where δ is the Kronecker (or discrete Dirac) symbol.
In this notation we can also write: $f_{I J}=\left(\delta_{I}^{I} \times f_{J}^{I}\right) \circ f_{I}$, and $f_{I J}=\left(f_{I}^{J} \times\right.$ $\left.\delta_{J}^{J}\right) \circ f_{J}$.

Composition of measure and function transitions will be illustrated with the definitions and operations for factors. A transition of I to J can be used to transport any measure μ_{I} (on I) in order to obtain a measure μ_{J} on J; and in the other direction it can be used to associate with every function G^{J} (on J) a function F^{I} (on I).

Thus, we have: $\pi_{J}=f_{J}^{I} \circ \mu_{I}$ which, in detail, is: $\pi_{j}=\left\{\pi_{j} \mid j \in J\right\}$ and $\forall j \in J: \pi_{j}=\sum_{i \in I} f_{j}^{i} \mu_{i}$.

For the factors, then: $F^{I}=G^{J} \circ f_{J}^{I}$, and in greater detail: $F^{I}=\left\{F^{i} \mid i \in I\right\}$ and $\forall i \in I: F^{i}=\sum_{j \in J} G^{j} f_{j}^{i}$.

Composition rules (up and down index combination) can be noted here. These tensor composition rules are an extended form of product conformability for matrices.

Quadratic form of the moments of inertia, relative to the origin, of the cloud $N(J)$:

$$
\begin{aligned}
\sigma_{I I} & =\left(f_{I}^{J} \cdot f_{I}^{J}\right) \circ f_{J} \\
\sigma_{i i^{\prime}} & =\sum_{j} f_{i}^{j} f_{i^{\prime}}^{j} f_{j}=\sum_{j}\left(f_{i j} f_{i^{\prime} j} / f_{j}\right)
\end{aligned}
$$

It can be shown ([15], p. 153) that the principal eigenvalue λ corresponding to eigenvector ϕ satisfies: $\phi^{I} \circ f_{I}^{J} \circ f_{J}^{I}-\left(\phi^{I} \circ f_{I}\right) \delta^{I}=\lambda \phi^{I}$. Furthermore it holds that $\delta^{I} \circ f_{I}^{J} \circ f_{J}^{I}=\left(\delta^{I} \circ f_{I}\right) \delta^{I}=\delta^{I}$; that is to say, δ^{I} is the first trivial eigenvector, i.e., the constant function equal to 1 . The factor ϕ^{I} is zero mean for the measure f_{I}, i.e., $\phi^{I} \circ f_{I}=0$.

We can right-multiply the eigen-equation above by f_{I}^{J} to get $\left(\phi^{I} \circ f_{I}^{J}\right) \circ$ $\left(f_{J}^{I} \circ f_{I}^{J}\right)=\lambda\left(\phi^{I} \circ f_{I}^{J}\right)$. Consequently $\phi^{I} \circ f_{I}^{J}$ is a factor of the dual space.

Through consideration of the norms, it turns out that we can define factors on J, ϕ^{J}, in the following way: $\phi^{J}=(1 / \sqrt{\lambda(\phi)}) \phi^{I} \circ f_{I}^{J}$.

Benzécri [15] argues in favor of tensor notation: firstly to take account of more than two arguments or indices; and secondly to render symmetries much clearer than would otherwise be possible. Further motivation can be added: a matrix expresses a linear mapping (of rows onto columns or vice versa), a linear mapping of a set into itself, a bilinear form on the cross-product of a set with itself, and so on; with tensor notation, these different cases are clearly distinguished.

