32

CHAPTER 2 - FAST NEAREST NEIGHBOUR SEARCHING

2.1 Introduction

2.2 Hashing

2.3 Multidimensional binary search tree

2.4 Bounding using projections or the Euclidean distance
2.5 Bounding using the triangular inequality

2.6 Nearest neighbour algorithms in information retrieval
2.7 Open problems

2.8 References

33

2.1 INTRODUCTION

Given a set of n multidimensional vectors, the nearest neighbour (NN)
problem is to find the closest vector to some given vector. Efficient
NN-finding algorithms may be incorporated into clustering algorithms,

as will be seen in Chapters 3and 4. NN-finding algorithms can be made the
basic "building blocks" of many commonly-used clustering algorithms, and
thus progress in the area of NN-finding has immediate beneficial reper-

cussions on clustering.

The NN problem is also important in its own right in other areas. In
discriminant analysis in pattern recognition, a k-nearest neighbour assi-
gnment strategy is widely used : an unlabelled sample is assigned to the
class to which a majority of its NNs belong (see Kittler, 1978). In
database design, the NN problem is known as the best match problem : the
closest record to a query is to be accessed efficiently (see Bentley, 1979).
In information retrieval, a similar problem arises when the NN document of

a query or request vector is required (see Perry and Willett, 1983). In
such problems as minimizing head movement on direct access I/0 devices,

or the optimal sequencing of pens for plotting devices, a NN-based algo-

rithm has been found to be both simple and effective (see Bentley, 1984).

Sections 2.2 and 2.3 both describe particular data structures where the
objective is to break the 0(n) barrier for determining the NN of a point,

- in the average case if not in the worst case. These approaches have

been very succeessful, but they are restricted to low dimensional NN-search-
ing. For higher-dimensional data, a wide range of bounding approaches have
been proposed, i.e. a theoretically smallest possible dissimilarity (the
lower bound on the dissimilarity) is compared against the current NN
dissimilarity, and if the former is the greater then there is no need to

proceed to an exact calculation of the dissimilarity. Bounding approaches

34

remain O(n) algorithms, but with a low constant of proportionality such

algorithms can be very efficient.

Bounding approaches of a general nature are discussed in Sections 2.4 and
2.5. The general principle of the branch and bound algorithm described
in section 2.5 appears to be particularly versatile for general purpose
applications. In section 2.6, the particular problem-area of information
retrieval is focussed on. Finally, section 2.7 indicates what practical

problems require attention at the present time.

35

2.2 Hashing

In this approach to NN-searching, a preprocessing stage precedes the sear-
ching stage. All points are mapped onto indexed. cellular regions of space,
so that NNs will be found in the same or in closely adjacent cells. Tak-
ing the plane as an example, and considering points (xl,yl), the maximum
and minimum values on all coordinates are obtained (e.g. x . , X). The
min max
mapping X, —ﬂfx,—x .)/rJ , where constant r is chosen in terms of the
i i min
number of equally spaced categories into which the interval [x L, X
min max
is to be divided, gives an integer value between O and L(x -X) /rJ
max min
to xi. Defining a similar mapping for y_allows each point to be transformed
i
onto a rectangular cell (see Fig. 2.1). O(nm) time is required to obtain
m
the transformation of all n points in |[R . The result is stored as a link-

ed list with a pointer from each cell identifier to the set of all points

which have been mapped onto that cell.

The implementation of NN searching proceeds as follows. Firstly, the clos-
est point which is mapped onto the same grid cell as the target point is found.
This will be a current NN point. A closer point may be mapped onto some
other grid cell if the distance between target point and current NN point
is greater than the distance between the target point and any of the boun-
daries of the cell containing it. If this is the case, all grid cells ad-
jacent to the grid cell are searched in order to see if the current NN
point can be bettered. It is, of course, possible that the initial cell
might have contained no points other than the target point: in this case,
the search through adjacent cells may yield a possible NN, and it may be
necessary to widen the search to confirm this. Therefore ian2, 1 cell is
searched first; if required, the 8 cells adjacent to this are searched;

if necessary, the 16 cells adjacent to these cells (or less if restrained
by the exterior walls of the region in which the search is taking place)

are then searched; and so on.

36

A powerful theoretical result regarding this approach is as follows: for
uniformly distributed points the NN of a point is found in 0(1) expected
time (see Delannoy, 1980, or Bentley et al., 1980, for proof). Therefore
this approach will work well if approximate uniformity can be assumed or
if the data can be broken down into regions of approximately uniformly

distributed points.

The search through adjacent cells requires time which increases exponen-
tially with dimensionality (if it is assumed that the number of points
assigned to each cell is approximately equal). As a result, this approach
is suitable for low dimensions only. Rohlf (1978) reports on work in
dimensions 2, 3 and 4, and Murtagh (1983) irlmz. Rohlf also mentions the
use of the first 3 principal components to approximate a set of points in

15-dimensional space.

x y Y . = 0
min min
*max * Ymax < %0
r =10

5

4

3

2

1

0]

Point (21,40) is mapped onto cell (2,4)

Point (7,11) is mapped onto cell (0,1)

2
Fig. 2.1 - Example of hashing in R .

37

38

2.3 MULTIDIMENSIONAL BINARY SEARCH TREE

A decision tree splits the data to be searched through into 2 parts; each
part is further subdivided; and subdivisions continue until some prespeci-
fied number of data points is arrived at. In practice, we associate with
each node of the decision tree the definition of a subdivision of the data
only, and we associate with each terminal node a pointer to the stored

coordinates of the points (perhaps on direct access storage).

One version of the multidimensional binary search tree (MDBST) is as fol-
lows. Halve the set of points, using the median of the first coordinate
values of the points. For each of the resulting sets of points, halve them
using the median of the second coordinate values. Continue halving; use

the medians of all coordinates in succession in order to define successive
levels of the hierarchical decomposition; when all coordinates have been
exhausted, recycle through the set of coordinates; halt when the number

of points associated with the nodes at some level is smaller than or equal
to a prespecified constant, c. See example in Fig. 2.2.

Clearly the tree is kept balanced : therefore there are 0(log n) levels, at
each of which 0(n) processing is required. Hence the construction of the

tree takes 0{(n log n) time.

The search for a NN then proceeds by a top~down traversal of the tree : the
target point is transmitted through successive levels of the tree using

the defined separation of the two child nodes at each node.On arrival at
a terminal node, all associated points are examined and a current NN se-
lected. The tree is then backtracked : if the points associated with any

node could furnish a closer point, then subnodes must be checked out.

2
Fig. 2.2 - MDBST inR .

39

40

The approximately constant number of points associated with terminal nodes
(i.e. with hyper-rectangular cells in the space of points) should be greater
than 1 in order that some NNs may be obtained without requiring a search of
adjacent cells (i.e. of other terminal nodes). Friedman et al. (1977) sug-

gest a value of c between 4 and 32 based on empirical study.

The MDBST approach only works well with small dimensions. To see this, con-
sider each coordinate being used once only for the subdivision of points
(i.e. each variable is considered equally useful). Let there be p levels in
the tree, i.e. 2P terminal nodes. Each terminal node contains approximately
c points by construction and so c.ZP = n. Therefore p = log2 n/c. As sample
values, if n = 32768, ¢ = 32, then p = 10; i.e. in 10-dimensicnal space,
using a large number of points associated with terminal nodes, more than
30000 points will need to be considered. For higher dimensional spaces,

two alternative MDBST specifications are as follows.

All variables need not be considered for splitting the data if it is known
that some are of greater interest than others. Linearity present in the data
may manifest itself via the variance of the variables; choosing the variable
with greatest variance as the discriminator variable at each node may there-
fore allow repeated use of certain variables. This has the added effect

that the hyperrectangular cells into which the terminal nodes divide the spa-
ce will be approximately cubical in shape. In this case, Friedman et al.
(1977} show that search time is O(log n) on average for the finding of the
NNs of all n points. Results obtained for dimensionalities of between 2 and
8 are reported on in Friedman et al. (1977}, and in the application of this
approach to minimal spanning tree (cf. Chapter 4) construction in Bentley

and Friedman (1978).

4]

In information retrieval, dimensionality is often greater than the number
of points. Point coordinates here indicate the association or non-associ-
ation (1 or 0) of an index term (variable) with a document {(point). In this
context, variables may be batched together. In Fig. 2.3 a target point with
0 coordinate values on attributes 1 and 2 is directed towards the left child
node of the root; otherwise it is sent to the right child node; at level 2
if the target point has O coordinates for attributes 3, 4 and 5, it is di-
rected towards the left subtree and otherwise towards the right subtree.

As with the version of the MDBST described above, a top-down traversal of
the tree leads to the search of all points associated with a terminal node;
this provides a current NN; then backtracking is commenced in order to see
if the current NN can be bettered. The maximum size data set for which this
approach has been used is 1400 documents. Results obtained have not been
good (90% of documents required searching) but it is suggested that greater
n would be more successful (Weiss, 1981; Eastman and Weiss, 1982). General
guidelines for the variables which define the direction of search at each
level are that they be related, and the number chosen should keep the tree

balanced.

42

Discriminator
variables

Variables
1 2 3 4 5 6 7 8

p1 100001 11
, p2 1100000 0
Points P3 00100110
P4 00011100

Decision rule : presence of some one of discriminator variables

= take right subtree.’

Fig. 2.3 - MDBST using batching of variables for binary data.

43

2.4 BOUNDING USING PROJECTIONS OR THE EUCLIDEAN DISTANCE

All remaining algorithms to be discussed make use of bounds : some lower
sound on the dissimilarity is efficiently calculated in order to dispense

with the full calculation in many instances.

Using projections on a coordinate axis allows the exclusion of points in
the search for the NN of point xi. Points x , only, are considered such
2 R
that (x, - x,) < c, where x, (x) is the k coordinate of x. (x.)
ik Jjk ik jk i
and ¢ is a prespecified constant (see Fig. 2.4).

Alternatively, more than one coordinate may be used. The prior sorting
of coordinate values on the chosen axis or axes will expedite the find-
ing of points whose full distance calculation is necessitated. The pre-
processing required with this approach involves the sorting of up tom

sets of coordinates, i.e. O(mn log n) time.

Jsing one axis, it is evident that many points may be excluded if the

dimensionality is very small, but that the approach will disimprove as

the latter grows. Friedman et al. (1975) give the expected NN search

time, under the assumption that the points are uniformy distributed, as
1-1/n

o(m n). This approaches the brute force O(nm) as m gets large.

Reported empirical results are for dimensions 2 to 8.

Marimont and Shapiro {(1979) extend this approach by the use of projections
in subspaces of dimension greater than 1 (usually about m/2 is suggested).
This can be further improved if the subspace of the principal components
(following a principal component analysis) is used. Dimensions up to 40

are examined.

(o]
(o]

. 1 th

k axis

*ik *ik ik

Points with projections within distance ¢ of given point's ("x")

projection, alone, are searched.

Fig. 2.4 - Two-dimensional example of projection-based bound.

45

The Euclidean distance is the (dis)similarity which is most widely used
in practice. Two other Minkowski distances require less computation time

to calculate and provide bounds on the Euclidean distance. We have

dl(x,x') > d2(x,x') >d (x,x')

where dl is the Hamming or '"city block" distance, defined as |xj—x[|;
J 2
the Euclidean distance is given by the square root of g (xj—x[) ; and
. J
the Chebyshev distance is defined as M?x]xj—x"j|. J

Kittler (1978) makes use of the following bounding strategy: reject all

points y such that dl(x,y) 2> vm. 8 where § is the current NN d2—distance,

and m is the dimensionality of the space. The more efficiently calculated
dl-distance may thus allow the rejection of many points (90% in 10-dimensional
space in reported by Kittler). Kittler's rule is obtained by noting that

the greatest dl—distance between x and x' is attained when

dz(x,x')

12
Ix x 1% =
J m

for all coordinates j; hence dl(x,x') = d2(x,x')/ /T is the greatest dl—
distance between x and x'. In the case of the rejection of point y, we

then have
dl(x,y) < d2(x,y)//'m
and since

dl(x,y) 2 /ms

by virtue of the rejection, it follows that

46

§ £d s
A 2(X y)

Yunck (1976) presents a theoretical analysis for the similar use of the
Chebyshev metric. Richetin et al. (1980) propose the use of both bounds.
Using uniformly distributed points in dimensions 2 to 5, the latter refer-

ence reports the best outcome when the rule : reject all y such that

do(x,y) > & precedes the rule based on the dl-distance. Up to 80% reduc-

tion in CPU time is reported.

47

2.5 BOUNDING USING THE TRIANGULAR INEQUALITY

The triangular inequality is satisfied by distances : d(x,y) < d{x,z)+d{(z,y)
where x,y and z are any three points. The use of a reference point, z, al-
lows a full distance calculation between point x (whose NN is sought) and y

to be avoided if
|d(YIz)_d(xvz) | 2 [

where ¢ is the current NN distance. The set of all distances to the refer-
ence point are calculated and stored in a preprocessing step requiring O(n)

time and O(n) space. The above cut-off rule is obtained by noting that if
d(xry) 2 |d(y,Z)—d(x»Z)|

then, necessarily, d(x,y) > 6 . The former inequality above reduces to the
triangular inequality irrespective of which of d(y,z) or d(x,z) is the

greater.

The set of distances to the reference point, { d(x,z)|x }, may be sorted in
the preprocessing stage. Since d(x,z) is fixed during the search for the
NN of x, it follows that the cut-off rule will not then need to be applied

in all cases.

The single reference point approach, due to Burkhard and Keller (1973),

was generalized to multiple reference points by Shapiro (1977). The sorted
list of distances to the first reference point,{d(x,zl)|x}, is used as
described above as a preliminary bound. Then the subsequent bounds are
similarly employed to further reduce the points requiring a full distance
calculation. The number and the choice of reference points to be used is
dependent on the distributional characteristics of the data. Shapiro (1977)

finds that reference points ought to the located away from groups of points.

48

In 10-dimensional simulations, it was found that at best only 20% of full
distance calculations were required (although this was very dependent on

the choice of reference points).

Fukunaga and Narendra (1975) make use of both a hierarchical decomposition
of the data set (they employ repeatedly the k-means iterative/relocatory
algorithm), and bounds based on the triangular inequality. For each node
in the decomposition tree, the centre and maximum distance to the centre
(the "radius") of associated points are determined. For 1000 points, the
above reference uses 3 levels where there was a division into 3 classes

at each node.

All points associated with a non-terminal node can be rejected in the

search for the NN of point x if the following rule (Rule 1) is not verified:

d{x,g) - r <3¢
g
where § is the current NN distance, g is the centre of the cluster of points
associated with the node, and r is the radius of this cluster. For a
g
terminal node, which cannot be rejected on the basis of this rule, each

associated point, y, can be tested for rejection using the following rule
| d{x,g)-d(y, g}l > &

These two rules are direct consequences of the triangular inequality.

A branch and bound algorithm may be implemented using these 2 rules. This
involves determining some current NN (the bound) and subsequently "branch-
ing" out of a traversal path whenever the current NN cannot be bettered.

The control structure for a backtracking implementation of this is shown

in Fig. 2.5. The current NN distance will be initialized to machine infinity,

and subsequently updated.

49

This NN searching approach appears particularly promising for general-
purpose applications. It is also not inherently limited by dimensionality

congiderations,

50

node ¢ root.

call FUKNAR (node).

FUKNAR (node)
if node = terminal then c2all TERM (node).
else if Rule-l-verified then node «- left-subnode;

call FUKNAR (node).

node « next-subnode-from-the-left; call FUKNAR (node).

end

FUKNAR is a recursive procedure to implement backtracking NN search.

TERM is a procedure to carry out Rule 2 search of all points associated

with the terminal node.
Rule-l-verified may be implemented by a procedure call.

The assignments to variable '"node" require a choice of storage structure
for the tree, and an associated set of flags to indicate when a node

is not to be reused.

Fig. 2.5 - Control structure for backtracking NN searching.

51

2.6 NEAREST NEIGHBOUR ALGORITHMS IN INFORMATION RETRIEVAL

In information retrieval, m may typically be of the same order of magni-
tude as n or greater. Values in excess of 10,000 are not uncommon for test
collections. The particular nature of the data (very sparse binary docu-
ment-term associations) has given rise to particular NN-searching algo-

rithms. The data is usually stored on direct access storage 95 compact

linked lists (i.e. the sequence number of the document is followed by the
sequence numbers of the terms which are associated with it). Current com~
mercial document collections are usually searched using a Boolean search
environment (i.e. all documents associated with particular terms are re-
trieved; the intersection/union/etc. of such sets of documents are ob-
tained using AND/OR and other connectives). For efficiency, an inverted
file which maps terms onto documents is available for Boolean retrieval,
- stored in a similar manner to the document-term file. Although storage
considerations are clearly of paramount importance, it might grosso modo
be stated that we have available both the document-term matrix, and its
transpose. The efficient NN-searching algorithms, to be discussed, will

make use of both document-term and term-document files.

The usual algorithm for NN-searching considers each document in turn,
calculates the dissimilarity with the given document (or query, which ma-
thematically, is identical to a document), and updates the current NN if
necessary. This algorithm is shown schematically in Fig, 2.6. The inner
loop is simply an expression of the fact that the dissimilarity will (in
general) require O(m) calculations: examples of commonly-used coefficients
are the Jaccard similarity, i.e. # (ini'y# (iU i'), and the Hamming
distance, i.e. # (i) +3 (i') ~ 2 % (i n i'). Here, # is the counting
operator, indicating the number of terms associated with document

i(i.e. # (i)) or the number of terms shared by documents i and i' (i.e.

#inNni)).

52

Usual algorithm -

Initialize current NN.
For all documents in turn do :

. For all terms associated with the document do
Cee eeseen . Determine dissimilarity

. End.

. Test against current NN.

End.

Croft's algorithm -

Initialize current NN.
For all terms associated with the given document do
.. For all documents associated with each term do :
ees eeeess. For all terms associated with a document do
ves seseese saesss. Determine dissimilarity.
cees eseess. End.
sees «ssesss Test against current NN,
... End.

End.

Perry-Willett algorithm -

Initialize current NN.
For all terms associated with the given document (i) do :
... For all documents (i') associated with each term do :

cee seseese Increment location i' of counter vector.

End.

Fig. 2.6 - Algorithms for NN-searching in information retrieval (see text

for details).

53

If ; and ; are, respectively, the average numbers of terms associated with
a document, and the average number of documents associated with a term,
then the average complexity (over all n NN searches) of this usual algo-
rithm is O(n m). It is assumed that advantage is taken of some packed form

of storage (i.e. some representation of linked lists) in the inner loop.

Croft's algorithm (see Croft ,1977) appears at first sight to be of com-
plexity O(n m2). However the number of terms associated with the document
whose NN is required will often be quite small. The National Physical Labo-
ratory test collection (used in Smeaton and van Rijsbergen, 1981, and Mur-
tagh, 1982), for example, has the following statistics : n = 11429, m = 7491,
; = 19.9 and ; = 30.4. The outermost and innermost loops in Croft's algo-
rithm use the document-term file. The centre loop uses the term-document
inverted file. The average complexity, over all n NN searches, is easily

- 2
seen to be O(n m).

In the outermost loop of Croft's algorithm, there will eventually come about
a situation where - if a document has not been thus far examined - the number
of terms remaining for the given document do not permit the current NN docu-
ment to be bettered. In this case we can cut short the iterations of the
outermost loop. The calculation of a bound, using the greatest possible num-
ber of terms which could be shared with a so-far unexamined document has

been exploited by Smeaton and van Rijsbergen (1981) and by Murtagh (1982)

in successive improvements on Croft's algorithm.

The complexity of all the above algorithms has been measured in terms of
operations to be performed. In practice, however, the actual accessing of
terms or documentsis of far greater cost. The document-term and term-document
files must be stored on direct access storage because of their large sizes.

Carrying out an I/0 operation is very much more costly than any operation

54

in central memory. Note also that the strategy used in the foregoing algo-
rithms (Croft's algorithm and the above-mentioned improvements on it) does
not allow any viable approaches to batching together the records which are

to be read successively, in order to improve the accessing performance.

The Perry-Willett algorithm (see Perry and Willett, 1983) presents a simple
but effective solution to the problem of costly I/0. It focusses on the
calculation of # (ini'), i.e. the number of terms common to the given
document i and each other document i' in the collection. This set of values
is built up in a computationally efficient fashion. O(n) operations are
subsequently required to determine the (dis)similarity, using another vector,
{#(i")|i' = 1,2,...,n}, stored in main memory. Finally, the best (dis)
similarity can be simultaneously determined when carrying out these oper-
ations. Hence computation time is o(nm+ n). We will now turn attention

to the numbers of direct access reads required.

In Croft's algorithm, all terms associated with the document whose NN is
desired may be read in one read operation. Subsequently, we require ; ;
reads, giving in all 1 + ; ;. In the Perry-Willett algorithm, the outer
loop again pertains to the one (given) document, and so all terms associa-
ted with this document can be read and stored. Subsequently, ; reads (i.e.
the average number of terms, each of which demands a read of a set of docu-
ments) are required, giving in all l+;. Since these reads are very much
the costliest operation in practice, the Perry-Willettalgorithm can be re-
commended for large values of n and m. Its general limitations are that

(1) it requires, as do all the algorithms discussed in this section, the

availability of the inverted term-document file; and (2) it requires in-

core storage of two vectors containing n integer values.

55

2.7 OPEN PROBLEMS

Approximation algorithms which finda close point, but which is not guaranteed
to be a NN, have also been proposed. An exact search algorithm is however
required for clustering (see Chapters 3 and 4) and in most other applications.
More work is required in formulating general strategies for use with high-
dimensional data : as may be noted in the previous sections, most experi-
mentation has been on relatively small dimensions. For incorporation in
clustering algorithms, the problem of dynamization is important also. This

is where the NN algorithm caters for a dynamic data set, i.e. insertions

and deletions to the data set are efficiently carried out.

56

2.8 REFERENCES.

J.L. BENTLEY, Multidimensional binary search trees in database applicat-

ions. IEEE Transactions on Software Engineering SE-S, 333-340 (1979).

J.L. BENTLEY, A case study in applied algorithm design. Computer 17, 75—

84 (1984).

J.L. BENTLEY and J.H. FRIEDMAN, Fast algorithms for constructing minimal

spanning trees in coordinate spaces. IEEE Transactions on Computers C-27,

97-105 (1978).

J.L. BENTLEY, B.W. WEIDE and A.C. YAO, Optimal expected time algorithms

for closest point problems. ACM Transactions on Mathematical Software 6,

563-580 (1980).

W.A. BURKHARD and R.M. KELLER, Some approaches to best-match file search-

ing. Communications of the ACM 16, 230-236 (1973).

W.B. CROFT, Clustering large files of documents using the single-link

method. Journal of the American Society for Information Science 28, 341-

344 (1977).

C. DELANNOY, Un algorithme rapide de recherche de plus proches voisins.

RAIRO Informatique/ Computer Science 14, 275-286 (1980).

C.M. EASTMAN and S.F. WEISS, Tree structures for high dimensionality near-

est neighbour searching. Information Systems 7, 115-122 (1982).

J.H. FRIEDMAN, F.BASKETT and L.J. SHUSTEK, An algorithm for finding near-

est neighbours. IEEE Transactions on Computers C-24, 1000-1006 (1975).

57

J.H. FRIEDMAN, J.L. BENTLEY and R.A. FINKEL, An algorithm for finding best

matches in logaritimic expected time. ACM Transactions on Mathematical Soft-

ware 3, 209-226 (1977}.

K. FUKUNAGA and P.M. NARENDRA | A branch and bound algorithm for computing

k-nearest neighbours. IEEE Transactions on Computers C-24, 750-753 (1975).

J. KITTLER, A method for determinining k-nearest neighbours. Kybernetes 7,

313-315 (1978).

R.B. MARIMONT and M.B. SHAPIRO, Nearest neighbour searches and the curse

of dimensionality . J. Inst. Maths. Applics. 24, 59-70 (1979).

F. MURTAGH, A very fast, exact nearest neighbour algorithm for use in

information retrival. Information Technology 1, 275-283 (1982).

F. MURTAGH, Expected time complexity results for hierarchic clustering

algorithms which use cluster centres. Information Processing Letters 16,

237-241 (1983).

S.A. PERRY and P. WILLETT,A review of the use of inverted files for best

match searching in information retrieval systems. Journal of Information

Science 6, 59-66 (1983).

M. RICHETIN, G. RIVES and M.NARANJO, Algorithme rapide pour la détermina-

tion des k plus proches voisins. RAIRO Informatique/Computer Science 14,

369-378 (1980).

F.J. ROHLF, A probabilistic minimum spanning tree algorithm. Information

Processing Letters 7, 44-48 (1978).

58

M. SHAPIRO, The choice of reference points in best-match file searching.

Communications of the ACM 20, 339-343 (1877).

A.F. SMEATON and C.J. VAN RIJSBERGEN, The nearest neighbour problem in
information retrieval : an algorithm using upperbounds. ACM SIGIR Forum

16, 83-87 (1981).

S.F. WEISS, A probabilistic algorithm for nearest neighbour searching.

In R.N. 0ddy et al. (eds.), Information Retrieval Research, Butterworths,

London, 325-333 (1981).

T.P. YUNCK, A technique to identify nearest neighbours. IEEE Transactions

on Systems, Man, andCybernetics SMC-6, 678-683 (1976).

	Titlepages_Preface
	Contents
	Chapter 1
	Chapter 3
	Chapter 4
	Chapter 5

