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CHAPTER 5 - NEW CLUSTERING PROBLEMS
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5.1 INTRODUCTION

Classification is such an all-embracing human activity that practically
no area of automated data processing can dispense with some form of
clustering. Two relatively new areas, which use algorithms adapted

from those explored in previous chapters, are studied in sections 5.2

and 5.3.

A clear example of the contiguity-constrained clustering problem
(section 5.2) is the grouping of people/areas on the basis of some
given set of socio-economic attributes. It might be expected that the
objects of analysis which come from major urban areas would be grouped
together. Consider now the presence of a contiguity-constraint: the
resulting clustering ought to clearly demarcate the urban areas, and
instead group with them their respective hinterlands. A good background
study in this area is Fischer (1980). Gordon (1980) should be consulted
for another perspective on the problem of contiguity constraints in

clustering.

The problem of clustering interaction data (section 5.3) is that of
handling asymmetric proximities. Slater (1981) or Masser and Scheurwater

(1980) provide illustrative studies.
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5.2 CONTIGUITY-CONSTRAINED CLUSTERING

One major theme in clustering research over the past two decades has been
the automatic classification of quantitatively described objects, with-
out any constraint as to which pairs of such objects might ultimately
find themselves in the same class. A second recent trend in clustering
work has been where there is such an inherent or an imposed representa-
tional constraint. In this section we review general-purpose algorithms
which have the function of segmenting (or regionalizing, or zoning) a set

of objects, each described by a descriptor vector.

Contiguity-constrained clustering uses proximities between objects,
defined in descriptor space, and also takes into account contiguous
neighbourhoods. Depending on the application, the contiguous neighbour-
hood is defined in different ways. In image processing, where the image
consists of pixels characterized by grey-level intensity values, the 8
neighbouring pixels (east, north-east, north, etc.) are suitable
candidates. Similarly with agricultural data, the terrain which is
characterised by crop yields or chemical constituents may be subdivided
into square parcels and the neighbourhood of a parcel may be defined as
its 8 adjacent parcels. With point patterns, a radius may be used to de-
fine the neighbourhood of point i: N(i) = {j | 4d ij< ri, and j is said
to be contiguous to i; a neighbourhood may alternatively be defined as
the k nearest neighbours of an object (see section 4.6 of Chapter 4).
In general, when the objects do not comprise the squares of a regular
grid, it is convenient to express the contiguity relationship as a bi-
nary matrix, with a contiguity value cij € {0,1} defined on all pairs
of objects. Such a matrix can be externally defined by the user, - for
example, in the case of contiguities between bordering countries
(characterised, perhaps, by socio-economic attributes) or other basic

spatial units.
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If the stepwise agglomerations in hierarchical clustering are constrained
to be between clusters which are contiguous, the problem of inversions
(reversals or non-monotonic increase/decrease in cluster criterion

value) is likely. This is when d{(q Ur, s) } d{q,r) for three clusters
q,r, and s, where q and r agglomerate to form q Ur, and where the

cluster criterion value (e.g. compactness or connectivity) is related

to the dissimilarity d between clusters (cf. section 3.2 of Chapter 3).
In using the common clustering criteria (e.g. as listed in Table 1,
section 3.3), with the restriction that only contiguous clusters can
merge, inversions tend to arise since a previously forbidden merger
between two very similar classes may be permitted by changes in the
contiguity relation. The presence of inversions in a hierarchy is
disadvantageous: it makes difficult the interpretation of partitions,

and the definition of dissimilarity between classes. Only two of the
traditional hierarchical clustering methods appear to be amendable in
order to permit agglomerations between contiguous clusters, and
simultaneously guarantee that no inversions will arise. These methods

are the single and complete linkage methods, which will use two

different approaches to the updating of the contiguity relation following

each agglomeration.

The contiguity-constrained single linkage method is as follows: at each
agglomeration, fuse together the two clusters of least interconnecting
dissimilarity, such that this dissimilarity is between a pair of
contiguous objects. Initially all clusters are singletons. Each agglomera-
tion in this method is necessarily between a pair of contiguous objects.
Therefore, given the contiguity graph where each edge connecting a pair

of contiguous objects is weighted by the dissimilarity (in descriptor
space) between the objects, it is seen that the minimal spanning tree

of the weighted contiguity graph may be obtained and subsequently

transformed into the single linkage hierarchy. A simple proof that the
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contiguity-constrained single linkage hierarchy cannot present inversions
is to replace the dissimilarities between all pairs of non-contiguous
objects by some arbitrarily large value. The construction of the single
linkage hierarchy on this amended set of dissimilarities is well-defined
(in the sense that at all stages the traditional algorithm can be employed
and, assuming the contiguity graph is connected, infinite dissimilarities
will never be used as cluster criterion - i.e. connectivity -~ values). As
in the case of the usual single linkage method, it has been found that
this method has a pronounced tendency to "chain', i.e. to successively
agglomerate singletons to one, large cluster in each partition (see
Fischer, 1980). Efficient algorithms for constructing a constrained

single linkage hierarchy have been examined in section 4.5 of Chapter 4.

An alternative approach for contiguity-based agglomerative cluster -
ing allows agglomeration of any pair of clusters such that there
exists a contiguity link between at least one member of each of the
clusters. Such a definition of contiguity has generally been used in
incorporating a contiguity constraint in the minimum variance (Ward's)
method. However no way of using this method, in an inversion-free manner,
has yet been found. For a review of work in this direction, see Murtagh
(1984). Of the major hierarchical methods, only the complete link
method excludes the possibility of inversions when constrained in this
manner. Before showing this, it may be remarked that the O(n2) time and
O(n2) space algorithm of section 4.4 (algorithm E) is easily updated

to include an additional testing of contiguity whenever a linkage in

the NN-chain is created.
Proposition: The complete link method, with the constraint that at
least one member of each of the two clusters to be agglomerated be

contiguous, is guaranteed not t give rise to inversions.

The proof .of this proposition will conclude this section.
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Consider three clusters (possibly singletons), q, r, and s. At some
stage of the agglomerative construction of the hierarchy, q and r
cluster (supposition I); and later, s clusters with q Ur directly and
not through the intermediary of some cluster, t (supposition II). It
is seen that no loss of generality ensues with supposition II, since
inversion-free agglomeration of qUr and s implies inversion-free
agglomeration of qUr and t, followed by inversion-free agglomeration
of qUr Ut and s. Also, without loss of generality, assume that d(q,s)

<d(r,s). Three cases may now be considered.

Case I : d(q,s) € d(r,s) < d(q,r).
If either (q,s) or (r,s) are contiguous, they should have
clustered prior to (q,r): this is contrary to supposition I.
If neither (q,s) nor (r,s) are contiguous, then s cannot
cluster with q U r, except through both s and qUr being
contiguous with some other cluster, t: this is contrary to

supposition II.

Case II: d{(q,r) < d(q,s) < d(r,s).
(q,r) must be contiguous so that they may cluster as supposed.
If neither (q,s) nor (r,s) are contiguous, supposition II is
not possible. If either are contiguous, then s can cluster

with qUr without giving rise to an inversion.

Case III: d(q,s) < d(q,r) < d(r,s).
For g and r to cluster before g and s, it must be assumed
that q and s are not contigous; supposition I implies that
(aq,r) is contiguous; and supposition II implies that (r,s)

is contiguous.

We may summarize: case I cannot arise; case II presents no problem; and

case III is the only case to possibly give rise to an inversion. An
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inversion arises in case III if d{(q,r) # d(q Ur, s). Traditional
clustering strategies (cf. Table 1 of section 3.3) define d(q Ur, s)
as a function of d(q,r), d(q,s) and d(r,s). Therefore, choosing

d(q Ur, s) as max { d(q,s), d(r,s) } precludes an inversion in case III.
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5.3 CLUSTERING OF INTERACTION DATA

Interaction flow matrices are square, asymmetric matrices which arise

in many of the social sciences. Examples of the flows or interactions
involved in such tables are: industrial inputs and outputs for a set

of firms or countries; cross-citations for a set of journal articles;
internal migrations or trips for a set of geographic regions; or
occupational mobility data for a set of occupations of a given popula-
tion for a set time-period. In some of these applications contiguous
clusters may be required, especially in the case of data with geographic
location information. Two types of clustering problem may be considered.
Consider the case of journey-to-work data, with a given set of zones

and associated numbers of cross-boundary journeys. We may wish to
ascertain nodal or "central" zones (i.e. those that receive large numbers
of workers), or alternatively to carry out a regionalization of the given
zones into a smaller set of homogeneous areas. For these two different
problems, two approaches have been suggested. A variant of the single
linkage method has been proposed for the former problem, - the deter-
mining of nodal zones. Faithful representation of the asymmetric charac-
ter of the interaction matrix is the primary objective, and one disad-
vantage of this approach is the '"chaining" side-effect of single linkage
clustering. For the second problem, - creating homogeneous zones -
variants of the average linkage method have been used. A disadvantage
here is the conflict between the clusters of zones and the often asym-
metric characteristics of these zones (i.e. in-flows greater than out-

flows or viceversa).

In both cases a standardization of the given flows is carried out, in
order to adjust for disproportionate flow in large zones. In the case
of the compact clustering, this has been achieved by dividing every

element of the flow array by the corresponding row and column sums
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(see below). In the case of directed single linkage, analogous
frequencies have been obtained. Since the initial, asymmetric data
may be standardized directly, an iterated (re) calculation of row (co-
lumn) sums is carried out until the row (and column) sums are all iden-

tical.

The directed linkage procedure involves a generalization of the single
linkage method for dealing with asymmetric proximities (here: the stan-
dardized flows). The strong components of the directed graph are the
sets of mutually reachable nodes (or zones): each node can be reached
from another in the same component if there is a series of consistent-
ly directed arcs from one to the other. As in the case of the single
linkage method, a dendrogram may be constructed, corresponding to the
components formed at differing thresholds of proximity. The example
shown in Fig. 5.1 is from Tarjan (1983). Note that following each ag-
glomeration, all directed edges from vertices of the new cluster to an
outsider vertex may be replaced by the least-weighted edge among them;
this, together with a similar updating of in-flows to the new cluster,
allows the cluster's vertices to be replaced by a single vertex. Hence,
updating after each of the (at most) n-1 agglomerations requires O(n)
time. In order to find which pair of vertices to merge, a sorted list
of edges may be used (requiring O(m log n) time: i.e. sorting m values,
where m € n(n-1)/2). Resulting complexity is then O(n2) or O(m log n),
depending on which term dominates. If m is much less than n, then the

O(m log n) algorithm described by Tarjan (1983) should be used.

For constructing a hierarchy of compact clusters, an algorithm proposed
by Domengés (1982) is as follows. A symmetric matrix is constructed by

summing the (i,j)th elements, for all i and j. Next, the asymmetric ma-
trix is standardized by dividing the (i,j)th element by the product of

the associated row and column sums. Finally the sequence of ag—

glomerations takes place by successively seeking the greatest stand-
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ardized symmetric flow between regions. Let the symmetric matrix be

defined from the given flow matrix by s, = f‘j + f_i. When an agglomera-
i i j

tion takes place, the (unstandardized) flows to and from the new region,

c, equal the sum of flows to and from the sub-clusters a and b : s , =
cc

=8 + s , for any other region, c'. If s and s are the totals
ac' bc! c !
of rows ¢ and c¢' (or columns: the matrix has been made symmetric before

all agglomerations), then the agglomerations take place on standardized

values, s*:

s* =s /ss
cc! cc' c¢c ¢!
= (s + s /s s
ac' bc! cc'
=(s s* +s s* )/s
a ac' b bc! c

(simply introducing cancelling terms)

and since sC = sa + sb, the above expression ressembles the Lance-Williams

update formula for the average linkage (group average or UPGMA) method

(cf. Table 1, section 3.3 of Chapter 3).
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Fig. 5.1 -~ Example of hierarchical clustering based on strong components
at succession of levels.
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