
inertia

�

M
om

entof
inertia

of
a

cloud
of

points
in

a
E

uclidean
space,w

ith
both

distances

and
m

asses
defined:

�
���

�
�	
��
�
�

��
�
�
� 	
�
�� �
�
� 	
��

�

�
�

��
�
�
� �
���� .

�

H
ere:

�

is
the

E
uclidean

distance
from

the
cloud

centre,and

�
�

is
the

m
ass

of

elem
ent

�.

�

T
he

m
ass

is
the

m
arginaldistribution

of
the

inputdata
table.

�

C
orrespondence

analysis
is,as

w
illbe

seen,a
decom

position
of

the
inertia

of
a

cloud
of

points,endow
ed

w
ith

m
asses.
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Inertia
and

D
istributionalE

quivalence

�

A
nother

expression
for

inertia:

�
���

�
�	
��
�
�
���

� ��
��
�

	
�
�
� �
�
� �
� 	
��

�
�
�

�
�

��
�
	

�
�
��
�
 �
�
� �

 �
�

�
� �

 .

�

T
he

term

	
�
�
� �
�
� �
� 	
��

�
�
�

is
the

�
�

m
etric

betw
een

the
probability

distribution

�
�
�

and
the

productof
m

arginaldistributions

�
� �
�

,w
ith

as
centre

of
the

m
etric

the
product

�
� �
�

.

�

P
rinciple

ofdistributionalequivalence:
C

onsider
tw

o
elem

ents

�
�

and

�
�

of

�

w
ith

identicalprofiles:
i.e.

�


�

�

�
�


�

�

.
C

onsider
now

thatelem
ents

(or

colum
ns)

�
�

and

�
�

are
replaced

w
ith

a
new

elem
ent

�
�

such
thatthe

new

coordinates
are

aggregated
profiles,

�
�

�

�
�
�

�

�
�
�

� ,and

the
new

m
asses

are

sim
ilarly

aggregated:

�
�

�

�
�
�

�

�
�
�

� .T

hen
there

is
no

effecton
the

distribution
of

distances
betw

een
elem

ents
of

	.
T

he
distance

betw
een

elem
ents

of

�

,other
than

�
�

and

�
�

is
naturally

notm
odified.
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Inertia
and

D
istributionalE

quivalence
(C

ont’d.)

�

T
he

principle
of

distributionalequivalence
leads

to
representational

self-sim
ilarity:

aggregation
of

row
s

or
colum

ns,as
defined

above,leads
to

the

sam
e

analysis.
T

herefore
itis

very
appropriate

to
analyze

a
contingency

table

w
ith

fine
granularity,and

seek
in

the
analysis

to
m

erge
row

s
or

colum
ns,

through
aggregation.
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F
actors

�

C
orrespondence

A
nalysis

produces
an

ordered
sequence

of
pairs,called

factors,

��

��

�

associated
w

ith
realnum

bers
called

eigenvalues

��
�


�
�.

�

W
e

denote

�

�	
�

the
value

of
the

factor
of

rank

�

for
elem

ent

�

of

	;and

sim
ilarly

�

��
�

is
the

value
of

the
factor

of
rank

�

for
elem

ent

�

of

�

.

�

W
e

see
that

�

is
a

function
on

	,and
�

is
a

function
on

�

.

�

T
he

num
ber

of
eigenvalues

and
associated

factor
couples

is:

�
�
�
�	
������
�
�
���
	��
�
��
�
��
�
�,w

here�
��denotes

setcardinality.
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P
roperties

of
factors

�
�

��
�
�
� �

���
�
�


�



�
�
�

 �

���
�
�

�
�

��
�
�
� �
� ���
�
�



�



�
�
�

 �
�
���
�
�


�
�

��
�
�
� �

����
�
���
�
Æ

�

�
�



�
�
�

 �

����
�
���
�
Æ

�

�

N
otation:

Æ

�

�
�

if

�
��
�

and
�
�

if

�
�
�

.

�

N
orm

alized
factors:

on
the

sets

	

and
�

,w
e

nextdefine
the

functions

�
�

and

 
�

of
zero

m
ean,of

unitvariance,pairw
ise

uncorrelated
on

	

(resp.�

),and

associated
w

ith
m

asses

�
�

(resp.

�
� ).

�
�

��
�
�
� �

���
�
�


�



�
�
�

  

���
�
�

�
�

��
�
�
� �
�
���
�
�


�



�
�
�

  
�
���
�
�

�
�

��
�
�
� �

����
�
���
�
Æ

�


�



�
�
�

  

��� 
�
���
�
Æ

�
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�

B
etw

een
unnorm

alized
and

norm
alized

factors,w
e

have
the

follow
ing

relations.

�
�

���
�
�
�
��



�

���
�
�
	
�
�
�
�
�
�	
�����

�
 

���
�
�
�
��



�

���
�
�
�
�
�
�
�
�
�	
�����

�

T
he

m
om

entof
inertia

of
the

clouds
�
�
�	
�

and

�
� ��
�

in
the

direction
of

the

�

axis
is

�


.
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F
orw

ard
transform

�

H
ave

thatthe
�
�

m
etric

is
defined

in
directspace,i.e.space

of
profiles.

�

T
he

E
uclidean

m
etric

is
defined

for
the

factors.

�

W
e

can
characterize

correspondence
analysis

as
the

m
apping

of
a

cloud
in

�
�

space
to

E
uclidean

space.

�

D
istances

betw
een

profiles
are

as
follow

s.

�
	
�
�� �
�
�
�

� 	
��

�

�
�



�
� �
�
�
 �
�
�
�


 �
�



�


�
�


�
�
���

��

����
�

��
���
�

�
	
�

� �
�


�

� 	
��

�

�
�

��
� �
�

� �
�


�

� �
�



�
�
�
�


�
�
���

��

����
�

��
���
�

�

N
orm

,or
distance

of
a

point

�
�
�
�	
�

from
the

origin
or

centre
of

gravity
of

the
cloud

�
�
�	
�,is

as
follow

s.

�
�
����
�
	
�
�� �
�
� 	
��

�

�
�


�
�
���

�
� ���

�
����
�
	
�

� �
�
� 	
��

�

�
�


�
�
���

�
� ���



C
orrespondence

A
nalysis

–
F

M
urtagh

22

��

��

Inverse
transform

�

T
he

correspondence
analysis

transform
,taking

profiles
into

a
factor

space,is

reversed
w

ith
no

loss
of

inform
ation

as
follow

s �
�����
	�
�

.

�
�
�

�
�
� �

 �
�
�
�


�
�
���

�
�
��



�

����

��� �

�

For
profiles

w
e

have
the

follow
ing.

�
�

�

�
�
� �
�
�
�


�
�
��



�

����

��� �

�
�
�

�
�

 �
�
�
�


�
�
��



�

����

��� �
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��

D
ecom

position
of

inertia

�

T
he

distance
of

a
pointfrom

the
centre

of
gravity

of
the

cloud
is

as
follow

s.

�
�
����
�
	
�
�� �
�
� 	
�
�
�



�
� �
�
�
 �
�

 �
�


�



�

D
ecom

position
of

the
cloud’s

inertia
is

as
follow

s.

�
�
���

�
�	
��
�
�


�
�
���

�


�
�

��
�
�
� �
����

�

In
greater

detail,w
e

have
the

follow
ing

for
this

decom
position.

�
�


�
�

��
�
�
� �
� ���

and

�
����
�
�


�
�
���

�
� ���
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R
elative

and
absolute

contributions

�
�
� �
���

is
the

absolute
contribution

of
point

�

to
the

inertia
of

the
cloud,

�
���

�
�	
��,or

the
variance

of
point

�.

�
�
� �
� ���

is
the

absolute
contribution

of
point

�

to
the

m
om

entof
inertia

�


.

�
�
� �
� ���

�


is
the

relative
contribution

of
point

�

to
the

m
om

entof
inertia

�


.

(O
ften

denoted
C

T
R

.)

�
�
� ���

is
the

contribution
of

point
	

to
the

�
�

distance
betw

een

�

and
the

centre

of
the

cloud

�
�
�	
�.

�
��
�
�

�
�
� ���

�
����

is
the

relative
contribution

of
the

factor

�

to
point

�.

(O
ften

denoted
C

O
R

.)

�

B
ased

on
the

latter
term

,w
e

have: �

�
�
���

�
� ���

�
����
�
�.

�

A
nalogous

form
ulas

hold
for

the
points

�

in
the

cloud

�
� ��
�.
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R
eduction

of
dim

ensionality

�

Interpretation
is

usually
lim

ited
to

the
firstfew

factors.

�

D
ecom

position
of

inertia
is

usually
far

less
decisive

than
(cum

ulative)

percentage
variance

explained
in

principalcom
ponents

analysis.
O

ne
reason

for

this:
in

C
A

,often
recoding

tends
to

bring
inputdata

coordinates
closer

to

vertices
of

hypercube.

�

Q
LT

���
�
�


�
�
���
�

��
�
�
 ,w

here
angle



has
been

defined
above

(previous

section)
and

w
here

�
�
!
�

is
the

quality
of

representation
of

elem
ent

�

in
the

factor
space

of
dim

ension

�
�.

�

IN
R

�	
�
�
�
����

is
the

distance
of

elem
ent

	

from
the

centre
of

gravity
of

the

cloud.

�

PO
ID

�	
�
�
�
�

is
the

m
ass

or
m

arginalfrequency
of

the
elem

ent

�.
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Interpretation
of

results

1.
Projections

onto
factors

1
and

2,2
and

3,1
and

3,etc.
of

set

	,set

�

,or
both

sets
sim

ultaneously.

2.
Spectrum

of
non-increasing

values
of

eigenvalues.

3.
Interpretation

of
axes.

W
e

can
distinguish

betw
een

the
general(latentsem

antic,

conceptual)
m

eaning
of

axes,and
axes

w
hich

have
som

ething
specific

to
say

aboutgroups
of

elem
ents.

U
sually

contrastis
im

portant:
w

hatis
found

to
be

analogous
atone

extrem
ity

versus
the

other
extrem

ity;or
oppositions

or

polarities.

4.
Factors

are
determ

ined
by

how
m

uch
the

elem
ents

contribute
to

their
dispersion.

T
herefore

the
values

of
C

T
R

are
exam

ined
in

order
to

identify
or

to
nam

e
the

factors
(for

exam
ple,w

ith
higher

order
concepts).

(Inform
ally,C

T
R

allow
s

us

to
w

ork
from

the
elem

ents
tow

ards
the

factors.)

5.
T

he
values

of
C

O
R

are
squared

cosines,w
hich

can
be

considered
as

being
like
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correlation
coefficients.

If
C

O
R

����
�

is
large

(say,around
0.8)

then
w

e
can

say

thatthatelem
entis

w
ellexplained

by
the

axis
of

rank

�

.
(Inform

ally,C
O

R

allow
s

us
to

w
ork

from
the

factors
tow

ards
the

elem
ents.)
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A
nalysis

of
the

dualspaces

�

W
e

have
the

follow
ing.

�
�

���
�
�
�
��



�


�
�
�
�
 �


���

for

�
�
�
�	
�����

�
	

�
�

���
�
�
�
��



�
��
�
�

�
�

���

for
�
�
�
�	
�����

�
�

�

T
hese

are
term

ed
the

transition
form

ulas.
T

he
coordinate

of
elem

ent

�
	

is
the

barycentre
of

the
coordinates

of
the

elem
ents

�
�

,w
ith

associated
m

asses
of

value
given

by
the

coordinates
of

�
�


of
the

profile

�
�� .

T
his

is
allto

w
ithin

the

�
�
��



constant.
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A
nalysis

of
the

dualspaces
(cont’d.)

�

W
e

also
have

the
follow

ing.

�
�

���
�
�
�
��



�


�
�
�
�
  


���

�
 

���
�
�
�
��



�
��
�
�

�
�

���

�

T
his

im
plies

thatw
e

can
pass

easily
from

one
space

to
the

other.
I.e.w

e
carry

outthe
diagonalization,or

eigen-reduction,in
the

m
ore

com
putationally

favourable
space

w
hich

is
usually

��
�

.
In

the
outputdisplay,the

barycentric

principle
com

es
into

play:
this

allow
s

us
to

sim
ultaneously

view
and

interpret

observations
and

attributes.
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Supplem
entary

elem
ents

�

O
verly-preponderantelem

ents
(i.e.row

or
colum

n
profiles),or

exceptional

elem
ents

(e.g.a
sex

attribute,given
other

perform
ance

or
behaviouralattributes)

m
ay

be
placed

as
supplem

entary
elem

ents.

�

T
his

m
eans

thatthey
are

given
zero

m
ass

in
the

analysis,and
their

projections

are
determ

ined
using

the
transition

form
ulas.

�

T
his

am
ounts

to
carrying

outa
correspondence

analysis
first,w

ithoutthese

elem
ents,and

then
projecting

them
into

the
factor

space
follow

ing
the

determ
ination

of
allproperties

of
this

space.
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Sum
m

ary

Space

��
�

:

1.

�

row
points,each

of

"

coordinates.

2.
T

he

�
��

coordinate
is

�
�
 

�
� .

3.
T

he
m

ass
of

point

�

is

�
� .

4.
T

he
�
�

distance
betw

een
row

points

�

and

�

is:

�
�����
�
�
�




��
�
�
�
�
�

�
�

�
�
�
�

�
�

�
��

H
ence

this
is

a
E

uclidean
distance,w

ith
respect

to
the

w
eighting

�


�



(for
all

�),betw
een

profile

values

�
�
 

�
�

etc.

5.
T

he
criterion

to
be

optim
ized:

the
w

eighted
sum

of
squares

of
projections,w

here
the

w
eighting

is
given

by

�
�

(for
all

�).
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Space

��
�

:

1.
"

colum
n

points,each
of

�

coordinates.

2.
T

he
�
��

coordinate
is

�
�
 

�

 .

3.
T

he
m

ass
of

point

�

is

�

 .

4.
T

he

�
�

distance
betw

een
colum

n
points

#

and

�

is:

�
��#
���
�
�

�

��
� �

�
�
�

�
�

�
�
�
�

�
�

�
��

H
ence

this
is

a
E

uclidean
distance,w

ith
respect

to
the

w
eighting

�


�
�

(for
all

�),betw
een

profile

values

�
�� 

�
�

etc.

5.
T

he
criterion

to
be

optim
ized:

the
w

eighted
sum

of
squares

of
projections,w

here
the

w
eighting

is
given

by

�



(for
all

�).
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H
ierarchicalclustering

�

H
ierarchicalagglom

eration
on

�

observation
vectors,

�
	,involves

a
series

of

�
�	
�������
�

pairw
ise

agglom
erations

of
observations

or
clusters,w

ith
the

follow
ing

properties.

�

A
hierarchy

�
�
�
���
	
��

such
that:

1.

	
�

2.

�
�
�
�

3.
for

each

�
�
��
�
�
�
��
�
���
�
��
��
�
�or

�
��
�

�

A
n

indexed
hierarchy

is
the

pair

��
�$
�

w
here

the
positive

function
defined

on

�

,i.e.,$
�
�
�
��
�

,satisfies:

1.

$
���
�
�

if

�
�

is
a

singleton

2.

��
�
�
��
$
���
!
$
��
��

�

Function

$

is
the

agglom
eration

level.
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�

Take

��
�
�,let

��
�
��and

�
��
�
��,and

let

�
��be

the
low

estlevelcluster
for

w
hich

this
is

true.
T

hen
if

w
e

define

%
����
��
�
$
��
���,

%

is
an

ultram
etric.

�

R
ecall:

D
istances

satisfy
the

triangle
inequality

�
��
�&
��
�
��
��
�
�
�
��
�&
�.

A
n

ultram
etric

satisfies
�
��
�&
��
�
�
�
��
��
��
���
��
�&
��.In

an
ultram

etric

space
triangles

form
ed

by
any

three
points

are
isosceles.

A
n

ultram
etric

is
a

specialdistance
associated

w
ith

rooted
trees.U

ltram
etrics

are
used

in
other

fields
also

–
in

quantum
m

echanics,num
ericaloptim

ization,num
ber

theory,and

algorithm
ic

logic.

�

In
practice,w

e
startw

ith
a

E
uclidean

distance
or

other
dissim

ilarity,use
som

e

criterion
such

as
m

inim
izing

the
change

in
variance

resulting
from

the

agglom
erations,and

then
define

$
���

as
the

dissim
ilarity

associated
w

ith
the

agglom
eration

carried
out.
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M
inim

um
variance

agglom
eration

�

For
E

uclidean
distance

inputs,the
follow

ing
definitions

hold
for

the
m

inim
um

variance
or

W
ard

error
sum

of
squares

agglom
erative

criterion.

�

C
oordinates

of
the

new
cluster

center,follow
ing

agglom
eration

of

�

and

�
�,

w
here

"
�

is
the

m
ass

of
cluster

�

defined
as

cluster
cardinality,and

(vector)

�

denotes
using

overloaded
notation

the
center

of
(set)

cluster

�:

�
��
�
�"
� �
�
"
�
��
��

�"
�
�
"
�
��.

�

Follow
ing

the
agglom

eration
of

�

and
�
�,w

e
define

the
follow

ing
dissim

ilarity:

�"
� "
�
��

�"
�
�
"
�
��	
��
�
�	
�.

�

H
ierarchicalclustering

is
usually

based
on

factor
projections,if

desired
using

a

lim
ited

num
ber

of
factors

(e.g.7)
in

order
to

filter
outthe

m
ostuseful

inform
ation

in
our

data.

�

In
such

a
case,hierarchicalclustering

can
be

seen
to

be
a

m
apping

of
E

uclidean

distances
into

ultram
etric

distances.
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E
fficient

N
N

chain
algorithm

�

�

�

�

�

e
d

c
b

a
�

�

�

�

�

A
N

N
-chain

(nearestneighbour
chain)
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E
fficient

N
N

chain
algorithm

(cont’d.)

�

A
n

N
N

-chain
consists

of
an

arbitrary
pointfollow

ed
by

its
N

N
;follow

ed
by

the

N
N

from
am

ong
the

rem
aining

points
of

this
second

point;and
so

on
untilw

e

necessarily
have

som
e

pair
of

points
w

hich
can

be
term

ed
reciprocalor

m
utual

N
N

s.
(Such

a
pair

of
R

N
N

s
m

ay
be

the
firsttw

o
points

in
the

chain;and
w

e

have
assum

ed
thatno

tw
o

dissim
ilarities

are
equal.)

�

In
constructing

a
N

N
-chain,irrespective

of
the

starting
point,w

e
m

ay

agglom
erate

a
pair

of
R

N
N

s
as

soon
as

they
are

found.

�

E
xactness

of
the

resulting
hierarchy

is
guaranteed

w
hen

the
cluster

agglom
eration

criterion
respects

the
reducibility

property.

�

Inversion
im

possible
if:

�
�����
!
�
����
�
�
�
�
����
��
�
�����
!
�
���
���
�
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M
inim

um
variance

m
ethod:

properties

�

W
e

seek
to

agglom
erate

tw
o

clusters,

'
�

and

'
� ,into

cluster

'

such
thatthe

w
ithin-class

variance
of

the
partition

thereby
obtained

is
m

inim
um

.

�

A
lternatively,the

betw
een-class

variance
of

the
partition

obtained
is

to
be

m
axim

ized.

�

L
et

(

and

)

be
the

partitions
prior

to,and
subsequentto,the

agglom
eration;let

�
� ,

�
� ,...be

classes
of

the
partitions.

(

�

�
�
� ��
� ������
�
�'
� �'
� �

)

�

�
�
� ��
� ������
�
�'�
�

�

Totalvariance
of

the
cloud

of
objects

in

"

-dim
ensionalspace

is
decom

posed

into
the

sum
of

w
ithin-class

variance
and

betw
een-class

variance.T
his

is

H
uyghen’s

theorem
in

classicalm
echanics.

�

Totalvariance,betw
een-class

variance,and
w

ithin-class
variance

are
as

follow
s:
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*
�	
�
�

�� �
��
� ���
#
�
�,*
�(
�
�
�

�
�
�

��
�

�

���
#
�
�;and

�� �
�
�
� �
��
� ���
�
�
�.

�

For
tw

o
partitions,before

and
after

an
agglom

eration,w
e

have
respectively:

*
�	
�
�
*
�(
�
�
��

�
�
*
��
�

*
�	
�
�
*
�)
�
�
��

�
�
*
��
�

�

From
this,itcan

be
show

n
thatthe

criterion
to

be
optim

ized
in

agglom
erating

'
�

and

'
�

into
new

class

'

is:

*
�(
��
*
�)
�

�

*
�'��
*
�'
� ��
*
�'
� �

�

��
�
�
��
�
�

��
�
��
��
�
� 	
�
� �
�
� 	
�
�
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FA
C

O
R

and
V

A
C

O
R

:
A

nalysis
of

clusters

�

T
he

barycentric
principle

allow
s

both
row

points
and

colum
n

points
to

be

displayed
sim

ultaneously
as

projections.

�

W
e

therefore
can

consider:

–
sim

ultaneous
display

of
	
and

�
–

tree
on

	

–
tree

on

�

�

To
help

analyze
these

outputs
w

e
can

explore
the

representation
of

clusters

(derived
from

the
hierarchicaltrees)

in
factor

space,leading
to

program
s

traditionally
called

FA
C

O
R

.

�

A
nd

the
representation

of
clusters

in
the

profile
coordinate

space,leading
to

program
s

traditionally
called

V
A

C
O

R
.
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In
the

case
of

FA
C

O
R

,for
every

couple

���
�of

a
partition

of

	,w
e

calculate

��
� �
�� �

��
�
�
�
�� � 	
��
�
�	
�

T
his

can
be

decom
posed

using
the

axes
of

��
�

,as
w

ellas
using

the
factorial

axes.

�

In
the

case
of

V
A

C
O

R
,w

e
can

explore
the

cluster
dipoles

w
hich

takes
account

of
the

“elder”
and

“younger”
cluster

com
ponents:

n

/
\

/
\

/
\

a
(
n
)

b
(
n
)

�

W
e

have

�

�
�
�
�

��
� ��
� 

�
� ��

���.

W
e

consider
the

vectors
defining

the

dipole:

���
����and

���+����.

�

W
e

then
study

the
squared

cosine
of

the
angle

betw
een

vector

�
����+����and
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��

��

the
factorialaxis

of
rank

�
.

�

T
his

squared
cosine

defines
the

relative
contribution

of
the

pair

���

to
the

level

index

$
���

of
the

class

�.
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��
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Sum
m

ary

�

C
orrespondence

analysis
displays

observation
profiles

in
a

low
-dim

ensional

factorialspace.

�

Profiles
are

points
endow

ed
w

ith

�
�

distance.

�

U
nder

appropriate
circum

stances,the

�
�

distance
reduces

to
a

E
uclidean

distance.

�

A
factorialspace

is
nearly

alw
ays

E
uclidean.

�

Sim
ultaneously

a
hierarchicalclustering

is
builtusing

the
observation

profiles.

�

U
sually

one
or

a
sm

allnum
ber

of
partitions

are
derived

from
the

hierarchical

clustering.

�

A
hierarchicalclustering

defines
an

ultram
etric

distance.

�

Inputfor
the

hierarchicalclustering
is

usually
factor

projections.
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��
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�

In
sum

m
ary,correspondence

analysis
involves

m
apping

a

�
�

distance
into

a

particular
E

uclidean
distance;and

m
apping

this
E

uclidean
distance

into
an

ultram
etric

distance.

�

T
he

aim
is

to
have

differentbutcom
plem

entary
analytic

tools
to

facilitate

interpretation
of

our
data.
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To
read

further

�

C
h.

B
astin,J.P.B

enzécri,C
h.

B
ourgaritand

P.C
azes,P

ratique
de

l’A
nalyse

des

D
onnées,Tom

e
2,D

unod,Paris,1980.

�

J.P.B
enzécriand

F.B
enzécri,F.P

ratique
de

l’A
nalyse

des
D

onnées,Vol.
1:

A
nalyse

des
C

orrespondances.
E

xposé
É

lém
entaire,D

unod,Paris,1980.

�

J.P.B
enzécri,L’A

nalyse
des

D
onnées.

Tom
e

1.
L

a
Taxinom

ie,2nd
ed.,D

unod,

Paris,1976.

�

J.P.B
enzécri,L’A

nalyse
des

D
onnées.

Tom
e

2.
L’A

nalyse
des

C
orrespondances,

2nd
ed.,D

unod,Paris,1976.

�

J.P.B
enzécri,C

orrespondence
A

nalysis
H

andbook,M
arcelD

ekker,B
asel,

1992.

�

M
.Jam

bu,C
lassification

A
utom

atique
pour

l’A
nalyse

des
D

onnées.
1.

M
éthodes

etA
lgorithm

es,D
unod,Paris,1978.
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L
.L

ebart,A
.M

orineau
and

K
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.W
arw
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ultivariate

D
escriptive

Statistical

A
nalysis,W

iley,N
ew

Y
ork,1984.

�

F.M
urtagh,“A

survey
of

recentadvances
in

hierarchicalclustering
algorithm

s”,

T
he

C
om

puter
Journal,26,354-359,1983.

�

F.M
urtagh,M

ultidim
ensionalC

lustering
A

lgorithm
s,C

O
M

PSTA
T

L
ectures

V
olum

e
4,Physica-V

erlag,V
ienna,1985.

�

F.M
urtagh

and
A

.H
eck,M

ultivariate
D

ata
A

nalysis,K
luw

er,1987.

�

H
.R

ouanetand
B

.L
e

R
oux,A

nalyse
des

D
onnées

M
ultidim

ensionnelles,

D
unod,Paris,1993.

�

M
.V

olle,A
nalyse

des
D

onnées,2nd
E

dition,E
conom

ica,Paris,1980.


