{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# A Network Tour of Data Science\n", "### Xavier Bresson, Winter 2016/17\n", "## Assignment 1 : Unsupervised Clustering with the Normalized Association" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Load libraries\n", "\n", "# Math\n", "import numpy as np\n", "\n", "# Visualization \n", "%matplotlib notebook \n", "import matplotlib.pyplot as plt\n", "plt.rcParams.update({'figure.max_open_warning': 0})\n", "from mpl_toolkits.axes_grid1 import make_axes_locatable\n", "from scipy import ndimage\n", "\n", "# Print output of LFR code\n", "import subprocess\n", "\n", "# Sparse matrix\n", "import scipy.sparse\n", "import scipy.sparse.linalg\n", "\n", "# 3D visualization\n", "import pylab\n", "from mpl_toolkits.mplot3d import Axes3D\n", "from matplotlib import pyplot\n", "\n", "# Import data\n", "import scipy.io\n", "\n", "# Import functions in lib folder\n", "import sys\n", "sys.path.insert(1, 'lib')\n", "\n", "# Import helper functions\n", "%load_ext autoreload\n", "%autoreload 2\n", "from lib.utils import construct_kernel\n", "from lib.utils import compute_kernel_kmeans_EM\n", "from lib.utils import compute_purity\n", "\n", "# Import distance function\n", "import sklearn.metrics.pairwise\n", "\n", "# Remove warnings\n", "import warnings\n", "warnings.filterwarnings(\"ignore\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Question 1:** Write down the mathematical relationship between Normalized Cut (NCut) and Normalized Association (NAssoc) for K clusters. It is not necessary to provide details.\n", "\n", "The Normalized Cut problem is defined as:<br><br>\n", "$$\n", "\\min_{\\{S_k\\}}\\ NCut(\\{S_k\\}) := \\sum_{k=1}^K \\frac{Cut(S_k,S_k^c)}{Vol(S_k)} \\ \\textrm{ s.t. } \\ \\cup_{k=1}^{K} S_k = V, \\ S_k \\cap S_{k'}=\\emptyset, \\ \\forall k \\not= k' \\quad\\quad\\quad(1)\n", "$$\n", "\n", "and the Normalized Association problem is defined as:<br><br>\n", "$$\n", "\\max_{\\{S_k\\}}\\ NAssoc(\\{S_k\\}):= \\sum_{k=1}^K \\frac{Assoc(S_k,S_k)}{Vol(S_k)} \\ \\textrm{ s.t. } \\ \\cup_{k=1}^{K} S_k = V, \\ S_k \\cap S_{k'}=\\emptyset, \\ \\forall k \\not= k' .\n", "$$\n", "\n", "\n", "We may rewrite the Cut operator and the Volume operator with the Assoc operator as:<br><br>\n", "$$\n", "Vol(S_k) = \\sum_{i\\in S_k, j\\in V} W_{ij} \\\\\n", "Assoc(S_k,S_k) = \\sum_{i\\in S_k, j\\in S_k} W_{ij} \\\\\n", "Cut(S_k,S_k^c) = \\sum_{i\\in S_k, j\\in S_k^c=V\\setminus S_k} W_{ij} = \\sum_{i\\in S_k, j\\in V} W_{ij} - \\sum_{i\\in S_k, j\\in S_k} W_{ij} = Vol(S_k) - Assoc(S_k,S_k) \n", "$$\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Answer to Q1:** Your answer here.\n", "\n", "We have<br><br>\n", "$$\n", "\\frac{Cut(S_k,S_k^c)}{Vol(S_k)} = \\frac{Vol(S_k) - Assoc(S_k,S_k)}{Vol(S_k)} = 1- \\frac{Assoc(S_k,S_k)}{Vol(S_k)}\n", "$$\n", "\n", "and<br><br>\n", "\n", "$$\n", "\\sum_{k=1}^K \\frac{Cut(S_k,S_k^c)}{Vol(S_k)} = K - \\sum_{k=1}^K \\frac{Assoc(S_k,S_k)}{Vol(S_k)}\n", "$$\n", "\n", "The relationship between Normalized Cut (NCut) and Normalized Association (NAssoc) for K clusters is thus<br><br>\n", "\n", "$$\n", "NCut(\\{S_k\\}) = K - NAssoc(\\{S_k\\}).\n", "$$\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Question 2:** Using the relationship between NCut and NAssoc from Q1, it is therefore equivalent to maximize NAssoc by minimizing or maximizing NCut? That is \n", "\n", "$$\n", "\\max_{\\{S_k\\}}\\ NAssoc(\\{S_k\\}) \\ \\textrm{ s.t. } \\cup_{k=1}^{K} S_k = V, \\quad S_k \\cap S_{k'}=\\emptyset, \\ \\forall k \\not= k'\n", "$$\n", "\n", "$$\n", "\\Updownarrow\n", "$$\n", "\n", "$$\n", "\\min_{\\{S_k\\}}\\ NCut(\\{S_k\\}) \\ \\textrm{ s.t. } \\cup_{k=1}^{K} S_k = V, \\quad S_k \\cap S_{k'}=\\emptyset, \\ \\forall k \\not= k'\n", "$$\n", "\n", "or\n", "\n", "$$\n", "\\max_{\\{S_k\\}}\\ NCut(\\{S_k\\}) \\ \\textrm{ s.t. } \\cup_{k=1}^{K} S_k = V, \\quad S_k \\cap S_{k'}=\\emptyset, \\ \\forall k \\not= k'\n", "$$\n", "\n", "It is not necessary to provide details." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Answer to Q2:** Your answer here.\n", "\n", "As $\\min F \\Leftrightarrow \\max -F$, we have equivalence between the max NAssoc problem:\n", "\n", "$$\n", "\\max_{\\{S_k\\}}\\ NAssoc(\\{S_k\\}) \\ \\textrm{ s.t. } \\cup_{k=1}^{K} S_k = V, \\quad S_k \\cap S_{k'}=\\emptyset, \\ \\forall k \\not= k'\n", "$$\n", "\n", "and the min NCut problem:\n", "\n", "$$\n", "\\min_{\\{S_k\\}}\\ NCut(\\{S_k\\}) \\ \\textrm{ s.t. } \\cup_{k=1}^{K} S_k = V, \\quad S_k \\cap S_{k'}=\\emptyset, \\ \\forall k \\not= k'\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Question 3:** Solving the NCut problem in Q2 is NP-hard => let us consider a spectral relaxation of NCut. Write down the Spectral Matrix A of NCut that satisfies the equivalent functional optimization problem of Q2: \n", "\n", "$$\n", "\\min_{Y}\\ tr( Y^\\top A Y) \\ \\textrm{ s.t. } \\ Y^\\top Y = I_K \\textrm{ and } Y \\in Ind_S, \\quad\\quad\\quad(3)\n", "$$\n", "\n", "where\n", "\n", "$$\n", "Y \\in Ind_S \\ \\textrm{ reads as } \\ Y_{ik} = \n", "\\left\\{\n", "\\begin{array}{ll}\n", "\\big(\\frac{D_{ii}}{Vol(S_k)}\\big)^{1/2} & \\textrm{if} \\ i \\in S_k\\\\\n", "0 & \\textrm{otherwise}\n", "\\end{array}\n", "\\right..\n", "$$\n", "\n", "and\n", "\n", "$$\n", "A=???\n", "$$\n", "\n", "It is not necessary to provide details.\n", "\n", "*Hint:* Let us introduce the indicator matrix $F$ of the clusters $S_k$ such that:\n", "\n", "$$\n", "F_{ik} = \n", "\\left\\{\n", "\\begin{array}{ll}\n", "1 & \\textrm{if} \\ i \\in S_k\\\\\n", "0 & \\textrm{otherwise}\n", "\\end{array}\n", "\\right..\n", "$$\n", "\n", "We may rewrite the Cut operator and the Volume operator with $F$ as:\n", "\n", "$$\n", "Vol(S_k) = \\sum_{i\\in S_k, j\\in V} W_{ij} = F_{\\cdot,k}^\\top D F_{\\cdot,k}\\\\\n", "Cut(S_k,S_k^c) = \\sum_{i\\in S_k, j\\in V} W_{ij} - \\sum_{i\\in S_k, j\\in S_k} W_{ij} = F_{\\cdot,k}^\\top D F_{\\cdot,k} - F_{\\cdot,k}^\\top W F_{\\cdot,k} = F_{\\cdot,k}^\\top (D - W) F_{\\cdot,k} \\quad\n", "$$\n", "\n", "We thus have\n", "\n", "$$\n", "\\frac{Cut(S_k,S_k^c)}{Vol(S_k)} = \\frac{ F_{\\cdot,k}^\\top (D - W) F_{\\cdot,k} }{ F_{\\cdot,k}^\\top D F_{\\cdot,k} } \n", "$$\n", "\n", "\n", "Set $\\hat{F}_{\\cdot,k}=D^{1/2}F_{\\cdot,k}$ and observe that\n", "\n", "$$\n", "\\frac{ F_{\\cdot,k}^\\top (D - W) F_{\\cdot,k} }{ F_{\\cdot,k}^\\top D F_{\\cdot,k} } = \\frac{ \\hat{F}_{\\cdot,k}^\\top D^{-1/2}(D - W)D^{-1/2} \\hat{F}_{\\cdot,k} }{ \\hat{F}_{\\cdot,k}^\\top \\hat{F}_{\\cdot,k} } = \\frac{ \\hat{F}_{\\cdot,k}^\\top (I - D^{-1/2}WD^{-1/2}) \\hat{F}_{\\cdot,k} }{ \\hat{F}_{\\cdot,k}^\\top \\hat{F}_{\\cdot,k} } ,\n", "$$\n", "\n", "with $L_N=I - D^{-1/2}WD^{-1/2}$ is the normalized graph Laplacian. Set $Y_{\\cdot,k}=\\frac{\\hat{F}_{\\cdot,k}}{\\|\\hat{F}_{\\cdot,k}\\|_2}$:\n", "\n", "$$\n", "\\frac{ \\hat{F}_{\\cdot,k}^\\top L_N \\hat{F}_{\\cdot,k} }{ \\hat{F}_{\\cdot,k}^\\top \\hat{F}_{\\cdot,k} } = Y_{\\cdot,k}^\\top L_N Y_{\\cdot,k} \\quad\\quad\\quad(2)\n", "$$\n", "\n", "\n", "Using (2), we can rewrite (1) as a functional optimization problem:\n", "\n", "$$\n", "\\min_{Y}\\ tr( Y^\\top A Y) \\ \\textrm{ s.t. } \\ Y^\\top Y = I_K \\textrm{ and } Y \\in Ind_S,\n", "$$\n", "\n", "where\n", "\n", "\n", "$$\n", "Y \\in Ind_S \\ \\textrm{ reads as } \\ Y_{ik} = \n", "\\left\\{\n", "\\begin{array}{ll}\n", "\\big(\\frac{D_{ii}}{Vol(S_k)}\\big)^{1/2} & \\textrm{if} \\ i \\in S_k\\\\\n", "0 & \\textrm{otherwise}\n", "\\end{array}\n", "\\right..\n", "$$\n", "\n", "and\n", "\n", "$$\n", "A=???\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Answer to Q3:** Let us introduce the indicator matrix $F$ of the clusters $S_k$ such that:\n", "\n", "$$\n", "F_{ik} = \n", "\\left\\{\n", "\\begin{array}{ll}\n", "1 & \\textrm{if} \\ i \\in S_k\\\\\n", "0 & \\textrm{otherwise}\n", "\\end{array}\n", "\\right..\n", "$$\n", "\n", "We may rewrite the Cut operator and the Volume operator with $F$ as:\n", "\n", "$$\n", "Vol(S_k) = \\sum_{i\\in S_k, j\\in V} W_{ij} = F_{\\cdot,k}^\\top D F_{\\cdot,k}\\\\\n", "Cut(S_k,S_k^c) = \\sum_{i\\in S_k, j\\in V} W_{ij} - \\sum_{i\\in S_k, j\\in S_k} W_{ij} = F_{\\cdot,k}^\\top D F_{\\cdot,k} - F_{\\cdot,k}^\\top W F_{\\cdot,k} = F_{\\cdot,k}^\\top (D - W) F_{\\cdot,k} \\quad\n", "$$\n", "\n", "We thus have\n", "\n", "$$\n", "\\frac{Cut(S_k,S_k^c)}{Vol(S_k)} = \\frac{ F_{\\cdot,k}^\\top (D - W) F_{\\cdot,k} }{ F_{\\cdot,k}^\\top D F_{\\cdot,k} } \n", "$$\n", "\n", "\n", "Set $\\hat{F}_{\\cdot,k}=D^{1/2}F_{\\cdot,k}$ and observe that\n", "\n", "$$\n", "\\frac{ F_{\\cdot,k}^\\top (D - W) F_{\\cdot,k} }{ F_{\\cdot,k}^\\top D F_{\\cdot,k} } = \\frac{ \\hat{F}_{\\cdot,k}^\\top D^{-1/2}(D - W)D^{-1/2} \\hat{F}_{\\cdot,k} }{ \\hat{F}_{\\cdot,k}^\\top \\hat{F}_{\\cdot,k} } = \\frac{ \\hat{F}_{\\cdot,k}^\\top (I - D^{-1/2}WD^{-1/2}) \\hat{F}_{\\cdot,k} }{ \\hat{F}_{\\cdot,k}^\\top \\hat{F}_{\\cdot,k} } ,\n", "$$\n", "\n", "where $L_N=I - D^{-1/2}WD^{-1/2}$ is the normalized graph Laplacian. Set $Y_{\\cdot,k}=\\frac{\\hat{F}_{\\cdot,k}}{\\|\\hat{F}_{\\cdot,k}\\|_2}$, we have:\n", "\n", "$$\n", "\\frac{ \\hat{F}_{\\cdot,k}^\\top L_N \\hat{F}_{\\cdot,k} }{ \\hat{F}_{\\cdot,k}^\\top \\hat{F}_{\\cdot,k} } = Y_{\\cdot,k}^\\top L_N Y_{\\cdot,k} \\quad\\quad\\quad(2)\n", "$$\n", "\n", "\n", "Using (2), we can rewrite (1) as a functional optimization problem:\n", "\n", "$$\n", "\\min_{Y}\\ tr( Y^\\top A Y) \\ \\textrm{ s.t. } \\ Y^\\top Y = I_K \\textrm{ and } Y \\in Ind_S,\n", "$$\n", "\n", "where\n", "\n", "$$\n", "Y \\in Ind_S \\ \\textrm{ reads as } \\ Y_{ik} = \n", "\\left\\{\n", "\\begin{array}{ll}\n", "\\big(\\frac{D_{ii}}{Vol(S_k)}\\big)^{1/2} & \\textrm{if} \\ i \\in S_k\\\\\n", "0 & \\textrm{otherwise}\n", "\\end{array}\n", "\\right..\n", "$$\n", "\n", "and\n", "\n", "$$\n", "A=L_N=I-D^{-1/2}WD^{-1/2}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Question 4:** Drop the cluster indicator constraint $Y\\in Ind_S$ in Q3, how do you compute the solution $Y^\\star$ of (3)? Why the first column of $Y^\\star$ is not relevant for clustering?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Answer to Q4:** Your answer here.\n", "\n", "Dropping the constraint $Y\\in Ind_S$ in (3) leads to a standard spectral relaxation problem:\n", "\n", "$$\n", "\\min_{Y}\\ tr( Y^\\top A Y) \\ \\textrm{ s.t. } \\ Y^\\top Y = I_K,\n", "$$\n", "\n", "which solution $Y^\\star$ is given by the $K$ smallest eigenvectors/eigenvalues of $A=L_N=I-D^{-1/2}WD^{-1/2}$. Note that the first column of $Y^\\star$ is the constant signal $y_1=\\frac{1}{\\sqrt{n}}1_{n\\times 1}$ associated to the smallest eigenvalue of $L_N$, which has value $\\lambda_1=0$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Question 5:** Plot in 3D the 2nd, 3rd, 4th columns of $Y^\\star$. <br>\n", "Hint: Compute the degree matrix $D$.<br>\n", "Hint: You may use function *D_sqrt_inv = scipy.sparse.diags(d_sqrt_inv.A.squeeze(), 0)* for creating $D^{-1/2}$.<br>\n", "Hint: You may use function *I = scipy.sparse.identity(d.size, dtype=W.dtype)* for creating a sparse identity matrix.<br>\n", "Hint: You may use function *lamb, U = scipy.sparse.linalg.eigsh(A, k=4, which='SM')* to perform the eigenvalue decomposition of A.<br> \n", "Hint: You may use function *ax.scatter(Xdisp, Ydisp, Zdisp, c=Cgt)* for 3D visualization." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Load dataset: W is the Adjacency Matrix and Cgt is the ground truth clusters\n", "mat = scipy.io.loadmat('datasets/mnist_2000_graph.mat')\n", "W = mat['W']\n", "n = W.shape[0]\n", "Cgt = mat['Cgt'] - 1; Cgt = Cgt.squeeze()\n", "nc = len(np.unique(Cgt))\n", "print('Number of nodes =',n)\n", "print('Number of classes =',nc);" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Your code here\n", "\n", "# Construct Spectal Matrix A\n", "d = W.sum(axis=0) + 1e-6 # degree vector\n", "d = 1.0 / np.sqrt(d)\n", "Dinv = scipy.sparse.diags(d.A.squeeze(), 0)\n", "I = scipy.sparse.identity(d.size, dtype=W.dtype)\n", "A = I - Dinv* (W* Dinv)\n", "\n", "# Compute K smallest eigenvectors/eigenvalues of A\n", "lamb, U = scipy.sparse.linalg.eigsh(A, k=4, which='SM')\n", "\n", "# Sort eigenvalue from smallest to largest values\n", "idx = lamb.argsort() # increasing order\n", "lamb, U = lamb[idx], U[:,idx]\n", "print(lamb)\n", "\n", "# Y*\n", "Y = U\n", "\n", "# Plot in 3D the 2nd, 3rd, 4th columns of Y*\n", "Xdisp = Y[:,1]\n", "Ydisp = Y[:,2]\n", "Zdisp = Y[:,3]\n", "\n", "# 2D Visualization\n", "plt.figure(14)\n", "size_vertex_plot = 10\n", "plt.scatter(Xdisp, Ydisp, s=size_vertex_plot*np.ones(n), c=Cgt)\n", "plt.title('2D Visualization')\n", "plt.show()\n", "\n", "# 3D Visualization\n", "fig = pylab.figure(15)\n", "ax = Axes3D(fig)\n", "ax.scatter(Xdisp, Ydisp, Zdisp, c=Cgt)\n", "pylab.title('3D Visualization')\n", "pyplot.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Question 6:** Solve the unsupervised clustering problem for MNIST following the popular technique of [Ng, Jordan, Weiss, “On Spectral Clustering: Analysis and an algorithm”, 2002], i.e. <br>\n", "(1) Compute $Y^\\star$? solution of Q4. <br>\n", "(2) Normalize the rows of $Y^\\star$? with the L2-norm. <br>\n", "Hint: You may use function X = ( X.T / np.sqrt(np.sum(X**2,axis=1)+1e-10) ).T for the L2-normalization of the rows of X.<br>\n", "(3) Run standard K-Means on normalized $Y^\\star$? to get the clusters, and compute the clustering accuracy. You should get more than 50% accuracy. " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Your code here\n", "# Normalize the rows of Y* with the L2 norm, i.e. ||y_i||_2 = 1\n", "Y = ( Y.T / np.sqrt(np.sum(Y**2,axis=1)+1e-10) ).T " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Your code here\n", "# Run standard K-Means\n", "Ker = construct_kernel(Y,'linear') # Compute linear Kernel for standard K-Means\n", "Theta = np.ones(n) # Equal weight for each data\n", "[C_kmeans,En_kmeans] = compute_kernel_kmeans_EM(nc,Ker,Theta,10)\n", "acc= compute_purity(C_kmeans,Cgt,nc)\n", "print('accuracy standard kmeans=',acc)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 0 }