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1.1 INTRODUCTION

Automatic classification algorithms are used in widely different fields
in order to provide a description or a reduction of data. The data items
to be classified are generally quantitatively characterised. If not, in
the case of nominal variables for example, they may be incorporated into
this framework by the use of a suitable coding (such as 1 = possession
of a property, O = otherwise).

Any clustering algorithm will attempt to determine the inherent or natur-
al groupings in the data. More concretely, motivation for clustering may
be categorized under four headings, as follows.

(a) Data analysis

Here, the given data is to be analysed in order to reveal its fundamental
features. The significant interrelationships present in the data are
sought. This is the multivariate statistical use of clustering, and the
validity problem (i.e. the validation of clusters of data items produced
by an algorithm) is widely seen as a major current difficulty.

(b) User convenience

A synoptic classification is to be obtained which will present a useful
decomposition of the data. This may be a first step towards subsequent
statistical analysis, or it may simply entail the provision of a user-
friendly interface to an information system. The emphasis is on heuris-
tics for summarizing information. Appraisal of clustering algorithms
used for this purpose can include : algorithmic efficiency, flexibility
for input data, clarity of output presentation, and ease of use.

(c) Storage and retrieval

We are here concerned with improving access speeds by providing better
routing strategies to stored information. The effectiveness of the
clustering is measured by time and space efficiency, and by external
criteria (related, for example, to the amount of relevant material
retrieved).

(d) Machine vision
The distinguishing of point patterns, or the processing of digital image

data, is often assessed visually, although computational efficiency is
important also.
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Applications of clustering therefore embrace many far—-flung fields.
The range of algorithms which have been proposed (for the most part,
since the early 1960s with the advent of computing power on a wide
scale) has been correspondingly large.

In general, it will be supposed that the given data consists of ob-
jects (or items or individuals) and variables (or attributes). The
interrelationship values may be numerically specified, and a data
array or matrix is presented to the algorithm. This does not, how-
ever, preclude suitable, alternative forms of storage for such data -
for example, in the case of very sparse document-term matrices in
information retrieval; or of pixel readings, arranged as images,

in image processing.

The emphasis in the following sections is on algorithms which are
simply described and which are immediately applicable.

Section 1.2 describes two algorithms which do no more than re-arrange
the rows and columns of an array. By "pulling together" large values
they succeed in providing an improved visual presentation of inform-
ation.

These algorithms are unusual in that they do not appeal directly to
the notion of distance or similarity. A distance function may be de-

fined on pairs of row (or column) vectors. A brief introduction to
requirements in this area is given in section 1.3.

Most published work in cluster analysis involves the use of either of
two classes of clustering algorithm : a hierarchical or a non-hierar-
chical (or partitioning) algorithm. Sections 1.4 and 1.5 provide in-~
troductions to these two classes of algorithm. These sections are
centred on a very widely-employed hierarchical clustering technique -
the single link method - and on two variants (connected components and
the minimal spanning tree). A major reason for the wide interest in
these approaches is that they can be implemented efficiently. For large
data sets (in astronomy and in information retrieval, for instance),
these have been considered until recently to provide the only com-
putationally feasible hierarchical clustering strategies.
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1.2 MATRIX REORDERING TECHNIQUES

A set of numbers is often easier for the human to interpret when sorted;
and the automatic search for the presence of a particular value is
likewise facilitated when the set of values is ordered.

The sorting of the rows and columns of an array, according to some
definition of row/column weights, can reveal structure in the array.
Seriation, a problem arising in the analysis of questionnaires, and

in the analysis of archaeological data, affords a particularly clear
example of the pattern sought in the array (Fig. 1.1). In this case,
the permutation of the rows and then of the columns so that the row
(column) totals are in non-increasing order, will find this pattern.
For more general real-valued matrix entries, some other row (column)
weights may be defined which adequately discriminate as to where large
and small array values are positioned. The objective in the following
algorithm is to place as many large array values on the diagonal as
possible. Let ai, be the value of row i and column j; a, = :aij = the
sum of row i ele%ents, and similarly aj is the sum of columd j elements.

Algorithm A. Iterative matrix reordering

Step 1 Calculate the weight of each row i

w, = Z (a,./a)"]
i ij i

j
Step 2 Reorder rows in decreasing order of weights.
Step 3 Calculate the weight of each column (defined analogously
to the row weights).
Step 4 Reorder columns in decreasing order of weights.
Step 5 Return to Step 1, until either no reordering of rows or

columns was, in fact, necessary; or a maximum number of
iterations has been carried out.

The role of the denominators in the expressions for weights (a; and
ay for rows and columns, respectively), which are not governed by the
summation, is to correct or normalize for large values in the row
(column) which would otherwise overly influence the resulting weight.
The permuting of columns in Step 4 will ordinarily interfere with the
ordering of rows, carried out in Step 2. Therefore a recalculation of
new row weights, and subsequent reordering, is called for. The per-
muting of columns is then required again. If either reordering intro-
duces no change, at any stage of the iteration, then convergence has
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Q1

Q2
Q3

s1

82 |

s3
sS4
s5

Have
Have
Have

Have

you had primary education?
you had second level education?
you had a primary (bachelor) degree or equivalent?

you had a higher university degree?

Q1 Q2 93 o4
1 1 1 1
1 1 1 0
1 $1 o o
1 6 o o 1: Yes
0o o o0 o0 0: No

With few exceptions, test subjects will display one of the five res-

ponse patterns shown.

Subject

responses

Fig. 1.1-

Questions
1 1 1 1
1 1 1 0
0 0 0 0
0 1 0 0
0 1 1 0
0 1 0 0
i 1 1 1
0 1 1 0
0 1 0 0
0 0 0 0
1 1 1 1

Reordering on the basis of row/column totals would reveal
the types of test subject, and also the most suitable
ordering of questions.
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been attained. The algorithm can loop infinitely between a number of
solution states, and one of these may be chosen as adequate. The
initially given ordering of rows and columns can also affect the cal-
culation and so the algorithm should preferably be executed with a
number of different permutations of rows and columns. An example of
Algorithm A is shown in Fig. 1.2.

The simultaneous reordering of rows and columns is of greatest inter-
est when both rows and columns depend on the same underlying variable.
For example, both archaeological artifacts and their properties are
primarily related to chronological ordering in time; or, both exami-
nation questions and examinees are related to the inherent difficulty
of the examined material - the examinees will be ordered by degree of
comprehension, while the examination questions will be ordered by de-
gree of difficulty. If a concentration of large-valued elements on
the diagonal results from applying Algorithm A, then almost certain-
ly it will indicate a useful, common interpretation of the rows and
columns. On the other hand, if the solution provided by the algorithm
does not achieve this concentration of large elements, then the per-
spective which is being applied - the model of one-dimensionality of
rows and of columns - is over-simplistic for the data.

Other studies where Algorithm A has been successfully employed include
its use for the more informative presentation of tabular data : Deutsch
and Martin (1971)use it to arrangeatable of countries' voting record at
the United Nations, so that international power blocks and regional
areas appear clearly.

30 0 2 1 0 01 0 3

0 0 3 1 0 01 0o 1 3

2 01 3 1 Given array 0 2 3 1 1 Array, as reordered
31 01 O 0 3 2 1 0 by Algorithm A

1 0 3 01 1 31 0 0

Final ordering of rows 2, 5, 3, 1, 4.
Final ordering of columns 2, 1, 4, 5, 3.

kA

N

N\

N Values £ 2 are shaded.

Fig. 1.2 -~ Example of Algorithm A
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Egan (1977) assessed 100 Irish children aged between 12 and 17 on school
essays on the topic of "Ireland : What it Means to Me". Each sentence

in the essays contributed an increment to one possible attribute among
38 (physical environment, places, ..., industry and technology, ...,
historical events, ..., art, language, Irishness). Reordering the re-
sulting 100 x 38 array led to a clear ordering of the 38 content-items.
A subdivision of the children into younger and older was also brought
about, so that the ordering of the 38 content-items was related to an
underlying scale of affective develoment. Among the points made by Egan
for the use of Algorithm A were the following : it captures a good

deal of a known underlying order; it provides a framework for intuition
and forces greater clarity; it is relatively objective, is fast, and
can be implemented in large-scale research.

Algorithm A attempts to reposition large array values along the diago-
nal, while preserving intact the initially-given array. It would fre-
quently be of greater interest to simply attempt to clump or cluster
large values together. A criterion of clumpiness is the product of
each array element with its four adjacent elements, summed over all
array values

a (a. .+ a. .+ a, + a, .
ij i-1,3 i+1,3 i, j-1 i, i+l

with, by convention

a a =a, =a =
<5 n+l,]j io m+l,0

o] (n,m : numbers of rows, columns)

An optimal value of this expression is sought, where the only permissible
operations on the array are row and column reorderings. However, in
reordering rows, the final two terms in the above expression will be
inactive (these only concern values within the row considered) and

so the criterion to be optimized is

I La (a (1)

ECH . toa, )
L. 13 1-1,3 i+l, )
1]
Similarly, in reordering columns, the criterion to be optimized becomes

I Ia, la + a ) 2
i ij i,3-1 i,3+1 2)

The following algorithm will provide a good, albeit suboptimal, solu-
tion to this problem, beginning with the reordering of rows.
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Algorithm B. Non-iterative matrix reordering

Step 1 Select a row 1 arbitrarily.

Step 2 For each remaining row in turn, determine the value of
expression (1) given by placing it to the left or right
of any row already positioned; place the row which gives
the greatest value of expression (1) in its best position.

Step 3 When all rows have been placed, repeat Steps 1 and 2 for
columns (using expression (2)).

Initially, in Step 2, we will seek the closest row (employing expression
(1)) to the row chosen in Step 1. At any subsequent execution of Step 2,
a new row will be a candidate for placement in k+l locations, where
there are k rows already placed.

Since the reordering of columns does not affect the prior ordering of
rows (i.e. the value obtained for expression (1) is unchanged), Algo-
rithm B is non-iterative. If the array is symmetric, the reordering of
columns will necessarily be the same as the reordering found for the
rows, and so only Steps 1 and 2 will be required.

Finally, Algorithm B is dependent on the initial choice of row (in
Step 1) and column. A few different start choices will verify the ro-
bustness of the solutions obtained. An example of the implementation
of Algorithm B is shown in Fig. 1.3.

Algorithm B is similar to Algorithm A in that it carries out a straight-
forward rearranging of elements of an array, but is perhaps more widely
applicable. McCormick et al. (1972) discuss a planning example, where
interrelationships of a set of 27 airport subsystems (passenger
check-in, baggage check-in, short-period parking areas, long-term parking,
refuse removal, ...) are subjectively characterized on a O-3 scale.
Algorithm B then provides an exploratory set of clusters. Another
example uses an interrelation table crossing marketing applications with
various O.R. and statistical techniques, and illustrates how Algorithm B
gives a more orderly presentation of tabular information to a user.
Finally, March (1983) reports on the application of Algorithm B to the
problem of structuring records in a database. A similarity measure
between data items is used which takes account of different accessing
practices of a user population. Efficiency and retrieval is enhanced

if items showing similar access characteristics (and which will, with

a high likelihood, be required together) are physically stored together.
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1 3 0 0 2 1
2 0 0 3 1 0
3 2 01 3 1 Given array
4 31 0 1 0
5 1 0 3 0 1
5 1 4 3 2
4 0 3 1 0 1
1 1 3 2 0 O
3 1 2 3 1 0 Array as reordered by Algorithm B
2 0 0 1 3 0
5 1 1.0 3 0O

Using a threshold value of 2 reveals two blocks or clusters

b -
1

Rows 4, 1 and 3 are related by virtue of the attributes corresponding to
columns 1 and 4; and items (rows) 2 and 5 are similarly related by virtue
of attribute (column) 3.

Fig. 1.3 - Example of Algorithm B
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1.3 DISTANCE AND DISSIMILARITY

The previous algorithm has introduced the notion of distance - rows
and columns were rearranged to be as "close" as possible. The great
majority of clustering procedures are based on an initial definition
of "closeness". The Euclidean (or "as-the-crow-flies") distance is
widely used. If
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are the i-th and k-th row-vectors of the data matrix, then the unweighted,
squared Euclidean distance is given as

2 2 t 2 2 t
d_= I(a,.-a ) = (a.-a)la-a) = “au +flall®-2a.-a
ik . 13 k3 -i %k —i 7k i k i =k
J
where t denotes transpose, and [~ the norm with which the distance

is associated. For n vectors, only n{(n-l)/2 pairwise distances need to

be considered in view of the symmetry (47 = di,).
i i

k
Weighted versions of this distance are often used in order to remove
the effects of very discrepant coordinate values (e.g. the case where
some column j has values which are uniformly greater than other values).
A standardized distance is defined by using centred and reduced values
(aij-Ej)/cj instead of aij’sj is the mean coordinate value over all

the row-vectors,

a,= Za /n
] 1]

i
and Oj is the standard deviation of the coordinate values:
2 - 2
o.,= I (a,,-a,) /n
J i 1] J

Another distance is the Hamming (or "least-moves") distance, defined as:

a_ = Ila, -a |
ik ij kj

and if the data array is binary, it is easily seen that the Hamming
distance and the usual Euclidean distance squared yield identical re-
sults. The Hamming distance may be interpreted as the least set of
"moves" required to reconfiqure a binary string as another. It may
also be easily generalized for qualitative or non-numeric data.
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Given a set of characteristics, j € {l,2,...,m}, 'aij— akj =0 if
characteristic j for object i is identical to this characteristic

for object k; if, on the other hand, the characteristics differ for
these objects then 'aij‘ ay ‘= 1. As an example, consider a database
application where employee records have as attributes : department
code, salary, age, length of service, etc. Next consider salaries to
be categorized as 0-499, 500-1499, etc., and ages similarly categorized
in five-years groups. Given two records {A, 1500, 33, 4, ...) and

(A, 1300, 25, 2, ...), where the attribute values correspond to the
attributes listed above, we have the contribution to the Hamming
distance by these attributes as : 0+1+1+1+...

Distances satisfy the following properties

d = d (symmetr
ik Ki y)
d'k 2z O if 1 # k
* Lo . (positive semi-definiteness
da. = .0if 1 = k
ik
dik < dil+ el K (triangular inequality).

The triangular inequality is easily verified in the Euclidean plane by
considering the three vertices, i, k and &, of a triangle. If the tri-
angular inequality is not verified, we have a dissimilarity. Similari-
ties (or proximities) are related to dissimilarities by sSubtraction
or division. The Jaccard similarity, used with binary data, is defined
as

#(a =a .=1)
J

ij kj

s =
ik #
"(a, =1) + #(a =1) - 4#(a =a =1)
i ij 'S LTSI

where # is the counting operator. Since 0 £ s_ﬁgl, a dissimilarity
may be defined by t

4, = 1-s .
ik ik
As an example, the Jaccard similarity of the vectors (10001001111) and
(10101010111) is 5/(6+7-5).

A very large number of (dis)similarity coefficients have at one time

or another been proposed. We will not attempt an inventory here
Anderberg (1973) remains a very readable introduction and Everitt (1980)
may also be consulted.
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.4 GRAPH-THEORETIC APPROACHES

¥:zhout loss of generality, we will only consider the rows of the given
4ata matrix since transposition will allow similar treatment of columns.
consider as given a dissimilarity, d, between all pairs of these ob-
-ects. Three closely related analyses, using these dissimilarities,

are the determining of connected components, the minimal spanning

-ree (MST), and the single linkage hierarchical clustering.

Connected components of the objects or data items (vertices) provide
a partitioning of the object set (Fig. 1.4).

Algorithm C. Maximal connected subgraphs

Iaput Set of n(n-1)/2 pairwise dissimilarities; threshold t.

Step 1 For each pair of objects, i and k, if dj, < t then place
k on the component list associated with i.

Step 2 Take each non-empty component list (of object i, say)
in turn, and carry out Step 2a.

Step 2a Take each element, k, in turn in the component list of
object i. If k has itself a non-empty component list,
then append each element of k's component list to the
component list of i, if these elements are not already
present in i's component list; and then delete the
component list of k.

Step 1 sets up the graph of n vertices where adjacency between i and k
1s indicated by the presence of k in the linked list of i. Steps 2 and
2a constitute a breadth-first search for the maximal connected sub-
graphs, given a (possibly overlapping) set of connected subgraphs.

The minimal spanning tree may be related to Algorithm C : we seek the
least threshold which allows each object (vertex) to be connected to
some other vertex, with the constraint that no cycle arise in the

graph.

Some aspect of the MST is covered in most texts on clustering and on
graph theory, and other areas besides. We will restrict ourselves to
a brief description of this important method. The following algorithm
constructs an MST by a "greedy" or nearest neighbour approach.
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1
1 2 3 4 5
1 0 4 9 5 8
0 6 6 4
2 3 3
3 0 6 3 2
4 0 5
5
5 0
Matrix of dissimilarities, d
Initial non-empty linked lists Maximal connected subgraphs
2 ——[] 3———[3]
3 ———[5]
Fig. 1.4 -~ Connected components for threshold t = 5
Algorithm D. Minimal spanning tree
Step 1 Select an arbitrary vertex and connect it to the least

dissimilar neighbour. These two vertices constitute a
subgraph of the MST.

Step 2 Connect the current subgraph to the least dissimilar
neighbour of any of the members of the subgraph.

Step 3 Loop on Step 2, until all vertices are in the one sub-
graph : this, then, is the MST.

Step 2 agglomerates subsets of objects using the criterion of con-
nectivity. For proof that Algorithm D does produce an MST, see for
example Tucker (1980).

The following proposition should be apparent : breaking all links in
the MST which are of length == t yields components which are identica
to the t-components obtained from Algorithm C. Thus, knowing the MST
of an object-set allows sets of maximal connected subsets to be obtaii
for various thresholds. The reverse - constructing the MST from a set
of connected subsets - is evidently not possible.
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Obtaining components from an MST is the problem addressed by

2ahn (1971). An edge is said to be inconsistent if it is of length

much greater than the lengths of other nearby edges (see Fig. 1.5).
Inconsistent edges may be picked out by looking at a histogram of

edge lengths in the MST, and marking as deletable a set percentage

of greatest-length edges. Alternatively, inconsistent edges may be
obtained by defining a threshold of inconsistency such as being greater
than two standard deviations above the mean length of all edges which
are within two edges of incident vertices. zZahn applies these approaches
to point pattern recognition - obtaining Gestalt patterns among sets of
planar points; picking out bubble chamber particle tracks, where the
curved and linear sequence of points are ideally suited to MST analysis;
and finally detecting density gradients, where differing clusters of
points have very different densities associated with them and hence are
clearly distinguishable to the human eye. Some of these problems will

be discussed in Chapter 4.

The use of the MST for storage reduction has alsc been proposed. Since
the storage of university student records, or of chemical structures,
will often involve a high degree of redundancy, it is suggested that
the storage of indicators of where a new string of data differs from

a previous one will reduce the overall storage required. Algorithm B
may be used for this purpose. An alternative is to use the MST, where
in addition we use a reference record - each record is related to some
other, with the exception of a root record {(see Fig. 1.6). A root in
the MST, with the consequent defining of directed arcs from it, may be
defined arbitrarily, but methods for choosing this privileged object -
to be stored in its entirety - are discussed in Kang at al. (1977).

A further extension which is discussed in the foregoing reference,

and which might be more suitable in practice, is to use a spanning forest
rather than the MST.

Finally, the MST is often suitable for outlier detection. Since outlying
data items (resulting, perhaps, from typing errors in the inputting of
attributes) will be of greater than average distance from their neigh-
bours in the MST, they may be detected by drawing a histogram of

edge lengths. Unusually large lengths will indicate the abnormal

points (or data items) sought. Rohlf (1975) gives a statistical

gap test, under the assumption that the edge lengths in the MST are norm-
ally distributed.
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I ! 1 1 | 1 1 l

1 2 3 4 5 6 7 8
Edge connecting (2,3) and (5,3) is clearly inconsistent.

Fig. 1.5 - (Non-unique) minimal spanning tree of a point pattern

1.5 HIERARCHICAL AND NON-HIERARCHICAL METHODS

The single linkage hierarchical clustering approach outputs a set of
partitionings of the object-set into maximal connected subgraphs, at
each level - or for each threshold value which produces a new parti-
tion. It is therefore closely related to a sequence of outputs of
Algorithm C, and it may also be obtained from an MST. The following
algorithm, in its general structure, is relevant for a wide range of
hierarchical clustering methods which vary only in the update formula
used in Step 2. These methods may, for example, define a criterion of
compactness in Step 2 to be used instead of the connectivity criterion
used here.

Algorithm E. Single linkage hierarchical clustering

Input An n(n-1l)/2 set of dissimilarities.
Step 1 Determine the smallest dissimilarity, dik'
Step 2 Agglomerate objects i and k : i.e. replace them with a

new object, iUk; update dissimilarities such that, for
all objects j # i,k :
4, o= min{d ,4 }
iUk, 3 i3 k3
Delete dissimilarities dij and dkj' for all j, as these are
no longer used.

Step 3 While at least 2 objects remain, return to Step 1.
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Record Record contents
identifiers
R1 a b a b a a a ¢ a a
R2 a b a b a a a b a a
R3 b ¢ a b a a a ¢ a b
R4 a a a b a a a b a c¢
R5 a b a b a a a a a b
R6 a b a b a a a b a a
Store R2 as 1 8 b
"as R1, except in location 8:b"
(saving 7 storage locations)
Store R3 as 1 1 b 2 ¢ 10 b

(saving 3 locations)

Could R2 be reference point of R3 instead of Rl ?
Hamming distance between Rl and R3 : 3 ; between R2 and R3 : 4.
Hence it is better to have Rl as reference point.

RS;\\ ///,RG

R1 R2

Let Rl be root

R1

R5 i;\\\*\\\ 2
!

R6 R4

"

4

Hence, define R5, R3, R2 in terms of Rl;
and R6 and R4 in terms of R2.

Fig. 1.6 - The use of the minimal spanning tree for
storage compression

There are precisely n-1 agglomerations in Step 2 (allowing for a pos-
sibly arbitrary choice in Step 1 if there are a number of identical
dissimilarities). It may be convenient to index the clusters found

in Step 2 by n+l, n+2, ..., 2n-1, or an alternative practice is to
index cluster iUk by the lesser of the indices of i and k. This
latter convention is more appropriate if storage space is restricted:
the replacement di‘<% min{dij, dkj is made (where i is the lesser
of indices i and k), so that the storage requirement never exceeds
the space required for the initial matrix (this is done in Fig.1.7).
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1 2 3 4 5 1 2U4 3 5
1 0 4 9 5 8 1 0 4 9 8
2 4 0 6 3 6 2U4 4 0 6 5
3 9 6 0 6 3 3 9 6 0 3
4 5 3 6 0 5 5 8 5 3 0
5 8 6 3 5 0
Agglomerate 2 and 4 at Agglomerate 3 and 5 at dissimi-
dissimilarity 3 larity 3
1 22U 3U5 1uU2u4 3U5
1 0 4 8 1U2W4 0 5
22U 4 0 5 3U5 5
3U5 8 5 0
Agglomerate 1 and 2U4 at Finally agglomerate 1MJ2U4 and 3U5 at
dissimilarity 4 dissimilarity 5
R S

Resulting dendrogram

.
.
.
N
:
O W w b v

P
1 .0 ..
1 2 4 3 5
Ranks Criterion values

or levels (or linkage
weights)

Fig. 1.7 - Single linkage dendrogram construction

The title "single linkage" arises since, in Step 2, the interconnecting
dissimilarity between two clusters (iUk and j) or components is defined
as the least interconnecting dissimilarity between a member of one and
a member of the other. Other hierarchical clustering methods are cha-
racterized by other functions of the interconnecting linkage dissi-

milarities.

Since there are n-1 agglomerations, and hence iterations, and since
Steg 2 requires < n operations, Algorithm E is of time complexity
O(n™).
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Minimal spanning tree

nlfl
I

a b cd e

a bc d e

dendrogram construction

Fig. 1.8 - Another approach to constructing a

single linkage dendrogram
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It is left as an exercise to devise an algorithm which takes an MST

as input and produces a single linkage dendrogram. Although the single
linkage hierarchy is an alternative representation of an MST, the re-
verse is not the case : in going from the MST to the hierarchy, the
objects grouped together are noted but not the interconnecting edges
which brought the grouping about.

Compared to the other hierarchic clustering techniques, the single
linkage method can give rise to a notable disadvantage for summa-

rizing interrelationships. This is known as chaining. An example is

to consider four subject-areas, which it will be supposed are character-
ized by certain attributes : computer science, statistics, probability,
measure theory. It is quite conceivable that "computer science" is con-
nected to "statistics" at some threshold value, "statistics" to "proba-
bility"™ and "probability" to "measure theory", thereby giving rise to
the fact that "computer science"” and "measure theory” find themselves

in the same cluster. This is due to the intermediaries "statistics"

and "probability".

Rather than considering the very wide-ranging uses to which the single
linkage method has been put, we will instead look at the general role
played by a dendrogram, constructed by any criterion.

About 3/4 of all published work on clustering has employed hierarchic-
al algorithms (Blashfield and Aldenderfer, 1978) : this figure might
or might not hold for clustering usage, but it is nonetheless revealing.
Interpretation of the information contained in a dendrogram will often
be of one or more of the following kinds :

- set inclusion relationships,

- partition of the objects-set, and

- significant clusters.

We will briefly examine what each of these entail.

Much early work on hierarchic clustering was in the field of biological
taxonomy, from the 1950s and more so from the 1960s onwards. The cen-
tral reference in this area is Sokal and Sneath (1973). One major in-
terpretation of hierarchies has been the evolution relationships
between the organisms under study. It is hoped, in this context, that
a dendrogram provides a sufficiently accurate model of underlying
evolutionary progression. As an example, consider the hierarchical
classification of languages based on certain features. It would be
hoped to characterize clusters at higher levels of the tree as being
language families, from which modern languages derive (Teutonic -~
German, English, Swedish, etc.). In another example of where dominance
of inclusion relations are of importance, Johnson (1967) clusters
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16 consonant sounds, wnere the dissimilarity is chosen to reflect
confusability. Major groupings (voiced and unvoiced consonant pho-

asemes, nasals) are found.

The most common interpretation made of hierarchic clustering is to de-
rive a partition : a line is drawn horizontally through the hierarchy,
o yield a set of classes. These clusters are precisely the connected
components in the case of the single linkage method. A line drawn

just above rank 3 (or criterion value 4) on the dendrogram in Fig.l.7.
ylelds classes {1,2,4} and {3,5} . Generally the choice of where
“to draw the line" is arrived at on the basis of large changes in the
criterion value. However, the criterion value is usually increasing
towards the final set of agglomerations, which renders the choice of
best partition on this basis difficult. Since every line drawn
through the dendrogram defines a partition, it is often expedient to
choose a partition with convenient features (number of classes,
numbers of objects per class). Various automatic procedures have been
proposed for cutting a dendrogram, and a bibliography and appraisal of
many of these is given by Milligan and Cooper (1983).

A final type of interpretation, less common than the foreqgoing, is to
dispense with the requirement that the classes chosen constitute a
partition, and instead detect maximal (i.e. disjoint) clusters of in-
terest at varying levels of the hierarchy. Such an approach is used
by Rapoport and Fillenbaum (1972) in a clustering of colours based

on semantic attributes.

In summary, a dendrogram provides a résumé of many of the proximity

and classificatory relationships in a body of data. For an experienced
user, it is a convenient representation which answers such questions

as : "How many groups are in this data ?", "What is the most suitable
grouping of these objects ?", "What are the salient interrelationships
present ?". But for an inexperienced user, it should be stressed that
differing answers can be feasibly provided by a dendrogram for most of
these questions, just as different human observers would also arrive

at different outcomes.

We will conclude this section with a short look at non-hierarchical
clustering methods.

A large number of assignment algorithms have been proposed. The single-
pass approach usually achieves computational efficiency at the expense
of precision, and there are many iterative approaches for improving on
crudely-derived partitions.
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a) Embedded sets

b} "sky-view" (a particular representa-
tion of the minimal spanning tree)

{w,x,v,2}

{WI xly}

{u,v}

{u} {v} {w} {(x} {y} {2}

c) Tree
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d) Dendrogram
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X X X X X X

X X X X X X X X

X X X X X X X X X X
X X XXX XX XXXX

e) Sky-line plot

Fig. 1.9 - Differing representations of a hierarchic

clustering on object set I = {u,v,w,x,y,z}
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As an example of a single-pass algorithm, Algorithm F is given in
Salton and McGill (1983). The general principle followed is : make
one pass through the data assigning each object to the first cluster

which is close enough and making a new cluster for objects that are

not close to any existing cluster.

Algorithm F Single-pass overlapping cluster algorithm
Input n objects, threshold t, dissimilarity on objects.
Step 1 Read object 1, and insert object 1 in membership

list of cluster 1. Let representative of cluster 1
be given by object 1. Set i to 2.

Step 2 Read i-th object. If d(i-th object, cluster j} < t,
for any cluster j, then include the i-th object in
the membership list of cluster j, and update cluster
representative vector to take account of this new
member. If d(i-th object, cluster j) > t, for all
clusters j, then create new cluster, placing i-th
object in its membership list, and letting representa-
tive of this cluster be given by the i-th object.

Step 3 Set i to i+l. If i < n, go to Step 2..

The cluster representative vector used is usually the mean vector of
the cluster's members; in the case of binary data, this representative
might then be thresholded to have O to 1 coordinate values only. In
Step 2, it is clear that overlapping clusters are possible in the above
algorithm. In the worst case, if threshold t is chosen too low, all n
objects will constitute clusters and the number of comparisons to be
carried out will be O(nz). The dependence of Algorithm F on the given
sequence of objects is the price paid for performance which will ge-
nerally be much faster than this worst case order-of-magnitude per-
formance.

Many algorithms have been proposed which permit certain object-vectors
to be defined as initial cluster representatives, or choose such
cluster seeds at random. The cluster centres are then recalculated in
the light of the assignments.

The rereading of all cases, and reassigning to the new cluster repre-
sentatives, may be iterated until the cluster representatives show
sufficiently small alteration in successive passes. Such iterative
readjustment is a common feature of many partitioning (or non-hierar-
chical) clustering algorithms. Either relocation or exchange of cluster
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members may also follow the initial assignment to clusters. An over-
all criterion function determines whether a proposed relocation (or
exchange) will be carried out. A difficulty with iterative algorithms
is the requirement for parameters to be set in advance (Anderberg,
1973, describes a version of ISODATA requiring 7 pre-set parameters).
As a broad generalization, it may thus be asserted that iterative
algorithms ought to be considered when the problem is clearly defined
in terms of numbers and other characteristics of clusters; but that
hierarchical routines offer a more general-purpose and user-friendly
option.
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