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3.1 INTRODUCTION

The problem of synoptic clustering is very different from the search for
"natural" clusters or patterns. In the latter problem, the input data must
be faithfully respected; in the synoptic clustering problem convenient out-

put is of greater interest.

This Chapter will chiefly focus on Ward's method, or the minimum variance
method. For most applications this method can be recommended for the sum-
marization of data. Section 3.2 will attempt to justify this statement :
it will informally describe the minimum variance agglomerative method,
and will detail properties of this method which are of practical importance.
]
Mathematical properties of the minimum variance method are detailed in
section 3.4. Preceding this, section 3.3 establishes the equivalence of
agglomerative algorithms based on distances (or dissimilarities) and algo-
rithms based on cluster centres. The former is the traditional approach,
while the latter is used in the recently-proposed, fast algorithms described
in later sections. Apart from the minimum variance method, other agglome-
rative methods which can be implemented with very little alteration are
concurrently described. The geometric methods all have the property of

defining a cluster centre, or cluster representative.

An essential property of the fast algorithms - a precondition for their
use, which depends on the cluster criterion - is discussed in section 3.5.

Sections 3.6 and 3.7 describe the fast algorithms, and prove the major per-

formance results.
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3.2 MINIMUM VARIANCE METHOD IN PERSPECTIVE

Agglomerative clustering methods have been motivated by graph theory -
leading to linkage-based methods - or by geometry. This generalization,
which is true for the more commonly used methods, indicates the most
productive frameworks for studying clustering methods. In geometric
methods, the cluster centre may be used for subsequent agglomerations.
Alternatively, inter-cluster dissimilarities may be used throughout,
and therefore these methods may be implemented using the Lance-Williams
dissimilarity update formula (see Table 1, section 3.3 below) as in the

case of linkage-based methods.

In order to specify an agglomerative criterion simultaneously in terms of
cluster mean vectors, and in terms of dissimilarity, it is necessary to
adopt a particular dissimilarity. In this Chapter, it will be assumed that
the Euclidean distance is employed. Restricting the choice of dissimilari-
ty to this distance is rarely inconvenient in practiC€. The Euclidean
distance is often the most natural choice of distance, and a Euclidean

space offers a well-known and powerful standpoint for analysis.

The variance or spread of a set of points (i.e. the sum of squared dis-
tances from the centre) has been the point of departure for specifying
many clustering algorithms. Many of these algorithms, - iterative, opti-
mization algorithms as well as the hierarchical, agglomerative algorithm -
are briefly described and appraised in Wishart (1969). The use of vari-
ance in a clustering criterion links the resulting clustering to other
data-analytic techniques which involve a decomposition of variance.
Principal components analysis, for example, seeks the principal directions
of elongation of the multidimensional points, i.e. the axes on which the
projections of the points have maximal variance. Using a clustering of

the points with minimal variance within clusters as the cluster-criterion

is, perhaps, the most suitable criterion for two concurrent but compli-
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mentary analyses of the same set of points. The reality of clusters of
projected points resulting from the principal components analysis may

be assessed using the cluster analysis results; and the interpretation
of the axes of the former technique may be used to facilitate interpreta-

tion of the clustering results.

The search for clusters of maximum homogeneity leads to the minimum vari-
ance criterion. Since no coordinate axis is privileged by the Euclidean
distance, the resulting clusters will be approximately hyperspherical.
Such ball-shaped clusters will therefore be very unsuitable for examining
straggly patterns of points. However, in the absence of information about
such patterns in the data, homogeneous clusters will provide the most use-

ful condensation of the data.

The following properties make the minimum variance agglomerative strategy

particularly suitable for synoptic clustering.

(1) As discussed in section 3.4, the two properties of cluster homogeneity
and cluster separability are incorporated in the cluster criterion.
For summarizing data, it is unlikely that more suitable criteria could

be devised.

(2) As in the case of other geometric strategies, the minimum variance
method defines a cluster centre of gravity. This mean set of cluster
members' coordinate values is the most useful summary of the cluster.
It may also be used for the fast selection and retrieval of data, by
matching on these cluster representative vectors rather than on each

individual object vector.

(3) A top-down hierarchy traversal algorithm may also be implemented for
information retrieval. Using a query vector, the left or right subtree
is selected at each node for continuation of the traversal (-it is
best to ensure that each node has precisely two successor nodes in the

construction of the hierarchy).
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Such an algorithm will work best if all top-down traversals through
the hierarchy are of approximately equal length. This will be the
case if and only if the hierarchy is as '"symmetric" or "balanced"
as possible (see Fig. 3.1). Such a balanced hierarchy is usually of
greatest interest for interpretative purposes also : a partition,
derived from a hierarchy, and consisting of a large number of small
classes, and one or a few large classes, is less likely to be of
practical use.

For such reasons a "symmetric" hierarchy is desirable. It has been
shown, using a number of different measures of hierarchic symmetry,
that the minimum variance (closely followed by the complete link)
methods generally give the most symmetric hierarchies (see Murtagh,
1984). This is an important, albeit '"post festum ", property of

hierarchies produced by the minimum variance method.

Unlike other geometric agglomerative methods - in particular the
centroid and the median methods (see definitions, Table 1, below) -
the sequence of agglomerations in the minimum variance method is
guaranteed not to allow inversions .in the cluster criterion value.
Inversions or reversals (Fig. 3.2) are inconvenient, can make inter-
pretation of the hierarchy very difficult, and will be investigated

in the following section.

Finally, computational performance has until recently favoured link-
age-based agglomerative criteria, and in particular the single link-
age method. The computational advances described below for the minimum
variance method (and other methods) make it increasingly attractive
for practical applications involving large amounts of data. Some of
the algorithms to be discussed lend themselves to a parallel imple-
mentation : as parallel machine architectures become more widely

available, research in this direction should be particularly fruitful.
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In this Chapter, references to many of the original proposals for the

algorithms described may be consulted in Murtagh (1983).
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Fig. 3.2 - Alternative representations of a hierarchy with an inversion
(reversal) in cluster criterion values.
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3.3 GEOMETRIC AGGLOMERATIVE METHODS

Hierarchic agglomerative algorithms may be conveniently broken down into
linkage (or graph theoretic) methods - the single, complete, weighted and
unweighted average linkage methods - and cluster centre (or geometric)
methods - the centroid, median, and minimum variance methods. The latter

may be specified either in terms of dissimilarities, alone, or alterna-
tively in terms of cluster centre coordinates and distancer (dissimilarities,
in the case of the minimum variance method). Let us prove this in the case

of the median method.

Let a and b be two points (i.e. m-dimensional vectors: objects or cluster
centres) which have been agglomerated, and let ¢ be another point. From
.the Lance-Williams dissimilarity update formula, using squared Euclidean

distances, we have

a®(aub,c) = d2(a,c)/2 + do(b,c)/2 - do(a,b)/4

(a=c)®  + (b=c)?/2 - (a-b)?/a (1)

The new cluster centre is (a+b)/2, so that its distance to point c is

2
(c- (a+b)/2) (2)
That these two expressions are identical is readily verified. The cor-

respondence between these two perspectives on the one agglomerative cri-

terion is similarly proved for the centroid and minimum variance methods.

For these geometric methods, and with suitable alterations for graph me-
thods, the following algorithm is an alternative to the general dissimi-
larity-based  algorithm described in Chapter 1 (which may be described

as a ''stored dissimilarities approach'").
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Hierarchical
clustering
methods

(and aliases).

Lance and Williams
dissimilarity
update formula.

Coordinates

of centre of
cluster, which
agglomerates
clusters i and j.

Dissimilarity
between cluster
entres and .
c gi gj

Single link
(nearest
neighbour).

Complete link
(diameter).

Group average
(average link,
UPGMA) .

McQuitty's
method
(WPGMA) .

Median
(Gower's

method, WPGMC).

Centroid
(UPGMC) .

Ward's method

a{i)=0.5

b=0

c=-0.5

(More simply:
min{d(i,k),d(j,k)}.)}

a(i)=0.5

b=0

c=0.5

(More simply:
max{d(i,k),d(j,k)}.)

a(i)=lil/Clil+13])
b=0
c=0

a(i)=0.5
b=0
c=0

a(i)=0.5
=-0.25
c=0

a(i)=[i]/(|il+]3])
b=—{i|.[3[/Clil+[3])
c=0

a(i)=(lil+|kl)/

g=(gi+gj)/2

g=(lilg. +ljleg.)/
(lil+tiD)

g=(lilg +{ilg.)/

2

IIgi—ngI
2

Ilgi—gjll

el I51/7ail+13h).

(minimum THEFIED (1l+33D) le,-g. 112
variance, b=-Ik|/Clil+13]+]k]) s
error sum of c=0
squares).
Notes : |i| = number of objects in cluster i.

g. is a vector inm-space (where m is set of variables);

1

l"

either initial point or cluster centre.
is the norm in the Euclidean metric.

Lance and Williams recurrence formula ([ ]: absolute difference):
d(iuj,k)=a(i).d(i,k)+a(j).d(j,k)+b.d(i,§)+c. [ d(i,k)-a(j,k)].



69

Algorithm A, Stored Data Approach

Step 1 : Examine all interpoint dissimilarities, and form cluster from

two closest points.

Step 2 : Replace two points clustered by representative point (centre of

gravity) or by cluster fragment.

Step 3 : Return to Step 1, treating clusters as well as remaining objects,

until all objects are in one cluster.

In Steps land 2, "point" refers either to objects or clusters, both of
which are defined as vectors in the case of geometric methods. This algo-
rithm is justified by storage considerations, since we have 0(n) storage
required for n initial objects and O(n) storage for the n-1 (at most)
clusters. In thevcase of graph methods, the term '"fragment'" in Step 2
refers to a connected component in the case of the single link method and
to a clique or complete subgraph in the case of the complete link method.
The overall complexity of the above algorithm is at best O(n3) : the
repeated calculation of dissimilarities in Step 1, coupled with O(n) iter-
ations through Steps 1, 2 and 3. Note however that this does not take into
consideration the extra processing required in a graph method, where

"closest" in Step 1 is defined with respect to graph fragments.

Apart from lessened storage requirements, Algorithm A can also be justi-
fied in that it can be made computationally very efficient by searching
for the clusters, in Step 1, in a restricted, local region only. This will

be looked at below.
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3.4 MINIMUM VARIANCE METHOD : MATHEMATICAL PROPERTIES

The minimum variance method produces clusters which satisfy compactness
and isolation criteria. These criteria are incorporated into the dissi-

milarity, noted in Table 1, as will now be shown.

In Ward's method, we seek to agglomerate two clusters, cl and 02, into
cluster ¢ such that the within-class variance of the partition thereby
obtained is minimum. Alternatively, the between-class variance of the
partition obtained is to be maximized (see Lemma 1, below). Let P and

P* be the partitions prior to, and subsequent to, the agglomeration; let

pl, p2, ... be classes of the partitions:
P = ) 3 vee ] ’ }
tpyop, Ppr %10 %
P* = ’ 3y vee gy ’
tpp, P ¢!

Finally, let i denote any individual or object, and I the set of such
objects. In the following, classes (i.e. p or c) and individuals (i.e.

i) will be considered as vectors or as sets: the context will be suf-
ficient to make clear which is the case. Total variance of the cloud of
objects in mdimensional space is decomposed into the sum of within-class
variance and between-class variance. This is Huyghen's theorem in classical
mechanics (for proof, see Lemma 1 below), and for the two partitions we

have respectively:

Var(I) = Var(P) + 2: Var(p)
pEP
Var(I) = Var(P*)+ 2: Var(p)

pEP*
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Hence :
Var(P) + Var(pl) +oe.. + Var(pk) + Var(cl) + Var(cz)

= Var(pP*) + Var(pl) +oee. + Var(pk) + Var(c)

Therefore :

Var(P*) = Var(P) + Var(cl) + Var(c2) ~ Var(c) .

In agglomerating two classes of P, the variance of the resulting partition
(i.e. Var(P*) ) will necessarily decrease: therefore in seeking to mini-
mize this decrease, we simultaneously achieve a partition with maximum

between-class variance. The criterion to be optimized is then :

Var(P) - Var(P%
= Var(c ) - Var(c f - Var(cz)
le I eyl

2
—— Jjec. - c_}|| (see Lemma 2 below),
fe I+ le ]

1 2

which is the dissimilarity given in Table 1. This is a dissimilarity which
may be determined for any pair of classes of partition P; and the agglomer-
ands are those classes, cl and 02, for which it is minimum. Having shown
what we set out to prove, we now turn attention to two results which were

used in the foregoing.

Lemma 1 : T = W + B, where T is the total variance of the set of points,
I; W is the within-class variance of a partition of I; and B is the between-

class variance of this partition.

eee 5, b, }

Proof : Let partition P be defined as {pl, p K

21
We are to prove that :

Var(I) = Var(P) + z: Var(p)
pEP
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%1 Z (i-g)% = Z L‘:;I' (p-g)° +% }: Z (i-p)°

i€l pEP pEP i€p

X 1 . .
where g is the grand mean of the n objects : g = — E i; and |p| is the
i€l
cardinality of class p. Note that p is used interchangeably to denote

centre of gravity (a vector), and the set whose centre of gravity this is.

Rewriting the rightmost term in the above expression gives us :

Lovare) = 1YY ® - L2 (-e)-e-p))?

pEP pEP iep i€l
1 2 1 2 1
= Z o li-g) + Z o (p-g) -2 Z o (i-g)(p-g)
i€l i€l i€l
2 2 2 2
-2 Z (i-g)” + le] (p-g)” - = Z [pl (p-g)
n n n
iel peEP pEP
2
='rl; Z (i-g)‘2 - Z J:" (p-g)
i€l peP

= Var(I) ~ Var(P)

Corollary: For any choice of P, T is constant; therefore any choice of
P which maximizes W (a measure of class compactness) simultaneously mini-

mizes B (a measure of class isolation).

le I+ le,l

Cc
o, +1c,|

2
- c 1l

e, = ¢,

Lemma 2: Var(c) - Var(cl) - Var(cz):

where ¢ = ¢ c_.
1 v 2
Proof: Consider the variance of class ¢ which is decomposed into classes

Cl and 02. By Lemma 1 we have:



Var(c) = Var({cl,cz}) + Var(cl) + Var(cz).

Hence, we are to show that

Vartte o) = T T ]
1 2

Since c is the centre of gravity of vectors cl and 02 we have :

2 2
Var({cl,cz}) = |cl| . ||cl-c|| + |02]. [02—c||
Writing
|cl| o+ |02| c,
T el + eyl
1 2

and substituting gives the desired result.

Corollary: If cl and 02 are singleton classes, then Var({cl,cz})

73

=% ||cl - 02||2 (i.e. the Euclidean distance between a pair of classes

is twice their variance).
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3.5 REDUCIBILITY PROPERTY

The reducibility property lays down the condition under which the fast

algorithms, reviewed in subsequent sections, may be constructed locally,
by carrying out agglomerations in restricted regions of the space of
objects, but such that the hierarchy arrived at isnonetheless exact. This
reducibility property is also closely related to the problem of reversals
or inversions in hierarchic, agglomerative algorithms, i.e. d (aUb,c)
#24d (a,b) for some clusters or objects a, b, and ¢ and where a and b
agglomerate to constitute aub (see Fig. 3.2). Following the statement

of the reducibility property, three other eguivalent or derived expres-
sions of this property will be examined. The importance of this property

for clustering algorithms will then be studied.

Reversals and the reducibility property.

Consider the agglomeration of clusters or objects, a and b, into ¢ =
aUb. Consider also some other cluster or object c'. The reducibility

property is then:

d(a,b) € inf {d(a,c'), d(b,c')}

= inf {d(a,c'), d(b,c') } € d(aub,c'). (3)

Verbally, the agglomeration of a and b cannot produce a cluster c =

aUb which will be closer to cluster c¢' than was either a or b. If such
were the case, then it is possible that ¢ and ¢' might subsequently ag-
glomerate at a smaller proximity than in the case of the agglomeration

of a and b: i.e. there would be an inversion or reversal. Thus, if a
clustering strategy satisfies the reducibility property, inversions can-
not arise. This is proved, for any given clustering strategy, by using
the Lance-Williams dissimilarity update formula. Before looking at Ward's

method as an example, it will be convenient to derive an equivalent ex-
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pression of the reducibility property.

If d(a,b) < p< inf {d(a,c'), d{b,c') }, then from (3) we have:

p € inf { d{a,c"), d(b,c') } € d(c,c'). Therefore we can write:

d(a,b) g »
d(a,c') 2 o
d(b,c') 2 o
= d{c,e') 2 o (4)

This form of the reducibility property allows easy verification. Taking

Ward's method, we have:

d{c,c') = ({lal+lc'|)d(a,c") +(|b|*+|c'Dd(b,c') - le'} d(a,b)) /
( lel+leti )

Using (4), the right hand side is

Zo-( (lal+lb] « le'] ) 7 C jel+le'] )

which is necessarily » p. Therefore d{(c,c') is also » p. The proof
that the single, complete, and average linkage methods satisfy the re-
ducibility property is similarly proved. In the case of the centroid
and median methods, however, it is not possible to guarantee that
d{c,c')2 p.

Two further expressions for the reducibility property will be derived.
In (3) consider some p greater than or equal to the terms on both

sides of the implication. We have:

d{a,b) < o

d(c,c') < o
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and we mustnecessarily have:
d(a,c') < p or d(b,c')< »p (5)

Since the contrary does not necessarily hold, if we are using a geometric

method where each of a, b, and c are reduced to a point, we have that
B (c) € B (a) UB (b) (8)
[ 4 P

where Bp( ) is the hypersphere of specified centre and of radius p.

More generally, Bp may be defined as the set of all possible points with-
in a dissimilarity p of the cluster members. Because of the latter ex-
pression, the reducibility property may also be referred to as a space
contraction property. Note that since the reducibility property is satis-
fied by the complete link method, the property of spatial contraction

is used here in a different sense to its use by Lance and Williams (1967).

Reciprocal nearest neighbours and the reducibility property.

Let the nearest neighbour graph (NN-graph) be defined as a set of points,
p, whose directed edges {(p,NN(p))} are such that NN(p) is the nearest
neighbour of p. For any point p, three cases can be distinguished: see
Fig. 3.3. In case III, where g = NN(p), and p = NN(qg), points p and g

are referred to as mutual or reciprocal nearest neighbours (RNNs).

The NN-graph can be defined at all stages of the construction of the
hierarchy for a geometric clustering method, - where the vertices consist
of remaining, unclustered, initial points and cluster representative
points - and with suitable additional operations can also be used for

a graph clustering method. Before looking at algorithms for these diffe-

rent areas, consider first the initial situation where the set of n multi-
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dimensional points are given. If the reducibility porperty is verified

by a clustering method, the merging of RNNs i and j into cluster iUj
requires the updating of the NN-graph only for those points which had

i or j as NN (cf. Case II, Fig. 3.3). More importantly it means that all
RNNs i and j can be simultaneously merged, without effecting the RNN prop-

erties of other parts of the NN-graph.

These two corollaries of the reducibility property will be used in the

algorithms to be studied in the next 2 sections.
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Fig. 3.3 - Three situations of interest in the NN-graph.
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3.6 MULTIPLE CLUSTER ALGORITHM

The following algorithm (Algorithm B) provides O(n2) worst case time and
0(n) space results for geometric strategies which have the additional
property (as will be seen following Algorithm B) of defining inter-cluster
dissimilarity as distance. From Table 1 (3rd column), this is the case
for the centroid and median methods but not for Ward's method. These com-
plexity results therefore will apply to the approximate centroid and me-
dian hierarchies obtained using Algorithm B. (The approximation relates
to the non-verification of the reducibility property by these methods.
For exact results, RNNs would need to be considered in decreasing order
of closeness, in order to allow for the effects produced by an agglome-
ration on other RNNs. Instead, for computational efficiency, the RNNs
will be processed here in the order that they are found. Discrepancy with
exact algorithms for the centroid and median methods will be obtained
when there is a reversal or inversion, and will rarely be inconvenient

from a practical point of view.)

Algorithm B. Parallel clustering

Step 1. (Re)determine all NNs and RNNs.
Step 2. Agglomerate all RNNs, replacing with cluster point.

Step 3. Go to Step 1 until one point remains.

Let t be the number of iterations carried out (t€n-1). On the first
execution of Step 2, if the number of RNNs found is rl, then rlagglome—
rations are carried out, and n—r‘1 points remain. We have: 1< r1<|_n/2_|,
since at least one point, and at most half the point-set, will be RNNs.
Since there are precisely n-lagglomeratians, if we find on successive iter-

ations r2, r3,... , rt RNNs in Step 2, we have:
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Good time complexity results for this algorithm depend (as will be seen)
on whether or not the number of NN calculations to be carried out follow-

ing any agglomeration is constant.

2 . N
Complexity: 0(n”) computation and O(n) storage for approximate median

and centroid methods.

Proof: In Step 1, n dissimilarity calculations are carried out, each of
which requires n-1 calculations. The RNNs are determined in O(n) opera-
tions, by a straightforward scan of the n NNs. In Step 2, rl RNNs are
found. Let the number of points p corresponding to Case II of Fig. 3.3

be upper-bounded by a constant for each such pair of RNNs: this suppo-
sition is discussed below. Then there will be less than or equal to rl+
c.rl new NN calculations to be performed (i.e the NNs of the rl new
cluster centres will be required, as will the new NNs of the - at most-
c/2 points which correspond to point p of Case II in Fig. 3.3). Similarly,
on the following iteration, there will be at most r2+ c.r2 new NNs to

be determined. Thus, in all, the number of NN calculations 1S bounded

from above by

n + rl(c+l) + r2(c+1) + ..+ rt(c+1)

n + (c+l) (n-1) using (7)

N

0(n)

Each such calculation will take less than or equal to n-1 dissimilarity

2
calculations, giving overall complexity of O(n ).

Proof of supposition: The number of points which can have a given point

as NN in the Euclidean plane is less than or equal to 6 (consider the
limit case where the given point is placed at the centre of a circle of

radius e, on whose perimeter the 6 points are placed such that all ad-



81

jacent pairs are precisely a distance ¢ apart). In higher dimensional
spaces, use may be made of the fact that the Euclidean distance is upper-
bounded by the Chebyshev (= or maximum coordinate) distance. In the Lm
metric, hyperspheres of radius p become (from an L2 perspective) cubes
of edge length 2p . The number of points which can simultaneously have

a given point as NN in m-dimensional Chebyshev space is then 3m—1 (i.e.
the number of cubes which are adjacent to a given cube). For given m,
this is constant. Although we may be reasonably happy that this lower
bound holds also for the Euclidean distance, it is a great deal more dif-
ficult to prove this. Day and Edelsbrunner (1984) may be consulted for

this proof.

Unfortunately the above result does not hold for Ward's method, where

a dissimilarity between cluster centres results from each agglomeration
(cf. colum3, Table 1). A worst case of O(n) NNcalculations must be as-
sumed to follow each agglomeration, which leads to overall O(n3) worst

case time.

Due to the fact that each agglomeration leaves certain points unmatched
(cf. Case II, Fig. 3.3), Algorithm B has been dubbed "algorithme des
célibataires" in the Vol. VII, No. 2, 1982 issue of the journal Les Ca-

hiers de 1'Analyse des Données which focussed on these new approaches

to clustering using NNs, RNNs, and NN-chains. Because the number of cé-
libataires after each batch of agglomerations increases exponentially
with the dimensionality of the point-space, it appears that Algorithm

B is only feasible for relatively low dimensional spaces (about 4 or 5

at most). Algorithm C, to be discussed in the next section, is more prac-
ticable. Algorithm B, however, allows agglomerations to be carried out

in as parallel a fashion as possible and thus may well be a natural choi-

ce of algorithm as parallel processors become more widely available.
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An exact version of this algorithm for the centroid and median methods

may be obtained with a small amount of extra processing. The smallest
distance is found at each agglomeration. This will require only 0{(n)

extra processing, given the list of NNs, and the smallest dissimilarity

is necessarily a RNN pair. The agglomeration is carried out, and the list
of NNs updated in O(n) time. There are n-1 iterations, and hence the over-
all time complexity remains 0(n2). Algorithm B differs in that the RNN
pair of least dissimilarity is not obtained (thus saving 0(n) calcula-
tions on each iteration); and that all updates of the list of NNs can

be carried out on the reduced set of clusters/objects which follows each

batch of agglomerations (thus saving further time).
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3.7 SINGLE CLUSTER ALGORITHM

Rather than carrying out as many agglomerations as possible at each
iteration, the algorithms to be discussed in this section only carry out

one agglomeration per iteration.

The single cluster algorithm is based on the NN-chain. Starting with an

arbitrary object or cluster, i, this is defined as

ir NN(1)=J1 NN(J)=k1 sy NN(P)=Q, NN(Q)=P-

Let it be assumed that no two dissimilarities are equal (arbitrary re-
solving of such cases will be discussed below). Then the following three

propositions hold for NN-chains:

Proposition 1 : Inter-object/cluster dissimilarities monotonically de-

crease as we proceed along the NN-chain.

Proposition 2 : The final link always connects a RNN pair.

Proposition 3 : The NN-chain cannot contain a circuit of more than two

nodes.

Proof 1 : If we have NN(i)=j and NN(j)=k, for i # k, then necessarily:
d(i,j) > d(j,k), since otherwise i would be the NN of j, contrary to

construction.

Proof 2 : For some p, in determining q=NN(p), we must have either q ¢
NN-chain, in which case a new link is grown onto the NN-chain; or g€

NN-chain; by Proposition 1, this can only be the object/cluster which
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precedes p in the NN-chain.

Proof 3 : If we had a cycle, for some i, j, ... , p, a:

i, NN(i)=j, ... , NN(p)=q, NN{(q)=1i

then Proposition 1 would be violated.

Owing to Proposition 1, we may say that the NN-chain is grown towards

increasing density, since inter-point dissimilarity - hence sparseness -

at the start of the NN-chain is greater than that at the end.
In practice, some dissimilarities might be equal. In any implementation
of the algorithm to be described below, arbitrary resolution of such

cases must be provided for. In particular, a circuit such as

i, NN(i)=j, NN(j)=k, NN(k)=i

where d{(i,j) = d(j,k) = d(k,i)

must be prevented in the NN-chain.

Algorithm C, as follows, is suitable for any geometric strategy.

Algorithm C. NN-chain clustering

Step 1. Select a point arbitrarily.

Step 2. Grow the NN-chain from this point until a pair of RNNs are
obtained.

Step 3. Agglomerate these points, replacing with a cluster point.

Step 4. From the point which preceded the RNNs, or from an arbitrary
peoint if there is no such point, go to Step 2 until only one

point remains.
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If i is the first point selected, we obtain the sequence
i, NN(i)=j, NN(j)=k, ... , NN(o)=p, NN(p)=q, NN(q)=p

(Note that i and j could constitute a RNN pair). Points p and q are mer-
ged, and a new point replaces them. This contraction of the NN-chain is
followed by a further set of growths starting from point o (or from

an arbitrary point if the RNN pair were the only two points in the NN-
chain). Algorithm C is exact if agglomeration of a RNN pair doesn't af=-
fect the RNN properties of any other objects and clusters, i.e. if the

reducibility property is satisfied by the agglomerative strategy used.

Complexity: Algorithm C is optimal for all geometric methods; i.e. it

2
requires O(n ) computation and 0(n) storage.

Proof: Let a growth of the NN-chain refer to the adding of a link, and

a contraction refer to the agglomeration of a pair of RNNs. Algorithm C
is seen to be a series of intermixed growths and contractions. The number
of contractions is n-1 (i.e. the number of agglomerations). The number

of growths cannot exceed 3n-3: i.e. the number of nodes incorporated into
the NN-chain can never exceed the n initial points, plus the n-1 cluster
points created, which gives a total of 2n-2 links; and a final set of n-1
links must be considered which allow a RNN pair to be made out of the
final link in the NN-chain. Now, each growth requires 1 NN calculation.
Each contraction requires a constant number of operations. Therefore, the
overall complexity - assuming O(n) effort for a NN calculation - is O(n2).
Storage of the NN-chain, the original data, and the cluster points, is

altogether O(n).

In growing a link onto a NN-chain, when nl points are in the NN-chain and
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n2 points are not (n1+n2 < n), the number of NN calculations to be car-
ried out is n2+l: dissimilarities between the last point in the NN-chain
and the n2 points not in the chain must be determined, as also the dis-
similarity between the last and the second last points in the NN-chain.

It is fruitless to examine dissimilarities with any of the other nl points

since these must be greater that the NN dissimilarity required.
For graph (or linkage) methods, where inter-cluster dissimilarity cannot
be calculated in O(1) time unless we have the entire set of dissimilari-

ties directly accessable, Algorithm C may be amended as follows.

Algorithm D. NN-chain algorithm using stored dissimilarities.

Step 1. Select an object arbitrarily.

Step 2. Determine and store all inter-object dissimilarities.

Step 3. Grow the NN-chain from the object chosen, until a pair of RNNs
are obtained.

Step 4. Agglomerate these objects.

Step 5. Update the dissimilarity table, using the Lance-Williams formula.

Step 6. From the node in the NN-chain which preceded the RNNs, or from
an arbitrary node (object or cluster) if the NN-chain is empty,

go to Step 3 until only one node remains.

2
Clearly, O(n ) storage is required here. As before, there are 0(n) growths
of the NN-chain, each requiring O(n) updating of the dissimilarity table.

2
In total, therefore, computational complexity is O(n ).

Algorithm D provides time-optimal algorithms for the weighted

and unweighted average linkage methods (UPGMA, WPGMA). It does so also
for any general strategy based on the Lance-Williams recurrence formula,
and will be exact if the agglomerative strategy satisfies the reducibi-

lity property.
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It does not appear that the 0(n2) computational complexity of Algorithm

D can be further improved. However, the complexity of Algorithm B is seen
to be 0(nf) where O(f) is the complexity of finding a nearest neighbour
of a point and a brute-force approach to this subproblem is O(n). Effi-
cient linear and sub-linear algorithms can instead be used to obtain

nearest neighbours. Such algorithms have been reviewed in Chapter 2.
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