CHAPTER 4 — CONNECTIVITY CLUSTERING

L N T N

Introduction

Single link method in perspective

Traditional minimal spanning tree algorithms

Minimal spanning tree using fast nearest neighbour searching
Minimal spanning tree of sparse and planar graphs

Extension: mode analysis

References

89

90

4.1 INTRODUCTION

Connectivity clustering is particularly important in pattern recognition;
and it immediately generalizes to spaces of dimension greater than 2.
Rather than attempting to find "useful'" clusters, as in the synoptic
clustering problem, instead "intuitive'" or 'natural' patterns are to be

analyzed.

Unlike the algorithms discussed in Chapter 3, the algorithms of this
Chapter do not require a distance; any dissimilarity may be employed.
As before, possible parallel implementations are discussed, and these
will probably play an increasing role as new machine architectures

become more widespread.

Section 4.2 focusses on the algorithms described in this Chapter, -
the single link hierarchical clustering method and the minimal spanning
tree (MST). This section gives an indication of where these two closely

related methods may be most fruitfully used.

Section 4.3 gives background material on implementations of algorithms.
It does not attempt to detail all algorithms which could be employed,
but those that it does discuss are among the most efficient and sub-

sequent sections will improve on the basic ideas behind them.

Section 4.4 details implementations of algorithms which may incorporate
fast nearest neighbour searching algorithms (see Chapter 2). For general
purpose applications, the algorithms of this section could probably be
said to represent the most recommendable algorithms when efficiency is
of paramount importance. Although the minimal spanning tree is focussed
on in this Chapter, the final algorithm of section 4.4 is suitable for
any graph (or linkage) method, - such as for example the complete link

method.

91

Since the MST and single linkage methods work on dissimilarities, we may
further consider the case when only some of the n(n-1)/2 possible (sym-
metric) dissimilarities are presented to the algorithm. The problem of
such sparse graphs arises, for example, in constrained clustering (to be
described in Chapter 5). Section 4.5 details an efficient algorithm for
the sparse graph problem. It further discusses a special case of this
problem when the graph represents a set of planar points or objects (i.e.

the graph is said to be planar).

As with all clustering techniques, there are limits to the applicability
of the MST or single linkage method for distinguishing patterns. One way
to extend their applicability is to use information provided by the prob-
lem in addition to the basic idea of connectivity. Section 4.6 discusses
a number of algorithms of this type, where the objective is to find modes
or peaks in point density or some analogous measure (irrespective of pat-

tern shape).

92

4.2 SINGLE LINK METHOD IN PERSPECTIVE.

Hierarchical clustering methods based on the geometric paradigm have been
explored in Chapter 3. In this Chapter, methods based on graph-theoretic

principles will be studied.

The general hierarchical clustering algorithm described in Chapter 1 al-
lows O(n2) time and O(n2) space implementations of the single and complete
linkage methods, and of the weighted and unweighted average linkage me-
thods (see Table 1, Chapter 3 for the dissimilarity update formulas re-
quired for these methods). At all stages of the agglomerations, the re-
sults obtained so far may be graphically presented, without the need to
plot cluster centres (see Sneath and Sokal, 1973, for a number of worked

examples) .

The single link method uses a very weak requirement for cluster formation.
The complete link method is more restrictive, and produces hierarchies
which are nearly as '"balanced'" as the minimum variance method (cf. sect-
ion 3.2). An average linkage method might be preferred for noisy data,

so that spurious clusters which might be produced by the over-lax single

link method or the over-demanding complete link method can be avoided.

The single link method will be focussed on in this Chapter. Besides being
the oldest hierarchical clustering method (it was initially used in the
early 1950s), and one of the most widely-used hierarchical methods because
of computationally efficient algorithms, it is also of great interest for
point pattern recognition. A very wide range of algorithms have, in fact,
been developed for the single linkage method: Rohlf (1982) reviews algo-
rithms with complexities ranging from O(n log n) to O(n5). Many of these
algorithms have first constructed the MST, and subsequently transformed

this into the single link hierarchy.

93

These two problems - single linkage clustering and the MST - are closely
related. Information is lost in transforming the MST into the hierarchy,
so that the reverse transformation is not possible. Rohlf (1973) descri-
bes an efficient O(n2) worst case algorithm for transforming the MST into
the hierarchy. It may be simply sufficient to sort the n-1 edges of the

MST, thus providing a representation of the hierarchy (i.e. the sequence
of agglomerations; it might be preferred to adopt a clustering labelling
standard, such as to number clusters from n+l to at most 2n-1; or to la-
bel clusters by the lowest index number of their object-members). To do

this requires O(n log n) time.

The algorithms described in this Chapter will be based on the MST. Being
an important structure itself, and being easily transformable into the
hierarchic representation, both indicate the centrality of* the MST from

a practical stand-point.

The following properties apply to the single link hierarchical method,

and to its associated minimal spanning tree.

(1) A number of authors (see for example Jardine and Sibson, 1971) have
found the mathematical properties of this method so appealing that
they have preferred it to all other hierarchical methods. Among pro-
perties not shared by other methods which they have pointed to are:

- every partition has classes which are optimal with reference to the
connectivity criterion used; partitions obtained from the minimum
variance method, in contrast, are suboptimal with respect to with-
in-cluster minimum variance.

- Monotonic transformation of input dissimilarities (i.e. a trans—
formation which preserves order) has no effect on the hierarchy;
this may be of importance where a question is raised over the scal-

ing of directly-constructed dissimilarities.

94

- Small changes in input dissimilarities produce small changes in
the hierarchy produced, and thus the single link method is a sta-

ble method.

(2) In practice, the single link method has the chaining disadvantage

which makes it particularly unsuitable for synoptic clustering.

(3) However it is easy to graphically represent the results of linkage
based clustering methods on 2-dimensional data; and the hierarchical
method or the minimal spanning tree are very suitable for many types

of pattern recognition problems.

We will briefly look at problems in this latter area.

Machine vision includes pattern recognition and image processing. The
automatic recognition of groups of points is an important problem in the
former area. Such point patterns may be arrived at in different ways, -
for example, by being derived from a digitized image with a considerably

more complex background structure.

Practically all proposed clustering algorithms would perform well when
presented with well-separated, compact groups (see Fig. 4.1). For elon-
gated clusters, the minimum variance method would perhaps cut the clusters
in two in its search for compactness (Wishart, 1969, shows such an example
using astronomical data). The single link method - with its chaining ef-
fect - or the MST would be ideally suited instead. In the case of linked,
globular clusters an estimate may be made of the density in the region

of each point (e.g. the number of other points within a specified radius:
this approach will be taken in mode analysis, below). This will indicate
which points form part of the interconnecting links, constitute noise

points, or are otherwise to be ignored. For touching globular groups, the

Well-separated, compact groups.

Linked globular groups.

Concentric groups.

Elongated clusters.

Touching globular groups.

Groups characterised by differing
densities.

Fig. 4.1 - Point patterns whose constituent groups are to be automatically

recognized.

96

MST may not be of direct use. The minimum variance method should, however,
find the clusters, and mode analysis (see below) may also be profitably
applied here. Finally, in the cases of congentric groups, or of groups
characterised by differing densities, the MST may be used. In the former
case, a large link will indicate where the MST ought to be broken in or-
der to leave the two components. In the latter case, a histogram of edge
dissimilarity weights should uncover two distinguishable sets of dissi-
milarities: edges of small dissimilarity will relate to the high density
part of the point pattern, and edges of greater dissimilarity will relate
to the low-density region. Deleting all edges of dissimilarity weight
greater than some thresold in the MST causes the resultant tree to connect
only high-density points. Similarly, the low-density component may be a-
scertained. Note, though, that some extra treatment may be required for
points on the boundary of the two regions in order to avoid misclassifi-

cation (see Zahn, 1971).

Recent research has branched into two directions. On the one hand, a
"'shortest spanning path" (i.e. a path, spanning all points, which is as
short as possible in totalled dissimilarities) achieves many of the same
results as does the MST, but with greater computational ease: see Slagle
et al. (1974), Slagle et al. (1975) and Lee (1981). On the other hand,
other graph theoretical structures have been used with which the MST may
be related as a special case: see Jarvis and Patrick (1973), Urquhart
(1982), Sibson (1980), Ahuja (1982) and Fairfield (1983). Although these
approaches are of importance and offer advantages in specific problems,

the MST remains of great interest as a general-purpose technique.

97

4.3 TRADITIONAL MINIMAL SPANNING TREE ALGORITHMS

The algorithm for the single linkage hierarchical clustering described

in Chapter 1 required 0(n2) storage space for the dissimilarity matrix,
and 0(n2) processing - 0O(n) iterations, each necessitating O(n) updating
of the dissimilarity matrix. These performance results may be considered
as baseline results. They appear to be very satisfactory since the input
string presented to the algorithm is O(n2) long. However they may be bet-
tered, without detriment to the exactness of the output, using algorithms

described in sections 4.4 and 4.5.

The algorithms described in this section may be regard as alternatives

to that described in Chapter 1; and they construct a MST rather than di-
rectly building the single link hierarchy. Their performance results do
not improve on the performance of the algorithm looked at in Chapter 1.
However they are of particular importance for two reasons. Firstly, the
computationally efficient algorithms described in section 4.4 (probably
the most efficient, general-purpose, current algorithms) are directly ins-
pired from these algorithms. Secondly, it may be necessary to construct

a MST or a single link hierarchy, on a sparse graph. This is a graph where
the number of edges, m, is less than n(n-1)/2 and so a performance result
is desired in terms of m and n. In Chapter 5, application-areas for
such a problem will be described. Again, for this problem, efficient al-
gorithms which are described in section 4.5 of this chapter are direct

derivations of the algorithms now described.

In section 4.4 a single fragment algorithm allowing for the incorpora--
tion of fast NN-finding techniques will be studied. The Prim-Dijkstra

algorithm, by comparison, involves brute-force NN-searching. It is as-
sumed that the algorithm will work on the stored matrix of dissimilari-

2
ties, requiring O(n) space.

98

Algorithm A. Prim-Dijkstra MST algorithm

Step 1. Find the closest vertex to an arbitrary vertex. Call these two
vertices a fragment of the MST.

Step 2. Determine the closest vertex, not in the fragment to any vertex
in the fragment.
Add this vertex to the fragment.

Step 3. If all n vertices are not included in the fragment then return

to Step 2.

There are 0O(n) iterations (Steps 2,3) in this algorithm since a MST must
contain n-1 edges. Ordinarly Step 2 will require O(n2) operations, lead-
ing to an overall complexity of O(n3). An O(n2) implementation may be
achieved as follows. For each vertex not in the fragment, maintain the
closest vertex to it which is in the fragment. Initially O(n2) operations
are required for this, On each iteration (Step 2), as a vertex (say, v)
is added to the fragment, check to see if any nearest neighbour (among
fragment members) of a vertex outside the fragment can now be bettered
by v. This requires checking 0O(n) values, but allows the implementation

of Step 2 in 0(n) time.

The foregoing algorithm grew a single fragment through n-1 iterations.

As an alternative approach, it is often fruitful to attempt to build the
desired structure in a parallel fashion, - by allowing more than one frag-
ment which will be subsets of the eventual MST. Sollin's algorithm does
this, again assumingprior calculation of all dissimilarities (edge
weights) which requires O(nz) or O(m) operations. (In section 4.4 a multi-
ple fragment algorithm bypassing this requirement will be described).

An example of this algorithm is to be seen in Fig. 4.2,

Congider all vertices, to begin with, as singleton fragments of the MST.

99

Algorithm B. Sollin's MST algorithm.

Step 1. For each fragment in turn, determine its closest fragment.
All edges so specified will be part of the MST.

Step 2. Scan each of these edges, deleting the corresponding fragments
from the list of fragments, and placing the new merged fragment
onto the fragment-list.

Step 3. While the fragment-list has more than one member, return to

Step 1.

The closeness relation in Step 1 is not necessarily symmetric: in fact

we have here a generalization of NN-graphs (see Chapter 3), where a RNN
pair (symmetric) or part of a NN-chain (asymmetric) may be found among
fragments. These least cost edges between fragments, determined in Step 1,
must be part of the MST. This may be shown as follows. By construction

we have minimal cost, but do we have a tree? If a cycle were possible we
would have, for example, f2 (fragment 2} as NN to fl, f3 as NN to f2, and
fl as NN to f3. But then the least interconnecting link between f2 and

fl is greater than the least interconnecting link between f3 and f2 (other-
wise fl would be NN to fz), which in turn is greater than the analogous
link between f3 and fl. Here we have a contradiction since by definition
the link between fl and f2 is less than that between f3 and fl. This proof
may be extended to cycles with more than 3 vertices. Note that care must
be taken in programming this algorithm to incorporate arbitrary choice-
making in the case of equal dissimilarities, in order to avoid the crea-

tion of cycles.

In Step 1 there are O(n) operations for each of n vertices. At most
r n/2] (the least integer > n/2) fragments are produced. On the next
2
pass through Step 1, O(n’) operations will be again required, leading to

at most rn/4] fragments. Continuing, it is seen that there are O(log n)

2
iterations yielding O(n log n) performance.

100

a b c d e f g h i
a 01 5 6 6 5 7 5 6
b 1 05 3 6 85 7 5
c 5 5 0 2 5 6 8 6 6
d 6 3 2 0 5 6 4 7 5
e 6 6 5 5 0 2 3 6 7
f 5 8 6 6 2 0 1 5 5
g 7 5 8 4 3 1 0 3 6
h 5 7 6 7 6 5 3 0 1
i 6 5 6 5 7 5 6 1 0

Given matrix of dissimilarities between 9 vertices.

g

Using the lightest edges incident on each vertex, the above four fragments

are found. The set of lightest edges from these fragments yield:

The final lightest edge between fragments connects d to g yielding MST.

Fig. 4.2 - Sollin's algorithm for constructing a MST.

101

In the case of a sparse graph, incident edges may be stored as linked lists,
or as some other convenient data structure. Step 1 will require a scan
of all edges on each occasicn, i.e. O(m) operations. Thus the performance

in this case is O(m™ log n).

102

4.4 MINIMAL SPANNING TREE USING FAST NEAREST NEIGHBOUR SEARCHING

In Chapter 3, single and multiple cluster algorithms for geometric clus-
tering methods have been described, which allowed for the incorporation

of fast NN searching routines. In this section, suggested approaches to

single link hierarchical clustering will be discussed. These approaches

are based on the MST (which may be subsequently transformed into the

hierarchy).

The following proposition has been used in Chapter 3:

Proposition 1: Given a point-set, any pair of RNNs is a class or cluster
of an agglomerative hierarchic clustering, if the hierarchic clustering

method satisfies the reducibility property.

The single link method satisfies this property, but a stronger result is:

Proposition 2: Any NN-chain is a subset of MST.

Any NN-chain, originating in an arbitrary point and ending in a pair of
RNNs, therefore defines in reverse order a sequence of nested clusters

in a single linkage hierarchic clustering., Instead of single and multiple
cluster algorithms for geometric cluster methods, we have here single

and multiple fragment algorithms, where a fragment is "grown' from a NN-

chain. The following is a single fragment algorithm.

Algorithm C, MST algorithm using NN-chains.

Step 1. Construct a NN-chain; let q be the last point added, and call
the NN-chain a fragment.

Step 2. Find r, the nearest point to q which is not in the fragment.

103

Step 3. If, for some iin the fragment, d(i,NN(i)<d(q,r) then see if there

is an s not in the fragment such that
d(i,NN(i)) <d(i,s) <d(q,r).

If so, find the least such d(i,s), and connect s to i; otherwise
connect r to q.

Step 4. Redefine g to be the point whose link to the fragment is of least
dissimilarity, and return to Step 2 until all points are in the

fragment.

Step 3 is explained as follows (cf. Fig. 4.3). The point r could be
connected to q. However it must be checked if a closer point could ins-
tead be connected to some other point in the fragment. The edge (i,NN(i))
is in the fragment if i is in the fragment. If d(i,NN(i)) > d(q,r), and
if some s is connected to i then d(i,s) < d(q,r), which together imply:
d(i,s) < d(i,NN{(i)). But then s is the NN of i, and from this contradic-

tion it is seen that we were justified in connecting r to q.

Step 3 possibly necessitates '"climbing back" some way in the fragment
(i.e. it requires the finding of NNs of a number of vertices in the frag-
ment) and is best implemented using a list of vertices in the fragment,
ordered by the smallest dissimilarity which connects them to the fragment.
The analysis of this algorithm depends on the average number of iterations
between Steps 2 and 3, - i.e. if constant or O(n), we get overall com-—
plexity of O(n2) or O(n3), respectively. An approximate minimal spanning
tree algorithm, where this number of iterations is held constant, may

be adequate but in general worst-case 0(n) must be assumed.

A better, multiple fragment algorithm with two separate stages (Steps 1,

2, and 3; and Steps 4and5) is as follows.

104

Final two nodes of fragment are i and q.

NN(i) = q.

d(i,q) = 1.

Closest node to q, not in fragment, is r.

d(q,r) = 1.9.

Search for closest node to i, not in fragment.

Find r: d(i,r) = 1.8.

Therefore s (see description of Algorithm C) is q, and g is connected

to i.

Fig. 4.3 - Example of Algorithm C.

105

Algorithm D. Parallel MST algorithm.

Step 1. Pick an arbitrary point.

Step 2. Construct a NN-chain from this point.

Step 3. Pick another isolated point, and return to Step 2 until all
points are in one of p NN-chains.

Step 4. Connect the closest point in an arbitrary NN-chain (or fragment)
to some other NN-chain (or fragment), using Steps 2, 3 and 4 of
Algorithm C.

Step 5. Return to Step 4 until all points are in one fragment.

Algorithm D will work better if the NN-chains are long, i.e. if the points
chosen in Steps 1 and 3 are in sparse regions. Following the iterated
Steps 2 and 3, there are p NN-chains and hence p-1 edges.remaining to

be found in the minimal spanning tree.

The principal computational advantage of Algorithms C and D lies in their
ability to incorporate efficient NN-finding techniques. The latter algo-
rithm has been found to be of 0(n log n) average complexity, when a MDBST

approach (see Chapter 2) is employed (Bentley and Friedman, 1978).

We will conclude this section with an adaptation of Algorithm C which
is suitable for any graph (or linkage) method (e.g. the complete or a-
verage linkage methods described in Table 1, section 3.3). For these
methods, inter-cluster dissimilarity cannot be calculated in 0(1) time
unless we have the entire set of dissimilarities directly accessable.

Algorithm C may be amended as follows.

Algorithm E. Algorithm for any linkage-based method.

Step 1. Select an object arbitrarily.

Step 2. Determine and store all inter-object dissimilarities.

106

Step 3. Grow the NN-chain from the object chosen, until a pair of RNNs
are obtained.

Step 4. Agglomerate these objects.

Step 5. Update the dissimilarity table, using the Lance-Williams formula.

Step 6. From the node in the NN-chain which preceded the RNNs, or from
an arbitrary node (object or cluster) if the NN-chain is empty,

go to Step 3 until only one node remains.

2
Clearly, O(n) storage is required here. As before, there are 0(n)
growths of the NN-chain, each requiring O{(n) operations; plus 0(n) con-
tractions of the NN-chain, each requiring O{n) updating of the dissimi-

2
larity table. In total, therefore, computational complexity is O(n).

107

4.5 MINIMAL SPANNING TREE OF SPARSE AND PLANAR GRAPHS

Special cases of the MST problem arise when not all edges exist. In a
sparse graph, the number of edges may not be 0(n2). The

first algorithm discussed below has computational complexity O(m log n).
Thus this result comes close to O(m), and m might be quite small. The
number of edges is small in the case of planar graphs: the second algo-
rithm discussed in this section achieves the very satisfactory computa-
tional performance of O(n). These algorithms are due to Cheriton and

Tarjan (1976).

Let us begin with the problem of sparse graphs where we seek the best per-
formance in terms of n and of m (bearing in mind that the latter will
always be greater for non-degenerate problems). The following algorithm

is a particular implementation of Sollin's algorithm (see section 4.3,

Algorithm B).

For each vertex v in the vertex-set V, let the number of incident edges
be denoted by nv . Thus, Z nv =2m

veV
A preprocessing stage to Algorithm B is as follows. Divide each set of n,
edges into groups of size k (<€ k for the final group: for simplicity,
we will assume that every group contains precisely k edges). Sort each
of these groups. For each vertex, we have nv/k groups, and the sort ope-
ration will require O(k log k) comparisons. Hence (nv/k) k log k will
be the order of magnitude of the number of operations required for vertex
V. For all vertices, the number of operations required is of the order
of valogk:Zmlogk.

vev

Algorithm B is now implemented as follows. Determining the lightest edge

108

incident on a vertex requires O(nv/k) comparisons since this edge is to
be found in some one of the nv/k sorted groups. The lightest edges incident
on all vertices are therefore obtained in O(m/k) operations. When two
vertices (later: fragments) are merged, their associated sorted groups

of incident edges are simply appended together so that all such groups
remain internally sorted. On subsequent executions of Step 1 in Algorithm
B, again 0O{m/k) processing is required. (Note that we may discard from
all sorted groups those edges connecting vertices in the same fragment:
in the entire algorithm, this cannot surpass the deleting of 2 m edges).
Thus, overall, Algorithm B's complexity becomes O(m/k log n) + O(m log k)
where the latter term, as was seen above, is required for preprocessing.
By chosing k = log n, the second of these terms dominates and gives

complexity O{(m log log n) for this implementation.

We turn attention now to constructing a MST from a planar graph.

The following graph-theoretic result will be of central importance in the
analysis of an algorithm for building the MST of a planar graph: for a
planar graph, m = O(n). Specifically, m€3n-6 for m>1. For proof, see for

example Tucker (1980).

Referring to Sollin's algorithm (Algorithm B of section 4.3), O(n) opera-
tions are required to establish the least cost edge from each vertex
(since there are only 0(n) edges present). On the subsequent execution

of Step 1, we may define a new, planar graph with as new vertices the
fragments found so far (see Fig. 4.4). There will be at most M/21 such
new vertices. 0(n/2) processing will serve to replace multiple edges bet-
ween the same pair of (new) vertices with the minimum edge weights, since
the total number of multiple edges remains O(n). Following this, 0(n/2)
processing is required to merge fragments (Step 1 of Algorithm B).
Continuing, we obtain the overall complexity as being 0(n)+0(n/2)+0(n/4)+

+ ... = 0(n).

109

Given planar graph.

Heavy lines show fragments found in
first iteration of algorithm.

Cleanup of deletable edges has been
carried out.

Dashed lines are edges connecting
fragments.

New graph consisting of three fragments.

New graph with multiple edges removed.

Fig. 4.4 - Stages in an implementation of Sollin's algorithm on a planar graph.

110

4.6 EXTENSION: MODE ANALYSIS

The MST (and the single link method) use dissimilarities or distances.
One difficulty with distance-based procedures is that any regularity in
the data may give rise to many identical distances and to subsequent de-
generate or misleading cluster results. This difficulty can be bypassed
by incorporation of local (e.g. density) information, which will indicate

which points are of greater importance. In general, we may use

- node weights: valuations on the points under consideration; or
- node and edge weights, where interpoint dissimilarities are additionally

used.

We will begin with algorithms in the first category.

Node weights used in pattern recognition have generally involved an esti-

mate of density at each point. Among such node weights are the following:

1) |N(i)| where N(i) = {j ldij <r}

N(i) is the neighbourhood of point i, defined here as the set of points
within radius r of i. The weight of node i is the cardinality of its

neighbourhood.

2) 1/xk Z{d.. | j € N(i)}
ij

where N(i) is the set of k nearest neighbours of i. The weight of node
i, here, is the average distance to the k-nearest neighbours; it is
a measure of potential, i.e. the inverse of density. Unlike the previous

node weight, it is independent of the scaling of the original data.

3) In image processing nodes corresponding to pixels may be weighted by

111

the grey level intensity at that point. This is the most immediate
node weighting scheme. Others may be specified, though, such as a
measure of edge gradient at that pixel. The edge value is the differ-
ence in intensities between contiguous pixels; and edge gradient is
the maximum such value between a pixel and its neighbours.

The edge gradient may be useful for contour extraction, i.e. for de-

termining significant boundaries.

The use of dissimilarity d, in the above, is almost invariably Euclidean,
- the most natural choice for visual patterns of points. Let fi be the

weight associated with node i, using some one of the above definitions.

The most straightforward approach to the clustering of node-valued graphs

is to use a single threshold: nodes of density-weight greater (or potential-
weight less) than the threshold are members of the same cluster, if they

are in addition contiguous to at least one other member of the cluster.

By decreasing the threshold in the case of densities, or by increasing it

in the case of potential, a hierarchy of embedded classes is obtained.

The clustering brought about by thresholding can also be expressed in terms
of more traditional distance-~based clustering. Define Bij = if i and j
are not contiguous; otherwise define Bij = - min {fi,fj} where f is a den-
sity. As values of f are examined in increasing order of magnitude, i will
be connected to j only if both fi and fj are greater than the density
threshold. This clustering method may therefore be viewed as a single link
method. Clustering by thresholding in the manner described is a common
technique in image processing; and it has also been used for wealth data
for geographic regions (i.e. fi = per capita income for region i; see

Hartigan, 1975).

112

The use of node weights (such as point densities, attributes of popula-
tions or states, etc.) is an intuitively clear starting point from which
to carry out the automatic grouping process. But the use of inter-point
distances, while being fraught with difficulty when many distances are
identical, nonetheless allows a more fine-tuned analysis: for example,

in the threshold-based clustering described above, no account is taken

as to whether a new addition to a cluster is closely related to one or

to many of the cluster members. In order to allow for varying degrees of
relationship, a dissimilarity may be recreated from the node weights.

One possibility for this is to construct directed arcs defined by Gij =

= f'_fi where i and j are contiguous. Therefore if fj > fi then Gij is
directed from i to j, while if fj < fi then the arc is negatively weighted,
and so is directed from j to i. Rather than the difference in densities,
as this dissimilarity coefficient is, the density gradient (difference in
density per unit distance) has usually been preferred (see e.g. Koontz

et al., 1976). This is given by Gij = (fi—fj)/dij where d is the Euclidean
distance, and 6§ is again an asymmetric dissimilarity. A generalization

of the single linkage method (or the MST) has been used for such dissimi-
larities. It is to connect i to j if Gij is positive and maximum among
nodes j which are contiguous to i, i.e. to construct components such that

the density gradient is always upwards.

It is easily verified that each such component is a directed tree, so long
as no 6ij equals zero. In order to facilitate subsequent labelling and
other processing of the components, cycles in the directed graph must be
prevented, and arbitrarily directed edges are formed for 6ij = 0 follow-
ing a test that a cycle will not result. Note that in this approach each
component nominates a unique "centre" or local peak in density. It has
also been proposed that local valleys in density are equally revealing of

structure in the data (see Johnston et al., 1979). Such an alternative

113

viewpoint on the data may be carried out by simply defining Sij as the

negative of the mode-oriented approach.

A similar approach - determining components which are directed trees -
has been used in image processing (see Fig. 4.5). Narendra and Goldberg
(1980) define as a weight at each pixel (node) a measure of edge gradient.
Having thus a value for fi' the asymmetric dissimilarity Sij is construc-

ted and the directed tree formed in the manner described above.

Another very different application of this directed forest approach has
also been successfully employed, as follows. A histogram of intensities
often permits visually different parts of the image to be distinguished,
- different modes in the histogram correspond to distinct, but signifi-
cantly numerous, sets of pixel intensities. The gradient climbing proce-
dure, used in point pattern recognition, also allows thé modes of the
histogram to be determined (see Fig. 4.6). Smoothing of the histogram
might be required - using for instance a 3-point moving average - and
Wharton (1983) suggests an "adaptive smoothing" where non-mode parts of
the histogram (below a user-specified threshold value) alone are smoothed
in this way. For 4-band LANDSAT data, a 4-dimensional generalization of
this approach has been employed by constructing a 4-dimensional histogram.
This is simply a grid of regular cells in 4-dimensional space, each con-
taining the frequency of occurrence of associated 4-valued pixel inten-

sity vectors.

Note that the dissimilarity constructed in the foregoing examples has

been anti-symmetric (i.e. Sij = - aji). Other asymmetric (but not anti-
symmetric) coefficients may also be constructed for point pattern reco-
gnition. For instance, Ozawa (1983) defines Sij = fi -exp(—b-dij) where
b is some scale constant. This dissimilarity will yield different values

114

25 —» 35 > 48 > 52
4 |
I v
20 24 —t» 46 —1> 53
? % Directed trees
22 —» 23 18 20
A]
I \Z
21 20 ~>» 24 > 55
1 1 1 1
1 1 1 1
Class labels
1 1 1 2
1 2 2 2

Fig. 4.5 - Clustering by connecting pixels to highest-valued pixel among
four-neighbours.

5 17 35 83 41 22 3 3 5 25 39 53 22 11

@—> & —» & —» S 6 0 &— 0 — O =30 —> 0 —> O —> O & 0 &— O

Fig. 4.6 - Clustering by gradient climbing to distinguish modes of a
histogram (given here by the set of frequencies).

115

116

for § ., and for 6§ depending on density defined at i and at j. Katz and
ij ji

Rohlf (1973) use another asymmetric coefficient.

This brief look at mode analysis indicates the range of approaches in an
area which continues to expand rapidly. Many of the approaches described
required local processing to establish the node or edge weights, and the
connectivity clustering was then performed with reference only to the
neighbourhood of the point (or pixel or other object). Thus these algo-
rithms would appear to be well-suited to parallel implementations. A
problem to be solved in certain cases concerns the improvisation required

to arbitrarily choose among equally-valued dissimilarities.

117

4.7 REFERENCES

N.AHUJA, Dot pattern processing using Voronoi neighbourhoods. IEEE

Transactions on Pattern Analysis and Machine Intelligence PAMI-4, 336-

343 (1982).

J.L. BENTLEY and J.H. FRIEDMAN, Fast algorithms for constructing minimal

spanning trees in coordinate spaces. IEEE Transactions on Computers C-27,

97-105 (1978).

D. CHERITON and R.E. TARJAN, Finding minimum spanning trees. SIAM Journal

of Computing 5, 724-742 (1976).

J. FAIRFIELD, Segmenting dot patterns by Voronoi diagram concavity. IEEE

Transactions on Pattern Analysis and Machine Intelligence PAMI-5, 104-110

(1983).

J.A. HARTIGAN, Clustering Algorithms,Wiley, New York (1975).

N. JARDINE and R. SIBSON, Mathematical Taxonomy, Wiley, New York (1971).

R.A. JARVIS and E.A. PATRICK, Clustering using a similarity measure based

on shared near neighbours. IEEE Transactions on Computers C-22, 1025-1034

(1973).

B. JOHNSTON, T. BAILEY and R. DUBES, A variation on a nonparametric clus-

tering method. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence PAMI-1, 400-408 (1979).

J.0. KATZ and F.J. ROHLF, Function-point cluster analysis. Systematic Zo-
ology 22, 295-301 (1973).

118

W.L.G. KOONTZ, P.M. NARENDRA and K. FUKUNAGA, A graph-theoretic approach

to nonparametric cluster analysis. IEEE Transactions on Computers C-25,

936-944 (1976).

R.C.T. LEE, Clustering analysis and its applications. In Advances in In-

formation Systems Science, Edited by J.T. Tou, Vol. 8, pp. 169-292,

Plenum Press, New York (1981).

P.M. NARENDRA and M. GOLDBERG, Image segmentation with directed trees.

IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-2,

185-191 (1980).

K. OZAWA, CLASSIC: a hierarchical clustering algorithm based on asymmetric

similarities. Pattern recognition 16, 201-211 (1983).

F.J. ROHLF, Algorithm 76: hierarchical clustering using the minimum span-

ning tree. The Computer Journal 16, 93-95 (1975).

F.J. ROHLF, Single link clustering algorithms. In P.R. Krishnaiah and L.

N. Kanal (Editors),Handbook of Statistics Vol.2, pp. 267-284, North-Hol-

land, Amsterdam (1982).

R. SIBSON, The Dirichlet tesselation as an aid in data analysis.

Scandinavian Journal of Statistics 7, 14-20 (1980).

J.R. SIAGE, C.L. CHANG and R.C.T. LEE, Experiments with some cluster a-

nalysis algorithms. Pattern Recognition 6, 181-187 (1974).

J.R. SLAGLE, C.L. CHANG and S.R. HELLER, A clustering and data-reorganiz-

ing algorithm. IEEE Transactions on Systems, Man, and Cybernetics SMC-15,

125-128 (1975).

119

P.H.A. SNEATH and R.R. SOKAL, Numerical Taxonomy. Freeman, San Francisco,

1973.

A. TUCKER, Applied Combinatorics. Wwiley, New York, 1980.

R. URQUHART, Graph theoretical clustering based on limited neighbourhood

sets. Pattern Recognition 15, 173-187 (1982); Erratum, PatternRecognition

15, 427 (1982).

D. WISHART, Mode Analysis: a generalization of nearest neighbour which

reduces chaining effects. In Numerical Taxonomy, Edited by A.J. Cole,

Academic Press, London, pp. 272-281 (1969).

S.W. WHARTON, A generalized histogram clustering scheme_ for multidimens-

ional image data. Pattern Recognition 16, 193-199 (1983).

C.T. ZAHN, Graph-~theoretical methods for detecting and describing Gestalt

clusters. IEEE Transactions on Computers C-20, 68-86 (1971).

	Titlepages_Preface
	Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 5

