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Preface

Recommender Systems are software tools and techniques providing suggestions for
items to be of use to a user. The suggestions provided are aimed at supporting their
users in various decision-making processes, such as what items to buy, what music

Development of recommender systems is a multi-disciplinary effort which in-
volves experts from various fields such as Artificial intelligence, Human Computer
Interaction, Information Technology, Data Mining, Statistics, Adaptive User Inter-
faces, Decision Support Systems, Marketing, or Consumer Behavior. Recommender
Systems Handbook: A Complete Guide for Research Scientists and Practitioners
aims to impose a degree of order upon this diversity by presenting a coherent and
unified repository of recommender systems’ major concepts, theories, methodolo-
gies, trends, challenges and applications. This is the first comprehensive book which
is dedicated entirely to the field of recommender systems and covers several aspects
of the major techniques. Its informative, factual pages will provide researchers, stu-

classical methods, as well as extensions and novel approaches that were recently in-
troduced. The book consists of five parts: techniques, applications and evaluation of
recommender systems, interacting with recommender systems, recommender sys-
tems and communities, and advanced algorithms. The first part presents the most
popular and fundamental techniques used nowadays for building recommender sys-
tems, such as collaborative filtering, content-based filtering, data mining methods
and context-aware methods. The second part starts by surveying techniques and ap-
proaches that have been used to evaluate the quality of the recommendations. Then
deals with the practical aspects of designing recommender systems, it describes de-
sign and implementation consideration, setting guidelines for the selection of the

vii

to listen, or what news to read. Recommender systems have proven to be valu-
able means for online users to cope with the information overload and have 

Correspondingly, various techniques for recommendation generation have been 
proposed and during the last decade, many of them have also been successfully 
deployed in commercial environments. 

become one of the most powerful and popular tools in electronic commerce. 

dents and practitioners in industry with a comprehensive, yet concise and con-
venient reference source to recommender systems. The book describes in detail the

嚇科
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more suitable algorithms. The section continues considering aspects that may affect
the design and finally, it discusses methods, challenges and measures to be applied
for the evaluation of the developed systems. The third part includes papers dealing
with a number of issues related to the presentation, browsing, explanation and vi-
sualization of the recommendations, and techniques that make the recommendation
process more structured and conversational.

The fourth part is fully dedicated to a rather new topic, which is however rooted in
the core idea of a collaborative recommender, i.e., exploiting user generated content

Finally the last section collects a few papers on some advanced topics, such as
the exploitation of active learning principles to guide the acquisition of new knowl-
edge, techniques suitable for making a recommender system robust against attacks
of malicious users, and recommender systems that aggregate multiple types of user
feedbacks and preferences to build more reliable recommendations.

We would like to thank all authors for their valuable contributions. We would
like to express gratitude for all reviewers that generously gave comments on drafts or
counsel otherwise. We would like to express our special thanks to Susan Lagerstrom-
Fife and staff members of Springer for their kind cooperation throughout the pro-
duction of this book. Finally, we wish this handbook will contribute to the growth
of this subject, we wish to the novices a fruitful learning path, and to those more ex-
perts a compelling application of the ideas discussed in this handbook and a fruitful

Francesco Ricci
Lior Rokach

Bracha Shapira
May 2010 Paul B. Kantor

of various types to build new types and more credible recommendations.

development of this challenging research area.
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Chapter 1
Introduction to Recommender Systems
Handbook

Francesco Ricci, Lior Rokach and Bracha Shapira

Abstract Recommender Systems (RSs) are software tools and techniques providing
suggestions for items to be of use to a user. In this introductory chapter we briefly
discuss basic RS ideas and concepts. Our main goal is to delineate, in a coherent
and structured way, the chapters included in this handbook and to help the reader
navigate the extremely rich and detailed content that the handbook offers.

1.1 Introduction

Recommender Systems (RSs) are software tools and techniques providing sugges-
tions for items to be of use to a user [60, 85, 25]. The suggestions relate to various
decision-making processes, such as what items to buy, what music to listen to, or
what online news to read.

“Item” is the general term used to denote what the system recommends to users.
A RS normally focuses on a specific type of item (e.g., CDs, or news) and accord-
ingly its design, its graphical user interface, and the core recommendation technique
used to generate the recommendations are all customized to provide useful and ef-
fective suggestions for that specific type of item.

RSs are primarily directed towards individuals who lack sufficient personal ex-
perience or competence to evaluate the potentially overwhelming number of alter-
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native items that a Web site, for example, may offer [85]. A case in point is a book
recommender system that assists users to select a book to read. In the popular Web
site, Amazon.com, the site employs a RS to personalize the online store for each
customer [47]. Since recommendations are usually personalized, different users or
user groups receive diverse suggestions. In addition there are also non-personalized
recommendations. These are much simpler to generate and are normally featured in
magazines or newspapers. Typical examples include the top ten selections of books,
CDs etc. While they may be useful and effective in certain situations, these types of
non-personalized recommendations are not typically addressed by RS research.

In their simplest form, personalized recommendations are offered as ranked lists
of items. In performing this ranking, RSs try to predict what the most suitable prod-
ucts or services are, based on the user’s preferences and constraints. In order to
complete such a computational task, RSs collect from users their preferences, which
are either explicitly expressed, e.g., as ratings for products, or are inferred by inter-
preting user actions. For instance, a RS may consider the navigation to a particular
product page as an implicit sign of preference for the items shown on that page.

RSs development initiated from a rather simple observation: individuals often
rely on recommendations provided by others in making routine, daily decisions
[60, 70]. For example it is common to rely on what one’s peers recommend when
selecting a book to read; employers count on recommendation letters in their re-
cruiting decisions; and when selecting a movie to watch, individuals tend to read
and rely on the movie reviews that a film critic has written and which appear in the
newspaper they read.

In seeking to mimic this behavior, the first RSs applied algorithms to leverage
recommendations produced by a community of users to deliver recommendations
to an active user, i.e., a user looking for suggestions. The recommendations were
for items that similar users (those with similar tastes) had liked. This approach is
termed collaborative-filtering and its rationale is that if the active user agreed in the
past with some users, then the other recommendations coming from these similar
users should be relevant as well and of interest to the active user.

As e-commerce Web sites began to develop, a pressing need emerged for pro-
viding recommendations derived from filtering the whole range of available alter-
natives. Users were finding it very difficult to arrive at the most appropriate choices
from the immense variety of items (products and services) that these Web sites were
offering.

The explosive growth and variety of information available on the Web and the
rapid introduction of new e-business services (buying products, product compari-
son, auction, etc.) frequently overwhelmed users, leading them to make poor deci-
sions. The availability of choices, instead of producing a benefit, started to decrease
users’ well-being. It was understood that while choice is good, more choice is not
always better. Indeed, choice, with its implications of freedom, autonomy, and self-
determination can become excessive, creating a sense that freedom may come to be
regarded as a kind of misery-inducing tyranny [96].

RSs have proved in recent years to be a valuable means for coping with the infor-
mation overload problem. Ultimately a RS addresses this phenomenon by pointing

,
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a user towards new, not-yet-experienced items that may be relevant to the users
current task. Upon a user’s request, which can be articulated, depending on the rec-
ommendation approach, by the user’s context and need, RSs generate recommen-
dations using various types of knowledge and data about users, the available items,
and previous transactions stored in customized databases. The user can then browse
the recommendations. She may accept them or not and may provide, immediately
or at a next stage, an implicit or explicit feedback. All these user actions and feed-
backs can be stored in the recommender database and may be used for generating
new recommendations in the next user-system interactions.

As noted above, the study of recommender systems is relatively new compared to
research into other classical information system tools and techniques (e.g., databases
or search engines). Recommender systems emerged as an independent research area
in the mid-1990s [35, 60, 70, 7]. In recent years, the interest in recommender sys-
tems has dramatically increased, as the following facts indicate:

1. Recommender systems play an important role in such highly rated Internet sites
as Amazon.com, YouTube, Netflix, Yahoo, Tripadvisor, Last.fm, and IMDb.
Moreover many media companies are now developing and deploying RSs as part
of the services they provide to their subscribers. For example Netflix, the online
movie rental service, awarded a million dollar prize to the team that first suc-
ceeded in improving substantially the performance of its recommender system
[54].

2. There are dedicated conferences and workshops related to the field. We refer
specifically to ACM Recommender Systems (RecSys), established in 2007 and
now the premier annual event in recommender technology research and appli-
cations. In addition, sessions dedicated to RSs are frequently included in the
more traditional conferences in the area of data bases, information systems and
adaptive systems. Among these conferences are worth mentioning ACM SIGIR
Special Interest Group on Information Retrieval (SIGIR), User Modeling, Adap-
tation and Personalization (UMAP), and ACM’s Special Interest Group on Man-
agement Of Data (SIGMOD).

3. At institutions of higher education around the world, undergraduate and graduate
courses are now dedicated entirely to RSs; tutorials on RSs are very popular at
computer science conferences; and recently a book introducing RSs techniques
was published [48].

4. There have been several special issues in academic journals covering research
and developments in the RS field. Among the journals that have dedicated issues
to RS are: AI Communications (2008); IEEE Intelligent Systems (2007); Inter-
national Journal of Electronic Commerce (2006); International Journal of Com-
puter Science and Applications (2006); ACM Transactions on Computer-Human
Interaction (2005); and ACM Transactions on Information Systems (2004).

In this introductory chapter we briefly discuss basic RS ideas and concepts. Our
main goal is not much to present a self-contained comprehensive introduction or
survey on RSs but rather to delineate, in a coherent and structured way, the chapters
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included in this handbook and to help the reader navigate the extremely rich and
detailed content that the handbook offers.

The handbook is divided into five sections: techniques; applications and evalua-
tion of RSs; interacting with RSs; RSs and communities; and advanced algorithms.

The first section presents the techniques most popularly used today for build-
ing RSs, such as collaborative filtering; content-based, data mining methods; and
context-aware methods.

The second section surveys techniques and approaches that have been utilized to
evaluate the quality of the recommendations. It also deals with the practical aspects
of designing recommender systems; describes design and implementation consider-
ations; and sets guidelines for selecting the more suitable algorithms. The section
also considers aspects that may affect RS design (domain, device, users, etc.). Fi-
nally, it discusses methods, challenges and measures to be applied in evaluating the
developed systems.

The third section includes papers dealing with a number of issues related to how
recommendations are presented, browsed, explained and visualized. The techniques
that make the recommendation process more structured and conversational are dis-
cussed here.

The fourth section is fully dedicated to a rather new topic, exploiting user-
generated content (UGC) of various types (tags, search queries, trust evaluations,
etc.) to generate innovative types of recommendations and more credible ones. De-
spite its relative newness, this topic is essentially rooted in the core idea of a collab-
orative recommender,

The last selection presents papers on various advanced topics, such as: the ex-
ploitation of active learning principles to guide the acquisition of new knowledge;
suitable techniques for protecting a recommender system against attacks of mali-
cious users; and RSs that aggregate multiple types of user feedbacks and preferences
to build more reliable recommendations.

1.2 Recommender Systems Function

In the previous section we defined RSs as software tools and techniques providing
users with suggestions for items a user may wish to utilize. Now we want to refine
this definition illustrating a range of possible roles that a RS can play. First of all,
we must distinguish between the role played by the RS on behalf of the service
provider from that of the user of the RS. For instance, a travel recommender system
is typically introduced by a travel intermediary (e.g., Expedia.com) or a destination
management organization (e.g., Visitfinland.com) to increase its turnover (Expedia),
i.e., sell more hotel rooms, or to increase the number of tourists to the destination
[86]. Whereas, the user’s primary motivations for accessing the two systems is to
find a suitable hotel and interesting events/attractions when visiting a destination.

In fact, there are various reasons as to why service providers may want to exploit
this technology:
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• Increase the number of items sold. This is probably the most important function
for a commercial RS, i.e., to be able to sell an additional set of items compared
to those usually sold without any kind of recommendation. This goal is achieved
because the recommended items are likely to suit the user’s needs and wants.
Presumably the user will recognize this after having tried several recommenda-
tions1. Non-commercial applications have similar goals, even if there is no cost
for the user that is associated with selecting an item. For instance, a content net-
work aims at increasing the number of news items read on its site.
In general, we can say that from the service provider’s point of view, the primary
goal for introducing a RS is to increase the conversion rate, i.e., the number of
users that accept the recommendation and consume an item, compared to the
number of simple visitors that just browse through the information.

• Sell more diverse items. Another major function of a RS is to enable the user
to select items that might be hard to find without a precise recommendation.
For instance, in a movie RS such as Netflix, the service provider is interested
in renting all the DVDs in the catalogue, not just the most popular ones. This
could be difficult without a RS since the service provider cannot afford the risk
of advertising movies that are not likely to suit a particular user’s taste. Therefore,
a RS suggests or advertises unpopular movies to the right users

• Increase the user satisfaction. A well designed RS can also improve the expe-
rience of the user with the site or the application. The user will find the recom-
mendations interesting, relevant and, with a properly designed human-computer
interaction, she will also enjoy using the system. The combination of effective,
i.e., accurate, recommendations and a usable interface will increase the user’s
subjective evaluation of the system. This in turn will increase system usage and
the likelihood that the recommendations will be accepted.

• Increase user fidelity. A user should be loyal to a Web site which, when visited,
recognizes the old customer and treats him as a valuable visitor. This is a nor-
mal feature of a RS since many RSs compute recommendations, leveraging the
information acquired from the user in previous interactions, e.g., her ratings of
items. Consequently, the longer the user interacts with the site, the more refined
her user model becomes, i.e., the system representation of the user’s preferences,
and the more the recommender output can be effectively customized to match the
user’s preferences.

• Better understand what the user wants. Another important function of a RS,
which can be leveraged to many other applications, is the description of the
user’s preferences, either collected explicitly or predicted by the system. The
service provider may then decide to re-use this knowledge for a number of other
goals such as improving the management of the item’s stock or production. For
instance, in the travel domain, destination management organizations can decide
to advertise a specific region to new customer sectors or advertise a particular

1 This issue, convincing the user to accept a recommendation, is discussed again when we explain
the difference between predicting the user interest in an item and the likelihood that the user will
select the recommended item.
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type of promotional message derived by analyzing the data collected by the RS
(transactions of the users).

We mentioned above some important motivations as to why e-service providers
introduce RSs. But users also may want a RS, if it will effectively support their tasks
or goals. Consequently a RS must balance the needs of these two players and offer
a service that is valuable to both.

Herlocker et al. [25], in a paper that has become a classical reference in this
field, define eleven popular tasks that a RS can assist in implementing. Some may
be considered as the main or core tasks that are normally associated with a RS,
i.e., to offer suggestions for items that may be useful to a user. Others might be
considered as more “opportunistic” ways to exploit a RS. As a matter of fact, this
task differentiation is very similar to what happens with a search engine, Its primary
function is to locate documents that are relevant to the user’s information need, but
it can also be used to check the importance of a Web page (looking at the position
of the page in the result list of a query) or to discover the various usages of a word
in a collection of documents.

• Find Some Good Items: Recommend to a user some items as a ranked list along
with predictions of how much the user would like them (e.g., on a one- to five-
star scale). This is the main recommendation task that many commercial systems
address (see, for instance, Chapter 9). Some systems do not show the predicted
rating.

• Find all good items: Recommend all the items that can satisfy some user needs.
In such cases it is insufficient to just find some good items. This is especially true
when the number of items is relatively small or when the RS is mission-critical,
such as in medical or financial applications. In these situations, in addition to the
benefit derived from carefully examining all the possibilities, the user may also
benefit from the RS ranking of these items or from additional explanations that
the RS generates.

• Annotation in context: Given an existing context, e.g., a list of items, emphasize
some of them depending on the user’s long-term preferences. For example, a
TV recommender system might annotate which TV shows displayed in the elec-
tronic program guide (EPG) are worth watching (Chapter 18 provides interesting
examples of this task).

• Recommend a sequence: Instead of focusing on the generation of a single rec-
ommendation, the idea is to recommend a sequence of items that is pleasing as
a whole. Typical examples include recommending a TV series; a book on RSs
after having recommended a book on data mining; or a compilation of musical
tracks [99], [39].

• Recommend a bundle: Suggest a group of items that fits well together. For in-
stance a travel plan may be composed of various attractions, destinations, and
accommodation services that are located in a delimited area. From the point of
view of the user these various alternatives can be considered and selected as a
single travel destination [87].
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• Just browsing: In this task, the user browses the catalog without any imminent
intention of purchasing an item. The task of the recommender is to help the user
to browse the items that are more likely to fall within the scope of the user’s inter-
ests for that specific browsing session. This is a task that has been also supported
by adaptive hypermedia techniques [23].

• Find credible recommender: Some users do not trust recommender systems thus
they play with them to see how good they are in making recommendations.
Hence, some system may also offer specific functions to let the users test its
behavior in addition to those just required for obtaining recommendations.

• Improve the profile: This relates to the capability of the user to provide (input)
information to the recommender system about what he likes and dislikes. This is
a fundamental task that is strictly necessary to provide personalized recommen-
dations. If the system has no specific knowledge about the active user then it can
only provide him with the same recommendations that would be delivered to an
“average” user.

• Express self: Some users may not care about the recommendations at all. Rather,
what it is important to them is that they be allowed to contribute with their rat-
ings and express their opinions and beliefs. The user satisfaction for that activity
can still act as a leverage for holding the user tightly to the application (as we
mentioned above in discussing the service provider’s motivations).

• Help others: Some users are happy to contribute with information, e.g., their
evaluation of items (ratings), because they believe that the community benefits
from their contribution. This could be a major motivation for entering informa-
tion into a recommender system that is not used routinely. For instance, with a
car RS, a user, who has already bought her new car is aware that the rating en-
tered in the system is more likely to be useful for other users rather than for the
next time she will buy a car.

• Influence others: In Web-based RSs, there are users whose main goal is to ex-
plicitly influence other users into purchasing particular products. As a matter of
fact, there are also some malicious users that may use the system just to promote
or penalize certain items (see Chapter 25).

As these various points indicate, the role of a RS within an information system
can be quite diverse. This diversity calls for the exploitation of a range of different
knowledge sources and techniques and in the next two sections we discuss the data
a RS manages and the core technique used to identify the right recommendations.

1.3 Data and Knowledge Sources

RSs are information processing systems that actively gather various kinds of data
in order to build their recommendations. Data is primarily about the items to sug-
gest and the users who will receive these recommendations. But, since the data
and knowledge sources available for recommender systems can be very diverse,
ultimately, whether they can be exploited or not depends on the recommendation

-_-
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technique (see also section 1.4). This will become clearer in the various chapters
included in this handbook (see in particular Chapter 11).

In general, there are recommendation techniques that are knowledge poor, i.e.,
they use very simple and basic data, such as user ratings/evaluations for items
(Chapters 5, 4). Other techniques are much more knowledge dependent, e.g., us-
ing ontological descriptions of the users or the items (Chapter 3), or constraints
(Chapter 6), or social relations and activities of the users (Chapter 19). In any case,
as a general classification, data used by RSs refers to three kinds of objects: items,
users, and transactions, i.e., relations between users and items.

Items. Items are the objects that are recommended. Items may be characterized
by their complexity and their value or utility. The value of an item may be positive if
the item is useful for the user, or negative if the item is not appropriate and the user
made a wrong decision when selecting it. We note that when a user is acquiring an
item she will always incur in a cost, which includes the cognitive cost of searching
for the item and the real monetary cost eventually paid for the item.

For instance, the designer of a news RS must take into account the complexity of
a news item, i.e., its structure, the textual representation, and the time-dependent im-
portance of any news item. But, at the same time, the RS designer must understand
that even if the user is not paying for reading news, there is always a cognitive cost
associated to searching and reading news items. If a selected item is relevant for the
user this cost is dominated by the benefit of having acquired a useful information,
whereas if the item is not relevant the net value of that item for the user, and its
recommendation, is negative. In other domains, e.g., cars, or financial investments,
the true monetary cost of the items becomes an important element to consider when
selecting the most appropriate recommendation approach.

Items with low complexity and value are: news, Web pages, books, CDs, movies.
Items with larger complexity and value are: digital cameras, mobile phones, PCs,
etc. The most complex items that have been considered are insurance policies, fi-
nancial investments, travels, jobs [72].

RSs, according to their core technology, can use a range of properties and fea-
tures of the items. For example in a movie recommender system, the genre (such
as comedy, thriller, etc.), as well as the director, and actors can be used to describe
a movie and to learn how the utility of an item depends on its features. Items can
be represented using various information and representation approaches, e.g., in a
minimalist way as a single id code, or in a richer form, as a set of attributes, but even
as a concept in an ontological representation of the domain (Chapter 3).

Users. Users of a RS, as mentioned above, may have very diverse goals and char-
acteristics. In order to personalize the recommendations and the human-computer
interaction, RSs exploit a range of information about the users. This information
can be structured in various ways and again the selection of what information to
model depends on the recommendation technique.

For instance, in collaborative filtering, users are modeled as a simple list contain-
ing the ratings provided by the user for some items. In a demographic RS, socio-
demographic attributes such as age, gender, profession, and education, are used.
User data is said to constitute the user model [21, 32]. The user model profiles the
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user, i.e., encodes her preferences and needs. Various user modeling approaches
have been used and, in a certain sense, a RS can be viewed as a tool that generates
recommendations by building and exploiting user models [19, 20]. Since no person-
alization is possible without a convenient user model, unless the recommendation is
non-personalized, as in the top-10 selection, the user model will always play a cen-
tral role. For instance, considering again a collaborative filtering approach, the user
is either profiled directly by its ratings to items or, using these ratings, the system
derives a vector of factor values, where users differ in how each factor weights in
their model (Chapters 5 and 4).

Users can also be described by their behavior pattern data, for example, site
browsing patterns (in a Web-based recommender system) [107], or travel search
patterns (in a travel recommender system) [60]. Moreover, user data may include re-
lations between users such as the trust level of these relations between users (Chap-
ter 20). A RS might utilize this information to recommend items to users that were
preferred by similar or trusted users.

Transactions. We generically refer to a transaction as a recorded interaction be-
tween a user and the RS. Transactions are log-like data that store important infor-
mation generated during the human-computer interaction and which are useful for
the recommendation generation algorithm that the system is using. For instance,
a transaction log may contain a reference to the item selected by the user and a
description of the context (e.g., the user goal/query) for that particular recommen-
dation. If available, that transaction may also include an explicit feedback the user
has provided, such as the rating for the selected item.

In fact, ratings are the most popular form of transaction data that a RS collects.
These ratings may be collected explicitly or implicitly. In the explicit collection of
ratings, the user is asked to provide her opinion about an item on a rating scale.
According to [93], ratings can take on a variety of forms:

• Numerical ratings such as the 1-5 stars provided in the book recommender asso-
ciated with Amazon.com.

• Ordinal ratings, such as “strongly agree, agree, neutral, disagree, strongly dis-
agree” where the user is asked to select the term that best indicates her opinion
regarding an item (usually via questionnaire).

• Binary ratings that model choices in which the user is simply asked to decide if
a certain item is good or bad.

• Unary ratings can indicate that a user has observed or purchased an item, or
otherwise rated the item positively. In such cases, the absence of a rating indicates
that we have no information relating the user to the item (perhaps she purchased
the item somewhere else).

Another form of user evaluation consists of tags associated by the user with the
items the system presents. For instance, in Movielens RS (http://movielens.umn.edu)
tags represent how MovieLens users feel about a movie, e.g.: “too long”, or “act-
ing”. Chapter 19 focuses on these types of transactions.

In transactions collecting implicit ratings, the system aims to infer the users opin-
ion based on the user’s actions. For example, if a user enters the keyword “Yoga” at
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Amazon.com she will be provided with a long list of books. In return, the user may
click on a certain book on the list in order to receive additional information. At this
point, the system may infer that the user is somewhat interested in that book.

In conversational systems, i.e., systems that support an interactive process, the
transaction model is more refined. In these systems user requests alternate with sys-
tem actions (see Chapter 13). That is, the user may request a recommendation and
the system may produce a suggestion list. But it can also request additional user
preferences to provide the user with better results. Here, in the transaction model,
the system collects the various requests-responses, and may eventually learn to mod-
ify its interaction strategy by observing the outcome of the recommendation process
[60].

1.4 Recommendation Techniques

In order to implement its core function, identifying the useful items for the user, a
RS must predict that an item is worth recommending. In order to do this, the system
must be able to predict the utility of some of them, or at least compare the utility of
some items, and then decide what items to recommend based on this comparison.
The prediction step may not be explicit in the recommendation algorithm but we can
still apply this unifying model to describe the general role of a RS. Here our goal
is to provide the reader with a unifying perspective rather than an account of all the
different recommendation approaches that will be illustrated in this handbook.

To illustrate the prediction step of a RS, consider, for instance, a simple, non-
personalized, recommendation algorithm that recommends just the most popular
songs. The rationale for using this approach is that in absence of more precise in-
formation about the user’s preferences, a popular song, i.e., something that is liked
(high utility) by many users, will also be probably liked by a generic user, at least
more than another randomly selected song. Hence the utility of these popular songs
is predicted to be reasonably high for this generic user.

This view of the core recommendation computation as the prediction of the util-
ity of an item for a user has been suggested in [3]. They model this degree of utility
of the user u for the item i as a (real valued) function R(u, i), as is normally done
in collaborative filtering by considering the ratings of users for items. Then the fun-
damental task of a collaborative filtering RS is to predict the value of R over pairs
of users and items, i.e., to compute R̂(u, i), where we denote with R̂ the estimation,
computed by the RS, of the true function R. Consequently, having computed this
prediction for the active user u on a set of items, i.e., R̂(u, i1), . . . , R̂(u, iN) the sys-
tem will recommend the items i j1 , . . . , i jK (K ≤ N) with the largest predicted utility.
K is typically a small number, i.e., much smaller than the cardinality of the item data
set or the items on which a user utility prediction can be computed, i.e., RSs “filter”
the items that are recommended to users.

As mentioned above, some recommender systems do not fully estimate the utility
before making a recommendation but they may apply some heuristics to hypothe-
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size that an item is of use to a user. This is typical, for instance, in knowledge-based
systems. These utility predictions are computed with specific algorithms (see below)
and use various kind of knowledge about users, items, and the utility function itself
(see section 1.3) [25]. For instance, the system may assume that the utility function
is Boolean and therefore it will just determine whether an item is or is not useful
for the user. Consequently, assuming that there is some available knowledge (possi-
bly none) about the user who is requesting the recommendation, knowledge about
items, and other users who received recommendations, the system will leverage this
knowledge with an appropriate algorithm to generate various utility predictions and
hence recommendations [25].

It is also important to note that sometimes the user utility for an item is observed
to depend on other variables, which we generically call “contextual” [1]. For in-
stance, the utility of an item for a user can be influenced by the domain knowledge
of the user (e.g., expert vs. beginning users of a digital camera), or can depend on
the time when the recommendation is requested. Or the user may be more inter-
ested in items (e.g., a restaurant) closer to his current location. Consequently, the
recommendations must be adapted to these specific additional details and as a result
it becomes harder and harder to correctly estimate what the right recommendations
are.

This handbook presents several different types of recommender systems that vary
in terms of the addressed domain, the knowledge used, but especially in regard to
the recommendation algorithm, i.e., how the prediction of the utility of a recom-
mendation, as mentioned at the beginning of this section, is made. Other differences
relate to how the recommendations are finally assembled and presented to the user in
response to user requests. These aspects are also discussed later in this introduction.

To provide a first overview of the different types of RSs, we want to quote a
taxonomy provided by [25] that has become a classical way of distinguishing be-
tween recommender systems and referring to them. [25] distinguishes between six
different classes of recommendation approaches:

Content-based: The system learns to recommend items that are similar to the
ones that the user liked in the past. The similarity of items is calculated based on the
features associated with the compared items. For example, if a user has positively
rated a movie that belongs to the comedy genre, then the system can learn to rec-
ommend other movies from this genre. Chapter 3 provides an overview of content-
based recommender systems, imposing some order among the extensive and diverse
aspects involved in their design and implementation. It presents the basic concepts
and terminology of content-based RSs, their high level architecture, and their main
advantages and drawbacks. The chapter then surveys state-of-the-art systems that
have been adopted in several application domains. The survey encompasses a thor-
ough description of both classical and advanced techniques for representing items
and user profiles. Finally, it discusses trends and future research which might lead
towards the next generation of recommender systems.

Collaborative filtering: The simplest and original implementation of this ap-
proach [93] recommends to the active user the items that other users with similar
tastes liked in the past. The similarity in taste of two users is calculated based on
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the similarity in the rating history of the users. This is the reason why [94] refers
to collaborative filtering as “people-to-people correlation.” Collaborative filtering is
considered to be the most popular and widely implemented technique in RS.

Chapter 4 presents a comprehensive survey of neighborhood-based methods for
collaborative filtering. Neighborhood methods focus on relationships between items
or, alternatively, between users. An item-item approach models the preference of a
user to an item based on ratings of similar items by the same user. Nearest-neighbors
methods enjoy considerable popularity due to their simplicity, efficiency, and their
ability to produce accurate and personalized recommendations. The authors will ad-
dress the essential decisions that are required when implementing a neighborhood-
based recommender system and provide practical information on how to make such
decisions.

Finally, the chapter deals with problems of data sparsity and limited coverage,
often observed in large commercial recommender systems. A few solutions to over-
come these problems are presented.

Chapter 5 presents several recent extensions available for building CF recom-
menders. Specifically, the authors discuss latent factor models, such as matrix fac-
torization (e.g., Singular Value Decomposition, SVD). These methods transform
both items and users to the same latent factor space. The latent space is then used
to explain ratings by characterizing both products and users in term of factors auto-
matically inferred from user feedback. The authors elucidate how SVD can handle
additional features of the data, including implicit feedback and temporal informa-
tion. They also describe techniques to address shortcomings of neighborhood tech-
niques by suggesting more rigorous formulations using global optimization tech-
niques. Utilizing such techniques makes it possible to lift the limit on neighborhood
size and to address implicit feedback and temporal dynamics. The resulting accuracy
is close to that of matrix factorization models, while offering a number of practical
advantages.

Demographic: This type of system recommends items based on the demo-
graphic profile of the user. The assumption is that different recommendations should
be generated for different demographic niches. Many Web sites adopt simple and
effective personalization solutions based on demographics. For example, users are
dispatched to particular Web sites based on their language or country. Or sugges-
tions may be customized according to the age of the user. While these approaches
have been quite popular in the marketing literature, there has been relatively little
proper RS research into demographic systems [59].

Knowledge-based: Knowledge-based systems recommend items based on spe-
cific domain knowledge about how certain item features meet users needs and pref-
erences and, ultimately, how the item is useful for the user. Notable knowledge-
based recommender systems are case-based [22, 87]. In these systems a similarity
function estimates how much the user needs (problem description) match the rec-
ommendations (solutions of the problem). Here the similarity score can be directly
interpreted as the utility of the recommendation for the user.

Constraint-based systems are another type of knowledge-based RSs (Chapter 6).
In terms of used knowledge, both systems are similar: user requirements are col-
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lected; repairs for inconsistent requirements are automatically proposed in situations
where no solutions could be found; and recommendation results are explained. The
major difference lies in the way solutions are calculated. Case-based recommenders
determine recommendations on the basis of similarity metrics whereas constraint-
based recommenders predominantly exploit predefined knowledge bases that con-
tain explicit rules about how to relate customer requirements with item features.

Knowledge-based systems tend to work better than others at the beginning of
their deployment but if they are not equipped with learning components they may be
surpassed by other shallow methods that can exploit the logs of the human/computer
interaction (as in CF).

Community-based: This type of system recommends items based on the pref-
erences of the users friends. This technique follows the epigram “Tell me who your
friends are, and I will tell you who you are”. [8, 14]. Evidence suggests that people
tend to rely more on recommendations from their friends than on recommendations
from similar but anonymous individuals [103]. This observation, combined with
the growing popularity of open social networks, is generating a rising interest in
community-based systems or, as or as they usually referred to, social recommender
systems [34]. This type of RSs models and acquires information about the social
relations of the users and the preferences of the user’s friends. The recommenda-
tion is based on ratings that were provided by the user’s friends. In fact these RSs
are following the rise of social-networks and enable a simple and comprehensive
acquisition of data related to the social relations of the users.

The research in this area is still in its early phase and results about the systems
performance are mixed. For example, [34, 64] report that overall, social-network-
based recommendations are no more accurate than those derived from traditional
CF approaches, except in special cases, such as when user ratings of a specific item
are highly varied (i.e. controversial items) or for cold-start situations, i.e., where the
users did not provide enough ratings to compute similarity to other users. Others
have showed that in some cases social-network data yields better recommendations
than profile similarity data [37] and that adding social network data to traditional
CF improves recommendation results [36]. The chapter 20 provides a survey of the
findings in this field and analyzes current results.

Hybrid recommender systems: These RSs are based on the combination of the
above mentioned techniques. A hybrid system combining techniques A and B tries
to use the advantages of A to fix the disadvantages of B. For instance, CF methods
suffer from new-item problems, i.e., they cannot recommend items that have no
ratings. This does not limit content-based approaches since the prediction for new
items is based on their description (features) that are typically easily available. Given
two (or more) basic RSs techniques, several ways have been proposed for combining
them to create a new hybrid system (see [25] for the precise descriptions).

As we have already mentioned, the context of the user when she is seeking a
recommendation can be used to better personalize the output of the system. For
example, in a temporal context, vacation recommendations in winter should be very
different from those provided in summer. Or a restaurant recommendation for a

主要是 -_-

⼀⼀ 警句 ,



14 Francesco Ricci, Lior Rokach and Bracha Shapira

Saturday evening with your friends should be different from that suggested for a
workday lunch with co-workers.

Chapter 7 presents the general notion of context and how it can be modeled in
RSs. Discussing the possibilities of combining several context-aware recommenda-
tion techniques into a single unified approach, the authors also provide a case study
of one such combined approach.

Three different algorithmic paradigms for incorporating contextual information
into the recommendation process are discussed: reduction-based (pre-filtering), con-
textual post filtering, and context modeling. In reduction-based (pre-filtering) meth-
ods, only the information that matches the current usage context, e.g., the ratings
for items evaluated in the same context, are used to compute the recommendations.
In contextual post filtering, the recommendation algorithm ignores the context in-
formation. The output of the algorithm is filtered/adjusted to include only the rec-
ommendations that are relevant in the target context. In the contextual modeling,
the more sophisticated of the three approaches, context data is explicitly used in the
prediction model.

1.5 Application and Evaluation

Recommender system research is being conducted with a strong emphasis on prac-
tice and commercial applications, since, aside from its theoretical contribution, is
generally aimed at practically improving commercial RSs. Thus, RS research in-
volves practical aspects that apply to the implementation of these systems. These
aspects are relevant to different stages in the life cycle of a RS, namely, the de-
sign of the system, its implementation and its maintenance and enhancement during
system operation.

The aspects that apply to the design stage include factors that might affect the
choice of the algorithm. The first factor to consider, the application’s domain, has a
major effect on the algorithmic approach that should be taken. [72] provide a taxon-
omy of RSs and classify existing RS applications to specific application domains.
Based on these specific application domains, we define more general classes of do-
mains for the most common recommender systems applications:

• Entertainment - recommendations for movies, music, and IPTV.
• Content - personalized newspapers, recommendation for documents, recommen-

dations of Web pages, e-learning applications, and e-mail filters.
• E-commerce - recommendations for consumers of products to buy such as books,

cameras, PCs etc.
• Services - recommendations of travel services, recommendation of experts for

consultation, recommendation of houses to rent, or matchmaking services.

As recommender systems become more popular, interest is aroused in the po-
tential advantages in new applications, such as recommending friends or tweets to
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follow as in www.tweeter.com. Hence, the above list cannot cover all the applica-
tion domains that are now being addressed by RS techniques; it gives only an initial
description of the various types of application domains.

The developer of a RS for a certain application domain should understand the
specific facets of the domain, its requirements, application challenges and limita-
tions. Only after analyzing these factors one could be able to select the optimal
recommender algorithm and to design an effective human-computer interaction.

Chapter 11 of this handbook provides guidelines for matching the application
domain to the recommendation technique. Burke and Ramezani in their chapter
provide a new classification of recommender systems. Unlike former classifications
of RSs (such as [25, 94, 3, 7]), Burke and Ramezani take an AI-centric approach, and
focus on the knowledge sources required for different recommendation approaches,
and the constraints related to them as a primer guideline to choosing the algorithm.
The chapter discusses the applicability of various recommendation techniques for
different types of problems and suggests decision-making guidelines in selecting
these techniques.

The chapter explicitly aims at system implementers as “recommenders” for the
right recommendation approach. The authors describe the knowledge sources that
are available to a recommender systems in different domains and identify what
knowledge sources are required for each recommendation technique. This implies
that the design of a recommender system should first emphasize the analysis of the
available sources of knowledge, and then decide about the algorithm accordingly.

Another example of the need to adjust the recommender approach to the domain
is described in Chapter 12, which deals with recommender systems for technology-
enhanced learning (TEL). TEL, which generally covers technologies that support
all forms of teaching and learning activities, aims at designing, developing and test-
ing new methods and technologies to enhance learning practices of both individuals
and organizations. TEL may benefit greatly from integrating recommender systems
technology to personalize the learning process and adjust it to the user’s former
knowledge, abilities and preferences. The chapter presents the particular require-
ments of RSs for TEL; the user tasks that are supported in TEL settings; and how
these tasks compare to typical user tasks in other RSs. For example, one particu-
lar user task for TEL –“find novel resources”– attempts to recommend only new
or novel items. Or, to cite another example, – “find new pathways” – is concerned
with recommending alternative pathways through the learning resources. The chap-
ter presents an analysis of the filtering approaches that could be useful for TEL along
with a survey of existing TEL systems illustrating the recommendation techniques
that have been deployed in these systems.

Chapter 10 discusses practical aspects of RS development and aims at providing
practical guidelines to the design, implementation and evaluation of personalized
systems. Besides the prediction algorithm, many other factors need to be considered
when designing a RS. Chapter 10 lists some of these elements: the type of target
users and their context; the devices that they would use; the role of the recommen-
dation within the application; the goal of the recommendation; and, as mentioned
previously, the data that is available.
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The authors propose to build a model of the environment based on three dimen-
sions: system users; the characteristics of the data; and the overall application. The
recommender system design will be based on this model. The authors illustrate their
guidelines and the model on a news recommendation system that they have devel-
oped.

Another important issue related to the practical side of RS deployment is the
necessity of evaluating them. Evaluation is required at different stages of the systems
life cycle for various purposes [25, 1]. At design time, evaluation is required to
verify the selection of the appropriate recommender approach. In the design phase,
evaluation should be implemented off-line and the recommendation algorithms are
compared with user interactions. The off-line evaluation consists of running several
algorithms on the same datasets of user interactions (e.g., ratings) and comparing
their performance. This type of evaluation is usually conducted on existing public
benchmark data if appropriate data is available, or, otherwise, on collected data. The
design of the off-line experiments should follow known experiment design practices
[11] in order to ensure reliable results.

Evaluation is also required after the system has been launched. The algorithms
might be very accurate in solving the core recommendation problem, i.e., predicting
user ratings, but for some other reason the system may not be accepted by users, e.g.,
because the performance of the system is not as expected. At this stage it is usually
beneficial to perform on-line evaluation with real users of the system and analyze
system logs in order to enhance system performance. In addition, most of the al-
gorithms include parameters, such as weights thresholds, the number of neighbors,
etc., requiring constant adjustment and calibration.

Another type of evaluation is a focused user study that can be conducted when
the on-line evaluation is not feasible or too risky. In this type of evaluation, a con-
trolled experiment is planned where a small group of users are asked to perform
different tasks with various versions of the system. It is then possible to analyze
the users performance and to distribute questionnaires so that users may report on
their experience. In such experiments it is possible to collect both quantitative and
qualitative information about the systems.

Evaluation is also discussed in Chapter 12 in the context of TEL systems. The
authors provide a detailed analysis of the evaluation methods and tools that can be
employed for evaluating TEL recommendation techniques against a set of criteria
that are proposed for each of the selected components (e.g., user model, domain
model, recommendation strategy and algorithm).

Chapter 8 details three types of experiments that can be conducted in order to
evaluate recommender systems. It presents their advantages and disadvantages, and
defines guidelines for choosing the methods for evaluation them. Unlike existing
discussions of evaluation in the literature that usually speaks about the accuracy of
an algorithms prediction [25] and related measures, this chapter is unique in its ap-
proach to the evaluation discussion since it focuses on property-directed evaluation.
It provides a large set of properties (other than accuracy) that are relevant to the
systems success. For each of the properties, the appropriate type of experiment and
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relevant measures are suggested. Among the list of properties are: coverage, cold
start, confidence, trust, novelty, risk, and serendipity.

When discussing the practical aspects of RSs, it may be beneficial to analyze
real system implementations. The idea is to test theoretically intuitive assumptions
in order to determine if they work in practice. The major problem that one must face
in this case comes from the fact that the owners of commercial RSs are generally
unwilling to reveal their practices and there are only relatively few opportunities for
such cooperation.

Chapter 9 reports on such an opportunity and describes the operation of a real
RS, illustrating the practical aspects that apply to the implementation stage of the
RS development and its evaluation. This description focuses on the integration of
a RS into the production environment of Fastweb, one of the largest European IP
Television (IPTV) providers. The chapter describes the requirements and consider-
ations, including scaling and accuracy, that led to the choice of the recommender
algorithms. It also describes the off-line and on-line evaluations that took place and
illustrates how the system is adjusted accordingly.

1.6 Recommender Systems and Human Computer Interaction

As we have illustrated in previous sections, researchers have chiefly been concerned
with designing a range of technical solutions, leveraging various sources of knowl-
edge to achieve better predictions about what is liked and how much by the target
user. The underlying assumption behind this research activity is that just presenting
these correct recommendations, i.e., the best options, should be enough. In other
words, the recommendations should speak for themselves, and the user should def-
initely accept the recommendations if they are correct. This is clearly an overly
simplified account of the recommendation problem and it is not so easy to deliver
recommendations.

In practice, users need recommendations because they do not have enough
knowledge to make an autonomous decision. Consequently, it may not be easy for
them to evaluate the proposed recommendation. Hence, various researchers have
tried to understand the factors that lead to the acceptance of a recommendation by a
given user [105, 30, 24, 97, 33].

[105] was among the first to point out that the effectiveness of a RS is depen-
dent on factors that go beyond the quality of the prediction algorithm. In fact, the
recommender must also convince users to try (or read, buy, listen, watch) the rec-
ommended items. This, of course, depends on the individual characteristics of the
selected items and therefore on the recommendation algorithm. The process also
depends, however, on the particular human/computer interaction supported by the
system when the items are presented, compared, and explained. [105] found that
from a users perspective, an effective recommender system must inspire trust in
the system; it must have a system logic that is at least somewhat transparent; it
should point users towards new, not-yet-experienced items; it should provide details
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about recommended items, including pictures and community ratings; and finally, it
should present ways to refine recommendations.

[105] and other similarly oriented researchers do not diminish the importance of
the recommendation algorithm, but claim that its effectiveness should not be evalu-
ated only in terms of the accuracy of the prediction, i.e., with standard and popular
IR metrics, such as MAE (Mean Absolute Error), precision, or NDCG (Normalized
Discounted Cumulative Gain) (see also Chapters 8 5, 9). Other dimensions should
be measured that relate to the acceptance of the recommender system and its recom-
mendations. These ideas have been remarkably well presented and discussed also by
[33]. In that work the authors propose user-centric directions for evaluating recom-
mender systems, including: the similarity of recommendation lists, recommendation
serendipity, and the importance of user needs and expectations in a recommender.

Following the remarks made in [105], let us introduce some important points
raised by HCI research that are further discussed in this handbook.

1.6.1 Trust, Explanations and Persuasiveness

First of all let us focus on trust. There are two different notions of trust that are
discussed in this handbook: trust about the other users of the recommender and trust
about a system’s recommendations.

Chapter 20 focuses on the first notion and considers a class of recommender
systems termed “social recommender systems”. These systems attempt to generate
more useful recommendations derived from information about user profiles and re-
lationships between users that nowadays can be found virtually everywhere; e.g.
in social networking sites such as Facebook, LinkedIn and MySpace. Since trust-
based recommender systems mainly exploit the trust relationships found in these
social networking sites to build new recommendation algorithms (e.g., [34]), they
still operate on the core rating prediction problem but use trust relationships. The
main claimed advantage is that users will be aware of the nature of the recommen-
dations, i.e., how they have been identified, and will tend to place greater trust in
these recommendations. In other words, the mutual trust of users can be exploited
also for increasing the trust in the system.

Trust in system recommendations is discussed in Chapter 15. In this chapter the
main scope is actually the role of explanations in RSs and trust emerges as one out of
seven roles that can be played by explanations in RSs. These roles are: transparency
- explaining how the system works; scrutability - allowing users to tell the system
it is wrong [50]; trust - increasing user confidence in the system; effectiveness -
helping users make good decisions; persuasiveness - convincing users to try or buy;
efficiency - helping users make decisions faster; and satisfaction - increasing the
ease of use or enjoyment.

This chapter also illustrates a range of approaches for building explanations. In
the collaborative filtering style, i.e., the explanation is of the form “Other users sim-
ilar to you liked this item”. In content-based style explanations, the item’s attributes
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which most affected the item to be recommended to the user are illustrated. For ex-
ample, in a movie recommendation, an explanation may be of the form “This movie
was recommended because it stars Bruce Wills who you seem to like”, or “Item X
was recommended because of features A and B which are shared by items Y and
Z, which you rated highly”. In case-based style explanations, the system refers to
items that are similar to the recommended one, for example, “The item was recom-
mended because you said you own item X” or “These items are recommended based
on your most recently viewed items”. And finally, in knowledge-based style expla-
nations, the system explains the differences between the recommended item and
another item and how it serves the user’s goal: “This room has an ocean view and is
larger than the previous recommended room, which will make it more romantic as
you requested”.

Moving back to trust, we see that it serves as a means of obtaining the main goal
of the recommender, i.e., to convince the user to accept the recommendations and
try out one of the recommended items. This issue is ultimately related to the per-
suasiveness of the full RS, i.e., how the various elements of the RS, including what
and how an item is recommended, actually operate during the human/computer in-
teraction. This topic is discussed in the Chapter 14. Here the authors stress that a
recommendation is seen as credible advice and is actually taken into account not
only because of the user’s perceptions of the recommendation but also due to the
fundamental role of the system which is perceived as an advice-giver. Indeed, the
literature about persuasion suggests that people are likely to accept recommenda-
tions from credible sources and we therefore conclude that the credibility of the RS
is vital to increasing the likelihood of recommendation acceptance. Hence, the au-
thors discuss how the credibility of RSs can be enhanced, providing a synopsis of
credibility-related research.

1.6.2 Conversational Systems

Another severe limitation of many algorithmic approaches to RSs is due to the fact
that these algorithms have been designed to collect all the input data only once.
They then terminate their job by returning their recommendations. In many cases,
this model is not effective since users may not be fully aware of their preferences
until they have interacted to a certain extent with the system and roughly understand
the range of alternatives. Or they may want to browse several alternative options
before being convinced that some of the recommendations may suit them. There is
also the possibility that the system may be initially wrong in its suggestions and the
user may be willing to provide additional information that can fix these problems,
and eventually obtain some better recommendations.

These aspects have been stressed and tackled by researchers engaged in following
a line of research that is commonly known as “conversational RSs” [27, 110, 67, 60].
Conversational RSs use a diverse range of techniques for rating prediction or rank-
ing. However, they all try to support an interactive process where both the user and
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the system may query or provide information to the other partner. The critical issue
here is how to design the dialogue, i.e., the conversational strategy and what actions
the user and the system must perform in the various stages of the interaction. The
supported dialogue must be effective, i.e., the user should terminate the conversation
with a solution of the task (e.g., book a flight) and in a quick way (small number of
conversational steps). In this handbook two chapters deal with this important topic.

Chapter 13 provides a comprehensive account of the research conducted in
critiquing-based systems. Critiquing-based interfaces, or dialogue models, given an
initial set of user preferences (e.g., preferred values for some item features) present
to the user recommended items and support the user in formulating “critiques”, such
as “Show me more like item A, but cheaper”.

Critiquing-based systems have attracted great interest in domains where there
is a need for more sophisticated and interactive decision/recommendation support
systems, such as in travel applications [88, 32, 100], or computer systems [82, 83].
Critiquing-based systems were initially designed as effective approaches to user
preference elicitation problems, but have now become important for some additional
motivations or applications, such as group recommendations, mixed-initiative rec-
ommendations, adaptive user interface, recommendation explanation, mobile rec-
ommenders.

Another approach related to conversational systems is preference-based [67].
Preference-based are similar to critiquing-based approaches since they present up-
front the user with some recommendations, which are not considered to be the best
but then let the user express preferences about some items. This additional informa-
tion is used to refine the system representation of the user’s preferences (user model)
enabling the system to generate new and better recommendations.

Chapter 16 surveys these novel methods and systems focusing on three facets of
the user-system interaction of such preference-based recommenders: initial prefer-
ence elicitation; preference revision; and presentation of recommendation results.
This chapter derives from the analysis of some systems as a collection of usability
guidelines that can be applied in a wide and scalable way. Moreover, to select the
guidelines, the authors do not focus on accuracy alone, but take into account that
humans have limited cognitive resources and are not likely to achieve a high level
of accuracy if the required effort is excessive. They identify and select methods
that produce high recommendation accuracy involving an effort level that users are
willing to make.

Previously mentioned approaches (critiquing- and preference-based) have been
mostly applied to case-based reasoning systems [22], where the retrieval component
is based on a similarity metric. In such cases, a query can always retrieve and rank
all the products contained in the catalogue since a product is always, to some extent,
similar to a probe product (query). If the query language supports other constraints
(e.g. equality or range constraints) the query may fail to return a product satisfy-
ing the query [47, 71, 31]. In this case several techniques have been proposed for
repairing the query by relaxing the minimum amount of constraints to make it sat-
isfiable. This topic is also covered in a chapter dedicated to constraint-based RSs
(Chapter 6).
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1.6.3 Visualization

We have highlighted so far some HCI issues that have been tackled in RS research
and which are discussed in this handbook. In summary, we have noted that how the
system presents and visualizes the computed recommendation is obviously a critical
factor for the acceptance of the recommendations and the RS.

Presentation and explanation techniques are not easily separable; a good presen-
tation technique is also capable of explaining recommendations but also in moti-
vating the user to make further requests, including requests for explanations. One
common aspect in the technologies presented so far is the fact that recommendations
are presented as a list of items. The length of this list can vary but the output of the
core recommendation algorithm is normally a ranked list and this has been always
exploited in the presentation.

In this handbook we include a chapter that illustrates a presentation approach
that deviates from this paradigm. In Chapter 17 the authors observe that much in-
formation is lost in the ranked list visualization approach, since two products, both
of which match the user query or the user model, can differ from each other based
on a completely different set of product characteristics. If one is using a two dimen-
sional, map-based visualization of the recommendations, it is possible to retain part
of this information. In the map, one can position, in a restricted area of the map, rec-
ommendations that are similar to each other. This chapter presents two approaches
for building this two-dimensional map of the recommendations and discusses its
advantages and disadvantages.

1.7 Recommender Systems as a Multi-Disciplinary Field

Designing and developing RSs is a multi-disciplinary effort that has benefited from
results obtained in various computer science fields especially machine learning and
data mining, information retrieval, and human-computer interaction. This is also
clear in the chapters included in this handbook and the discussion presented above.
Here we want to briefly address these relationships.

Machine learning and data mining, subfields of artificial intelligence, allow a
computer to learn to optimally perform a certain task using examples, data or past
experiences [109]. For example, data mining can be used to learn from transaction
data that customers who bought “Da Vinci Code” also bought “The Five People
You Meet in Heaven”. Consequently, recommendations can be constructed using
the information provided by these associations.

Many RSs are centered around the use of various machine learning and data min-
ing algorithms to predict user evaluations for items, or for learning how to correctly
rank items for a user. Chapter 2 of this handbook provides an overview of the main
data mining techniques used in the context of RSs preprocessing methods, such as:
sampling or dimensionality reduction; classification techniques, such as Bayesian

贩學科
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networks and support vector machines; clustering techniques such as k-means algo-
rithm; and association rules.

Other chapters that illustrate and exemplify the relationships between RSs and
data mining are: Chapter 12, discussing the usage of active learning for selective in-
formation acquisition; Chapter 5, devoted to advanced optimization techniques for
building rating prediction models; Chapter 7, presenting various rating prediction
methods that exploit contextually tagged transactional data; Chapter 24, presenting
data mining techniques that exploit the evaluations of items over several criteria
to better predict the overall user evaluations; Chapter 25, focusing on data mining
solutions to detect attacks to a recommender system and for building more robust al-
gorithmic solutions; Chapter 4, illustrating various instance based-learning options
currently used in collaborative filtering systems; Chapter 19 illustrating the use of
data mining solutions operating on a multiway array or a hypergraph with hyper-
edges, i.e., (user, resource, tag) triples; Chapter 20 presenting various data mining
solutions on trust networks.

Information retrieval (IR) aims to assist users in storing and searching various
forms of content, such as texts, images and videos [63]. With IR tools, users can
quickly find information that is both relevant and comprehensive for their needs.
While IR did not begin with the Web, the WWW played an important role in estab-
lishing new ideas mainly due to the development of Web search engines.

Both IR and RSs are faced with similar filtering and ranking problems. IR gener-
ally focuses on developing global retrieval techniques, often neglecting the individ-
ual needs and preferences of users. Still [25] argues that recommender systems are
not clearly separated from information retrieval. The “individualized” and “interest-
ing and useful” criteria that RSs try to achieve are the core differences between RSs
and information retrieval or search engines.

Recently, modern Web search engine have also relied on recommendation tech-
niques to address Web search challenges and to implement advanced search features.
For example, search engines recommend similar queries to the current user query.
Various engines also attempt to apply some form of personalization by generating
results to a user query that are not only relevant to the query terms but are also
tailored to the users context (e.g., her location), and her search history.

Chapter 18 discusses the research goals of IR and personalized Web search from
the RS perspective. The authors illustrate how techniques that originated in recent
RS research may be applied to address search engine challenges. The chapter fo-
cuses on two promising ideas for search engines improvement: personalization and
collaboration. The chapter describes a number of different approaches to personal-
izing Web searches by exploiting user preferences and context information to affect
search results. In addition, the chapter discusses recent work in the area of collab-
orative information retrieval, which attempts to take advantage of the potential for
cooperation between friends, colleagues or users with similar needs in implement-
ing a variety of information-seeking tasks. This new line of research, termed social
search, benefits from the social medium property of the Web in providing search
results that are affected by the experience and preferences of similar users. The
authors foresee a “convergence of recommender systems and search systems” and
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believe that integrating these sources in search engine algorithms would result in
highly satisfied users receiving the right information at the right time.

Other chapters that are related to IR research and illustrate techniques that are
studied in this area include: Chapter 19, addressing problems related to the retrieval
of tag-based information content and Chapter 3, presenting an overview of content-
based approaches that are strongly rooted in current search engine technologies.

Finally, RSs are ultimately targeted to provide useful information to users and for
that reason HCI plays a fundamental role in the ultimate acceptance of the computed
recommendations. In fact, several field studies have clearly indicated that from a
user’s perspective, HCI aspects related to the usability of the system have a tremen-
dous effect on the willingness of users to actually explore a systems recommenda-
tions and provide input to the system in return for more effective recommendations.
These topics were discussed previously in Section 1.6.

1.8 Emerging Topics and Challenges

1.8.1 Emerging Topics Discussed in the Handbook

It is clear from the previous pages that RS research is evolving in many and diverse
directions and new topics are emerging or becoming more important subjects of in-
vestigation. The reader is also referred to the proceedings of the last editions of the
ACM RecSys conferences and several other excellent review papers for additional
material [7, 3]. In this handbook we cover some of these topics. Indeed, several have
been already presented, such as: context-aware recommender (Chapter 7); new visu-
alization techniques (Chapter 17); community-based personalized search (Chapter
18); trust-based RS (Chapter 20). Other important topics are covered in the last two
sections of this handbook and we want now to briefly introduce these chapters.

Chapter 19 presents social tagging systems (STS) a new RS-related topic that is
emerging due to the growth of Web 2.0 applications. STS like Flickr, Bibsonomy,
or Delicious, allow the ordinary user to publish and edit content as well as gen-
erate and share tags (i.e., free keywords). STS users are experiencing information
overload problems since STS are used by millions of users who enter into the sys-
tem uncontrolled content and tags that pose retrieving difficulties for traditional IR
systems. Thus, RSs are required to assist users in finding relevant Information and
some commercial STS are starting to offer recommendations (e.g., Delicious).

The chapter discusses the new challenges that RSs for STS face, such as new
recommender tasks. These include not only traditional recommendations regarding
content, but also recommendations for relevant tags and even other relevant users.
Tag recommendation (i.e., recommending to the users relevant tags for an item),
has different characteristics than traditional recommendations since the system can
recommend recurrent tags, unlike traditional RSs that usually do not recommend
the same item twice. In addition, RSs for STS deal with a three-dimensional prob-
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lem (user, resource, tag), rather than the traditional two-dimensional problem (user,
item), and this affects the complexity of the algorithms. The chapter includes a state-
of-the-art survey about the new generation of RSs built to serve STS. It also details
the challenges of deploying RS for real world STS, and offers new algorithms for
dealing with the challenges of content in both STS and tag recommendation.

Chapter 21 deals with those situations when it would be good if the system could
recommend information or items that are relevant to a group of users rather than to
an individual. For instance, a RS may select television programs for a group to view
or a sequence of songs to listen to, based on models of all group members. Recom-
mending to groups is clearly more complicated than recommending to individuals.
Assuming that we know precisely what is good for individual users, the issue is how
to combine individual user models. In this chapter, the authors discuss how group
recommendation works, what its problems are, and what advances have been made
so far.

Chapter 22 discusses the ubiquitous issue of aggregating preferences, criteria or
similarities. Normally such aggregation is done by using either the arithmetic mean
or maximum/minimum functions. But many other aggregation functions which
could deliver flexibility and adaptability, and ultimately more relevant recommen-
dations, are often overlooked. In this chapter the authors review the basics of ag-
gregation functions and their properties and present the most important families,
including generalized means, Choquet and Sugeno integrals, ordered weighted av-
eraging, triangular norms and conorms, as well as bipolar aggregation functions.
Such functions can model various interactions between the inputs, including con-
junctive, disjunctive and mixed behavior.

In Chapter 23, the authors focus on another fundamental problem of RSs, i.e., the
need to actively look for new data during the operational life of the recommender.
This issue is normally neglected on the assumption that there is not much space for
controlling what data (e.g., ratings) the system can collect since these decisions are
taken by the users when visiting the system. Actually, the RS provokes the users
with its recommendations and many systems actually explicitly ask for user prefer-
ences during the recommendation process. Hence, by tuning the process, users can
be pushed to provide a range of different information. Specifically they can be re-
quested to rate particular items and the knowledge of the users opinions about these
items could be estimated as particularly beneficial according to various criteria, e.g.,
to provide more diverse recommendations or simply to improve the prediction accu-
racy of the system for some users or for the whole population of users. At this point
active learning comes in; it can augment RSs, helping users to become more self-
aware of their own likes/dislikes, leading to more meaningful and useful questions.
At the same time active learning can provide new information to the system that
can be analyzed for subsequent recommendations. Hence, applying active learning
to RSs enables personalization of the recommending process [61]. This is accom-
plished by allowing the system to actively influence the items the user is exposed to
(e.g. the items displayed to the user during sign-up or during regular use), as well as
by enabling the user to explore his/her interests freely.

無處不在



1 Introduction to Recommender Systems Handbook 25

Chapter 24 introduces another emerging topic, i.e., multi-criteria recommender
systems. In the majority of RSs the utility associated with an item is usually consid-
ered a single criterion value, e.g., an overall evaluation or rating of an item by a user.
But recently this assumption has been judged as limited because the suitability of
the recommended item for a particular user may depend on several aspects that the
user can take into consideration when making his or her choice. The incorporation
of multiple criteria that can affect the users opinions may lead to more effective and
accurate recommendations.

Chapter 24 provides an overview of multi-criteria RSs. First, it defines the rec-
ommendation problem as a multi-criteria decision-making problem and reviews
methods and techniques that can support the implementation of multi-criteria rec-
ommenders. Then, it focuses on the category of multi-criteria rating recommender
techniques that provide recommendations by modeling the users utility for an item
as a vector of ratings along several criteria. A review of current algorithms that
use multi-criteria ratings for calculating the rating prediction and generating recom-
mendations is provided. The chapter concludes with a discussion on open issues and
future challenges for these recommenders.

The last chapter of this handbook (Chapter 25) surveys articles dealing with se-
curity issues. This topic has become a major issue in the past few years. Recent
works on the topic include [28, 45, 102, 112]. The chapter analyzes algorithms de-
signed to generate more robust recommendations, i.e., recommendations that are
harder for malicious users to influence. In fact, collaborative recommender systems
are dependent on the goodwill of their users, i.e., there is an implicit assumption that
users will interact with the system with the aim of getting good recommendations
for themselves while providing useful data for their neighbors. However, users will
have a range of purposes in interacting with RSs and in some cases, these purposes
may be counter to those of the system owner or those of the majority of its user
population. Namely these users may want to damage the Web site hosting the rec-
ommender or to influence the recommendations provided to visitors, e.g., to score
some items better or worse rather than to arrive at a fair evaluation.

In this chapter the authors provide a model of efficient attacks, i.e., attacks that
can, with relatively low cost, produce a large impact on system output. Since these
attacks may very well be launched against a site, it makes sense to detect them so
that countermeasures can be taken as soon as possible. At the same time, researchers
have studied a number of algorithms that are intended to robustly withstand attacks
and which have lower impact curves relative to efficient attacks. These approaches
are also surveyed in this chapter. With the combination of these techniques, re-
searchers have sought, not to eliminate attacks, but to control their impact to the
point where they are no longer cost-effective.
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1.8.2 Challenges

The list of newly emerging and challenging RS research topics is not limited to
those described in the chapters that we have mentioned above. Moreover, covering
all of them is not within the scope of this short introduction. The reader is referred
to the final discussion sections in this handbook for other outstanding problems.

Below we briefly note additional challenging topics that we consider important
for the development of the research on RSs and which are not covered in the hand-
book.

• Scalability of the algorithms with large and real-world datasets. As the research
on core techniques progresses and matures, it becomes clear that a fundamental
issue for RSs is to determine how to embed the core recommendation techniques
in real operational systems and how to deal with massive and dynamic sets of data
produced by the interactions of users with items (ratings, preferences, reviews,
etc.). A solution that works fine when tested off-line on relatively small data sets
may become inefficient or even totally inapplicable on very large datasets. New
approaches and large-scale evaluation studies are needed [91, 92, 33, 38, 116, 75,
75].

• Proactive recommender systems, i.e., recommenders that decide to provide rec-
ommendations even if not explicitly requested [90, 24, 62, 80]. The largest ma-
jority of the recommender systems developed so far follow a “pull” model [94];
where the user originates the request for a recommendation. In the scenarios
emerging today, where computers are ubiquitous and users are always connected,
it seems natural to imagine that a RS can detect implicit requests. It therefore
needs to predict not only what to recommend, but also when and how to “push”
its recommendations. In this way the RS can become proactive without being
perceived as disturbing.

• Privacy preserving recommender systems [81, 26, 79, 56, 17, 28, 102, 16, 5, 53,
70, 114]. RSs exploit user data to generate personalized recommendations. In
the attempt to build increasingly better recommendations, they collect as much
user data as possible. This will clearly have a negative impact on the privacy of
the users and the users may start feeling that the system knows too much about
their true preferences. Therefore, there is a need to design solutions that will
parsimoniously and sensibly use user data. At the same time these solutions will
ensure that knowledge about the users cannot be freely accessed by malicious
users.

• Diversity of the items recommended to a target user [104, 66, 69, 55, 54, 46, 119].
In a recommendation list, it is more likely that the user will find a suitable item if
there is a certain degree of diversity among the included items. There is often no
value in having perfect recommendations for a restricted type of product, unless
the user has expressed a narrow set of preferences. There are many situations, es-
pecially in the early stage of a recommendation process, in which the users want
to explore new and diverse directions. In such cases, the user is using the recom-
mender as a knowledge discovery tool. The research on this topic is still in an
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early stage, and there is a need to characterize the nature of this “diversity”, i.e.,
whether we are looking for diversity among different recommendation sessions
or within a session, and how to combine the diversity goal with the accuracy of
the recommendation.

• Integration of long-term and short-term user preferences in the process of build-
ing a recommendation list [6, 40, 74]. Recommender systems may be divided
in two classes: those that build a long-term profile, generated by aggregating all
the user transaction data collected by the system (e.g., collaborative filtering)
and those that are more focused on capturing the ephemeral preferences of the
user, e.g., as in case-based approaches. Obviously both aspects are important and
either the precise user task or the availability of items may come under consid-
eration in resolving the preference integration problem. In fact, new research is
required to build hybrid models that can correctly decide to drift or not toward
the contingent user’s preferences when there is enough evidence to suggest that
the user’s short-term preferences are departing from the long-term ones.

• Generic user models and cross domain recommender systems are able to mediate
user data through different systems and application domains [41, 18, 52, 19, 20,
49, 15]. Using generic user model techniques, a single RS can produce recom-
mendations about a variety of items. This is normally not possible for a general
RS which can combine more techniques in a hybrid approach, but cannot easily
benefit from user preferences collected in one domain to generate recommenda-
tions in a different one.

• Distributed recommender systems that operate in open networks [38, 116, 92,
113, 17, 102]. The computational model of the largest majority of RSs adheres
to a typical client-server architecture, where the user-client requests recommen-
dations to the server-recommender which replies with the suggestions. This is
clearly a severe limitation and suffers from all the classical problems of central-
ized systems. The emerging scenario of grid or cloud computing can become
an excellent opportunity to implement more robust and flexible computational
models for RSs.

• Recommender that optimize a sequence of recommendations [120, 99, 10, 59,
61, 107, 106]. We mentioned already that conversational RSs have emerged in
the attempt to improve the quality of recommendations provided by the systems
based on a simpler approach: a one-time request/response. Conversational RSs
can be further improved by implementing learning capabilities that can optimize
not only the items that are recommended but also how the dialogue between the
user and the system must unfold in all possible situations.

• Recommenders designed to operate in mobile devices and usage contexts [117,
98, 55, 51, 4, 115, 111, 57, 29, 9, 77, 76, 89, 73, 44, 95, 13]. Mobile computing is
emerging as the most natural platform for personal computing. Many recommen-
dation requests are likely to be made when the user is on the move, e.g., at shops
or hotels in a visited city. This necessitates “mobilizing” the user interface and to
design computational solutions that can efficiently use the still limited resources
(computational power and screen size) of the mobile devices.

⼀⼀
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Finally, before ending this introduction, we want to present some additional chal-
lenges that were discussed in a tutorial held at the latest RecSys conference in New
York, October 22-25, 2009 [http://recsys.acm.org/tutorial3.pdf]. John Riedl (Uni-
versity of Minnesota), Todd Beaupre (Yahoo!) and John Sanders (Netflix) men-
tioned eight important challenges for the research on recommender systems: trans-
parency, exploration versus exploitation, guided navigation, time value, user ac-
tion interpretation, evaluating recommenders, scalability, academic/industry part-
nerships.

Some of these issues have already been discussed in this introduction. For exam-
ple, transparency was introduced when we discussed the role of the explanation of
a recommendation, and we stressed the important role it plays in order to present a
recommendation as more acceptable for the user. Also the evaluation of RSs, i.e., the
range of possible and important dimensions that can be measured in an evaluation
is a topic fully addressed in another chapter (Chapter 8).

The time value of recommendations is also partially discussed in our remarks
about context-aware recommenders (Chapter 7). However, the challenge refers to
the fact that a given set of recommendations may not be applicable forever but there
could be a time interval when these items can be recommended. This is clear, for
instance, when it comes to news items; people want to be informed about the most
recent events and news cannot be meaningfully recommended even one day after
the initial announcement.

Exploration vs. exploitation is touched upon in active learning (Chapter 23). This
challenge refers to the fundamental dilemma that a designer must properly tackle,
i.e., whether to keep recommending items that the system can now identify as good
recommendations, given the data currently available for the system or to further
explore user preferences (e.g., asking to rate additional and particular items) in order
to build newer and possibly even better recommendations in the future.

indexGuided navigation Guided navigation refers to combining classical rec-
ommendation lists, i.e., suggestions with tools that let the user navigate more au-
tonomously in the space of possible options. User action interpretation refers to
the possibility that in addition to explicit ratings there could be many more actions
performed by the user operating the recommender that can be detected, analyzed
and used to build a better prediction model. The idea is that every single user action
should be exploited in the recommendation process. But it is challenging to interpret
the user’s actions, i.e., the intent behind an action, and there are actions that should
be discarded because they were not produced by genuine users, such as, actions per-
formed by different users on the same browser, or false and malicious registrations
or data or log data caused by robots or crawlers.

Scalability was also mentioned earlier. We stress again that this is clearly an issue
about which discussion is missing in the current literature since it has been mostly
investigated by practitioners.

Finally the discussion in that workshop became quite animated when the matter
of cooperation between industry and academia was touched upon. Industry has spe-
cific problems but is not making them clearly visible. This is happening for many
reasons, including the need to not disclose to competitors critical information. Con-
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versely, academia is looking for problems that can be tackled in a framework of the
resources and time available to them and will generally address a topic only if it is
likely to have an impact in the scientific community. This has made and will make
industry-academic cooperation difficult. But RSs is a research field that requires
new concrete challenges and there is a real risk of stagnation if we fail to tackle the
useful but risky challenges in favor of solved or mature problems.

We hope that this handbook, as a useful tool for practitioners and researchers,
will contribute to further develop knowledge in this exciting and useful research
area. In this way we believe that we can reduce the risk that these two groups will
follow different roads. Currently the research on RSs has greatly benefited from
the combined interest and efforts that industry and academia have invested in this
field. We therefore wish the best to both groups as they read this handbook and we
hope that it will attract even more researchers to work in this highly interesting and
challenging field.
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system. In: R.L. de Mántaras, E. Plaza (eds.) Machine Learning: 2000, 11th European Con-
ference on Machine Learning, pp. 23–30. Springer (2000)

7. Anand, S.S., Mobasher, B.: Intelligent techniques for web personalization. In: Intelligent
Techniques for Web Personalization, pp. 1–36. Springer (2005)

8. Arazy, O., Kumar, N., Shapira, B.: Improving social recommender systems. IT Professional
11(4), 38–44 (2009)

9. Averjanova, O., Ricci, F., Nguyen, Q.N.: Map-based interaction with a conversational mobile
recommender system. In: The Second International Conference on Mobile Ubiquitous Com-
puting, Systems, Services and Technologies, 2008. UBICOMM ’08, pp. 212–218 (2008)

10. Baccigalupo, C., Plaza, E.: Case-based sequential ordering of songs for playlist recommen-
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Chapter 2
Data Mining Methods for Recommender
Systems

Xavier Amatriain, Alejandro Jaimes, Nuria Oliver, and Josep M. Pujol

Abstract In this chapter, we give an overview of the main Data Mining techniques
used in the context of Recommender Systems. We first describe common prepro-
cessing methods such as sampling or dimensionality reduction. Next, we review the
most important classification techniques, including Bayesian Networks and Support
Vector Machines. We describe the k-means clustering algorithm and discuss several
alternatives. We also present association rules and related algorithms for an effi-
cient training process. In addition to introducing these techniques, we survey their
uses in Recommender Systems and present cases where they have been successfully
applied.

2.1 Introduction

Recommender Systems (RS) typically apply techniques and methodologies from
other neighboring areas – such as Human Computer Interaction (HCI) or Informa-
tion Retrieval (IR). However, most of these systems bear in their core an algorithm
that can be understood as a particular instance of a Data Mining (DM) technique.

The process of data mining typically consists of 3 steps, carried out in succes-
sion: Data Preprocessing [59], Data Analysis, and Result Interpretation (see Figure
2.1). We will analyze some of the most important methods for data preprocessing
in Section 2.2. In particular, we will focus on sampling, dimensionality reduction,
and the use of distance functions because of their significance and their role in RS.
In Sections 2.3 through 2.5, we provide an overview introduction to the data mining
methods that are most commonly used in RS: classification, clustering and associa-
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tion rule discovery (see Figure 2.1 for a detailed view of the different topics covered
in the chapter).

Fig. 2.1: Main steps and methods in a Data Mining problem, with their correspon-
dence to chapter sections.

This chapter does not intend to give a thorough review of Data Mining methods,
but rather to highlight the impact that DM algorithms have in the RS field, and to
provide an overview of the key DM techniques that have been successfully used.
We shall direct the interested reader to Data Mining textbooks (see [28, 73], for
example) or the more focused references that are provided throughout the chapter.

2.2 Data Preprocessing

We define data as a collection of objects and their attributes, where an attribute is
defined as a property or characteristic of an object. Other names for object include
record, item, point, sample, observation, or instance. An attribute might be also be
referred to as a variable, field, characteristic, or feature.
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Real-life data typically needs to be preprocessed (e.g. cleansed, filtered, trans-
formed) in order to be used by the machine learning techniques in the analysis step.
In this section, we focus on three issues that are of particular importance when de-
signing a RS. First, we review different similarity or distance measures. Next, we
discuss the issue of sampling as a way to reduce the number of items in very large
collections while preserving its main characteristics. Finally, we describe the most
common techniques to reduce dimensionality.

2.2.1 Similarity Measures

One of the preferred approaches to collaborative filtering (CF) recommenders is to
use the kNN classifier that will be described in Section 2.3.1. This classification
method – as most classifiers and clustering techniques – is highly dependent on
defining an appropriate similarity or distance measure.

The simplest and most common example of a distance measure is the Euclidean
distance:

d(x,y) =

√
n

∑
k=1

(xk− yk)2 (2.1)

where n is the number of dimensions (attributes) and xk and yk are the kth attributes
(components) of data objects x and y, respectively.

The Minkowski Distance is a generalization of Euclidean Distance:

d(x,y) = (
n

∑
k=1

|xk− yk|r)
1
r (2.2)

where r is the degree of the distance. Depending on the value of r, the generic
Minkowski distance is known with specific names: For r = 1, the city block, (Man-
hattan, taxicab or L1 norm) distance; For r = 2, the Euclidean distance; For r→ ∞,
the supremum (Lmax norm or L∞ norm) distance, which corresponds to computing
the maximum difference between any dimension of the data objects.

The Mahalanobis distance is defined as:

d(x,y) =
√
(x− y)σ−1(x− y)T (2.3)

where σ is the covariance matrix of the data.
Another very common approach is to consider items as document vectors of an

n-dimensional space and compute their similarity as the cosine of the angle that they
form:

cos(x,y) =
(x• y)
||x||||y|| (2.4)
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where • indicates vector dot product and ||x|| is the norm of vector x. This similarity
is known as the cosine similarity or the L2 Norm .

The similarity between items can also be given by their correlation which mea-
sures the linear relationship between objects. While there are several correlation co-
efficients that may be applied, the Pearson correlation is the most commonly used.
Given the covariance of data points x and y Σ , and their standard deviation σ , we
compute the Pearson correlation using:

Pearson(x,y) =
Σ(x,y)
σx×σy

(2.5)

RS have traditionally used either the cosine similarity (Eq. 2.4) or the Pearson
correlation (Eq. 2.5) – or one of their many variations through, for instance, weight-
ing schemes – both Chapters 5 and 4 detail the use of different distance functions
for CF However, most of the other distance measures previously reviewed are pos-
sible. Spertus et al. [69] did a large-scale study to evaluate six different similarity
measures in the context of the Orkut social network. Although their results might be
biased by the particular setting of their experiment, it is interesting to note that the
best response to recommendations were to those generated using the cosine similar-
ity. Lathia et al. [48] also carried out a study of several similarity measures where
they concluded that, in the general case, the prediction accuracy of a RS was not af-
fected by the choice of the similarity measure. As a matter of fact and in the context
of their work, using a random similarity measure sometimes yielded better results
than using any of the well-known approaches.

Finally, several similarity measures have been proposed in the case of items that
only have binary attributes. First, the M01, M10, M11, and M00 quantities are com-
puted, where M01 = the number of attributes where x was 0 and y was 1, M10 =
the number of attributes where x was 1 and y was 0, and so on. From those quan-
tities we can compute: The Simple Matching coefficient SMC = numbero f matches

numbero f attributes =
M11+M00

M01+M10+M00+M11 ; the Jaccard coefficient JC = M11
M01+M10+M11 . The Extended Jac-

card (Tanimoto) coefficient, a variation of JC for continuous or count attributes that
is computed by d = x•y

‖x‖2+‖x‖2−x•y .

2.2.2 Sampling

Sampling is the main technique used in DM for selecting a subset of relevant data
from a large data set. It is used both in the preprocessing and final data interpretation
steps. Sampling may be used because processing the entire data set is computation-
ally too expensive. It can also be used to create training and testing datasets. In this
case, the training dataset is used to learn the parameters or configure the algorithms
used in the analysis step, while the testing dataset is used to evaluate the model or
configuration obtained in the training phase, making sure that it performs well (i.e.
generalizes) with previously unseen data.
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The key issue to sampling is finding a subset of the original data set that is repre-
sentative – i.e. it has approximately the same property of interest – of the entire set.
The simplest sampling technique is random sampling, where there is an equal prob-
ability of selecting any item. However, more sophisticated approaches are possible.
For instance, in stratified sampling the data is split into several partitions based on
a particular feature, followed by random sampling on each partition independently.

The most common approach to sampling consists of using sampling without re-
placement: When an item is selected, it is removed from the population. However, it
is also possible to perform sampling with replacement, where items are not removed
from the population once they have been selected, allowing for the same sample to
be selected more than once.

It is common practice to use standard random sampling without replacement with
an 80/20 proportion when separating the training and testing data sets. This means
that we use random sampling without replacement to select 20% of the instances
for the testing set and leave the remaining 80% for training. The 80/20 proportion
should be taken as a rule of thumb as, in general, any value over 2/3 for the training
set is appropriate.

Sampling can lead to an over-specialization to the particular division of the train-
ing and testing data sets. For this reason, the training process may be repeated sev-
eral times. The training and test sets are created from the original data set, the model
is trained using the training data and tested with the examples in the test set. Next,
different training/test data sets are selected to start the training/testing process again
that is repeated K times. Finally, the average performance of the K learned mod-
els is reported. This process is known as cross-validation. There are several cross-
validation techniques. In repeated random sampling, a standard random sampling
process is carried out K times. In n-Fold cross validation, the data set is divided into
n folds. One of the folds is used for testing the model and the remaining n−1 folds
are used for training. The cross validation process is then repeated n times with each
of the n subsamples used exactly once as validation data. Finally, the leave-one-out
(LOO) approach can be seen as an extreme case of n-Fold cross validation where
n is set to the number of items in the data set. Therefore, the algorithms are run
as many times as data points using only one of them as a test each time. It should
be noted, though, that as Isaksson et al. discuss in [44], cross-validation may be
unreliable unless the data set is sufficiently large.

A common approach in RS is to sample the available feedback from the users –
e.g. in the form of ratings – to separate it into training and testing. Cross-validation
is also common. Although a standard random sampling is acceptable in the general
case, in others we might need to bias our sampling for the test set in different ways.
We might, for instance, decide to sample only from most recent ratings – since
those are the ones we would be predicting in a real-world situation. We might also
be interested in ensuring that the proportion of ratings per user is preserved in the
test set and therefore impose that the random sampling is done on a per user basis.
However, all these issues relate to the problem of evaluating RS, which is still a
matter of research and discussion.



44 Xavier Amatriain, Alejandro Jaimes, Nuria Oliver, and Josep M. Pujol

2.2.3 Reducing Dimensionality

It is common in RS to have not only a data set with features that define a high-
dimensional space, but also very sparse information in that space – i.e. there are
values for a limited number of features per object. The notions of density and dis-
tance between points, which are critical for clustering and outlier detection, become
less meaningful in highly dimensional spaces. This is known as the Curse of Di-
mensionality. Dimensionality reduction techniques help overcome this problem by
transforming the original high-dimensional space into a lower-dimensionality.

Sparsity and the curse of dimensionality are recurring problems in RS. Even in
the simplest setting, we are likely to have a sparse matrix with thousands of rows
and columns (i.e. users and items), most of which are zeros. Therefore, dimension-
ality reduction comes in naturally. Applying dimensionality reduction makes such
a difference and its results are so directly applicable to the computation of the pre-
dicted value, that this is now considered to be an approach to RS design, rather than
a preprocessing technique.

In the following, we summarize the two most relevant dimensionality reduction
algorithms in the context of RS: Principal Component Analysis (PCA) and Singu-
lar Value Decomposition (SVD). These techniques can be used in isolation or as a
preprocessing step for any of the other techniques reviewed in this chapter.

2.2.3.1 Principal Component Analysis

Principal Component Analysis (PCA) [45] is a classical statistical method to find
patterns in high dimensionality data sets. PCA allows to obtain an ordered list of
components that account for the largest amount of the variance from the data in
terms of least square errors: The amount of variance captured by the first component
is larger than the amount of variance on the second component and so on. We can
reduce the dimensionality of the data by neglecting those components with a small
contribution to the variance.

Figure 2.2 shows the PCA analysis to a two-dimensional point cloud generated
by a combination of Gaussians. After the data is centered, the principal components
are obtained and denoted by u1 and u2. Note that the length of the new coordi-
nates is relative to the energy contained in their eigenvectors. Therefore, for the
particular example depicted in Fig 2.2, the first component u1 accounts for 83.5%
of the energy, which means that removing the second component u2 would imply
losing only 16.5% of the information. The rule of thumb is to choose m′ so that the
cumulative energy is above a certain threshold, typically 90%. PCA allows us to re-
trieve the original data matrix by projecting the data onto the new coordinate system
X ′n×m′ = Xn×mW ′m×m′. The new data matrix X ′ contains most of the information
of the original X with a dimensionality reduction of m−m′.

PCA is a powerful technique, but it does have important limitations. PCA relies
on the empirical data set to be a linear combination of a certain basis – although
generalizations of PCA for non-linear data have been proposed. Another important
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Fig. 2.2: PCA analysis of a two-dimensional point cloud from a combination of
Gaussians. The principal components derived using PCS are u1 and u2, whose length
is relative to the energy contained in the components.

assumption of PCA is that the original data set has been drawn from a Gaussian
distribution. When this assumption does not hold true, there is no warranty that the
principal components are meaningful.

Although current trends seem to indicate that other matrix factorizations tech-
niques such as SVD or Non-Negative Matrix Factorization are preferred, earlier
works used PCA. Goldberg et al. proposed an approach to use PCA in the context
of an online joke recommendation system [37]. Their system, known as Eigentaste 1,
starts from a standard matrix of user ratings to items. They then select their gauge set
by choosing the subset of items for which all users had a rating. This new matrix is
then used to compute the global correlation matrix where a standard 2-dimensional
PCA is applied.

2.2.3.2 Singular Value Decomposition

Singular Value Decomposition [38] is a powerful technique for dimensionality re-
duction. It is a particular realization of the Matrix Factorization approach and it is
therefore also related to PCA. The key issue in an SVD decomposition is to find a
lower dimensional feature space where the new features represent “concepts” and
the strength of each concept in the context of the collection is computable. Be-
cause SVD allows to automatically derive semantic “concepts” in a low dimensional

1 http://eigentaste.berkeley.edu
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space, it can be used as the basis of latent-semantic analysis[24], a very popular
technique for text classification in Information Retrieval .

The core of the SVD algorithm lies in the following theorem: It is always possi-
ble to decompose a given matrix A into A =UλV T . Given the n×m matrix data A
(n items, m features), we can obtain an n× r matrix U (n items, r concepts), an r× r
diagonal matrix λ (strength of each concept), and an m× r matrix V (m features, r
concepts). Figure 2.3 illustrates this idea. The λ diagonal matrix contains the sin-
gular values, which will always be positive and sorted in decreasing order. The U
matrix is interpreted as the “item-to-concept” similarity matrix, while the V matrix
is the “term-to-concept” similarity matrix.

An

m

= U

r

(items)

(features) (concepts)

X

r

r X V

m

n
(items)

(features)

r
(concepts)

λ

Fig. 2.3: Illustrating the basic Singular Value Decomposition Theorem: an item ×
features matrix can be decomposed into three different ones: an item × concepts, a
concept strength, and a concept × features.

In order to compute the SVD of a rectangular matrix A, we consider AAT and
AT A. The columns of U are the eigenvectors of AAT , and the columns of V are
the eigenvectors of AT A. The singular values on the diagonal of λ are the positive
square roots of the nonzero eigenvalues of both AAT and AT A. Therefore, in order
to compute the SVD of matrix A we first compute T as AAT and D as AT A and then
compute the eigenvectors and eigenvalues for T and D.

The r eigenvalues in λ are ordered in decreasing magnitude. Therefore, the orig-
inal matrix A can be approximated by simply truncating the eigenvalues at a given k.
The truncated SVD creates a rank-k approximation to A so that Ak =UkλkV T

k . Ak is
the closest rank-k matrix to A. The term “closest” means that Ak minimizes the sum
of the squares of the differences of the elements of A and Ak. The truncated SVD is
a representation of the underlying latent structure in a reduced k-dimensional space,
which generally means that the noise in the features is reduced.

The use of SVD as tool to improve collaborative filtering has been known for
some time. Sarwar et al. [66] describe two different ways to use SVD in this context.
First, SVD can be used to uncover latent relations between customers and products.
In order to accomplish this goal, they first fill the zeros in the user-item matrix
with the item average rating and then normalize by subtracting the user average.
This matrix is then factored using SVD and the resulting decomposition can be
used – after some trivial operations – directly to compute the predictions. The other
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approach is to use the low-dimensional space resulting from the SVD to improve
neighborhood formation for later use in a kNN approach.

As described by Sarwar et al.[65], one of the big advantages of SVD is that there
are incremental algorithms to compute an approximated decomposition. This allows
to accept new users or ratings without having to recompute the model that had been
built from previously existing data. The same idea was later extended and formal-
ized by Brand [14] into an online SVD model. The use of incremental SVD methods
has recently become a commonly accepted approach after its success in the Netflix
Prize 2. The publication of Simon Funk’s simplified incremental SVD method [35]
marked an inflection point in the contest. Since its publication, several improve-
ments to SVD have been proposed in this same context (see Paterek’s ensembles of
SVD methods [56] or Kurucz et al. evaluation of SVD parameters [47]).

Finally, it should be noted that different variants of Matrix Factorization (MF)
methods such as the Non-negative Matrix Factorization (NNMF) have also been
used[74]. These algorithms are, in essence, similar to SVD. The basic idea is to
decompose the ratings matrix into two matrices, one of which contains features
that describe the users and the other contains features describing the items. Matrix
Factorization methods are better than SVD at handling the missing values by in-
troducing a bias term to the model. However, this can also be handled in the SVD
preprocessing step by replacing zeros with the item average. Note that both SVD
and MF are prone to overfitting. However, there exist MF variants, such as the Reg-
ularized Kernel Matrix Factorization, that can avoid the issue efficiently. The main
issue with MF – and SVD – methods is that it is unpractical to recompute the fac-
torization every time the matrix is updated because of computational complexity.
However, Rendle and Schmidt-Thieme [62] propose an online method that allows
to update the factorized approximation without recomputing the entire model.

Chapter 5 details the use of SVD and MF in the context of the Netflix Prize and
is therefore a good complement to this introduction.

2.2.4 Denoising

Data collected for data-mining purposes might be subject to different kinds of noise
such as missing values or outliers. Denoising is a very important preprocessing step
that aims at removing any unwanted effect in the data while maximizing its infor-
mation.

In a general sense we define noise as any unwanted artifact introduced in the data
collection phase that might affect the result of our data analysis and interpretation.
In the context of RS, we distinguish between natural and malicious noise [55]. The
former refers to noise that is unvoluntarely introduced byusers when giving feedback
on their preferences. The latter refers to noise that is deliberately introduced in a
system in order to bias the results.

2 http://www.netflixprize.com
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It is clear that malicious noise can affect the output of a RS. But, also, we per-
formed a study that concluded that the effects of natural noise on the performance
of RS is far from being negligible [4]. In order to address this issue, we designed
a denoising approach that is able to improve accuracy by asking some users to re-
rate some items [5]. We concluded that accuracy improvements by investing in this
pre-processing step could be larger than the ones obtained by complex algorithm
optimizations.

2.3 Classification

A classifier is a mapping between a feature space and a label space, where the fea-
tures represent characteristics of the elements to classify and the labels represent
the classes. A restaurant RS, for example, can be implemented by a classifier that
classifies restaurants into one of two categories (good, bad) based on a number of
features that describe it.

There are many types of classifiers, but in general we will talk about either su-
pervised or unsupervised classification. In supervised classification, a set of labels
or categories is known in advance and we have a set of labeled examples which
constitute a training set. In unsupervised classification, the labels or categories are
unknown in advance and the task is to suitably (according to some criteria) organize
the elements at hand. In this section we describe several algorithms to learn super-
vised classifiers and will be covering unsupervised classification (i.e. clustering) in
Sec. 2.4.

2.3.1 Nearest Neighbors

Instance-based classifiers work by storing training records and using them to pre-
dict the class label of unseen cases. A trivial example is the so-called rote-learner.
This classifier memorizes the entire training set and classifies only if the attributes
of the new record match one of the training examples exactly. A more elaborate, and
far more popular, instance-based classifier is the Nearest neighbor classifier (kNN)
[22]. Given a point to be classified, the kNN classifier finds the k closest points
(nearest neighbors) from the training records. It then assigns the class label accord-
ing to the class labels of its nearest-neighbors. The underlying idea is that if a record
falls in a particular neighborhood where a class label is predominant it is because
the record is likely to belong to that very same class.

Given a query point q for which we want to know its class l, and a training
set X = {{x1, l1}...{xn}}, where x j is the j-th element and l j is its class label, the
k-nearest neighbors will find a subset Y = {{y1, l1}...{yk}} such that Y ∈ X and
∑k

1 d(q,yk) is minimal. Y contains the k points in X which are closest to the query
point q. Then, the class label of q is l = f ({l1...lk}).
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Fig. 2.4: Example of k-Nearest Neighbors. The left subfigure shows the training
points with two class labels (circles and squares) and the query point (as a triangle).
The right sub-figure illustrates closest neighborhood for k = 1 and k = 7. The query
point would be classified as square for k = 1, and as a circle for k = 5 according to
the simple majority vote rule. Note that the query points was just on the boundary
between the two clusters.

Perhaps the most challenging issue in kNN is how to choose the value of k. If
k is too small, the classifier will be sensitive to noise points. But if k is too large,
the neighborhood might include too many points from other classes. The right plot
in Fig. 2.4 shows how different k yields different class label for the query point, if
k = 1 the class label would be circle whereas k = 7 classifies it as square. Note that
the query point from the example is on the boundary of two clusters, and therefore,
it is difficult to classify.

kNN classifiers are amongst the simplest of all machine learning algorithms.
Since kNN does not build models explicitly it is considered a lazy learner. Un-
like eager learners such as decision trees or rule-based systems (see 2.3.2 and 2.3.3,
respectively), kNN classifiers leave many decisions to the classification step. There-
fore, classifying unknown records is relatively expensive.

Nearest Neighbor is one of the most common approaches to CF – and therefore
to designing a RS. As a matter of fact, any overview on RS – such as the one by
Adomavicius and Tuzhilin [1] – will include an introduction to the use of nearest
neighbors in this context. One of the advantages of this classifier is that it is con-
ceptually very much related to the idea of CF: Finding like-minded users (or similar
items) is essentially equivalent to finding neighbors for a given user or an item. The
other advantage is that, being the kNN classifier a lazy learner, it does not require
to learn and maintain a given model. Therefore, in principle, the system can adapt
to rapid changes in the user ratings matrix. Unfortunately, this comes at the cost of
recomputing the neighborhoods and therefore the similarity matrix. This is why we
proposed a neighborhood model that uses a reduced set of experts as the source for
selecting neighbors [3].
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The kNN approach, although simple and intuitive, has shown good accuracy re-
sults and is very amenable to improvements. As a matter of fact, its supremacy as
the de facto standard for CF recommendation has only been challenged recently by
approaches based on dimensionality reduction such as the ones reviewed in Section
2.2.3. That said, the traditional kNN approach to CF has experienced improvements
in several directions. For instance, in the context of the Netflix Prize, Bell and Ko-
ren propose a method to remove global effects such as the fact that some items may
attract users that consistently rate lower. They also propose an optimization method
for computing interpolating weights once the neighborhood is created.

See Chapters 5 and 4 for more details on enhanced CF techniques based on the
use of neighborhoods.

2.3.2 Decision Trees

Decision trees [61, 63] are classifiers on a target attribute (or class) in the form of a
tree structure. The observations (or items) to classify are composed of attributes and
their target value. The nodes of the tree can be: a) decision nodes, in these nodes a
single attribute-value is tested to determine to which branch of the subtree applies.
Or b) leaf nodes which indicate the value of the target attribute.

There are many algorithms for decision tree induction: Hunts Algorithm, CART,
ID3, C4.5, SLIQ, SPRINT to mention the most common. The recursive Hunt al-
gorithm, which is one of the earliest and easiest to understand, relies on the test
condition applied to a given attribute that discriminates the observations by their
target values. Once the partition induced by the test condition has been found, the
algorithm is recursively repeated until a partition is empty or all the observations
have the same target value.

Splits can be decided by maximizing the information gain, defined as follows,

∆i = I(parent)−
ki

∑
j=1

N(v j)I(v j)

N
(2.6)

where ki are values of the attribute i, N is the number of observations, v j is the j-
th partition of the observations according to the values of attribute i. Finally, I is a
function that measures node impurity. There are different measures of impurity: Gini
Index, Entropy and misclassification error are the most common in the literature.

Decision tree induction stops once all observations belong to the same class (or
the same range in the case of continuous attributes). This implies that the impurity
of the leaf nodes is zero. For practical reasons, however, most decision trees imple-
mentations use pruning by which a node is no further split if its impurity measure
or the number of observations in the node are below a certain threshold.

The main advantages of building a classifier using a decision tree is that it is
inexpensive to construct and it is extremely fast at classifying unknown instances.
Another appreciated aspect of decision tree is that they can be used to produce a set

合適的
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of rules that are easy to interpret (see section 2.3.3) while maintaining an accuracy
comparable to other basic classification techniques.

Decision trees may be used in a model-based approach for a RS. One possibil-
ity is to use content features to build a decision tree that models all the variables
involved in the user preferences. Bouza et al. [12] use this idea to construct a Deci-
sion Tree using semantic information available for the items. The tree is built after
the user has rated only two items. The features for each of the items are used to
build a model that explains the user ratings. They use the information gain of every
feature as the splitting criteria. It should be noted that although this approach is in-
teresting from a theoretical perspective, the precision they report on their system is
worse than that of recommending the average rating.

As it could be expected, it is very difficult and unpractical to build a decision
tree that tries to explain all the variables involved in the decision making process.
Decision trees, however, may also be used in order to model a particular part of
the system. Cho et al. [18], for instance, present a RS for online purchases that
combines the use of Association Rules (see Section 2.5) and Decision Trees. The
Decision Tree is used as a filter to select which users should be targeted with recom-
mendations. In order to build the model they create a candidate user set by selecting
those users that have chosen products from a given category during a given time
frame. In their case, the dependent variable for building the decision tree is cho-
sen as whether the customer is likely to buy new products in that same category.
Nikovski and Kulev [54] follow a similar approach combining Decision Trees and
Association Rules. In their approach, frequent itemsets are detected in the purchase
dataset and then they apply standard tree-learning algorithms for simplifying the
recommendations rules.

Another option to use Decision Trees in a RS is to use them as a tool for item
ranking. The use of Decision Trees for ranking has been studied in several settings
and their use in a RS for this purpose is fairly straightforward [7, 17].

2.3.3 Ruled-based Classifiers

Rule-based classifiers classify data by using a collection of “if . . . then . . .” rules.
The rule antecedent or condition is an expression made of attribute conjunctions.
The rule consequent is a positive or negative classification.

We say that a rule r covers a given instance x if the attributes of the instance
satisfy the rule condition. We define the coverage of a rule as the fraction of records
that satisfy its antecedent. On the other hand, we define its accuracy as the fraction
of records that satisfy both the antecedent and the consequent. We say that a clas-
sifier contains mutually exclusive rules if the rules are independent of each other –
i.e. every record is covered by at most one rule. Finally we say that the classifier has
exhaustive rules if they account for every possible combination of attribute values
–i.e. each record is covered by at least one rule.

前因
⼀⼀
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In order to build a rule-based classifier we can follow a direct method to extract
rules directly from data. Examples of such methods are RIPPER, or CN2. On the
other hand, it is common to follow an indirect method and extract rules from other
classification models such as decision trees or neural networks.

The advantages of rule-based classifiers are that they are extremely expressive
since they are symbolic and operate with the attributes of the data without any
transformation. Rule-based classifiers, and by extension decision trees, are easy to
interpret, easy to generate and they can classify new instances efficiently.

In a similar way to Decision Tress, however, it is very difficult to build a complete
recommender model based on rules. As a matter of fact, this method is not very
popular in the context of RS because deriving a rule-based system means that we
either have some explicit prior knowledge of the decision making process or that
we derive the rules from another model such a decision tree. However a rule-based
system can be used to improve the performance of a RS by injecting partial domain
knowledge or business rules. Anderson et al. [6], for instance, implemented a CF
music RS that improves its performance by applying a rule-based system to the
results of the CF process. If a user rates an album by a given artist high, for instance,
predicted ratings for all other albums by this artist will be increased.

Gutta et al. [29] implemented a rule-based RS for TV content. In order to do,
so they first derived a C4.5 Decision Tree that is then decomposed into rules for
classifying the programs. Basu et al. [9] followed an inductive approach using the
Ripper [20] system to learn rules from data. They report slightly better results when
using hybrid content and collaborative data to learn rules than when following a
pure CF approach.

2.3.4 Bayesian Classifiers

A Bayesian classifier [34] is a probabilistic framework for solving classification
problems. It is based on the definition of conditional probability and the Bayes the-
orem. The Bayesian school of statistics uses probability to represent uncertainty
about the relationships learned from the data. In addition, the concept of priors is
very important as they represent our expectations or prior knowledge about what the
true relationship might be. In particular, the probability of a model given the data
(posterior) is proportional to the product of the likelihood times the prior proba-
bility (or prior). The likelihood component includes the effect of the data while the
prior specifies the belief in the model before the data was observed.

Bayesian classifiers consider each attribute and class label as (continuous or dis-
crete) random variables. Given a record with N attributes (A1,A2, ...,AN), the goal
is to predict class Ck by finding the value of Ck that maximizes the posterior prob-
ability of the class given the data P(Ck|A1,A2, ...,AN). Applying Bayes’ theorem,
P(Ck|A1,A2, ...,AN) ∝ P(A1,A2, ...,AN |Ck)P(Ck)

A particular but very common Bayesian classifier is the Naive Bayes Classifier.
In order to estimate the conditional probability, P(A1,A2, ...,AN |Ck), a Naive Bayes
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Classifier assumes the probabilistic independence of the attributes – i.e. the pres-
ence or absence of a particular attribute is unrelated to the presence or absence of any
other. This assumption leads to P(A1,A2, ...,AN |Ck)=P(A1|Ck)P(A2|Ck)...P(AN |Ck).

The main benefits of Naive Bayes classifiers are that they are robust to isolated
noise points and irrelevant attributes, and they handle missing values by ignoring
the instance during probability estimate calculations. However, the independence
assumption may not hold for some attributes as they might be correlated. In this
case, the usual approach is to use the so-called Bayesian Belief Networks (BBN)
(or Bayesian Networks, for short). BBN’s use an acyclic graph to encode the de-
pendence between attributes and a probability table that associates each node to its
immediate parents. BBN’s provide a way to capture prior knowledge in a domain
using a graphical model. In a similar way to Naive Bayes classifiers, BBN’s handle
incomplete data well and they are quite robust to model overfitting.

Bayesian classifiers are particularly popular for model-based RS. They are often
used to derive a model for content-based RS. However, they have also been used
in a CF setting. Ghani and Fano [36], for instance, use a Naive Bayes classifier to
implement a content-based RS. The use of this model allows for recommending
products from unrelated categories in the context of a department store.

Miyahara and Pazzani [52] implement a RS based on a Naive Bayes classifier.
In order to do so, they define two classes: like and don’t like. In this context they
propose two ways of using the Naive Bayesian Classifier: The Transformed Data
Model assumes that all features are completely independent, and feature selection
is implemented as a preprocessing step. On the other hand, the Sparse Data Model
assumes that only known features are informative for classification. Furthermore, it
only makes use of data which both users rated in common when estimating proba-
bilities. Experiments show both models to perform better than a correlation-based
CF.

Pronk et al. [58] use a Bayesian Naive Classifier as the base for incorporating
user control and improving performance, especially in cold-start situations. In order
to do so they propose to maintain two profiles for each user: one learned from the
rating history, and the other explicitly created by the user. The blending of both
classifiers can be controlled in such a way that the user-defined profile is favored
at early stages, when there is not too much rating history, and the learned classifier
takes over at later stages.

In the previous section we mentioned that Gutta et al. [29] implemented a
rule-based approach in a TV content RS. Another of the approaches they tested
was a Bayesian classifier. They define a two-class classifier, where the classes are
watched/not watched. The user profile is then a collection of attributes together with
the number of times they occur in positive and negative examples. This is used to
compute prior probabilities that a show belongs to a particular class and the con-
ditional probability that a given feature will be present if a show is either positive
or negative. It must be noted that features are, in this case, related to both content
–i.e. genre – and contexts –i.e. time of the day. The posteriori probabilities for a new
show are then computed from these.
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Breese et al. [15] implement a Bayesian Network where each node corresponds
to each item. The states correspond to each possible vote value. In the network, each
item will have a set of parent items that are its best predictors. The conditional prob-
ability tables are represented by decision trees. The authors report better results for
this model than for several nearest-neighbors implementations over several datasets.

Hierarchical Bayesian Networks have also been used in several settings as a way
to add domain-knowledge for information filtering [78]. One of the issues with hier-
archical Bayesian networks, however, is that it is very expensive to learn and update
the model when there are many users in it. Zhang and Koren [79] propose a varia-
tion over the standard Expectation-Maximization (EM) model in order to speed up
this process in the scenario of a content-based RS.

2.3.5 Artificial Neural Networks

An Artificial Neural Network (ANN) [81] is an assembly of inter-connected nodes
and weighted links that is inspired in the architecture of the biological brain. Nodes
in an ANN are called neurons as an analogy with biological neurons. These simple
functional units are composed into networks that have the ability to learn a classifi-
cation problem after they are trained with sufficient data.
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Fig. 2.5: Perceptron model

The simplest case of an ANN is the perceptron model, illustrated in figure 2.5. If
we particularize the activation function φ to be the simple Threshold Function, the
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output is obtained by summing up each of its input value according to the weights
of its links and comparing its output against some threshold θk. The output function
can be expressed using Eq. 2.7. The perceptron model is a linear classifier that has
a simple and efficient learning algorithm. But, besides the simple Threshold Func-
tion used in the Perceptron model, there are several other common choices for the
activation function such as sigmoid, tanh, or step functions.

yk =

{
1, if ∑xiwki ≥ θk

0, if ∑xiwki < θk
(2.7)

An ANN can have any number of layers. Layers in an ANN are classified into
three types: input, hidden, and output. Units in the input layer respond to data that
is fed into the network. Hidden units receive the weighted output from the input
units. And the output units respond to the weighted output from the hidden units
and generate the final output of the network. Using neurons as atomic functional
units, there are many possible architectures to put them together in a network. But,
the most common approach is to use the feed-forward ANN. In this case, signals are
strictly propagated in one way: from input to output.

The main advantages of ANN are that – depending on the activation function
– they can perform non-linear classification tasks, and that, due to their parallel
nature, they can be efficient and even operate if part of the network fails. The main
disadvantage is that it is hard to come up with the ideal network topology for a
given problem and once the topology is decided this will act as a lower bound for
the classification error. ANN’s belong to the class of sub-symbolic classifiers, which
means that they provide no semantics for inferring knowledge – i.e. they promote a
kind of black-box approach.

ANN’s can be used in a similar way as Bayesian Networks to construct model-
based RS’s. However, there is no conclusive study to whether ANN introduce any
performance gain. As a matter of fact, Pazzani and Billsus [57] did a comprehen-
sive experimental study on the use of several machine learning algorithms for web
site recommendation. Their main goal was to compare the simple naive Bayesian
Classifier with computationally more expensive alternatives such as Decision Trees
and Neural Networks. Their experimental results show that Decision Trees perform
significantly worse. On the other hand ANN and the Bayesian classifier performed
similarly. They conclude that there does not seem to be a need for nonlinear clas-
sifiers such as the ANN. Berka et al. [31] used ANN to build an URL RS for web
navigation. They implemented a content-independent system based exclusively on
trails – i.e. associating pairs of domain names with the number of people who tra-
versed them. In order to do so they used feed-forward Multilayer Perceptrons trained
with the Backpropagation algorithm.

ANN can be used to combine (or hybridize) the input from several recommen-
dation modules or data sources. Hsu et al. [30], for instance, build a TV recom-
mender by importing data from four different sources: user profiles and stereo-
types; viewing communities; program metadata; and viewing context. They use the
back-propagation algorithm to train a three-layered neural network. Christakou and
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Stafylopatis [19] also built a hybrid content-based CF RS. The content-based rec-
ommender is implemented using three neural networks per user, each of them cor-
responding to one of the following features: “kinds”, “stars”, and “synopsis”. They
trained the ANN using the Resilient Backpropagation method.

2.3.6 Support Vector Machines

The goal of a Support Vector Machine (SVM) classifier [23] is to find a linear hy-
perplane (decision boundary) that separates the data in such a way that the margin is
maximized. For instance, if we look at a two class separation problem in two dimen-
sions like the one illustrated in figure 2.6, we can easily observe that there are many
possible boundary lines to separate the two classes. Each boundary has an associated
margin. The rationale behind SVM’s is that if we choose the one that maximizes the
margin we are less likely to missclassify unknown items in the future.

Large MarginSmall Margin

Support Vectors

w • x+b= 0
w • x+b= 1

w • x+b= −1

Fig. 2.6: Different boundary decisions are possible to separate two classes in two
dimensions. Each boundary has an associated margin.

A linear separation between two classes is accomplished through the function
w• x+b = 0. We define a function that can classify items of being of class +1 or -1
as long as they are separated by some minimum distance from the class separation
function. The function is given by Eq. 2.8

f (x) =

{
1, if w• x+b≥ 1
−1, if w• x+b≤−1

(2.8)

Margin =
2
‖w‖2 (2.9)
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Following the main rationale for SVM’s, we would like to maximize the margin
between the two classes, given by equation 2.9. This is in fact equivalent to mini-
mizing the inverse value L(w) = ‖w‖2

2 but subjected to the constraints given by f (x).
This is a constrained optimization problem and there are numerical approaches to
solve it (e.g., quadratic programming).

If the items are not linearly separable we can decide to turn the svm into a soft
margin classifier by introducing a slack variable. In this case the formula to mini-
mize is given by equation 2.10 subject to the new definition of f (x) in equation 2.11.
On the other hand, if the decision boundary is not linear we need to transform data
into a higher dimensional space . This is accomplished thanks to a mathematical
transformation known as the kernel trick. The basic idea is to replace the dot prod-
ucts in equation 2.8 by a kernel function. There are many different possible choices
for the kernel function such as Polynomial or Sigmoid. But the most common kernel
functions are the family of Radial Basis Function (RBF).

L(w) =
‖w‖2

2
+C

N

∑
i=1

ε (2.10)

f (x) =

{
1, if w• x+b≥ 1− ε
−1, if w• x+b≤−1+ ε

(2.11)

Support Vector Machines have recently gained popularity for their performance
and efficiency in many settings. SVM’s have also shown promising recent results
in RS. Kang and Yoo [46], for instance, report on an experimental study that aims
at selecting the best preprocessing technique for predicting missing values for an
SVM-based RS. In particular, they use SVD and Support Vector Regression. The
Support Vector Machine RS is built by first binarizing the 80 levels of available user
preference data. They experiment with several settings and report best results for a
threshold of 32 – i.e. a value of 32 and less is classified as prefer and a higher value
as do not prefer. The user id is used as the class label and the positive and negative
values are expressed as preference values 1 and 2.

Xu and Araki [76] used SVM to build a TV program RS. They used informa-
tion from the Electronic Program Guide (EPG) as features. But in order to reduce
features they removed words with lowest frequencies. Furthermore, and in order to
evaluate different approaches, they used both the Boolean and the Term frequency -
inverse document frequency (TFIDF) weighting schemes for features. In the former,
0 and 1 are used to represent absence or presence of a term on the content. In the
latter, this is turned into the TFIDF numerical value.

Xia et al.[75] present different approaches to using SVM’s for RS in a CF set-
ting. They explore the use of Smoothing Support Vector Machines (SSVM). They
also introduce a SSVM-based heuristic (SSVMBH) to iteratively estimate missing
elements in the user-item matrix. They compute predictions by creating a classifier
for each user. Their experimental results report best results for the SSVMBH as
compared to both SSVM’s and traditional user-based and item-based CF. Finally,
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Oku et al. [27] propose the use of Context-Aware Vector Machines (C-SVM) for
context-aware RS. They compare the use of standard SVM, C-SVM and an exten-
sion that uses CF as well as C-SVM. Their results show the effectiveness of the
context-aware methods for restaurant recommendations.

2.3.7 Ensembles of Classifiers

The basic idea behind the use of ensembles of classifiers is to construct a set of
classifiers from the training data and predict class labels by aggregating their pre-
dictions. Ensembles of classifiers work whenever we can assume that the classifiers
are independent. In this case we can ensure that the ensemble will produce results
that are in the worst case as bad as the worst classifier in the ensemble. Therefore,
combining independent classifiers of a similar classification error will only improve
results.

In order to generate ensembles, several approaches are possible. The two most
common techniques are Bagging and Boosting. In Bagging, we perform sampling
with replacement, building the classifier on each bootstrap sample. Each sample has
probability (1− 1

N )
N of being selected – note that if N is large enough, this converges

to 1− 1
e ≈ 0.623. In Boosting we use an iterative procedure to adaptively change

distribution of training data by focusing more on previously misclassified records.
Initially, all records are assigned equal weights. But, unlike bagging, weights may
change at the end of each boosting round: Records that are wrongly classified will
have their weights increased while records that are classified correctly will have
their weights decreased. An example of boosting is the AdaBoost algorithm.

The use of ensembles of classifiers is common practice in the RS field. As a
matter of fact, any hybridation technique [16] can be considered an ensemble as
it combines in one way or another several classifiers. An explicit example of this
is Tiemann and Pauws’ music recommender, in which they use ensemble learning
methods to combine a social and a content-base RS [70].

Experimental results show that ensembles can produce better results than any
classifier in isolation. Bell et al. [11], for instance, used a combination of 107 differ-
ent methods in their progress prize winning solution to the Netflix challenge. They
state that their findings show that it pays off more to find substantially different ap-
proaches rather than focusing on refining a particular technique. In order to blend
the results from the ensembles they use a linear regression approach and to derive
weights for each classifier, they partition the test dataset into 15 different bins and
derive unique coefficients for each of the bins. Different uses of ensembles in the
context of the Netflix prize can be tracked in other approaches such as in Schclar et
al.’s [67] or Toescher et al.’s [71].

The boosting approach has also been used in RS. Freund et al., for instance,
present an algorithm called RankBoost to combine preferences [32]. They apply the
algorithm to produce movie recommendations in a CF setting.
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2.3.8 Evaluating Classifiers

The most commonly accepted evaluation measure for RS is the Mean Average Error
or Root Mean Squared Error of the predicted interest (or rating) and the measured
one. These measures compute accuracy without any assumption on the purpose of
the RS. However, as McNee et al. point out [51], there is much more than accuracy
to deciding whether an item should be recommended. Herlocker et al. [42] provide
a comprehensive review of algorithmic evaluation approaches to RS. They suggest
that some measures could potentially be more appropriate for some tasks. However,
they are not able to validate the measures when evaluating the different approaches
empirically on a class of recommendation algorithms and a single set of data.

A step forward is to consider that the purpose of a “real” RS is to produce a top-N
list of recommendations and evaluate RS depending on how well they can classify
items as being recommendable. If we look at our recommendation as a classifica-
tion problem, we can make use of well-known measures for classifier evaluation
such as precision and recall. In the following paragraphs, we will review some of
these measures and their application to RS evaluation. Note however that learn-
ing algorithms and classifiers can be evaluated by multiple criteria. This includes
how accurately they perform the classification, their computational complexity dur-
ing training , complexity during classification, their sensitivity to noisy data, their
scalability, and so on. But in this section we will focus only on classification perfor-
mance.

In order to evaluate a model we usually take into account the following measures:
True Positives (T P): number of instances classified as belonging to class A that
truly belong to class A; True Negatives (T N): number of instances classified as not
belonging to class A and that in fact do not belong to class A; False Positives (FP):
number of instances classified as class A but that do not belong to class A; False
Negatives (FN): instances not classified as belonging to class v but that in fact do
belong to class A.

The most commonly used measure for model performance is its Accuracy de-
fined as the ratio between the instances that have been correctly classified (as be-
longing or not to the given class) and the total number of instances: Accuracy =
(T P + T N)/(T P + T N + FP + FN). However, accuracy might be misleading in
many cases. Imagine a 2-class problem in which there are 99,900 samples of class
A and 100 of class B. If a classifier simply predicts everything to be of class A,
the computed accuracy would be of 99.9% but the model performance is question-
able because it will never detect any class B examples. One way to improve this
evaluation is to define the cost matrix where we declare the cost of misclassifying
class B examples as being of class A. In real world applications different types of
errors may indeed have very different costs. For example, if the 100 samples above
correspond to defective airplane parts in an assembly line, incorrectly rejecting a
non-defective part (one of the 99,900 samples) has a negligible cost compared to
the cost of mistakenly classifying a defective part as a good part.

Other common measures of model performance, particularly in Information Re-
trieval, are Precision and Recall . Precision, defined as P = T P/(T P+FP), is a
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measure of how many errors we make in classifying samples as being of class A.
On the other hand, recall, R = T P/(T P+FN), measures how good we are in not
leaving out samples that should have been classified as belonging to the class. Note
that these two measures are misleading when used in isolation in most cases. We
could build a classifier of perfect precision by not classifying any sample as being
of class A (therefore obtaining 0 TP but also 0 FP). Conversely, we could build a
classifier of perfect recall by classifying all samples as belonging to class A. As a
matter of fact, there is a measure, called the F1-measure that combines both Preci-
sion and Recall into a single measure as: F1 =

2RP
R+P = 2T P

2T P+FN+FP
Sometimes we would like to compare several competing models rather than es-

timate their performance independently. In order to do so we use a technique de-
veloped in the 1950s for analysis of noisy signals: the Receiver Operating Charac-
teristic (ROC) Curve. A ROC curve characterizes the relation between positive hits
and false alarms. The performance of each classifier is represented as a point on the
curve (see Fig. 2.7).
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Fig. 2.7: Example of ROC Curve. Model 1 performs better for low False Positive
Rates while Model 2 is fairly consistent throughout and outperforms Model 1 for
False Positive Rates higher than 0.25

Ziegler et al. show [80] that evaluating recommender algorithms through top-N
lists measures still does not map directly to the user’s utility function. However, it
does address some of the limitations of the more commonly accepted accuracy mea-
sures, such as MAE. Basu et al. [10], for instance, use this approach by analyzing
which of the items predicted in the top quartile of the rating scale were actually
evaluated in the top quartile by the user. McLaughlin and Herlocker [50] propose
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a modified precision measure in which non-rated items are counted as not recom-
mendable. This precision measure in fact represents a lower-bound of the “real”
precision. Although the F-measure can be directly derived from the precision-recall
values, it is not common to find it in RS evaluations. Huang et al. [43] and Bozzon
et al. [13], and Miyahara and Pazzani [52] are some of the few examples of the use
of this measure.

ROC curves have also been used in evaluating RS. Zhang et al. [64] use the value
of the area under the ROC curve as their evaluation measure when comparing the
performance of different algorithms under attack. Banerjee and Ramanathan [8] also
use the ROC curves to compare the performance of different models.

It must be noted, though, that the choice of a good evaluation measure, even in
the case of a top-N RS, is still a matter of discussion. Many authors have proposed
measures that are only indirectly related to these traditional evaluation schemes.
Deshpande and Karypis [25], for instance, propose the use of the hit rate and the
average reciprocal hit-rank. On the other hand, Breese et al. [15] define a measure
of the utility of the recommendation in a ranked list as a function of the neutral vote.

Note that Chapter 8 details on the use of some of these evaluation measures in
the context of RS and is therefore a good place to continue if you are interested on
this topic.

2.4 Cluster Analysis

The main problem for scaling a CF classifier is the amount of operations involved in
computing distances – for finding the best k-nearest neighbors, for instance. A possi-
ble solution is, as we saw in section 2.2.3, to reduce dimensionality. But, even if we
reduce dimensionality of features, we might still have many objects to compute the
distance to. This is where clustering algorithms can come into play. The same is true
for content-based RS, where distances among objects are needed to retrieve simi-
lar ones. Clustering is sure to improve efficiency because the number of operations
is reduced. However, and unlike dimensionality reduction methods, it is unlikely
that it can help improve accuracy. Therefore, clustering must be applied with care
when designing a RS, measuring the compromise between improved efficiency and
a possible decrease in accuracy.

Clustering [41], also referred to as unsupervised learning, consists of assigning
items to groups so that the items in the same groups are more similar than items
in different groups: the goal is to discover natural (or meaningful) groups that exist
in the data. Similarity is determined using a distance measure, such as the ones
reviewed in 2.2.1. The goal of a clustering algorithm is to minimize intra-cluster
distances while maximizing inter-cluster distances.

There are two main categories of clustering algorithms: hierarchical and parti-
tional. Partitional clustering algorithms divide data items into non-overlapping clus-
ters such that each data item is in exactly one cluster. Hierarchical clustering algo-
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rithms successively cluster items within found clusters, producing a set of nested
cluster organized as a hierarchical tree.

Many clustering algorithms try to minimize a function that measures the quality
of the clustering. Such a quality function is often referred to as the objective func-
tion, so clustering can be viewed as an optimization problem: the ideal clustering
algorithm would consider all possible partitions of the data and output the partition-
ing that minimizes the quality function. But the corresponding optimization problem
is NP hard, so many algorithms resort to heuristics (e.g., in the k-means algorithm
using only local optimization procedures potentially ending in local minima). The
main point is that clustering is a difficult problem for which finding optimal solu-
tions is often not possible. For that same reason, selection of the particular clustering
algorithm and its parameters (e.g., similarity measure) depend on many factors, in-
cluding the characteristics of the data. In the following paragraphs we describe the
k-means clustering algorithm and some of its alternatives.

2.4.1 k-Means

k-Means clustering is a partitioning method. The function partitions the data set of
N items into k disjoint subsets S j that contain Nj items so that they are as close
to each other as possible according a given distance measure. Each cluster in the
partition is defined by its Nj members and by its centroid λ j. The centroid for each
cluster is the point to which the sum of distances from all items in that cluster is
minimized. Thus, we can define the k-means algorithm as an iterative process to
minimize E = ∑k

1 ∑n∈S j d(xn,λ j), where xn is a vector representing the n-th item,
λ j is the centroid of the item in S j and d is the distance measure. The k-means
algorithm moves items between clusters until E cannot be decreased further.

The algorithm works by randomly selecting k centroids. Then all items are as-
signed to the cluster whose centroid is the closest to them. The new cluster centroid
needs to be updated to account for the items who have been added or removed from
the cluster and the membership of the items to the cluster updated. This operation
continues until there are no further items that change their cluster membership. Most
of the convergence to the final partition takes place during the first iterations of the
algorithm, and therefore, the stopping condition is often changed to “until relatively
few points change clusters” in order to improve efficiency.

The basic k-means is an extremely simple and efficient algorithm. However, it
does have several shortcomings: (1) it assumes prior knowledge of the data in order
to choose the appropriate k ; (2) the final clusters are very sensitive to the selection of
the initial centroids; and (3), it can produce empty cluster. k-means also has several
limitations with regard to the data: it has problems when clusters are of differing
sizes, densities, and non-globular shapes; and it also has problems when the data
contains outliers.

Xue et al. [77] present a typical use of clustering in the context of a RS by em-
ploying the k-means algorithm as a pre-processing step to help in neighborhood for-

I. 21

3 ,

4.
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mation. They do not restrict the neighborhood to the cluster the user belongs to but
rather use the distance from the user to different cluster centroids as a pre-selection
step for the neighbors. They also implement a cluster-based smoothing technique in
which missing values for users in a cluster are replaced by cluster representatives.
Their method is reported to perform slightly better than standard kNN-based CF. In
a similar way, Sarwar et al. [26] describe an approach to implement a scalable kNN
classifier. They partition the user space by applying the bisecting k-means algorithm
and then use those clusters as the base for neighborhood formation. They report a
decrease in accuracy of around 5% as compared to standard kNN CF. However, their
approach allows for a significant improvement in efficiency.

Connor and Herlocker [21] present a different approach in which, instead of
users, they cluster items. Using the Pearson Correlation similarity measure they try
out four different algorithms: average link hierarchical agglomerative [39], robust
clustering algorithm for categorical attributes (ROCK) [40], kMetis, and hMetis 3.
Although clustering did improve efficiency, all of their clustering techniques yielded
worse accuracy and coverage than the non-partitioned baseline. Finally, Li et al.[60]
and Ungar and Foster [72] present a very similar approach for using k-means clus-
tering for solving a probabilistic model interpretation of the recommender problem.

2.4.2 Alternatives to k-means

Density-based clustering algorithms such as DBSCAN work by building up on the
definition of density as the number of points within a specified radius. DBSCAN,
for instance, defines three kinds of points: core points are those that have more than
a specified number of neighbors within a given distance; border points have fewer
than the specified number but belong to a core point neighborhood; and noise points
are those that are neither core or border. The algorithm iteratively removes noise
points and performs clustering on the remaining points.

Message-passing clustering algorithms are a very recent family of graph-based
clustering methods. Instead of considering an initial subset of the points as centers
and then iteratively adapt those, message-passing algorithms initially consider all
points as centers – usually known as exemplars in this context. During the algorithm
execution points, which are now considered nodes in a network, exchange messages
until clusters gradually emerge. Affinity Propagation is an important representative
of this family of algorithms [33] that works by defining two kinds of messages
between nodes: “responsibility”, which reflects how well-suited receiving point is
to serve as exemplar of the point sending the message, taking into account other
potential exemplars; and “availability”, which is sent from candidate exemplar to the
point and reflects how appropriate it would be for the point to choose the candidate
as its exemplar, taking into account support from other points that are choosing that
same exemplar. Affinity propagation has been applied, with very good results, to

3 http://www.cs.umn.edu/ karypis/metis
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problems as different as DNA sequence clustering, face clustering in images, or text
summarization.

Finally, Hierarchical Clustering, produces a set of nested clusters organized as
a hierarchical tree (dendogram). Hierarchical Clustering does not have to assume
a particular number of clusters in advanced. Also, any desired number of clusters
can be obtained by selecting the tree at the proper level. Hierarchical clusters can
also sometimes correspond to meaningful taxonomies. Traditional hierarchical al-
gorithms use a similarity or distance matrix and merge or split one cluster at a time.
There are two main approaches to hierarchical clustering. In agglomerative hier-
archical clustering we start with the points as individual clusters and at each step,
merge the closest pair of clusters until only one cluster (or k clusters) are left. In
divisive hierarchical clustering we start with one, all-inclusive cluster, and at each
step, split a cluster until each cluster contains a point (or there are k clusters).

To the best of our knowledge, alternatives to k-means such as the previous have
not been applied to RS. The simplicity and efficiency of the k-means algorithm
shadows possible alternatives. It is not clear whether density-based or hierarchical
clustering approaches have anything to offer in the RS arena. On the other hand,
message-passing algorithms have been shown to be more efficient and their graph-
based paradigm can be easily translated to the RS problem. It is possible that we see
applications of these algorithms in the coming years.

2.5 Association Rule Mining

Association Rule Mining focuses on finding rules that will predict the occurrence of
an item based on the occurrences of other items in a transaction. The fact that two
items are found to be related means co-occurrence but not causality. Note that this
technique should not be confused with rule-based classifiers presented in Sec. 2.3.3.

We define an itemset as a collection of one or more items (e.g. (Milk, Beer,
Diaper)). A k-itemset is an itemset that contains k items. The frequency of a given
itemset is known as support count (e.g. (Milk, Beer, Diaper) = 131). And the support
of the itemset is the fraction of transactions that contain it (e.g. (Milk, Beer, Diaper)
= 0.12). A frequent itemset is an itemset with a support that is greater or equal to a
minsup threshold. An association rule is an expression of the form X ⇒ Y , where
X and Y are itemsets. (e.g. Milk,Diaper⇒ Beer). In this case the support of the
association rule is the fraction of transactions that have both X and Y . On the other
hand, the confidence of the rule is how often items in Y appear in transactions that
contain X .

Given a set of transactions T , the goal of association rule mining is to find
all rules having support ≥ minsupthreshold and con f idence≥ mincon f threshold.
The brute-force approach would be to list all possible association rules, compute
the support and confidence for each rule and then prune rules that do not satisfy
both conditions. This is, however, computationally very expensive. For this reason,
we take a two-step approach: (1) Generate all itemsets whose support ≥ minsup
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(Frequent Itemset Generation); (2) Generate high confidence rules from each fre-
quent itemset (Rule Generation)

Several techniques exist to optimize the generation of frequent itemsets. On a
broad sense they can be classified into those that try to minimize the number of can-
didates (M), those that reduce the number of transactions (N), and those that reduce
the number of comparisons (NM). The most common approach though, is to reduce
the number of candidates using the Apriori principle. This principle states that if
an itemset is frequent, then all of its subsets must also be frequent. This is verified
using the support measure because the support of an itemset never exceeds that of
its subsets. The Apriori algorithm is a practical implementation of the principle.

Given a frequent itemset L, the goal when generating rules is to find all non-
empty subsets that satisfy the minimum confidence requirement. If |L| = k, then
there are 2k2 candidate association rules. So, as in the frequent itemset generation,
we need to find ways to generate rules efficiently. For the Apriori Algorithm we can
generate candidate rules by merging two rules that share the same prefix in the rule
consequent.

The effectiveness of association rule mining for uncovering patterns and driving
personalized marketing decisions has been known for a some time [2]. However, and
although there is a clear relation between this method and the goal of a RS, they have
not become mainstream. The main reason is that this approach is similar to item-
based CF but is less flexible since it requires of an explicit notion of transaction –
e.g. co-occurrence of events in a given session. In the next paragraphs we present
some promising examples, some of which indicate that association rules still have
not had their last word.

Mobasher et al. [53] present a system for web personalization based on associ-
ation rules mining. Their system identifies association rules from pageviews co-
occurrences based on users navigational patterns. Their approach outperforms a
kNN-based recommendation system both in terms of precision and coverage. Smyth
et al. [68] present two different case studies of using association rules for RS. In the
first case they use the a priori algorithm to extract item association rules from user
profiles in order to derive a better item-item similarity measure. In the second case,
they apply association rule mining to a conversational recommender. The goal here
is to find co-occurrent critiques – i.e. user indicating a preference over a particular
feature of the recommended item. Lin et al. [49] present a new association mining
algorithm that adjusts the minimum support of the rules during mining in order to
obtain an appropriate number of significant rule therefore addressing some of the
shortcomings of previous algorithms such as the a priori. They mine both associa-
tion rules between users and items. The measured accuracy outperforms previously
reported values for correlation-based recommendation and is similar to the more
elaborate approaches such as the combination of SVD and ANN.

Finally, as already mentioned in section 2.3.2, Cho et al. [18] combine Decision
Trees and Association Rule Mining in a web shop RS. In their system, associa-
tion rules are derived in order to link related items. The recommendation is then
computed by intersecting association rules with user preferences. They look for as-
sociation rules in different transaction sets such as purchases, basket placement, and
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click-through. They also use a heuristic for weighting rules coming from each of the
transaction sets. Purchase association rules, for instance, are weighted higher than
click-through association rules.

2.6 Conclusions

This chapter has introduced the main data mining methods and techniques that can
be applied in the design of a RS. We have also surveyed their use in the literature
and provided some rough guidelines on how and where they can be applied.

We started by reviewing techniques that can be applied in the pre-processing
step. First, there is the choice of an appropriate distance measure, which is reviewed
in Section 2.2.1. This is required by most of the methods in the following steps.
The cosine similarity and Pearson correlation are commonly accepted as the best
choice. Although there have been many efforts devoted to improving these distance
measures, recent works seem to report that the choice of a distance function does not
play such an important role. Then, in Section 2.2.2, we reviewed the basic sampling
techniques that need to be applied in order to select a subset of an originally large
data set, or to separating a training and a testing set. Finally, we discussed the use
of dimensionality reduction techniques such as Principal Component Analysis and
Singular Value Decomposition in Section 2.2.3 as a way to address the curse of
dimensionality problem. We explained some success stories using dimensionality
reduction techniques, especially in the context of the Netflix prize.

In Section 2.3, we reviewed the main classification methods: namely, nearest-
neighbors, decision trees, rule-based classifiers, Bayesian networks, artificial neural
networks, and support vector machines. We saw that, although kNN ( see Section
2.3.1) CF is the preferred approach, all those classifiers can be applied in different
settings. Decision trees ( see Section 2.3.2) can be used to derive a model based
on the content of the items or to model a particular part of the system. Decision
rules ( see Section 2.3.3) can be derived from a pre-existing decision trees, or can
also be used to introduce business or domain knowledge. Bayesian networks ( see
Section 2.3.4) are a popular approach to content-based recommendation, but can
also be used to derive a model-based CF system. In a similar way, Artificial Neu-
ral Networks can be used to derive a model-based recommender but also to com-
bine/hybridize several algorithms. Finally, support vector machines ( see Section
2.3.6) are gaining popularity also as a way to infer content-based classifications or
derive a CF model.

Choosing the right classifier for a RS is not easy and is in many senses task and
data-dependent. In the case of CF, some results seem to indicate that model-based
approaches using classifiers such as the SVM or Bayesian Networks can slightly
improve performance of the standard kNN classifier. However, those results are non-
conclusive and hard to generalize. In the case of a content-based RS there is some
evidence that in some cases Bayesian Networks will perform better than simpler
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methods such as decision trees. However, it is not clear that more complex non-
linear classifiers such as the ANN or SVMs can perform better.

Therefore, the choice of the right classifier for a specific recommending task still
has nowadays much of exploratory. A practical rule-of-thumb is to start with the
simplest approach and only introduce complexity if the performance gain obtained
justifies it. The performance gain should of course balance different dimensions
such as prediction accuracy or computational efficiency.

We reviewed clustering algorithms in Section 2.4. Clustering is usually used in
RS to improve performance. A previous clustering step, either in the user of item
space, reduces the number of distance computations we need to perform. However,
this usually comes at the price of a lower accuracy so it should be handled with
care. As a matter of fact, improving efficiency by using a dimensionality reduction
technique such as SVD is probably a better choice in the general case. As opposed
to what happens with classifiers, not so many clustering algorithms have been used
in the context of RS. The simplicity and relative efficiency of the k-means algorithm
(see Section 2.4.1) make it hard to find a practical alternative. We reviewed some
of them such as Hierarchical Clustering or Message-passing algorithms in Section
2.4.2. Although these techniques have still not been applied for RS, they offer a
promising avenue for future research.

Finally, in Section 2.5, we described association rules and surveyed their use in
RS. Association rules offer an intuitive framework for recommending items when-
ever there is an explicit or implicit notion of transaction. Although there exist effi-
cient algorithms for computing association rules, and they have proved more accu-
rate than standard kNN CF, they are still not a favored approach.

The choice of the right DM technique in designing a RS is a complex task that
is bound by many problem-specific constraints. However, we hope that the short
review of techniques and experiences included in this chapter can help the reader
make a much more informed decision. Besides, we have also uncovered areas that
are open to many further improvements, and where there is still much exciting and
relevant research to be done in the coming years.
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Chapter 3
Content-based Recommender Systems: State of
the Art and Trends

Pasquale Lops, Marco de Gemmis and Giovanni Semeraro

Abstract Recommender systems have the effect of guiding users in a personal-
ized way to interesting objects in a large space of possible options. Content-based
recommendation systems try to recommend items similar to those a given user has
liked in the past. Indeed, the basic process performed by a content-based recom-
mender consists in matching up the attributes of a user profile in which preferences
and interests are stored, with the attributes of a content object (item), in order to
recommend to the user new interesting items. This chapter provides an overview of
content-based recommender systems, with the aim of imposing a degree of order on
the diversity of the different aspects involved in their design and implementation.
The first part of the chapter presents the basic concepts and terminology of content-
based recommender systems, a high level architecture, and their main advantages
and drawbacks. The second part of the chapter provides a review of the state of
the art of systems adopted in several application domains, by thoroughly describ-
ing both classical and advanced techniques for representing items and user profiles.
The most widely adopted techniques for learning user profiles are also presented.
The last part of the chapter discusses trends and future research which might lead
towards the next generation of systems, by describing the role of User Generated
Content as a way for taking into account evolving vocabularies, and the challenge
of feeding users with serendipitous recommendations, that is to say surprisingly
interesting items that they might not have otherwise discovered.
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3.1 Introduction

The abundance of information available on the Web and in Digital Libraries, in
combination with their dynamic and heterogeneous nature, has determined a rapidly
increasing difficulty in finding what we want when we need it and in a manner which
best meets our requirements.

As a consequence, the role of user modeling and personalized information ac-
cess is becoming crucial: users need a personalized support in sifting through large
amounts of available information, according to their interests and tastes.

Many information sources embody recommender systems as a way of personal-
izing their content for users [73]. Recommender systems have the effect of guiding
users in a personalized way to interesting or useful objects in a large space of possi-
ble options [17]. Recommendation algorithms use input about a customer’s interests
to generate a list of recommended items. At Amazon.com, recommendation algo-
rithms are used to personalize the online store for each customer, for example show-
ing programming titles to a software engineer and baby toys to a new mother [50].

The problem of recommending items has been studied extensively, and two main
paradigms have emerged. Content-based recommendation systems try to recom-
mend items similar to those a given user has liked in the past, whereas systems
designed according to the collaborative recommendation paradigm identify users
whose preferences are similar to those of the given user and recommend items they
have liked [7].

In this chapter, a comprehensive and systematic study of content-based recom-
mender systems is carried out. The intention is twofold:

• to provide an overview of state-of-the-art systems, by highlighting the techniques
which revealed the most effective, and the application domains in which they
have adopted;

• to present trends and directions for future research which might lead towards the
next generation of content-based recommender systems.

The chapter is organized as follows. First, we present the basic concepts and
terminology related to content-based recommenders. A classical framework for pro-
viding content-based recommendations is described, in order to understand the main
components of the architecture, the process for producing recommendations and the
advantages and drawbacks of using this kind of recommendation technique. Section
3.3 provides a thorough review of the state of the art of content-based systems, by
providing details about the classical and advanced techniques for representing items
to be recommended, and the methods for learning user profiles. Section 3.4 presents
trends and future research in the field of content-based recommender systems, while
conclusions are drawn in Section 3.5.
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3.2 Basics of Content-based Recommender Systems

Systems implementing a content-based recommendation approach analyze a set of
documents and/or descriptions of items previously rated by a user, and build a model
or profile of user interests based on the features of the objects rated by that user [63].
The profile is a structured representation of user interests, adopted to recommend
new interesting items. The recommendation process basically consists in matching
up the attributes of the user profile against the attributes of a content object. The re-
sult is a relevance judgment that represents the user’s level of interest in that object.
If a profile accurately reflects user preferences, it is of tremendous advantage for
the effectiveness of an information access process. For instance, it could be used to
filter search results by deciding whether a user is interested in a specific Web page
or not and, in the negative case, preventing it from being displayed.

3.2.1 A High Level Architecture of Content-based Systems

Content-based Information Filtering (IF) systems need proper techniques for repre-
senting the items and producing the user profile, and some strategies for comparing
the user profile with the item representation. The high level architecture of a content-
based recommender system is depicted in Figure 3.1. The recommendation process
is performed in three steps, each of which is handled by a separate component:

• CONTENT ANALYZER – When information has no structure (e.g. text), some
kind of pre-processing step is needed to extract structured relevant information.
The main responsibility of the component is to represent the content of items
(e.g. documents, Web pages, news, product descriptions, etc.) coming from in-
formation sources in a form suitable for the next processing steps. Data items are
analyzed by feature extraction techniques in order to shift item representation
from the original information space to the target one (e.g. Web pages represented
as keyword vectors). This representation is the input to the PROFILE LEARNER
and FILTERING COMPONENT;

• PROFILE LEARNER – This module collects data representative of the user prefer-
ences and tries to generalize this data, in order to construct the user profile. Usu-
ally, the generalization strategy is realized through machine learning techniques
[61], which are able to infer a model of user interests starting from items liked or
disliked in the past. For instance, the PROFILE LEARNER of a Web page recom-
mender can implement a relevance feedback method [75] in which the learning
technique combines vectors of positive and negative examples into a prototype
vector representing the user profile. Training examples are Web pages on which
a positive or negative feedback has been provided by the user;

• FILTERING COMPONENT – This module exploits the user profile to suggest rel-
evant items by matching the profile representation against that of items to be
recommended. The result is a binary or continuous relevance judgment (com-
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Fig. 3.1: High level architecture of a Content-based Recommender

puted using some similarity metrics [42]), the latter case resulting in a ranked list
of potentially interesting items. In the above mentioned example, the matching
is realized by computing the cosine similarity between the prototype vector and
the item vectors.

The first step of the recommendation process is the one performed by the CON-
TENT ANALYZER, that usually borrows techniques from Information Retrieval sys-
tems [80, 6]. Item descriptions coming from Information Source are processed by
the CONTENT ANALYZER, that extracts features (keywords, n-grams, concepts, . . . )
from unstructured text to produce a structured item representation, stored in the
repository Represented Items.

In order to construct and update the profile of the active user ua (user for
which recommendations must be provided) her reactions to items are collected in
some way and recorded in the repository Feedback. These reactions, called anno-
tations [39] or feedback, together with the related item descriptions, are exploited
during the process of learning a model useful to predict the actual relevance of newly
presented items. Users can also explicitly define their areas of interest as an initial
profile without providing any feedback.

Typically, it is possible to distinguish between two kinds of relevance feedback:
positive information (inferring features liked by the user) and negative information
(i.e., inferring features the user is not interested in [43]).

Two different techniques can be adopted for recording user’s feedback. When a
system requires the user to explicitly evaluate items, this technique is usually re-
ferred to as “explicit feedback”; the other technique, called “implicit feedback”,
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does not require any active user involvement, in the sense that feedback is derived
from monitoring and analyzing user’s activities.

Explicit evaluations indicate how relevant or interesting an item is to the user
[74]. There are three main approaches to get explicit relevance feedback:

• like/dislike – items are classified as “relevant” or “not relevant” by adopting a
simple binary rating scale, such as in [12];

• ratings – a discrete numeric scale is usually adopted to judge items, such as in
[86]. Alternatively, symbolic ratings are mapped to a numeric scale, such as in
Syskill & Webert [70], where users have the possibility of rating a Web page as
hot, lukewarm, or cold;

• text comments – Comments about a single item are collected and presented to the
users as a means of facilitating the decision-making process, such as in [72]. For
instance, customer’s feedback at Amazon.com or eBay.com might help users in
deciding whether an item has been appreciated by the community. Textual com-
ments are helpful, but they can overload the active user because she must read
and interpret each comment to decide if it is positive or negative, and to what de-
gree. The literature proposes advanced techniques from the affective computing
research area [71] to make content-based recommenders able to automatically
perform this kind of analysis.

Explicit feedback has the advantage of simplicity, albeit the adoption of nu-
meric/symbolic scales increases the cognitive load on the user, and may not be
adequate for catching user’s feeling about items. Implicit feedback methods are
based on assigning a relevance score to specific user actions on an item, such as
saving, discarding, printing, bookmarking, etc. The main advantage is that they do
not require a direct user involvement, even though biasing is likely to occur, e.g.
interruption of phone calls while reading.

In order to build the profile of the active user ua, the training set T Ra for ua must
be defined. T Ra is a set of pairs 〈Ik,rk〉, where rk is the rating provided by ua on the
item representation Ik. Given a set of item representation labeled with ratings, the
PROFILE LEARNER applies supervised learning algorithms to generate a predictive
model – the user profile – which is usually stored in a profile repository for later
use by the FILTERING COMPONENT. Given a new item representation, the FIL-
TERING COMPONENT predicts whether it is likely to be of interest for the active
user, by comparing features in the item representation to those in the representation
of user preferences (stored in the user profile). Usually, the FILTERING COMPO-
NENT implements some strategies to rank potentially interesting items according
to the relevance with respect to the user profile. Top-ranked items are included in
a list of recommendations La, that is presented to ua. User tastes usually change in
time, therefore up-to-date information must be maintained and provided to the PRO-
FILE LEARNER in order to automatically update the user profile. Further feedback
is gathered on generated recommendations by letting users state their satisfaction or
dissatisfaction with items in La. After gathering that feedback, the learning process
is performed again on the new training set, and the resulting profile is adapted to the

䖄
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updated user interests. The iteration of the feedback-learning cycle over time allows
the system to take into account the dynamic nature of user preferences.

3.2.2 Advantages and Drawbacks of Content-based Filtering

The adoption of the content-based recommendation paradigm has several advan-
tages when compared to the collaborative one:

• USER INDEPENDENCE - Content-based recommenders exploit solely ratings
provided by the active user to build her own profile. Instead, collaborative fil-
tering methods need ratings from other users in order to find the “nearest neigh-
bors” of the active user, i.e., users that have similar tastes since they rated the
same items similarly. Then, only the items that are most liked by the neighbors
of the active user will be recommended;

• TRANSPARENCY - Explanations on how the recommender system works can be
provided by explicitly listing content features or descriptions that caused an item
to occur in the list of recommendations. Those features are indicators to consult
in order to decide whether to trust a recommendation. Conversely, collaborative
systems are black boxes since the only explanation for an item recommendation
is that unknown users with similar tastes liked that item;

• NEW ITEM - Content-based recommenders are capable of recommending items
not yet rated by any user. As a consequence, they do not suffer from the first-rater
problem, which affects collaborative recommenders which rely solely on users’
preferences to make recommendations. Therefore, until the new item is rated by
a substantial number of users, the system would not be able to recommend it.

Nonetheless, content-based systems have several shortcomings:

• LIMITED CONTENT ANALYSIS - Content-based techniques have a natural limit
in the number and type of features that are associated, whether automatically or
manually, with the objects they recommend. Domain knowledge is often needed,
e.g., for movie recommendations the system needs to know the actors and di-
rectors, and sometimes, domain ontologies are also needed. No content-based
recommendation system can provide suitable suggestions if the analyzed content
does not contain enough information to discriminate items the user likes from
items the user does not like. Some representations capture only certain aspects
of the content, but there are many others that would influence a user’s experi-
ence. For instance, often there is not enough information in the word frequency
to model the user interests in jokes or poems, while techniques for affective com-
puting would be most appropriate. Again, for Web pages, feature extraction tech-
niques from text completely ignore aesthetic qualities and additional multimedia
information.
To sum up, both automatic and manually assignment of features to items could
not be sufficient to define distinguishing aspects of items that turn out to be nec-
essary for the elicitation of user interests.

䕶
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• OVER-SPECIALIZATION - Content-based recommenders have no inherent method
for finding something unexpected. The system suggests items whose scores are
high when matched against the user profile, hence the user is going to be rec-
ommended items similar to those already rated. This drawback is also called
serendipity problem to highlight the tendency of the content-based systems to
produce recommendations with a limited degree of novelty. To give an example,
when a user has only rated movies directed by Stanley Kubrick, she will be rec-
ommended just that kind of movies. A “perfect” content-based technique would
rarely find anything novel, limiting the range of applications for which it would
be useful.

• NEW USER - Enough ratings have to be collected before a content-based rec-
ommender system can really understand user preferences and provide accurate
recommendations. Therefore, when few ratings are available, as for a new user,
the system will not be able to provide reliable recommendations.

In the following, some strategies for tackling the above mentioned problems will
be presented and discussed. More specifically, novel techniques for enhancing the
content representation using common-sense and domain-specific knowledge will be
described (Sections 3.3.1.3-3.3.1.4). This may help to overcome the limitations of
traditional content analysis methods by providing new features, such as WordNet
[60, 32] or Wikipedia concepts, which help to represent the items to be recom-
mended in a more accurate and transparent way. Moreover, the integration of user-
defined lexicons, such as folksonomies, in the process of generating recommenda-
tions will be presented in Section 3.4.1, as a way for taking into account evolving
vocabularies.

Possible ways to feed users with serendipitous recommendations, that is to say,
interesting items with a high degree of novelty, will be analyzed as a solution to the
over-specialization problem (Section 3.4.2).

Finally, different strategies for overcoming the new user problem will be pre-
sented. Among them, social tags provided by users in a community can be exploited
as a feedback on which recommendations are produced when few or no ratings for
a specific user are available to the system (Section 3.4.1.1).

3.3 State of the Art of Content-based Recommender Systems

As the name implies, content-based filtering exploits the content of data items to
predict its relevance based on the user’s profile. Research on content-based recom-
mender systems takes place at the intersection of many computer science topics,
especially Information Retrieval [6] and Artificial Intelligence.

From Information Retrieval (IR), research on recommendation technologies de-
rives the vision that users searching for recommendations are engaged in an infor-
mation seeking process. In IR systems the user expresses a one-off information need
by giving a query (usually a list of keywords), while in IF systems the information
need of the user is represented by her own profile. Items to be recommended can
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be very different depending on the number and types of attributes used to describe
them. Each item can be described through the same small number of attributes with
known set of values, but this is not appropriate for items, such as Web pages, news,
emails or documents, described through unstructured text. In that case there are no
attributes with well-defined values, and the use of document modeling techniques
with roots in IR research is desirable.

From an Artificial Intelligence perspective, the recommendation task can be cast
as a learning problem that exploits past knowledge about users. At their simplest,
user profiles are in the form of user-specified keywords or rules, and reflect the long-
term interests of the user. Often, it is advisable for the recommender to learn the user
profile rather than impose upon the user to provide one. This generally involves
the application of Machine Learning (ML) techniques, whose goal is learning to
categorize new information items based on previously seen information that have
been explicitly or implicitly labelled as interesting or not by the user. Given these
labelled information items, ML methods are able to generate a predictive model
that, given a new information item, will help to decide whether it is likely to be of
interest for the target user.

Section 3.3.1 describes alternative item representation techniques, ranging from
traditional text representation, to more advanced techniques integrating ontologies
and/or encyclopedic knowledge. Next, recommendation algorithms suitable for the
described representations will be discussed in Section 3.3.2.

3.3.1 Item Representation

Items that can be recommended to the user are represented by a set of features,
also called attributes or properties. For example, in a movie recommendation ap-
plication, features adopted to describe a movie are: actors, directors, genres, subject
matter, . . . ). When each item is described by the same set of attributes, and there is
a known set of values the attributes may take, the item is represented by means of
structured data. In this case, many ML algorithms can be used to learn a user profile
[69].

In most content-based filtering systems, item descriptions are textual features
extracted from Web pages, emails, news articles or product descriptions. Unlike
structured data, there are no attributes with well-defined values. Textual features
create a number of complications when learning a user profile, due to the natural
language ambiguity. The problem is that traditional keyword-based profiles are un-
able to capture the semantics of user interests because they are primarily driven by
a string matching operation. If a string, or some morphological variant, is found in
both the profile and the document, a match is made and the document is considered
as relevant. String matching suffers from problems of:

• POLYSEMY, the presence of multiple meanings for one word;
• SYNONYMY, multiple words with the same meaning.

innn 形態的 ,
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The result is that, due to synonymy, relevant information can be missed if the pro-
file does not contain the exact keywords in the documents while, due to polysemy,
wrong documents could be deemed relevant.

Semantic analysis and its integration in personalization models is one of the most
innovative and interesting approaches proposed in literature to solve those problems.
The key idea is the adoption of knowledge bases, such as lexicons or ontologies , for
annotating items and representing profiles in order to obtain a “semantic” interpre-
tation of the user information needs. In the next section, the basic keyword-based
approach for document representation will be described, followed by a review of
“traditional” systems relying on that model. Then, Sections 3.3.1.3 and 3.3.1.4 will
provide an overview of techniques for semantic analysis based on ontological and
world knowledge, respectively.

3.3.1.1 Keyword-based Vector Space Model

Most content-based recommender systems use relatively simple retrieval models,
such as keyword matching or the Vector Space Model (VSM) with basic TF-IDF
weighting. VSM is a spatial representation of text documents. In that model, each
document is represented by a vector in a n-dimensional space, where each dimension
corresponds to a term from the overall vocabulary of a given document collection.
Formally, every document is represented as a vector of term weights, where each
weight indicates the degree of association between the document and the term. Let
D = {d1,d2, ...,dN} denote a set of documents or corpus, and T = {t1, t2, ..., tn} be
the dictionary, that is to say the set of words in the corpus. T is obtained by applying
some standard natural language processing operations, such as tokenization, stop-
words removal, and stemming [6]. Each document d j is represented as a vector in a
n-dimensional vector space, so d j = {w1 j,w2 j, ...,dn j}, where wk j is the weight for
term tk in document d j.

Document representation in the VSM raises two issues: weighting the terms and
measuring the feature vector similarity. The most commonly used term weight-
ing scheme, TF-IDF (Term Frequency-Inverse Document Frequency) weighting, is
based on empirical observations regarding text [79]:

• rare terms are not less relevant than frequent terms (IDF assumption);
• multiple occurrences of a term in a document are not less relevant than single

occurrences (TF assumption);
• long documents are not preferred to short documents (normalization assump-

tion).

In other words, terms that occur frequently in one document (TF =term-frequency),
but rarely in the rest of the corpus (IDF = inverse-document-frequency), are more
likely to be relevant to the topic of the document. In addition, normalizing the re-
sulting weight vectors prevent longer documents from having a better chance of
retrieval. These assumptions are well exemplified by the TF-IDF function:
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TF-IDF(tk,d j) = TF(tk,d j)︸ ︷︷ ︸
TF

· log
N
nk︸ ︷︷ ︸

IDF

(3.1)

where N denotes the number of documents in the corpus, and nk denotes the number
of documents in the collection in which the term tk occurs at least once.

TF(tk,d j) =
fk, j

maxz fz, j
(3.2)

where the maximum is computed over the frequencies fz, j of all terms tz that oc-
cur in document d j. In order for the weights to fall in the [0,1] interval and for
the documents to be represented by vectors of equal length, weights obtained by
Equation (3.1) are usually normalized by cosine normalization:

wk, j =
TF-IDF(tk,d j)√

∑|T |
s=1 TF-IDF(ts,d j)

2
(3.3)

which enforces the normalization assumption.
As stated earlier, a similarity measure is required to determine the closeness

between two documents. Many similarity measures have been derived to describe
the proximity of two vectors; among those measures, cosine similarity is the most
widely used:

sim(di,d j) =
∑k wki ·wk j√

∑k wki2 ·
√

∑k wk j2
(3.4)

In content-based recommender systems relying on VSM, both user profiles and
items are represented as weighted term vectors. Predictions of a user’s interest in a
particular item can be derived by computing the cosine similarity.

3.3.1.2 Review of Keyword-based Systems

Several keyword-based recommender systems have been developed in a relatively
short time, and it is possible to find them in various fields of applications, such as
news, music, e-commerce, movies, etc. Each domain presents different problems,
that require different solutions.

In the area of Web recommenders, famous systems in literature are Letizia [49],
Personal WebWatcher [62, 63], Syskill & Webert [70, 68], ifWeb [4], Amalthea [66],
and WebMate [23]. Letizia is implemented as a web-browser extension that tracks
the user’s browsing behavior and builds a personalized model consisting of key-
words related to the user’s interests. It relies on implicit feedback to infer the user’s
preferences. For example, bookmarking a page is interpreted as strong evidence for
the user’s interests in that page. In a similar way, Personal WebWatcher learns indi-
vidual interests of users from the Web pages they visit, and from documents lying
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one link away from the visited pages. It processes visited documents as positive
examples of the user’s interests, and non-visited documents as negative examples.
Amalthaea uses specific filtering agents to assist users in finding interesting infor-
mation as well. User can specify filtering agents by providing pages (represented as
weighted vectors) closely related to their interests.

The same approach is adopted by Syskill & Webert, that represents documents
with the 128 most informative words (the “informativeness” of words in documents
is determined in several different ways). Advanced representation techniques are
adopted by ifWeb, that represents profiles in the form of a weighted semantic net-
work. It supports explicit feedback and takes into account not only interests, but also
explicit disinterests. Another interesting aspect is that it incorporates a mechanism
for temporal decay, i.e. it ages the interests as expressed by the user. A different
approach for representing user interests is adopted by WebMate, that keeps track
of user interests in different domains by learning a user profile that consists of the
keyword vectors that represents positive training examples. A profile of n keyword
vectors can correctly represent up to n independent user interests.

In the field of news filtering, noteworthy recommender systems are NewT [87],
PSUN [90], INFOrmer [91], NewsDude [12], Daily Learner [13], and YourNews [2].
NewT (News Tailor) allows users to provide positive and negative feedback on ar-
ticles, part of articles, authors or sources. Several filtering agents are trained for
different types of information, e.g. one for political news, one for sports, etc. In the
same way YourNews, a more recent system for personalized news access, maintains
a separate interest profile for 8 different topics (National, World, Business, etc.).
The user interest profile for each topic is represented as a weighted prototype term
vector extracted from the user’s news view history. N articles from users’ past views
are collected, and the 100 top-weighted terms are extracted to generate the final pro-
totype vectors. The system maintains short-term profiles by considering only the 20
most recently viewed news item, whereas long-term profiles consider all past views.
The system can use profiles to suggest recent and recommended news.

Learning short-term and long-term profiles is quite typical of news filtering sys-
tems. NewsDude learns a short-term user model based on TF-IDF (cosine similarity),
and a long-term model based on a naı̈ve Bayesian classifier by relying on an initial
training set of interesting news articles provided by the user. The news source is Ya-
hoo! News. In the same way Daily Learner, a learning agent for wireless informa-
tion access, adopts an approach for learning two separate user-models. The former,
based on a Nearest Neighbor text classification algorithm, maintains the short-term
interests of users, while the latter, based on a naı̈ve Bayesian classifier, represents
the long-term interests of users and relies on data collected over a longer period of
time.

Among systems using a more complex representation for articles or profiles,
PSUN and INFOrmer are worth to note. PSUN adopts an alternative representa-
tion for articles. Profiles are provided initially by presenting the system with some
articles the user finds interesting. Recurring words in these articles are recorded by
means of n-grams stored in a network of mutually attracting or repelling words,
whose degree of attraction is determined by the number of co-occurrences. Each
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user has multiple profiles that compete via a genetic algorithm, requiring explicit
feedback. INFOrmer uses a semantic network for representing both user profiles
and articles. A spreading activation technique [25] is used to compare articles and
profiles, and a relevance feedback mechanism may be used to adapt the behavior of
the system to user’s changing interests. The pure spreading activation model con-
sists of a network data structure consisting of nodes interconnected by links, that
may be labeled and/or weighted. The processing starts by labeling a set of source
nodes with activation weights and proceeds by iteratively propagating that activa-
tion to other nodes linked to the source nodes, until a termination condition ends the
search process over the network.

A variety of content-based recommender systems exist in other application do-
mains. LIBRA [65] implements a naı̈ve Bayes text categorization method for book
recommendation that exploits the product descriptions obtained from the Web pages
of the Amazon on-line digital store. Re:Agent [16] is an intelligent email agent that
can learn actions such as filtering, downloading to palmtops, forwarding email to
voicemail, etc. using automatic feature extraction. Re:Agent users are required only
to place example messages in folders corresponding to the desired actions. Re:Agent
learns the concepts and decision policies from these folders. Citeseer [15] assists the
user in the process of performing a scientific literature search, by using word infor-
mation and analyzing common citations in the papers. INTIMATE [53] recommends
movies by using text categorization techniques to learn from movie synopses ob-
tained from the Internet Movie Database1. In order to get recommendations, the user
is asked to rate a minimum number of movies into six categories: terrible, bad, be-
low average, above average, good and excellent. In the same way, Movies2GO [67]
learns user preferences from the synopsis of movies rated by the user. The innovative
aspect of the system is to integrate voting schemes [93], designed to allow multi-
ple individuals with conflicting preferences arrive at an acceptable compromise, and
adapt them to manage conflicting preferences in a single user.

In the music domain, the commonly used technique for providing recommen-
dations is collaborative filtering (see Last.fm2 and MyStrands3 systems). The most
noticeable system using (manual) content-based descriptions to recommend music
is Pandora4. The main problem of the system is scalability, because the music anno-
tation process is entirely done manually. Conversely, FOAFing the music [21, 22] is
able to recommend, discover and explore music content, based on user profiling via
Friend of a Friend (FOAF)5 descriptions, context-based information extracted from
music related RSS feeds, and content-based descriptions automatically extracted
from the audio itself.

In order to complete the survey of content-based recommender systems adopt-
ing the simple keyword-based vector space representation, we should also men-

1 http://www.imdb.com
2 http://www.last.fm
3 http://www.mystrands.com
4 http://www.pandora.com
5 http://www.foaf-project.org
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tion some hybrid recommender systems that combine collaborative and content-
based methods, such as Fab [7], WebWatcher [45], P-Tango [24], ProfBuilder [99],
PTV [89], Content-boosted Collaborative Filtering [56], CinemaScreen [78] and the
one proposed in [94].

The most important lesson learned from the analysis of the main systems devel-
oped in the last 15 years is that keyword-based representation for both items and pro-
files can give accurate performance, provided that a sufficient number of evidence
of user interests is available. Most content-based systems are conceived as text clas-
sifiers built from training sets including documents which are either positive or neg-
ative examples of user interests. Therefore, accurate recommendations are achieved
when training sets with a large number of examples are available, which guarantee
reliable “syntactic” evidence of user interests. The problem with that approach is the
“lack of intelligence”. When more advanced characteristics are required, keyword-
based approaches show their limitations. If the user, for instance likes “French im-
pressionism”, keyword-based approaches will only find documents in which the
words “French” and “impressionism” occur. Documents regarding Claude Monet or
Renoir exhibitions will not appear in the set of recommendations, even though they
are likely to be very relevant for that user. More advanced representation strategies
are needed in order to equip content-based recommender systems with “semantic
intelligence”, which allows going beyond the syntactic evidence of user interests
provided by keywords.

In the next sections, we will examine possible ways to infuse knowledge in the
indexing phase by means of ontologies and encyclopedic knowledge sources.

3.3.1.3 Semantic Analysis by using Ontologies

Semantic analysis allows learning more accurate profiles that contain references
to concepts defined in external knowledge bases. The main motivation for this ap-
proach is the challenge of providing a recommender system with the cultural and
linguistic background knowledge which characterizes the ability of interpreting nat-
ural language documents and reasoning on their content.

In this section, a review of the main strategies adopted to introduce some seman-
tics in the recommendation process is presented. The description of these strategies
is carried out by taking into account several criteria:

• the type of knowledge source involved (e.g. lexicon, ontology, etc.);
• the techniques adopted for the annotation or representation of the items;
• the type of content included in the user profile;
• the item-profile matching strategy.

SiteIF [52] is a personal agent for a multilingual news Web site. To the best of our
knowledge, it was the first system to adopt a sense-based document representation in
order to build a model of the user interests. The external knowledge source involved
in the representation process is MultiWordNet, a multilingual lexical database where
English and Italian senses are aligned. Each news is automatically associated with
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a list of MultiWordNet synsets by using Word Domain Disambiguation [51]. The
user profile is built as a semantic network whose nodes represent synsets found in
the documents read by the user. During the matching phase, the system receives as
input the synset representation of a document and the current user model, and it
produces as output an estimation of the document relevance by using the Semantic
Network Value Technique [92].

ITR (ITem Recommender) is a system capable of providing recommendations
for items in several domains (e.g., movies, music, books), provided that descrip-
tions of items are available as text documents (e.g. plot summaries, reviews, short
abstracts) [27, 83]. Similarly to SiteIF, ITR integrates linguistic knowledge in the
process of learning user profiles, but Word Sense Disambiguation rather than Word
Domain Disambiguation is adopted to obtain a sense-based document representa-
tion. The linguistic knowledge comes exclusively from the WordNet lexical ontol-
ogy. Items are represented according to a synset-based vector space model, called
bag-of-synsets (BOS), that is an extension of the classical bag-of-words (BOW) one
[8, 84]. In the BOS model, a synset vector, rather than a word vector, corresponds
to a document. The user profile is built as a Naı̈ve Bayes binary text classifier able
to categorize an item as interesting or not interesting. It includes those synsets that
turn out to be most indicative of the user preferences, according to the value of the
conditional probabilities estimated in the training phase. The item-profile matching
consists in computing the probability for the item of being in the class “interesting”,
by using the probabilities of synsets in the user profile.

SEWeP (Semantic Enhancement for Web Personalization) [31] is a Web person-
alization system that makes use of both the usage logs and the semantics of a Web
site’s content in order to personalize it. A domain-specific taxonomy of categories
has been used to semantically annotate Web pages, in order to have a uniform and
consistent vocabulary. While the taxonomy is built manually, the annotation process
is performed automatically. SEWeP, like SiteIF and ITR, makes use of the lexical
knowledge stored in WordNet to “interpret” the content of an item and to support
the annotation/representation process. Web pages are initially represented by key-
words extracted from their content, then keywords are mapped to the concepts of
the taxonomy. Given a keyword, a WordNet-based word similarity measure is ap-
plied to find the “closest” category word to that keyword. SEWeP does not build a
personal profile of the user, rather it discovers navigational patterns. The categories
which have been “semantically associated” to a pattern are used by the SEWeP rec-
ommendation engine to expand the recommendation set with pages characterized
by the thematic categories that seem to be of interest for the user.

Quickstep [58] is a system for the recommendation of on-line academic research
papers. The system adopts a research paper topic ontology based on the computer
science classifications made by the DMOZ open directory project6 (27 classes used).
Semantic annotation of papers consists in associating them with class names within
the research paper topic ontology, by using a k-Nearest Neighbor classifier. Inter-
est profiles are computed by correlating previously browsed research papers with

6 http://www.dmoz.org/
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their classification. User profiles thus hold a set of topics and interest values in these
topics. The item-profile matching is realized by computing a correlation between
the top three interesting topics in the user profile and papers classified as belong-
ing to those topics. Foxtrot [58] extends the Quickstep system by implementing a
paper search interface, a profile visualization interface and an email notification, in
addition to the Web page recommendation interface. Profile visualization is made
possible because profiles are represented in ontological terms understandable to the
users.

Informed Recommender [1] uses consumer product reviews to make recommen-
dations. The system converts consumers’ opinions into a structured form by using a
translation ontology, which is exploited as a form of knowledge representation and
sharing. The ontology provides a controlled vocabulary and relationships among
words to describe: the consumer’s skill level and experience with the product under
review. To this purpose, the ontology contains two main parts: opinion quality and
product quality, which formalize the two aforementioned aspects. A text-mining
process automatically maps sentences in the reviews into the ontology information
structure. The system does not build a profile of the user, rather it computes a set
of recommendations on the basis of a user’s request, e.g. the user asks about the
quality of specific features of a product. Informed Recommender is able to answer
to query and also recommends the best product according to the features the user
is concerned with. Two aspects make this work noteworthy: one is that ontologi-
cal knowledge can model different points of view according to which items can be
annotated, the other is the use of review comments in the form of free text.

News@hand [18] is a system that adopts an ontology-based representation of
item features and user preferences to recommend news. The annotation process as-
sociates the news with concepts belonging to the domain ontologies. A total of 17
ontologies have been used: they are adaptations of the IPTC ontology7, which con-
tains concepts of multiple domains such as education, culture, politics, religion,
science, sports, etc. It is not clear whether the annotation process is performed man-
ually or by means of automated techniques such as text categorization. Item descrip-
tions are vectors of TF-IDF scores in the space of concepts defined in the ontologies.
User profiles are represented in the same space, except that a score measures the in-
tensity of the user interest for a specific concept. Item-profile matching is performed
as a cosine-based vector similarity.

A recommender system for Interactive Digital Television is proposed in [14],
where the authors apply reasoning techniques borrowed from the Semantic Web
in order to compare user preferences with items (TV programs) in a more flexible
way, compared to the conventional syntactic metrics. The TV programs available
during the recommendation process are annotated by metadata that describe accu-
rately their main attributes. Both the knowledge about the TV domain and the user
profiles are represented using an OWL ontology. Ontology-profiles provide a for-
mal representation of the users’ preferences, being able to reason about them and
discover extra knowledge about their interests. The recommendation phase exploits

7 IPTC ontology, http://nets.ii.uam.es/neptuno/iptc/
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the knowledge stored in the user profile to discover hidden semantic associations
between the user’s preferences and the available products. The inferred knowledge
is processed and a spreading activation technique is adopted to suggest products to
the user. The noteworthy aspect of this work is that ontology-profiles improve flat
lists-based approaches which are not well structured to foster the discovery of new
knowledge.

The JUMP System [10, 9] is capable of intelligent delivery of contextualized and
personalized information to knowledge workers acting in their day-to-day working
environment on non-routinary tasks. The information needs of the JUMP user is rep-
resented in the form of a complex query, such as a task support request, rather than
a user profile. An example of complex query is “I have to prepare a technical report
for the VIKEF project”. The semantic analysis of both documents and user infor-
mation needs is based on a domain ontology in which concepts are manually anno-
tated using WordNet synsets. The mapping between documents and domain/lexical
concepts is performed automatically by means of Word Sense Disambiguation and
Named Entity Recognition procedures, which exploit the lexical annotations in the
domain ontology. The matching between concepts in the user request and docu-
ments is based on the relations in the domain ontology. For the processing of the
example query, all instances of the concepts “technical report” and “project”, and
relations among these instances are extracted from the ontology.

The leading role of linguistic knowledge is highlighted by the wide use of Word-
Net, which is mostly adopted for the semantic interpretation of content by using
word sense disambiguation. On the other hand, the studies described above showed
that the great potential provided by WordNet is not sufficient alone for the full com-
prehension of the user interests and for their contextualization in the application do-
main. Domain specific knowledge is also needed. Ontologies play the fundamental
role of formalizing the application domain, being exploited for the semantic descrip-
tions of the items and for the representation of the concepts (i.e. classes and their
instances) and relationships (i.e. hierarchical links and properties) identified in the
domain. In conclusion, all studies which incorporated either linguistic or domain-
specific knowledge or both in content-based filtering methods provided better and
more accurate results compared to traditional content-based methods. This encour-
ages researchers to design novel filtering methods which formalize and contextu-
alize user interests by exploiting external knowledge sources such as thesauri or
ontologies.

3.3.1.4 Semantic Analysis by using Encyclopedic Knowledge Sources

Common-sense and domain-specific knowledge may be useful to improve the effec-
tiveness of natural language processing techniques by generating more informative
features than the mere bag of words. The process of learning user profiles could ben-
efit from the infusion of exogenous knowledge (externally supplied), with respect to
the classical use of endogenous knowledge (extracted from the documents them-
selves). Many sources of world knowledge have become available in recent years.
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Examples of general purpose knowledge bases include the Open Directory Project
(ODP), Yahoo! Web Directory, and Wikipedia.

In the following we provide a brief overview of novel methods for generating
new advanced features using world knowledge, even though those methods are not
yet used in the context of learning user profiles.

Explicit Semantic Analysis (ESA) [34, 35] is a technique able to provide a fine-
grained semantic representation of natural language texts in a high-dimensional
space of natural (and also comprehensible) concepts derived from Wikipedia . Con-
cepts are defined by Wikipedia articles, e.g., ITALY, COMPUTER SCIENCE, or REC-
OMMENDER SYSTEMS. The approach is inspired by the desire to augment text rep-
resentation with massive amounts of world knowledge. In the case of Wikipedia as
knowledge source, there are several advantages, such as its constant development
by the community, the availability in several languages, and its high accuracy [37].
Empirical evaluations showed that ESA leads to substantial improvements in com-
puting word and text relatedness, and in the text categorization task across a diverse
collection of datasets. It has also been shown that ESA enhanced traditional BOW-
based retrieval models [30].

Another interesting approach to add semantics to text is proposed by the Wikify!
system [59, 26], which has the ability to identify important concepts in a text (key-
word extraction), and then link these concepts to the corresponding Wikipedia pages
(word sense disambiguation). The annotations produced by the Wikify! system can
be used to automatically enrich documents with references to semantically related
information. A Turing-like test to compare the quality of the system annotations to
manual annotations produced by Wikipedia contributors has been designed. Human
beings are asked to distinguish between manual and automatic annotations. Results
suggest that the computer and human-generated Wikipedia annotations are hardly
distinguishable, which indicates the high quality of the Wikify! system’s annota-
tions.

To the best of our knowledge, there are no (content-based) recommender sys-
tems able to exploit the above mentioned advanced semantic text representations for
learning profiles containing references to world facts. The positive results obtained
exploiting the advanced text representations in several tasks, such as semantic relat-
edness, text categorization and retrieval, suggest that similar positive results could
be also obtained in the recommendation task. It seems a promising research area,
not yet explored.

In [47], Wikipedia is used to estimate similarity between movies, in order to
provide more accurate predictions for the Netflix Prize competition. More specifi-
cally, the content and the hyperlink structure of Wikipedia articles are exploited to
identify similarities between movies. A similarity matrix containing the degree of
similarity of each movie-movie pair is produced, and the prediction of user ratings
from this matrix is computed by using a k-Nearest Neighbors and a Pseudo-SVD al-
gorithm. Each of these methods combines the similarity estimates from Wikipedia
with ratings from the training set to predict ratings in the test set. Unfortunately,
these techniques did not show any significant improvement of the overall accuracy.
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In [88], a quite complex, but not yet complete, approach for filtering RSS feeds
and e-mails is presented. More specifically, the authors present an approach exploit-
ing Wikipedia to automatically generate the user profile from the user’s document
collection. The approach mainly consists of four steps, namely the Wikipedia in-
dexing, the profile generation, the problem-oriented index database creation, and
the information filtering. The profile generation step exploits the collection of doc-
uments provided by the user, which implicitly represents a set of topics interesting
for the user. A set of terms is extracted from each document, then similar Wikipedia
articles are found by using the ESA algorithm. The system then extracts the list of
Wikipedia categories from the articles and clusters these categories in order to get
a subset of categories corresponding to one topic in the user profile. The user can
also check her own profile and add or remove categories in order to refine topics.
For each topic in the user profile, a problem-oriented Wikipedia corpus is created
and indexed, and represents the base for filtering information.

In [85], a different approach to exploit Wikipedia in the content analysis step
is presented. More specifically, the idea is to provide a knowledge infusion process
into content-based recommender systems, in order to provide them with the cultural
background knowledge that hopefully allows a more accurate content analysis than
classical approaches based on words. The encyclopedic knowledge is useful to rec-
ognize specific domain-dependent concepts or named entities, especially in those
contexts for which the adoption of domain ontologies is not feasible. Wikipedia en-
tries have been modeled using Semantic Vectors, based on the WordSpace model
[77], a vector space whose points are used to represent semantic concepts, such as
words and documents. Relationships between words are then exploited by a spread-
ing activation algorithm to produce new features that can be exploited in several
ways during the recommendation process.

3.3.2 Methods for Learning User Profiles

Machine learning techniques, generally used in the task of inducing content-based
profiles, are well-suited for text categorization [82]. In a machine learning approach
to text categorization, an inductive process automatically builds a text classifier by
learning from a set of training documents (documents labeled with the categories
they belong to) the features of the categories.

The problem of learning user profiles can be cast as a binary text categorization
task: each document has to be classified as interesting or not with respect to the
user preferences. Therefore, the set of categories is C = {c+, c−}, where c+ is the
positive class (user-likes) and c− the negative one (user-dislikes).

In the next sections we review the most used learning algorithms in content-based
recommender systems. They are able to learn a function that models each user’s
interests. These methods typically require users to label documents by assigning a
relevance score, and automatically infer profiles exploited in the filtering process to
rank documents according to the user preferences.



3 Content-based Recommender Systems: State of the Art and Trends 91

3.3.2.1 Probabilistic Methods and Naı̈ve Bayes

Naı̈ve Bayes is a probabilistic approach to inductive learning, and belongs to the
general class of Bayesian classifiers. These approaches generate a probabilistic
model based on previously observed data. The model estimates the a posteriori
probability, P(c|d), of document d belonging to class c. This estimation is based
on the a priori probability, P(c), the probability of observing a document in class c,
P(d|c), the probability of observing the document d given c, and P(d), the proba-
bility of observing the instance d. Using these probabilities, the Bayes theorem is
applied to calculate P(c|d):

P(c|d) = P(c)P(d|c)
P(d)

(3.5)

To classify the document d, the class with the highest probability is chosen:

c = argmaxc j

P(c j)P(d|c j)

P(d)

P(d) is generally removed as it is equal for all c j. As we do not know the value for
P(d|c) and P(c), we estimate them by observing the training data. However, estimat-
ing P(d|c) in this way is problematic, as it is very unlikely to see the same document
more than once: the observed data is generally not enough to be able to generate
good probabilities. The naı̈ve Bayes classifier overcomes this problem by simplify-
ing the model through the independence assumption: all the words or tokens in the
observed document d are conditionally independent of each other given the class.
Individual probabilities for the words in a document are estimated one by one rather
than the complete document as a whole. The conditional independence assumption
is clearly violated in real-world data, however, despite these violations, empirically
the naı̈ve Bayes classifier does a good job in classifying text documents [48, 11].

There are two commonly used working models of the naı̈ve Bayes classifier,
the multivariate Bernoulli event model and the multinomial event model [54]. Both
models treat a document as a vector of values over the corpus vocabulary, V , where
each entry in the vector represents whether a word occurred in the document, hence
both models lose information about word order. The multivariate Bernoulli event
model encodes each word as a binary attribute, i.e., whether a word appeared or not,
while the multinomial event model counts how many times the word appeared in
the document. Empirically, the multinomial naı̈ve Bayes formulation was shown to
outperform the multivariate Bernoulli model. This effect is particularly noticeable
for large vocabularies [54]. The way the multinomial event model uses its document
vector to calculate P(c j|di) is as follows:

P(c j|di) = P(c j) ∏
w∈Vdi

P(tk|c j)
N(di ,tk) (3.6)
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where N(di,tk) is defined as the number of times word or token tk appeared in docu-
ment di. Notice that, rather than getting the product of all the words in the corpus
vocabulary V , only the subset of the vocabulary, Vdi , containing the words that ap-
pear in the document di, is used.

A key step in implementing naı̈ve Bayes is estimating the word probabilities
P(tk|c j). To make the probability estimates more robust with respect to infre-
quently encountered words, a smoothing method is used to modify the probabili-
ties that would have been obtained by simple event counting. One important effect
of smoothing is that it avoids assigning probability values equal to zero to words
not occurring in the training data for a particular class. A rather simple smoothing
method relies on the common Laplace estimates (i.e., adding one to all the word
counts for a class). A more interesting method is Witten-Bell [100]. Although naı̈ve
Bayes performances are not as good as some other statistical learning methods such
as nearest-neighbor classifiers or support vector machines, it has been shown that it
can perform surprisingly well in the classification tasks where the computed proba-
bility is not important [29]. Another advantage of the naı̈ve Bayes approach is that
it is very efficient and easy to implement compared to other learning methods.

Although the classifiers based on the multinomial model significantly outperform
those based on the multivariate one at large vocabulary sizes, their performance is
unsatisfactory when: 1) documents in the training set have different lengths, thus
resulting in a rough parameter estimation; 2) handling rare categories (few training
documents available). These conditions frequently occur in the user profiling task,
where no assumptions can be made on the length of training documents, and where
obtaining an appropriate set of negative examples (i.e., examples of the class c−)
is problematic. Indeed, since users do not perceive having immediate benefits from
giving negative feedback to the system [81], the training set for the class c+ (user-
likes) may be often larger than the one for the class c− (user-dislikes). In [46], the
authors propose a multivariate Poisson model for naı̈ve Bayes text classification that
allows more reasonable parameter estimation under the above mentioned conditions.
We have adapted this approach to the case of user profiling task [36].

The naı̈ve Bayes classifier has been used in several content-based recommenda-
tion systems, such as Syskill & Webert [70, 68], NewsDude [12], Daily Learner [13],
LIBRA [65] and ITR [27, 83].

3.3.2.2 Relevance Feedback and Rocchio’s Algorithm

Relevance feedback is a technique adopted in Information Retrieval that helps users
to incrementally refine queries based on previous search results. It consists of the
users feeding back into the system decisions on the relevance of retrieved documents
with respect to their information needs.

Relevance feedback and its adaptation to text categorization, the well-known
Rocchio’s formula [75], are commonly adopted by content-based recommender sys-
tems. The general principle is to allow users to rate documents suggested by the rec-
ommender system with respect to their information need. This form of feedback can
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subsequently be used to incrementally refine the user profile or to train the learning
algorithm that infers the user profile as a classifier.

Some linear classifiers consist of an explicit profile (or prototypical document)
of the category [82]. The Rocchio’s method is used for inducing linear, profile-style
classifiers. This algorithm represents documents as vectors, so that documents with
similar content have similar vectors. Each component of such a vector corresponds
to a term in the document, typically a word. The weight of each component is com-
puted using the TF-IDF term weighting scheme. Learning is achieved by combining
document vectors (of positive and negative examples) into a prototype vector for
each class in the set of classes C. To classify a new document d, the similarity be-
tween the prototype vectors and the corresponding document vector representing d
are calculated for each class (for example by using the cosine similarity measure),
then d is assigned to the class whose document vector has the highest similarity
value.

More formally, Rocchio’s method computes a classifier −→ci = 〈ω1i, . . . ,ω|T |i〉 for
the category ci (T is the vocabulary, that is the set of distinct terms in the training
set) by means of the formula:

ωki = β · ∑
{d j∈POSi}

ωk j

|POSi|
− γ · ∑

{d j∈NEGi}

ωk j

|NEGi|
(3.7)

where ωk j is the TF-IDF weight of the term tk in document d j, POSi and NEGi are
the set of positive and negative examples in the training set for the specific class c j,
β and γ are control parameters that allow to set the relative importance of all positive
and negative examples. To assign a class c̃ to a document d j, the similarity between
each prototype vector −→ci and the document vector

−→
d j is computed and c̃ will be the

ci with the highest value of similarity. The Rocchio-based classification approach
does not have any theoretic underpinning and there are guarantees on performance
or convergence [69].

Relevance feedback has been used in several content-based recommendation sys-
tems, such as YourNews [2], Fab [7] and NewT [87].

3.3.2.3 Other Methods

Other learning algorithms have been used in content-based recommendation sys-
tems. A very brief description of the most important algorithms follows. A thorough
review is presented in [64, 69, 82].

Decision trees are trees in which internal nodes are labeled by terms, branches
departing from them are labeled by tests on the weight that the term has in the
test document, and leaves are labeled by categories. Decision trees are learned by
recursively partitioning training data, that is text documents, into subgroups, until
those subgroups contain only instances of a single class. The test for partitioning
data is run on the weights that the terms labeling the internal nodes have in the
document. The choice of the term on which to operate the partition is generally
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made according to an information gain or entropy criterion [101]. Decision trees are
used in the Syskill & Webert [70, 68] recommender system.

Decision rule classifiers are similar to decision trees, because they operates in
a similar way to the recursive data partitioning approach decribed above. An ad-
vantage of rule learners is that they tend to generate more compact classifiers than
decision trees learners. Rule learning methods usually attempt to select from all the
possible covering rules (i.e. rules that correctly classify all the training examples)
the “best” one according to some minimality criterion.

Nearest neighbor algorithms, also called lazy learners, simply store training data
in memory, and classify a new unseen item by comparing it to all stored items by
using a similarity function. The “nearest neighbor” or the “k-nearest neighbors”
items are determined, and the class label for the unclassified item is derived from
the class labels of the nearest neighbors. A similarity function is needed, for example
the cosine similarity measure is adopted when items are represented using the VSM.
Nearest neighbor algorithms are quite effective, albeit the most important drawback
is their inefficiency at classification time, since they do not have a true training phase
and thus defer all the computation to classification time. Daily Learner [13] and
Quickstep [58] use the nearest neighbor algorithm to create a model of the user’s
short term interest and for associating semantic annotations of papers with class
names within the ontology, respectively.

3.4 Trends and Future Research

3.4.1 The Role of User Generated Content in the Recommendation
Process

Web 2.0 is a term describing the trend in the use of World Wide Web technology
that aims at promoting information sharing and collaboration among users. Accord-
ing to Tim O’Reilly8, the term “Web 2.0” means putting the user in the center,
designing software that critically depends on its users since the content, as in Flickr,
Wikipedia, Del.icio.us, or YouTube, is contributed by thousands or millions of users.
That is why Web 2.0 is also called the “participative Web”. O’Reilly9 also defined
Web 2.0 as “the design of systems that get better the more people use them”.

One of the forms of User Generated Content (UGC) that has drawn more atten-
tion from the research community is folksonomy, a taxonomy generated by users
who collaboratively annotate and categorize resources of interests with freely cho-
sen keywords called tags.

Despite the considerable amount of researches done in the context of recom-
mender systems, the specific problem of integrating tags into standard recommender

8 http://radar.oreilly.com/archives/2006/12/web-20-compact.html, Accessed on March 18, 2009
9 http://www.npr.org/templates/story/story.php?storyId=98499899, Accessed on March 18, 2009
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system algorithms, especially content-based ones, is less explored than the problem
of recommending tags (i.e. assisting users for annotation purposes) [98, 95].

Folksonomies provide new opportunities and challenges in the field of recom-
mender systems (see Chapter 19). It should be investigated whether they might be
a valuable source of information about user interests and whether they could be
included in user profiles. Indeed, several difficulties of tagging systems have been
identified, such as polysemy and synonymy of tags, or the different expertise and
purposes of tagging participants that may result in tags at various levels of abstrac-
tion to describe a resource, or the chaotic proliferation of tags [40].

3.4.1.1 Social Tagging Recommender Systems

Several methods have been proposed for taking into account user tagging activity
within content-based recommender systems.

In [28], the user profile is represented in the form of a tag vector, with each
element indicating the number of times a tag has been assigned to a document by that
user. A more sophisticated approach is proposed in [57], which takes into account
tag co-occurrence. The matching of profiles to information sources is achieved by
using simple string matching. As the authors themselves foresee, the matching could
be enhanced by adopting WORDNET.

In the work by Szomszor et al. [96], the authors describe a movie recommen-
dation system built purely on the keywords assigned to movies via collaborative
tagging. Recommendations for the active user are produced by algorithms based
on the similarity between the keywords of a movie and those of the tag-clouds of
movies she rated. As the authors themselves state, their recommendation algorithms
can be improved by combining tag-based profiling techniques with more traditional
content-based recommender strategies.

In [33], different strategies are proposed to build tag-based user profiles and to
exploit them for producing music recommendations. Tag-based user profiles are
defined as collections of tags, which have been chosen by a user to annotate tracks,
together with corresponding scores representing the user interest in each of these
tags, inferred from tag usage and frequencies of listened tracks.

While in the above described approaches only a single set of popular tags rep-
resents user interests, in [102] it is observed that this may not be the most suitable
representation of a user profile, since it is not able to reflect the multiple interests of
users. Therefore, the authors propose a network analysis technique (based on clus-
tering), performed on the personal tags of a user to identify her different interests.

About tag interpretation, Cantador et al. [19] proposed a methodology to se-
lect “meaningful” tags from an initial set of raw tags by exploiting WORDNET,
Wikipedia and Google. If a tag has an exact match in WORDNET, it is accepted,
otherwise possible misspellings and compound nouns are discovered by using the
Google “did you mean” mechanism (for example the tag sanfrancisco or san farn-
cisco is corrected to san francisco). Finally, tags are correlated to their appropriate
Wikipedia entries.
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In the work by de Gemmis et al. [36], a more sophisticated approach, implement-
ing a hybrid strategy for learning a user profile from both (static) content and tags
associated with items rated by that user, is described. The authors include in the user
profile not only her personal tags, but also the tags adopted by other users who rated
the same items (social tags). This aspect is particularly important when users who
contribute to the folksonomy have different expertise in the domain. The inclusion
of social tags in the personal profile of a user allows also to extend the pure content-
based recommendation paradigm toward a hybrid content-collaborative paradigm
[17]. Furthermore, a solution to the challenging task of identifying user interests
from tags is proposed. Since the main problem lies in the fact that tags are freely
chosen by users and their actual meaning is usually not very clear, the authors sug-
gested to semantically interpret tags by means of a Word Sense Disambiguation al-
gorithm based on WORDNET. A similar hybrid approach, combining content-based
profiles and interests revealed through tagging activities is also described in [38].

Some ideas on how to analyze tags by means of WORDNET in order to cap-
ture their intended meanings are also reported in [20], but suggested ideas are not
supported by empirical evaluations. Another approach in which tags are semanti-
cally interpreted by means of WORDNET is the one proposed in [104]. The authors
demonstrated the usefulness of tags in collaborative filtering, by designing an al-
gorithm for neighbor selection that exploits a WORDNET-based semantic distance
between tags assigned by different users.

We believe that it could be useful to investigate more on the challenging task of
identifying the meaning of tags by relying on different knowledge sources such as
WordNet or Wikipedia. Moreover, new strategies for integrating tags in the process
of learning content-based profiles should be devised, by taking into account the
different nature of personal, social and expert tags. Indeed, personal tags are mostly
subjective and inconsistent, expert tags, on the other hand, are an attempt to be
objective and consistent. Social tags leads to some form of coherence [5].

Another interesting research direction might be represented by the analysis of
tags as a powerful kind of feedback to infer user profiles. Tags that express user
opinions and emotions, such as boring, interesting, good, bad, etc., could represent
a user’s degree of satisfaction with an item. Techniques from the affective computing
research area are needed.

3.4.2 Beyond Over-specializion: Serendipity

As introduced in Section 3.2.2, content-based systems suffer from over-specialization,
since they recommend only items similar to those already rated by users. One possi-
ble solution to address this problem is the introduction of some randomness. For ex-
ample, the use of genetic algorithms has been proposed in the context of information
filtering [87]. In addition, the problem with over-specialization is not only that the
content-based systems cannot recommend items that are different from anything the
user has seen before. In certain cases, items should not be recommended if they are
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too similar to something the user has already seen, such as a different news article
describing the same event. Therefore, some content-based recommender systems,
such as Daily-Learner [13], filter out items if they are too similar to something the
user has seen before. The use of redundancy measures has been proposed by Zhang
et al. [103] to evaluate whether a document that is deemed to be relevant contains
some novel information as well. In summary, the diversity of recommendations is
often a desirable feature in recommender systems.

Serendipity in a recommender can be seen as the experience of receiving an un-
expected and fortuitous item recommendation, therefore it is a way to diversify rec-
ommendations. While people rely on exploration and luck to find new items that
they did not know they wanted (e.g. a person may not know she likes watching talk
shows until she accidentally turns to David Letterman), due to over-specialization,
content-based systems have no inherent method for generating serendipitous recom-
mendations, according to Gup’s theory [41].

It is useful to make a clear distinction between novelty and serendipity. As ex-
plained by Herlocker [42], novelty occurs when the system suggests to the user an
unknown item that she might have autonomously discovered. A serendipitous rec-
ommendation helps the user to find a surprisingly interesting item that she might
not have otherwise discovered (or it would have been really hard to discover). To
provide a clear example of the difference between novelty and serendipity, consider
a recommendation system that simply recommends movies that were directed by
the user’s favorite director. If the system recommends a movie that the user was
not aware of, the movie will be novel, but probably not serendipitous. On the other
hand, a recommender that suggests a movie by a new director is more likely to pro-
vide serendipitous recommendations. Recommendations that are serendipitous are
by definition also novel.

We look at the serendipity problem as the challenge of programming for serendip-
ity, that is to find a manner to introduce serendipity in the recommendation process
in an operational way. From this perspective, the problem has not been deeply stud-
ied, and there are really few theoretical and experimental studies.

Like Toms explains [97], there are three kinds of information searching:

1. seeking information about a well-defined object;
2. seeking information about an object that cannot be fully described, but that will

be recognized at first sight;
3. acquiring information in an accidental, incidental, or serendipitous manner.

It is easy to realize that serendipitous happenings are quite useless for the first two
ways of acquisition, but are extremely important for the third kind. As our discussion
concerns the implementation of a serendipity-inducing strategy for a content-based
recommender, the appropriate metaphor in a real-world situation could be one of a
person going for shopping or visiting a museum who, while walking around seek-
ing nothing in particular, would find something completely new that she has never
expected to find, that is definitely interesting for her. Among different approaches
which have been proposed for “operationally induced serendipity”, Toms suggests
four strategies, from simplistic to more complex ones [97]:

偶然 ⼀⼀
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• Role of chance or blind luck, implemented via a random information node gen-
erator;

• Pasteur principle (“chance favors the prepared mind”), implemented via a user
profile;

• Anomalies and exceptions, partially implemented via poor similarity measures;
• Reasoning by analogy, whose implementation is currently unknown.

In [44], it is described a proposal that implements the “Anomalies and excep-
tions” approach, in order to provide serendipitous recommendations alongside clas-
sical ones, thus providing the user with new entry points to the items in the system.
The basic assumption is that the lower is the probability that user knows an item,
the higher is the probability that a specific item could result in a serendipitous rec-
ommendation. The probability that a user knows something semantically near to
what the system is confident she knows is higher than the probability of something
semantically far. In other words, it is more likely to get a serendipitous recommen-
dation by providing the user with something less similar to her profile. Following
this principle, the basic idea underlying the system proposed in [44] is to ground the
search for potentially serendipitous items on the similarity between the item descrip-
tions and the user profile. The system is implemented as a naı̈ve Bayes classifier,
able to categorize an item as interesting (class c+) or not (class c−), depending on
the a-posteriori probabilities computed by the classifier. In order to integrate Toms’
“poor similarity” within the recommender, the item-profile matching produces a list
of items ranked according to the a-posteriori probability for the class c+. That list
contains on the top the most similar items to the user profile, i.e. the items whose
classification score for the class c+ is high. On the other hand, the items for which
the a-posteriori probability for the class c− is higher, are ranked down in the list. The
items on which the system is more uncertain are the ones for which the difference
between the two classification scores for c+ and c− tends to zero. Therefore it is rea-
sonable to assume that those items are not known by the user, since the system was
not able to clearly classify them as relevant or not. The items for which the lowest
difference between the two classification scores for c+ and c− is observed are the
most uncertainly categorized, thus it might result to be the most serendipitous.

Regarding serendipity evaluation, there is a level of emotional response asso-
ciated with serendipity that is difficult to capture, therefore an effective serendip-
ity measurement should move beyond the conventional accuracy metrics and their
associated experimental methodologies. New user-centric directions for evaluating
new emerging aspects in recommender systems, such as serendipity of recommen-
dations, are required [55]. Developing these measures constitutes an interesting and
important research topic (see Chapter 8).

In conclusion, the adoption of strategies for realizing operational serendipity is
an effective way to extend the capabilities of content-based recommender systems
in order to mitigate the over-specialization problem, by providing the user with sur-
prising suggestions.
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3.5 Conclusions

In this chapter we surveyed the field of content-based recommender systems, by
providing an overview of the most important aspects characterizing that kind of
systems. Although there is a bunch of recommender systems in different domains,
they share in common a means for representing items to be recommended and user
profiles. The paper discusses the main issues related to the representation of items,
starting from simple techniques for representing structured data, to more complex
techniques coming from the Information Retrieval research area for unstructured
data. We analyzed the main content recommender systems developed in the last 15
years, by highlighting the reasons for which a more complex “semantic analysis”
of content is needed in order to go beyond the syntactic evidence of user interests
provided by keywords. A review of the main strategies (and systems) adopted to
introduce some semantics in the recommendation process is carried out, by provid-
ing evidence of the leading role of linguistic knowledge, even if a more specific
knowledge is mandatory for a deeper understanding and contextualization of the
user interests in different application domains. The latest issues in advanced text
representation using sources of world knowledge, such as Wikipedia, have been
highlighted, albeit they have not yet used in the context of learning user profiles. In
order to complete the survey, a variety of learning algorithms have been described
as well.

The last part of the chapter is devoted to the discussion of the main trends and re-
search for the next generation of content-based recommender systems. More specif-
ically, the chapter presents some aspects of the Web 2.0 (r)evolution, that changed
the game for personalization, since the role of people evolved from passive con-
sumers of information to that of active contributors. Possible strategies to integrate
user-defined lexicons, such as folksonomies, as a way for taking into account evolv-
ing vocabularies are debated, by presenting some recent works and possible ideas
for further investigations.

Finally, a very specific aspect of content recommender systems is presented. Due
to the nature of this kind of systems, they can only recommend items that score
highly against a user’s profile, thus the user is limited to being recommended items
similar to those already rated. This shortcoming, called over-specialization, pre-
vent these systems to be effectively used in real world scenarios. Possible ways
to feed users with surprising and unexpected (serendipitous) recommendations are
analyzed.

To conclude this survey, we want to underline the importance of research in lan-
guage processing for advanced item representation in order to get more reliable rec-
ommendations. Just as an example, it is worth to cite the news published by the U.S.
Patent and Trademark Office regarding series of intriguing patent applications from
Google Inc. One of this patents, namely the Open Profile, for instance, would con-
sider a user profile like “I really enjoy hiking, especially long hikes when you can
camp out for a few days. Indoor activities don’t interest me at all, and I really don’t
like boring outdoor activities like gardening”. Using smart language-processing al-
gorithms to detect the user’s sentiments (“enjoy” or “don’t like” near “hiking” or
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“gardening”) and other linguistic cues, the system would then potentially serve up
active outdoor sports-related ads to this user but avoid ads about more hobbyist-
oriented activities [3].

We hope that the issues presented in this chapter will contribute to stimulate the
research community about the next generation of content-based recommendation
technologies.
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Chapter 4
A Comprehensive Survey of
Neighborhood-based Recommendation Methods

Christian Desrosiers and George Karypis

Abstract Among collaborative recommendation approaches, methods based on
nearest-neighbors still enjoy a huge amount of popularity, due to their simplicity,
their efficiency, and their ability to produce accurate and personalized recommenda-
tions. This chapter presents a comprehensive survey of neighborhood-based meth-
ods for the item recommendation problem. In particular, the main benefits of such
methods, as well as their principal characteristics, are described. Furthermore, this
document addresses the essential decisions that are required while implementing a
neighborhood-based recommender system, and gives practical information on how
to make such decisions. Finally, the problems of sparsity and limited coverage, of-
ten observed in large commercial recommender systems, are discussed, and a few
solutions to overcome these problems are presented.

4.1 Introduction

The appearance and growth of online markets has had a considerable impact on
the habits of consumers, providing them access to a greater variety of products and
information on these goods. While this freedom of purchase has made online com-
merce into a multi-billion dollar industry, it also made it more difficult for con-
sumers to select the products that best fit their needs. One of the main solutions
proposed for this information overload problem are recommender systems, which
provide automated and personalized suggestions of products to consumers. Rec-
ommender systems have been used in a wide variety of applications, such as the
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recommendation of books and CDs [47, 53], music [45, 70], movies [31, 51, 5],
news [6, 41, 76], jokes [23], and web pages [7, 52].

The recommendation problem can be defined as estimating the response of a user
for new items, based on historical information stored in the system, and suggesting
to this user novel and original items for which the predicted response is high. The
type of user-item responses varies from one application to the next, and falls in one
of three categories: scalar, binary and unary. Scalar responses, also known as rat-
ings, are numerical (e.g., 1-5 stars) or ordinal (e.g., strongly agree, agree, neutral,
disagree, strongly disagree) values representing the possible levels of appreciation
of users for items. Binary responses, on the other hand, only have two possible
values encoding opposite levels of appreciation (e.g., like/dislike or interested/not
interested). Finally, unary responses capture the interaction of a user with an item
(e.g., purchase, online access, etc.) without giving explicit information on the appre-
ciation of the user for this item. Since most users tend to interact with items that they
find interesting, unary responses still provide useful information on the preferences
of users.

The way in which user responses are obtained can also differ. For instance, in a
movie recommendation application, users can enter ratings explicitly after watching
a movie, giving their opinion on this movie. User responses can also be obtained im-
plicitly from purchase history or access patterns [41, 76]. For example, the amount
of time spent by a user browsing a specific type of item can be used as an indicator
of the user’s interest for this item type. For the purpose of simplicity, from this point
on, we will call rating any type of user-item response.

4.1.1 Formal Definition of the Problem

In order to give a formal definition of the item recommendation task, we need to
introduce some notation. Thus, the set of users in the system will be denoted by U ,
and the set of items by I. Moreover, we denote by R the set of ratings recorded
in the system, and write S the set of possible values for a rating (e.g., S = [1,5] or
S = {like,dislike}). Also, we suppose that no more than one rating can be made
by any user u ∈ U for a particular item i ∈ I and write rui this rating. To identify
the subset of users that have rated an item i, we use the notation Ui. Likewise, Iu
represents the subset of items that have been rated by a user u. Finally, the items
that have been rated by two users u and v, i.e. Iu∩Iv, is an important concept in our
presentation, and we use Iuv to denote this concept. In a similar fashion, Ui j is used
to denote the set of users that have rated both items i and j.

Two of the most important problems associated with recommender systems are
the best item and top-N recommendation problems. The first problem consists in
finding, for a particular user u, the new item i ∈ I \ Iu for which u is most likely
to be interested in. When ratings are available, this task is most often defined as a
regression or (multi-class) classification problem where the goal is to learn a func-
tion f : U ×I → S that predicts the rating f (u, i) of a user u for a new item i. This
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function is then used to recommend to the active user ua an item i∗ for which the
estimated rating has the highest value:

i∗ = argmax
j ∈ I\Iu

f (ua, j). (4.1)

Accuracy is commonly used to evaluate the performance of the recommendation
method. Typically, the ratings R are divided into a training set Rtrain used to learn
f , and a test set Rtest used to evaluate the prediction accuracy. Two popular measures
of accuracy are the Mean Absolute Error (MAE):

MAE( f ) =
1

|Rtest| ∑
rui∈Rtest

| f (u, i)− rui|, (4.2)

and the Root Mean Squared Error (RMSE):

RMSE( f ) =

√
1

|Rtest| ∑
rui∈Rtest

( f (u, i)− rui)
2. (4.3)

When ratings are not available, for instance, if only the list of items purchased by
each user is known, measuring the rating prediction accuracy is not possible. In such
cases, the problem of finding the best item is usually transformed into the task of
recommending to an active user ua a list L(ua) containing N items likely to interest
him or her [18, 45]. The quality of such method can be evaluated by splitting the
items of I into a set Itrain, used to learn L, and a test set Itest. Let T (u) ⊂ Iu∩Itest
be the subset of test items that a user u found relevant. If the user responses are
binary, these can be the items that u has rated positively. Otherwise, if only a list of
purchased or accessed items is given for each user u, then these items can be used
as T (u). The performance of the method is then computed using the measures of
precision and recall:

Precision(L) =
1
|U| ∑

u∈U
|L(u)∩T (u)|/ |L(u)| (4.4)

Recall(L) =
1
|U| ∑

u∈U
|L(u)∩T (u)|/ |T (u)|. (4.5)

A drawback of this task is that all items of a recommendation list L(u) are considered
equally interesting to user u. An alternative setting, described in [18], consists in
learning a function L that maps each user u to a list L(u) where items are ordered
by their “interestingness” to u. If the test set is built by randomly selecting, for each
user u, a single item iu of Iu, the performance of L can be evaluated with the Average
Reciprocal Hit-Rank (ARHR):

ARHR(L) =
1
|U| ∑

u∈U

1
rank(iu,L(u))

, (4.6)
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where rank(iu,L(u)) is the rank of item iu in L(u), equal to ∞ if iu (∈ L(u). A more
extensive description of evaluation measures for recommender systems can be found
in Chapter 8 of this book.

4.1.2 Overview of Recommendation Approaches

While the recommendation problem truly emerged as an independent area of re-
search in the mid 1990’s, it has deeper roots in several other fields like cognitive
science [42] and information retrieval [65]. Approaches for this problem are nor-
mally divided in two broad categories: content-based and collaborative filtering ap-
proaches.

4.1.2.1 Content-based approaches

The general principle of content-based (or cognitive) approaches [7, 8, 44, 58] is to
identify the common characteristics of items that have received a favorable rating
from a user u, and then recommend to u new items that share these characteristics.
In content-based recommender systems, rich information describing the nature of
each item i is assumed to be available in the form of a feature vector xi. For items in
the form of text documents, such as news articles [8, 44] or Web documents [7, 58],
this vector often contains the Term Frequency-Inverse Document Frequency (TF-
IDF) [65] weights of the most informative keywords. Moreover, for each user u, a
preference profile vector xu is usually obtained from the contents of items of Iu.
A technique to compute these profiles, used in several content-based recommender
systems such as Newsweeder [44] and Fab [7], is the Rocchio algorithm [78, 12].
This technique updates the profile xu of user u whenever this user rates an item i by
adding the weights of xi to xu, in proportion to the appreciation of u for i:

xu = ∑
i∈Iu

rui xi.

The user profiles can then be used to recommend new items to a user u, by sug-
gesting the item whose feature vector xi is most similar to the profile vector xu, for
example, using the cosine similarity [7, 8, 44] or the Minimum Description Length
(MDL) [44, 62]. This approach can also be used to predict the rating of user u for
a new item i [44], by building for each rating value r ∈ S a content profile vector
x(r)u as the average of the feature vectors of items that have received this rating value
from u. The predicted rating r̂ui for item i is the value r for which x(r)u is most sim-
ilar to xi. Bayesian approaches using content information have also been proposed
to predict ratings [8, 53, 58].

Recommender systems based purely on content generally suffer from the prob-
lems of limited content analysis and over-specialization [70]. Limited content anal-
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ysis stems from the fact that the system may have only a limited amount of informa-
tion on its users or the content of its items. The reasons for this lack of information
can be numerous. For instance, privacy issues might refrain a user from providing
personal information, or the precise content of items may be difficult or costly to
obtain for some types of items, such as music or images. Finally, the content of an
item is often insufficient to determine its quality. For example, it may be impossi-
ble to distinguish between a well written and a badly written article if both use the
same terms. Over-specialization, on the other hand, is a side effect of the way in
which content-based systems recommend new items, where the predicted rating of
a user for an item is high if this item is similar to the ones liked by this user. For
example, in a movie recommendation application, the system may recommend to a
user a movie of the same genre or having the same actors as movies already seen by
this user. Because of this, the system may fail to recommend items that are different
but still interesting to the user. Solutions proposed for this problem include adding
some randomness [71] or filtering out items that are too similar [8, 77]. More infor-
mation on content-based recommendation approaches can be found in Chapter 3 of
this book.

4.1.2.2 Collaborative filtering approaches

Unlike content-based approaches, which use the content of items previously rated
by a user u, collaborative (or social) filtering approaches [18, 31, 41, 47, 60, 45, 70]
rely on the ratings of u as well as those of other users in the system. The key idea is
that the rating of u for a new item i is likely to be similar to that of another user v,
if u and v have rated other items in a similar way. Likewise, u is likely to rate two
items i and j in a similar fashion, if other users have given similar ratings to these
two items.

Collaborative approaches overcome some of the limitations of content-based
ones. For instance, items for which the content is not available or difficult to ob-
tain can still be recommended to users through the feedback of other users. Fur-
thermore, collaborative recommendations are based on the quality of items as eval-
uated by peers, instead of relying on content that may be a bad indicator of quality.
Finally, unlike content-based systems, collaborative filtering ones can recommend
items with very different content, as long as other users have already shown interest
for these different items.

Following [1, 5, 10, 18], collaborative filtering methods can be grouped in the
two general classes of neighborhood and model-based methods. In neighborhood-
based (memory-based [10] or heuristic-based [1]) collaborative filtering [17, 18,
31, 41, 47, 54, 60, 45, 70], the user-item ratings stored in the system are directly
used to predict ratings for new items. This can be done in two ways known as user-
based or item-based recommendation. User-based systems, such as GroupLens [41],
Bellcore video [31], and Ringo [70], evaluate the interest of a user u for an item i
using the ratings for this item by other users, called neighbors, that have similar
rating patterns. The neighbors of user u are typically the users v whose ratings on
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the items rated by both u and v, i.e. Iuv, are most correlated to those of u. Item-based
approaches [18, 47, 45], on the other hand, predict the rating of a user u for an item
i based on the ratings of u for items similar to i. In such approaches, two items are
similar if several users of the system have rated these items in a similar fashion.

In contrast to neighborhood-based systems, which use the stored ratings directly
in the prediction, model-based approaches use these ratings to learn a predictive
model. The general idea is to model the user-item interactions with factors repre-
senting latent characteristics of the users and items in the system, like the pref-
erence class of users and the category class of items. This model is then trained
using the available data, and later used to predict ratings of users for new items.
Model-based approaches for the task of recommending items are numerous and
include Bayesian Clustering [10], Latent Semantic Analysis [32], Latent Dirichlet
Allocation [9], Maximum Entropy [78], Boltzmann Machines [64], Support Vector
Machines [27], and Singular Value Decomposition [4, 42, 57, 74, 75]. A survey of
state-of-the-art model-based methods can be found in Chapter 5 of this book.

4.1.3 Advantages of Neighborhood Approaches

While recent investigations show that state-of-the-art model-based approaches are
superior to neighborhood ones in the task of predicting ratings [42, 73], there is also
an emerging understanding that good prediction accuracy alone does not guarantee
users an effective and satisfying experience [25]. Another factor that has been iden-
tified as playing an important role in the appreciation of users for the recommender
system is serendipity [25, 45]. Serendipity extends the concept of novelty by helping
a user find an interesting item he might not have otherwise discovered. For exam-
ple, recommending to a user a movie directed by his favorite director constitutes
a novel recommendation if the user was not aware of that movie, but is likely not
serendipitous since the user would have discovered that movie on his own.

Model-based approaches excel at characterizing the preferences of a user with
latent factors. For example, in a movie recommender system, such methods may de-
termine that a given user is a fan of movies that are both funny and romantic, without
having to actually define the notions “funny” and “romantic”. This system would be
able to recommend to the user a romantic comedy that may not have been known
to this user. However, it may be difficult for this system to recommend a movie
that does not quite fit this high-level genre, for instance, a funny parody of horror
movies. Neighborhood approaches, on the other hand, capture local associations in
the data. Consequently, it is possible for a movie recommender system based on this
type of approach to recommend a movie very different from the users usual taste or
a movie that is not well known (e.g. repertoire film), if one of his closest neighbors
has given it a strong rating. This recommendation may not be a guaranteed success,
as would be a romantic comedy, but it may help the user discover a whole new genre
or a new favorite actor/director.

The main advantages of neighborhood-based methods are:
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• Simplicity: Neighborhood-based methods are intuitive and relatively simple to
implement. In their simplest form, only one parameter (the number of neighbors
used in the prediction) requires tuning.

• Justifiability: Such methods also provide a concise and intuitive justification for
the computed predictions. For example, in item-based recommendation, the list
of neighbor items, as well as the ratings given by the user to these items, can be
presented to the user as a justification for the recommendation. This can help the
user better understand the recommendation and its relevance, and could serve as
basis for an interactive system where users can select the neighbors for which a
greater importance should be given in the recommendation [4]. The necessity of
explaining recommendations to users is addressed in Chapter 15 of this book.

• Efficiency: One of the strong points of neighborhood-based systems is their effi-
ciency. Unlike most model-based systems, they require no costly training phases,
which need to be carried out at frequent intervals in large commercial appli-
cations. While the recommendation phase is usually more expensive than for
model-based methods, the nearest-neighbors can be pre-computed in an offline
step, providing near instantaneous recommendations. Moreover, storing these
nearest neighbors requires very little memory, making such approaches scalable
to applications having millions of users and items.

• Stability: Another useful property of recommender systems based on this ap-
proach is that they are little affected by the constant addition of users, items and
ratings, which are typically observed in large commercial applications. For in-
stance, once item similarities have been computed, an item-based system can
readily make recommendations to new users, without having to re-train the sys-
tem. Moreover, once a few ratings have been entered for a new item, only the
similarities between this item and the ones already in the system need to be com-
puted.

4.1.4 Objectives and Outline

This chapter has two main objectives. It first serves as a general guide on neighborhood-
based recommender systems, and presents practical information on how to im-
plement such recommendation approaches. In particular, the main components of
neighborhood-based methods will be described, as well as the benefits of the most
common choices for each of these components. Secondly, it presents more spe-
cialized techniques addressing particular aspects of recommending items, such as
data sparsity. Although such techniques are not required to implement a simple
neighborhood-based system, having a broader view of the various difficulties and
solutions for neighborhood methods may help with making appropriate decisions
during the implementation process.

The rest of this document is structured as follows. In Secton 4.2, the principal
neighborhood approaches, predicting user ratings for new items based on regres-
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sion or classification, are introduced, and the main advantages and flaws of these
approaches are described. This section also presents two complementary ways of
implementing such approaches, either based on user or item similarities, and anal-
yses the impact of these two implementations on the accuracy, efficiency, stability,
justfiability and serendipity of the recommender system. Section 4.3, on the other
hand, focuses on the three main components of neighborhood-based recommenda-
tion methods: rating normalization, similarity weight computation, and neighbor-
hood selection. For each of these components, the most common approaches are de-
scribed, and their respective benefits compared. In Section 4.4, the problems of lim-
ited coverage and data sparsity are introduced, and several solutions are described to
overcome these problems are described. In particular, several techniques based on
dimensionality reduction and graphs are presented. Finally, the last section of this
document summarizes the principal characteristics and methods of neighorhood-
based recommendation, and gives a few more pointers on implementing such meth-
ods.

4.2 Neighborhood-based Recommendation

Recommender systems based on nearest-neighbors automate the common principle
of word-of-mouth, where one relies on the opinion of like-minded people or other
trusted sources to evaluate the value of an item (movie, book, articles, album, etc.)
according to his own preferences. To illustrate this, consider the following example
based on the ratings of Figure 4.1.

Example 4.1. User Eric has to decide whether or not to rent the movie “Titanic”
that he has not yet seen. He knows that Lucy has very similar tastes when it comes
to movies, as both of them hated “The Matrix” and loved “Forrest Gump”, so he
asks her opinion on this movie. On the other hand, Eric finds out he and Diane have
different tastes, Diane likes action movies while he does not, and he discards her
opinion or considers the opposite in his decision.

The Titanic Die Forrest Wall-EMatrix Hard Gump
John 5 1 2 2
Lucy 1 5 2 5 5
Eric 2 ? 3 5 4

Diane 4 3 5 3

Fig. 4.1: A “toy example” showing the ratings of four users for five movies.
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4.2.1 User-based Rating Prediction

User-based neighborhood recommendation methods predict the rating rui of a user
u for a new item i using the ratings given to i by users most similar to u, called
nearest-neighbors. Suppose we have for each user v (= u a value wuv representing the
preference similarity between u and v (how this similarity can be computed will be
discussed in Section 4.3.2). The k-nearest-neighbors (k-NN) of u, denoted by N (u),
are the k users v with the highest similarity wuv to u. However, only the users who
have rated item i can be used in the prediction of rui, and we instead consider the
k users most similar to u that have rated i. We write this set of neighbors as Ni(u).
The rating rui can be estimated as the average rating given to i by these neighbors:

r̂ui =
1

|Ni(u)| ∑
v∈Ni(u)

rvi. (4.7)

A problem with (4.7) is that is does not take into account the fact that the neighbors
can have different levels of similarity. Consider once more the example of Figure
4.1. If the two nearest-neighbors of Eric are Lucy and Diane, it would be foolish to
consider equally their ratings of the movie “Titanic”, since Lucy’s tastes are much
closer to Eric’s than Diane’s. A common solution to this problem is to weigh the
contribution of each neighbor by its similarity to u. However, if these weights do
not sum to 1, the predicted ratings can be well outside the range of allowed values.
Consequently, it is customary to normalize these weights, such that the predicted
rating becomes

r̂ui =

∑
v∈Ni(u)

wuv rvi

∑
v∈Ni(u)

|wuv|
. (4.8)

In the denominator of (4.8), |wuv| is used instead of wuv because negative weights
can produce ratings outside the allowed range. Also, wuv can be replaced by wα

uv,
where α > 0 is an amplification factor [10]. When α > 1, as is it most often em-
ployed, an even greater importance is given to the neighbors that are the closest to
u.

Example 4.2. Suppose we want to use (4.8) to predict Eric’s rating of the movie
“Titanic” using the ratings of Lucy and Diane for this movie. Moreover, suppose the
similarity weights between these neighbors and Eric are respectively 0.75 and 0.15.
The predicted rating would be

r̂ =
0.75×5 + 0.15×3

0.75 + 0.15
) 4.67,

which is closer to Lucy’s rating than to Diane’s.

Equation (4.8) also has an important flaw: it does not consider the fact that users
may use different rating values to quantify the same level of appreciation for an item.
For example, one user may give the highest rating value to only a few outstanding



116 Christian Desrosiers and George Karypis

items, while a less difficult one may give this value to most of the items he likes. This
problem is usually addressed by converting the neighbors’ ratings rvi to normalized
ones h(rvi) [10, 60], giving the following prediction:

r̂ui = h−1




∑

v∈Ni(u)
wuv h(rvi)

∑
v∈Ni(u)

|wuv|



 . (4.9)

Note that the predicted rating must be converted back to the original scale, hence
the h−1 in the equation. The most common approaches to normalize ratings will be
presented in Section 4.3.1.

4.2.2 User-based Classification

The prediction approach just described, where the predicted ratings are computed as
a weighted average of the neighbors’ ratings, essentially solves a regression prob-
lem. Neighborhood-based classification, on the other hand, finds the most likely
rating given by a user u to an item i, by having the nearest-neighbors of u vote on
this value. The vote vir given by the k-NN of u for the rating r ∈ S can be obtained
as the sum of the similarity weights of neighbors that have given this rating to i:

vir = ∑
v∈Ni(u)

δ (rvi = r)wuv, (4.10)

where δ (rvi = r) is 1 if rvi = r, and 0 otherwise. Once this has been computed for
every possible rating value, the predicted rating is simply the value r for which vir
is the greatest.

Example 4.3. Suppose once again that the two nearest-neighbors of Eric are Lucy
and Diane with respective similarity weights 0.75 and 0.15. In this case, ratings 5
and 3 each have one vote. However, since Lucy’s vote has a greater weight than
Diane’s, the predicted rating will be r̂ = 5.

A classification method that considers normalized ratings can also be defined.
Let S ′ be the set of possible normalized values (that may require discretization), the
predicted rating is obtained as:

r̂ui = h−1

(
argmax

r∈S ′
∑

v∈Ni(u)
δ (h(rvi) = r)wuv

)
. (4.11)

.
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4.2.3 Regression VS Classification

The choice between implementing a neighborhood-based regression or classifica-
tion method largely depends on the system’s rating scale. Thus, if the rating scale
is continuous, e.g. ratings in the Jester joke recommender system [23] can take any
value between −10 and 10, then a regression method is more appropriate. On the
contrary, if the rating scale has only a few discrete values, e.g. “good” or “bad”, or
if the values cannot be ordered in an obvious fashion, then a classification method
might be preferable. Furthermore, since normalization tends to map ratings to a
continuous scale, it may be harder to handle in a classification approach.

Another way to compare these two approaches is by considering the situation
where all neighbors have the same similarity weight. As the number of neighbors
used in the prediction increases, the rating rui predicted by the regression approach
will tend toward the mean rating of item i. Suppose item i has only ratings at either
end of the rating range, i.e. it is either loved or hated, then the regression approach
will make the safe decision that the item’s worth is average. This is also justified
from a statistical point of view since the expected rating (estimated in this case) is
the one that minimizes the RMSE. On the other hand, the classification approach
will predict the rating as the most frequent one given to i. This is more risky as
the item will be labeled as either “good” or “bad”. However, as mentioned before,
taking risk may be be desirable if it leads to serendipitous recommendations.

4.2.4 Item-based Recommendation

While user-based methods rely on the opinion of like-minded users to predict a
rating, item-based approaches [18, 47, 45] look at ratings given to similar items. Let
us illustrate this approach with our toy example.

Example 4.4. Instead of consulting with his peers, Eric instead determines whether
the movie “Titanic” is right for him by considering the movies that he has already
seen. He notices that people that have rated this movie have given similar ratings
to the movies “Forrest Gump” and “Wall-E”. Since Eric liked these two movies he
concludes that he will also like the movie “Titanic”.

This idea can be formalized as follows. Denote by Nu(i) the items rated by user
u most similar to item i. The predicted rating of u for i is obtained as a weighted
average of the ratings given by u to the items of Nu(i):

r̂ui =

∑
j∈Nu(i)

wi j ru j

∑
j∈Nu(i)

|wi j|
. (4.12)

Example 4.5. Suppose our prediction is again made using two nearest-neighbors,
and that the items most similar to “Titanic” are “Forrest Gump” and “Wall-E”, with
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respective similarity weights 0.85 and 0.75. Since ratings of 5 and 4 were given by
Eric to these two movies, the predicted rating is computed as

r̂ =
0.85×5 + 0.75×4

0.85 + 0.75
) 4.53.

Again, the differences in the users’ individual rating scales can be considered by
normalizing ratings with a h:

r̂ui = h−1




∑

j∈Nu(i)
wi j h(ru j)

∑
j∈Nu(i)

|wi j|



 . (4.13)

Moreover, we can also define an item-based classification approach. In this case,
the items j rated by user u vote for the rating to be given to a new item i, and these
votes are weighted by the similarity between i and j. The normalized version of this
approach can be expressed as follows:

r̂ui = h−1

(
argmax

r∈S ′
∑

j∈Nu(i)
δ (h(ru j) = r)wi j

)
. (4.14)

4.2.5 User-based VS Item-based Recommendation

When choosing between the implementation of a user-based and an item-based
neighborhood recommender system, five criteria should be considered:

• Accuracy: The accuracy of neighborhood recommendation methods depends
mostly on the ratio between the number of users and items in the system. As
will be presented in the Section 4.3.2, the similarity between two users in user-
based methods, which determines the neighbors of a user, is normally obtained
by comparing the ratings made by these users on the same items. Consider a sys-
tem that has 10,000 ratings made by 1,000 users on 100 items, and suppose, for
the purpose of this analysis, that the ratings are distributed uniformly over the
items1. Following Table 4.1, the average number of users available as potential
neighbors is roughly 650. However, the average number of common ratings used
to compute the similarities is only 1. On the other hand, an item-based method
usually computes the similarity between two items by comparing ratings made
by the same user on these items. Assuming once more a uniform distribution of
ratings, we find an average number of potential neighbors of 99 and an average
number of ratings used to compute the similarities of 10.

1 The distribution of ratings in real-life data is normally skewed, i.e. most ratings are given to a
small proportion of items.
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In general, a small number of high-confidence neighbors is by far preferable
to a large number of neighbors for which the similarity weights are not trust-
worthy. In cases where the number of users is much greater than the number of
items, such as large commercial systems like Amazon.com, item-based methods
can therefore produce more accurate recommendations [19, 45]. Likewise, sys-
tems that have fewer users than items, e.g., a research paper recommender with
thousands of users but hundreds of thousands of articles to recommend, may
benefit more from user-based neighborhood methods [25].

Table 4.1: The average number of neighbors and average number of ratings used in
the computation of similarities for user-based and item-based neighborhood meth-
ods. A uniform distribution of ratings is assumed with average number of ratings
per user p = |R|/|U|, and average number of ratings per item q = |R|/|I|

Avg. neighbors Avg. ratings

User-based (|U |−1)
(

1−
(
|I|−p
|I|

)p) p2

|I|

Item-based (|I|−1)
(

1−
(
|U |−q
|U |

)q) q2

|U |

• Efficiency: As shown in Table 4.2, the memory and computational efficiency of
recommender systems also depends on the ratio between the number of users
and items. Thus, when the number of users exceeds the number of items, as is it
most often the case, item-based recommendation approaches require much less
memory and time to compute the similarity weights (training phase) than user-
based ones, making them more scalable. However, the time complexity of the
online recommendation phase, which depends only on the number of available
items and the maximum number of neighbors, is the same for user-based and
item-based methods.

In practice, computing the similarity weights is much less expensive than the
worst-case complexity reported in Table 4.2, due to the fact that users rate only
a few of the available items. Accordingly, only the non-zero similarity weights
need to be stored, which is often much less than the number of user pairs. This
number can be further reduced by storing for each user only the top N weights,
where N is a parameter [45]. In the same manner, the non-zero weights can be
computed efficiently without having to test each pair of users or items, which
makes neighborhood methods scalable to very large systems.

• Stability: The choice between a user-based and an item-based approach also
depends on the frequency and amount of change in the users and items of the
system. If the list of available items is fairly static in comparison to the users
of the system, an item-based method may be preferable since the item similarity
weights could then be computed at infrequent time intervals while still being able
to recommend items to new users. On the contrary, in applications where the list
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Table 4.2: The space and time complexity of user-based and item-based neigh-
borhood methods, as a function of the maximum number of ratings per user p =
maxu |Iu|, the maximum number of ratings per item q = maxi |Ui|, and the maxi-
mum number of neighbors used in the rating predictions k.

Space Time
Training Online

User-based O(|U |2) O(|U |2 p) O(|I|k)
Item-based O(|I|2) O(|I|2q) O(|I|k)

of available items is constantly changing, e.g., an online article recommender,
user-based methods could prove to be more stable.

• Justifiability: An advantage of item-based methods is that they can easily be
used to justify a recommendation. Hence, the list of neighbor items used in the
prediction, as well as their similarity weights, can be presented to the user as an
explanation of the recommendation. By modifying the list of neighbors and/or
their weights, it then becomes possible for the user to participate interactively in
the recommendation process. User-based methods, however, are less amenable
to this process because the active user does not know the other users serving as
neighbors in the recommendation.

• Serendipity: In item-based methods, the rating predicted for an item is based on
the ratings given to similar items. Consequently, recommender systems using this
approach will tend to recommend to a user items that are related to those usually
appreciated by this user. For instance, in a movie recommendation application,
movies having the same genre, actors or director as those highly rated by the user
are likely to be recommended. While this may lead to safe recommendations, it
does less to help the user discover different types of items that he might like as
much.

Because they work with user similarity, on the other hand, user-based ap-
proaches are more likely to make serendipitous recommendations. This is par-
ticularly true if the recommendation is made with a small number of nearest-
neighbors. For example, a user A that has watched only comedies may be very
similar to a user B only by the ratings made on such movies. However, if B is fond
of a movie in a different genre, this movie may be recommended to A through
his similarity with B.

4.3 Components of Neighborhood Methods

In the previous section, we have seen that deciding between a regression and a clas-
sification rating prediction method, as well as choosing between a user-based or
item-based recommendation approach, can have a significant impact on the accu-

⼀⼀

合適的
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racy, efficiency and overall quality of the recommender system. In addition to these
crucial attributes, three very important considerations in the implementation of a
neighborhood-based recommender system are 1) the normalization of ratings, 2)
the computation of the similarity weights, and 3) the selection of neighbors. This
section reviews some of the most common approaches for these three components,
describes the main advantages and disadvantages of using each one of them, and
gives indications on how to implement them.

4.3.1 Rating Normalization

When it comes to assigning a rating to an item, each user has its own personal
scale. Even if an explicit definition of each of the possible ratings is supplied (e.g.,
1=“strongly disagree”, 2=“disagree”, 3=“neutral”, etc.), some users might be reluc-
tant to give high/low scores to items they liked/disliked. Two of the most popular
rating normalization schemes that have been proposed to convert individual ratings
to a more universal scale are mean-centering and Z-score.

4.3.1.1 Mean-centering

The idea of mean-centering [10, 60] is to determine whether a rating is positive or
negative by comparing it to the mean rating. In user-based recommendation, a raw
rating rui is transformation to a mean-centered one h(rui) by subtracting to rui the
average ru of the ratings given by user u to the items in Iu:

h(rui) = rui− ru.

Using this approach the user-based prediction of a rating rui is obtained as

r̂ui = ru +

∑
v∈Ni(u)

wuv (rvi− rv)

∑
v∈Ni(u)

|wuv|
. (4.15)

In the same way, the item-mean-centered normalization of rui is given by

h(rui) = rui− ri,

where ri corresponds to the mean rating given to item i by user in Ui. This normal-
ization technique is most often used in item-based recommendation, where a rating
rui is predicted as:

r̂ui = ri +

∑
j∈Nu(i)

wi j (ru j− r j)

∑
j∈Nu(i)

|wi j|
. (4.16)
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An interesting property of mean-centering is that one can see right-away if the ap-
preciation of a user for an item is positive or negative by looking at the sign of the
normalized rating. Moreover, the module of this rating gives the level at which the
user likes or dislikes the item.

Example 4.6. As shown in Figure 4.2, although Diane gave an average rating of 3 to
the movies “Titanic” and “Forrest Gump”, the user-mean-centered ratings show that
her appreciation of these movies is in fact negative. This is because her ratings are
high on average, and so, an average rating correspond to a low degree of apprecia-
tion. Differences are also visible while comparing the two types of mean-centering.
For instance, the item-mean-centered rating of the movie “Titanic” is neutral, in-
stead of negative, due to the fact that much lower ratings were given to that movie.
Likewise, Diane’s appreciation for “The Matrix” and John’s distaste for “Forrest
Gump” are more pronounced in the item-mean-centered ratings.

User mean-centering:

The Titanic Die Forrest Wall-EMatrix Hard Gump
John 2.50 -1.50 -0.50 -0.50
Lucy -2.60 1.40 -1.60 1.40 1.40
Eric -1.50 -0.50 1.50 0.50

Diane 0.25 -0.75 1.25 -0.75

Item mean-centering:

The Titanic Die Forrest Wall-EMatrix Hard Gump
John 2.00 -2.00 -1.75 -1.67
Lucy -2.00 2.00 -1.33 1.25 1.33
Eric -1.00 -0.33 1.25 0.33

Diane 1.00 0.00 1.67 -0.75

Fig. 4.2: The user and item mean-centered ratings of Figure 4.1.

4.3.1.2 Z-score normalization

Consider, two users A and B that both have an average rating of 3. Moreover, sup-
pose that the ratings of A alternate between 1 and 5, while those of B are always 3.
A rating of 5 given to an item by B is more exceptional than the same rating given
by A, and, thus, reflects a greater appreciation for this item. While mean-centering
removes the offsets caused by the different perceptions of an average rating, Z-
score normalization [29] also considers the spread in the individual rating scales.
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Once again, this is usually done differently in user-based than in item-based rec-
ommendation. In user-based methods, the normalization of a rating rui divides the
user-mean-centered rating by the standard deviation σu of the ratings given by user
u:

h(rui) =
rui− ru

σu
.

A user-based prediction of rating rui using this normalization approach would there-
fore be obtained as

r̂ui = ru + σu

∑
v∈Ni(u)

wuv (rvi− rv)/σv

∑
v∈Ni(u)

|wuv|
. (4.17)

Likewise, the z-score normalization of rui in item-based methods divides the item-
mean-centered rating by the standard deviation of ratings given to item i:

h(rui) =
rui− ri

σi
.

The item-based prediction of rating rui would then be

r̂ui = ri + σi

∑
j∈Nu(i)

wi j (ru j− r j)/σ j

∑
j∈Nu(i)

|wi j|
. (4.18)

4.3.1.3 Choosing a normalization scheme

In some cases, rating normalization can have undesirable effects. For instance, imag-
ine the case of a user that gave only the highest ratings to the items he has purchased.
Mean-centering would consider this user as “easy to please” and any rating below
this highest rating (whether it is a positive or negative rating) would be considered
as negative. However, it is possible that this user is in fact “hard to please” and care-
fully selects only items that he will like for sure. Furthermore, normalizing on a few
ratings can produce unexpected results. For example, if a user has entered a single
rating or a few identical ratings, his rating standard deviation will be 0, leading to
undefined prediction values. Nevertheless, if the rating data is not overly sparse,
normalizing ratings has been found to consistently improve the predictions [29, 33].

Comparing mean-centering with Z-score, as mentioned, the second one has the
additional benefit of considering the variance in the ratings of individual users or
items. This is particularly useful if the rating scale has a wide range of discrete
values or if it is continuous. On the other hand, because the ratings are divided and
multiplied by possibly very different standard deviation values, Z-score can be more
sensitive than mean-centering and, more often, predict ratings that are outside the
rating scale. Lastly, while an initial investigation found mean-centering and Z-score
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to give comparable results [29], a more recent one showed Z-score to have more
significant benefits [33].

Finally, if rating normalization is not possible or does not improve the results,
another possible approach to remove the problems caused by the individual rat-
ing scale is preference-based filtering. The particularity of this approach is that it
focuses on predicting the relative preferences of users instead of absolute rating val-
ues. Since the rating scale does not change the preference order for items, predicting
relative preferences removes the need to normalize the ratings. More information on
this approach can be found in [13, 21, 37, 36].

4.3.2 Similarity Weight Computation

The similarity weights play a double role in neighborhood-based recommendation
methods: 1) they allow the selection of trusted neighbors whose ratings are used in
the prediction, and 2) they provide the means to give more or less importance to
these neighbors in the prediction. The computation of the similarity weights is one
of the most critical aspects of building a neighborhood-based recommender system,
as it can have a significant impact on both its accuracy and its performance.

4.3.2.1 Correlation-based similarity

A measure of the similarity between two objects a and b, often used in information
retrieval, consists in representing these objects in the form of two vectors xa and
xb and computing the Cosine Vector (CV) (or Vector Space) similarity [7, 8, 44]
between these vectors:

cos(xa,xb) =
x+a xb

||xa||||xb||
.

In the context of item recommendation, this measure can be employed to compute
user similarities by considering a user u as a vector xu ∈R|I|, where xui = rui if user
u has rated item i, and 0 otherwise. The similarity between two users u and v would
then be computed as

CV (u,v) = cos(xu,xv) =

∑
i∈Iuv

rui rvi

√
∑

i∈Iu
r2

ui ∑
j∈Iv

r2
v j

, (4.19)

where Iuv once more denotes the items rated by both u and v. A problem with this
measure is that is does not consider the differences in the mean and variance of the
ratings made by users u and v.

A popular measure that compares ratings where the effects of mean and variance
have been removed is the Pearson Correlation (PC) similarity:
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PC(u,v) =

∑
i∈Iuv

(rui− ru)(rvi− rv)

√
∑

i∈Iuv
(rui− ru)2 ∑

i∈Iuv
(rvi− rv)2

. (4.20)

Note that this is different from computing the CV similarity on the Z-score nor-
malized ratings, since the standard deviation of the ratings is evaluated only on the
common items Iuv, not on the entire set of items rated by u and v, i.e. Iu and Iv. The
same idea can be used to obtain similarities between two items i and j [18, 45], this
time by comparing the ratings made by users that have rated both of these items:

PC(i, j) =

∑
u∈Ui j

(rui− ri)(ru j− r j)

√
∑

u∈Ui j

(rui− ri)2 ∑
u∈Ui j

(ru j− r j)2
. (4.21)

While the sign of a similarity weight indicates whether the correlation is direct or
inverse, its magnitude (ranging from 0 to 1) represents the strength of the correla-
tion.

Example 4.7. The similarities between the pairs of users and items of our toy ex-
ample, as computed using PC similarity, are shown in Figure 4.3. We can see that
Lucy’s taste in movies is very close to Eric’s (similarity of 0.922) but very different
from John’s (similarity of −0.938). This means that Eric’s ratings can be trusted
to predict Lucy’s, and that Lucy should discard John’s opinion on movies or con-
sider the opposite. We also find that the people that like “The Matrix” also like “Die
Hard” but hate “Wall-E”. Note that these relations were discovered without having
any knowledge of the genre, director or actors of these movies.

The differences in the rating scales of individual users are often more pronounced
than the differences in ratings given to individual items. Therefore, while computing
the item similarities, it may be more appropriate to compare ratings that are centered
on their user mean, instead of their item mean. The Adjusted Cosine (AC) similarity
[45], is a modification of the PC item similarity which compares user-mean-centered
ratings:

AC(i, j) =
∑

u∈Ui j

(rui− ru)(ru j− ru)

√
∑

u∈Ui j

(rui− ru)2 ∑
u∈Ui j

(ru j− ru)2
.

In some cases, AC similarity has been found to outperform PC similarity on the
prediction of ratings using an item-based method [45].

4.3.2.2 Other similarity measures

Several other measures have been proposed to compute similarities between users or
items. One of them is the Mean Squared Difference (MSD) [70], which evaluates the
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User-based Pearson correlation

John Lucy Eric Diane
John 1.000 -0.938 -0.839 0.659
Lucy -0.938 1.000 0.922 -0.787
Eric -0.839 0.922 1.000 -0.659

Diane 0.659 -0.787 -0.659 1.000

Item-based Pearson correlation

The Titanic Die Forrest Wall-EMatrix Hard Gump
Matrix 1.000 -0.943 0.882 -0.974 -0.977
Titanic -0.943 1.000 -0.625 0.931 0.994

Die Hard 0.882 -0.625 1.000 -0.804 -1.000
Forrest Gump -0.974 0.931 -0.804 1.000 0.930

Wall-E -0.977 0.994 -1.000 0.930 1.000

Fig. 4.3: The user and item PC similarity for the ratings of Figure 4.1.

similarity between two users u and v as the inverse of the average squared difference
between the ratings given by u and v on the same items:

MSD(u,v) =
|Iuv|

∑
i∈Iuv

(rui− rvi)2 . (4.22)

While it could be modified to compute the differences on normalized ratings, the
MSD similarity is limited compared to PC similarity because it does not capture
negative correlations between user preferences or the appreciation of different items.
Having such negative correlations may improve the rating prediction accuracy [28].

Another well-known similarity measure is the Spearman Rank Correlation (SRC)
[39]. While PC uses the rating values directly, SRC instead considers the ranking of
these ratings. Denote by kui the rating rank of item i in user u’s list of rated items
(tied ratings get the average rank of their spot). The SRC similarity between two
users u and v is evaluated as:

SRC(u,v) =

∑
i∈Iuv

(kui− ku)(kvi− kv)

√
∑

i∈Iuv
(kui− ku)2 ∑

i∈Iuv
(kvi− kv)2

, (4.23)

where ku is the average rank of items rated by u (which can differ from |Iu|+ 1 if
there are tied ratings).

The principal advantage of SRC is that it avoids the problem of rating normaliza-
tion, described in the last section, by using rankings. On the other hand, this measure
may not be the best one when the rating range has only a few possible values, since
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that would create a large number of tied ratings. Moreover, this measure is typically
more expensive than PC as ratings need to be sorted in order to compute their rank.

Table 4.3 shows the user-based prediction accuracy (MAE) obtained with MSD,
SRC and PC similarity measures, on the MovieLens2 dataset [28]. Results are given
for different values of k, which represents the maximum number of neighbors used
in the predictions. For this data, we notice that MSD leads to the least accurate
predictions, possibly due to the fact that it does not take into account negative corre-
lations. Also, these results show PC to be slightly more accurate than SRC. Finally,
although PC has been generally recognized as the best similarity measure, see e.g.
[28], a more recent investigation has shown that the performance of such measures
depended greatly on the data [33].

Table 4.3: The rating prediction accuracy (MAE) obtained using the Mean Squared
Difference (MSD), the Spearman Rank Correlation and the Pearson Correaltion
(PC) similarity. Results are shown for predictions using an increasing number of
neighbors k.

k MSD SRC PC
5 0.7898 0.7855 0.7829

10 0.7718 0.7636 0.7618
20 0.7634 0.7558 0.7545
60 0.7602 0.7529 0.7518
80 0.7605 0.7531 0.7523

100 0.7610 0.7533 0.7528

4.3.2.3 Accounting for significance

Because the rating data is frequently sparse in comparison to the number of users
and items of a system, similarity weights are often computed using only a few rat-
ings given to common items or made by the same users. For example, if the system
has 10,000 ratings made by 1,000 users on 100 items (assuming a uniform distri-
bution of ratings), Table 4.1 shows us that the similarity between two users is com-
puted, on average, by comparing the ratings given by these users to a single item. If
these few ratings are equal, then the users will be considered as “fully similar” and
will likely play an important role in each other’s recommendations. However, if the
users’ preferences are in fact different, this may lead to poor recommendations.

Several strategies have been proposed to take into account the significance of a
similarity weight. The principle of these strategies is essentially the same: reduce
the magnitude of a similarity weight when this weight is computed using only a few
ratings. For instance, in Significance Weighting [29, 49], a user similarity weight

2 http://www.grouplens.org/
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wuv is penalized by a factor proportional to the number of commonly rated items, if
this number is less than a given parameter γ > 0:

w′uv =
min{|Iuv|, γ}

γ ×wuv. (4.24)

Likewise, an item similarity wi j, obtained from a few ratings, can be adjusted as

w′i j =
min{|Ui j|, γ}

γ ×wi j. (4.25)

In [29, 28], it was found that using γ ≥ 25 could significantly improve the accuracy
of the predicted ratings, and that a value of 50 for γ gave the best results. However,
the optimal value for this parameter is data dependent and should be determined
using a cross-validation approach.

A characteristic of significance weighting is its use of a threshold γ determin-
ing when a weight should be adjusted. A more continuous approach, described in
[4], is based on the concept of shrinkage where a weak or biased estimator can be
improved if it is “shrunk” toward a null-value. This approach can be justified us-
ing a Bayesian perspective, where the best estimator of a parameter is the posterior
mean, corresponding to a linear combination of the prior mean of the parameter
(null-value) and an empirical estimator based fully on the data. In this case, the pa-
rameters to estimate are the similarity weights and the null value is zero. Thus, a
user similarity wuv estimated on a few ratings is shrunk as

w′uv =
|Iuv|

|Iuv|+β ×wuv, (4.26)

where β > 0 is a parameter whose value should also be selected using cross-
validation. In this approach, wuv is shrunk proportionally to β/|Iuv|, such that almost
no adjustment is made when |Iuv|- β . Item similarities can be shrunk in the same
way:

w′i j =
|Ui j|

|Ui j|+β ×wi j, (4.27)

As reported in [4], a typical value for β is 100.

4.3.2.4 Accounting for variance

Ratings made by two users on universally liked/disliked items may not be as infor-
mative as those made for items with a greater rating variance. For instance, most
people like classic movies such as “The Godfather”, so basing the weight compu-
tation on such movies would produce artificially high values. Likewise, a user that
always rates items in the same way may provide less predictive information than
one whose preferences vary from one item to another.
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A recommendation approach that addresses this problem is the Inverse User Fre-
quency [10]. Based on the information retrieval notion of Inverse Document Fre-
quency (IDF), a weight λi is given to each item i, in proportion to the log-ratio of
users that have rated i:

λi = log
|U|
|Ui|

.

While computing the Frequency-Weighted Pearson Correlation (FWPC) between
users u and v, the correlation between the ratings given to an item i is weighted by
λi:

FWPC(u,v) =

∑
i∈Iuv

λi(rui− ru)(rvi− rv)

√
∑

i∈Iuv
λi(rui− ru)2 ∑

i∈Iuv
λi(rvi− rv)2

. (4.28)

This approach, which was found to improve the prediction accuracy of a user-based
recommendation method [10], could also be adapted to the computation of item
similarities.

More advanced strategies have also been proposed to consider rating variance.
One of these strategies, described in [35], computes the factors λi by maximizing
the average similarity between users. In this approach, the similarity between two
users u and v, given an item weight vector λ = (λ1, . . . ,λ|I|), is evaluated as the
likelihood of u to have the same rating behavior as user v:

Pr(u|v,λ ) =
1
Zv

exp

(

∑
i∈Iuv

λi rui rvi

)
,

where Zv is a normalization constant. The optimal item weight vector is the one
maximizing the average similarity between users.

4.3.3 Neighborhood Selection

The number of nearest-neighbors to select and the criteria used for this selection can
also have a serious impact on the quality of the recommender system. The selection
of the neighbors used in the recommendation of items is normally done in two steps:
1) a global filtering step where only the most likely candidates are kept, and 2) a per
prediction step which chooses the best candidates for this prediction.

4.3.3.1 Pre-filtering of neighbors

In large recommender systems that can have millions of users and items, it is usually
not possible to store the (non-zero) similarities between each pair of users or items,
due to memory limitations. Moreover, doing so would be extremely wasteful as only
the most significant of these values are used in the predictions. The pre-filtering of
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neighbors is an essential step that makes neighborhood-based approaches practica-
ble by reducing the amount of similarity weights to store, and limiting the number of
candidate neighbors to consider in the predictions. There are several ways in which
this can be accomplished:

• Top-N filtering: For each user or item, only a list of the N nearest-neighbors
and their respective similarity weight is kept. To avoid problems with efficiency
or accuracy, N should be chosen carefully. Thus, if N is too large, an excessive
amount of memory will be required to store the neighborhood lists and predicting
ratings will be slow. On the other hand, selecting a too small value for N may
reduce the coverage of the recommendation method, which causes some items to
be never recommended.

• Threshold filtering: Instead of keeping a fixed number of nearest-neighbors,
this approach keeps all the neighbors whose similarity weight has a magnitude
greater than a given threshold wmin. While this is more flexible than the previous
filtering technique, as only the most significant neighbors are kept, the right value
of wmin may be difficult to determine.

• Negative filtering: In general, negative rating correlations are less reliable than
positive ones. Intuitively, this is because strong positive correlation between two
users is a good indicator of their belonging to a common group (e.g., teenagers,
science-fiction fans, etc.). However, although negative correlation may indicate
membership to different groups, it does not tell how different these groups are,
or whether these groups are compatible for other categories of items. While ex-
perimental investigations [29, 25] have found negative correlations to provide
no significant improvement in the prediction accuracy, whether such correlations
can be discarded depends on the data.

Note that these three filtering approaches are not mutually exclusive and can
be combined to fit the needs of the recommender system. For instance, one could
discard all negative similarities as well as those with a magnitude lower than a given
threshold.

4.3.3.2 Neighbors in the predictions

Once a list of candidate neighbors has been computed for each user or item, the
prediction of new ratings is normally made with the k-nearest-neighbors, that is,
the k neighbors whose similarity weight has the greatest magnitude. The important
question is which value to use for k.

As shown in Table 4.3, the prediction accuracy observed for increasing values
of k typically follows a concave function. Thus, when the number of neighbors is
restricted by using a small k (e.g., k < 20), the prediction accuracy is normally low.
As k increases, more neighbors contribute to the prediction and the variance intro-
duced by individual neighbors is averaged out. As a result, the prediction accuracy
improves. Finally, the accuracy usually drops when too many neighbors are used in
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the prediction (e.g., k > 50), due to the fact that the few strong local relations are
“diluted” by the many weak ones. Although a number of neighbors between 20 to
50 is most often described in the literature, see e.g. [28, 25], the optimal value of k
should be determined by cross-validation.

On a final note, more serendipitous recommendations may be obtained at the cost
of a decrease in accuracy, by basing these recommendations on a few very similar
users. For example, the system could find the user most similar to the active one and
recommend the new item that has received the highest rated from this user.

4.4 Advanced Techniques

The neighborhood approaches based on rating correlation, such as the ones pre-
sented in the previous sections, have two important flaws:

• Limited coverage: Because rating correlation measures the similarity between
two users by comparing their ratings for the same items, users can be neighbors
only if they have rated common items. This assumption is very limiting, as users
having rated a few or no common items may still have similar preferences. More-
over, since only items rated by neighbors can be recommended, the coverage of
such methods can also be limited.

• Sensitivity to sparse data: Another consequence of rating correlation, addressed
briefly in Section 4.2.5, is the fact that the accuracy of neighborhood-based rec-
ommendation methods suffers from the lack of available ratings. Sparsity is a
problem common to most recommender systems due to the fact that users typi-
cally rate only a small proportion of the available items [7, 25, 68, 67]. This is
aggravated by the fact that users or items newly added to the system may have
no ratings at all, a problem known as cold-start [69]. When the rating data is
sparse, two users or items are unlikely to have common ratings, and consequently,
neighborhood-based approaches will predict ratings using a very limited number
of neighbors. Moreover, similarity weights may be computed using only a small
number of ratings, resulting in biased recommendations (see Section 4.3.2.3 for
this problem).

A common solution for these problems is to fill the missing ratings with default
values [10, 18], such as the middle value of the rating range, and the average user
or item rating. A more reliable approach is to use content information to fill out the
missing ratings [16, 25, 41, 50]. For instance, the missing ratings can be provided by
autonomous agents called filterbots [25, 41], that act as ordinary users of the system
and rate items based on some specific characteristics of their content. The missing
ratings can instead be predicted by a content-based approach [50], such as those
described in Section 4.1.2.1. Finally, content similarity can also be used “instead
of” or “in addition to” rating correlation similarity to find the nearest-neighbors
employed in the predictions [7, 46, 59, 72].
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These solutions, however, also have their own drawbacks. For instance, giving a
default value to missing ratings may induce bias in the recommendations. Also, as
discussed in Section 4.1.2.1, item content may not be available to compute ratings
or similarities. This section presents two approaches proposed for the problems of
limited coverage and sparsity: dimensionality reduction and graph-based methods.

4.4.1 Dimensionality Reduction Methods

Dimensionality reduction methods [4, 7, 23, 42, 67, 74, 75] address the problems
of limited coverage and sparsity by projecting users and items into a reduced latent
space that captures their most salient features. Because users and items are com-
pared in this dense subspace of high-level features, instead of the “rating space”,
more meaningful relations can be discovered. In particular, a relation between two
users can be found, even though these users have rated different items. As a result,
such methods are generally less sensitive to sparse data [4, 7, 67].

There are essentially two ways in which dimensionality reduction can be used to
improve recommender systems: 1) decomposition of a user-item rating matrix, and
2) decomposition of a sparse similarity matrix.

4.4.1.1 Decomposing the rating matrix

A popular dimensionality reduction approach to item recommendation is Latent Se-
mantic Indexing (LSI) [15]. In this approach, the |U|×|I| user-item rating matrix R
of rank n is approximated by a matrix R̂ = PQ+ of rank k < n, where P is a |U|×k
matrix of users factors and Q a |I|×k matrix of item factors. Intuitively, the u-th row
of P, pu ∈ Rk, represents the coordinates of user u projected in the k-dimensional
latent space. Likewise, the i-th row of Q, qi ∈ Rk, can be seen as the coordinates of
item i in this latent space. Matrices P and Q are normally found by minimizing the
reconstruction error defined with the squared Frobenius norm:

err(P,Q) = ||R−PQ+||2F

= ∑
u,i

(
rui−puq+i

)2
.

Minimizing this error is equivalent to finding the Singular Value Decomposition
(SVD) of R [24]:

R = UΣV+,

where U is the |U|×n matrix of left singular vectors, V is the |I|×n matrix of right
singular vectors, and Σ is the n×n diagonal matrix of singular values. Denote by
Σk, Uk and Vk the matrices obtained by selecting the subset containing the k highest
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singular values and their corresponding singular vectors, the user and item factor
matrices correspond to P =UkΣ 1/2

k and Q =VkΣ 1/2
k .

Once P and Q have been obtained, the typical model-based prediction of a rating
rui is:

rui = puq+i .

There is, however, a major problem with applying SVD to the rating matrix R: most
values rui of R are undefined, since there may not be a rating given to i by u. Al-
though it is possible to assign a default value to rui, as mentioned above, this would
introduce a bias in the data. More importantly, this would make the large matrix
R dense and, consequently, render impractical the SVD decomposition of R. The
common solution to this problem is to learn P and Q using only the known ratings
[4, 42, 73, 75]:

err(P,Q) = ∑
rui∈R

(rui−puq+i )2 + λ
(
||pu||2 + ||qi||2

)
, (4.29)

where λ is a parameter that controls the level of regularization. A more comprehen-
sive description of this recommendation approach can be found in Chapter 5 of this
book.

In neighborhood-based recommendation, the same principle can be used to com-
pute the similarity between users or items in the latent-space [7]. This can be done
by solving the following problem:

err(P,Q) = ∑
rui∈R

(
zui−puq+i

)2 (4.30)

subject to:
||pu||= 1, ∀u ∈ U , ||qi||= 1, ∀i ∈ I,

where zui is the mean-centered rating rui normalized to the [−1,1] range. For exam-
ple, if rmin and rmax are the lowest and highest values in the original rating range,

zui =
rui− ru

rmax− rmin
.

This problem corresponds to finding, for each user u and item i, coordinates on the
surface of the k-dimensional unit sphere such that u will give a high rating to i if
their coordinates are close together on the surface. If two users u and v are nearby
on the surface, then they will give similar ratings to the same items, and, thus, the
similarity between these users can be computed as

wuv = pup+v .

Likewise, the similarity between two items i and j can be obtained as

wi j = qiq+j .
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4.4.1.2 Decomposing the similarity matrix

The principle of this second dimensionality reduction approach is the same as the
previous one: decompose a matrix into its principal factors representing projection
of users or items in the latent space. However, instead of decomposing the rating
matrix, a sparse similarity matrix is decomposed. Let W be a symmetric matrix of
rank n representing either user or item similarities. To simplify the presentation, we
will suppose the former case. Once again, we want to approximate W with a matrix
Ŵ = PP+ of lower rank k < n by minimizing the following objective:

err(P) = ||R−PP+||2F

= ∑
u,v

(
wuv−pup+v

)2
.

Matrix Ŵ can be seen as a “compressed” version of W which is less sparse than
W . As before, finding the factor matrix P is equivalent to computing the eigenvalue
decomposition of W :

W = VΛV+,

where Λ is a diagonal matrix containing the |U| eigenvalues of W , and V is a |U|×
|U| orthogonal matrix containing the corresponding eigenvectors. Let Vk be a matrix
formed by the k principal (normalized) eigenvectors of W , which correspond to the
axes of the k-dimensional latent subspace. The coordinates pu ∈ Rk of a user u in
this subspace is given by the u-th row of matrix P = VkΛ 1/2

k . Furthermore, the user
similarities computed in this latent subspace are given by matrix

W ′ = PP+

=VkΛkV+k . (4.31)

This approach was used to recommend jokes in the Eigentaste system [23]. In
Eigentaste, a matrix W containing the PC similarities between pairs of items is de-
composed to obtain the latent subspace defined by the two principal eigenvectors of
W . Denote V2 the matrix containing these eigenvectors. A user u, represented by the
u-th row ru of the rating matrix R, is projected in the plane defined by V2:

r′u = ruV2.

In an offline step, the users of the system are clustered in the plane using a recursive
subdivision technique. Then, the rating of user u for an item i is evaluated as the
mean rating for i made by users in the same cluster as u.
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4.4.2 Graph-based Methods

In graph-based approaches, the data is represented in the form of a graph where
nodes are users, items or both, and edges encode the interactions or similarities
between the users and items. For example, in Figure 4.4, the data is modeled as a
bipartite graph where the two sets of nodes represent users and items, and an edge
connects user u to item i if there is a rating given to i by u in the system. A weight
can also be given to this edge, such as the value of its corresponding rating. In
another model, the nodes can represent either users or items, and an edge connects
two nodes if the ratings corresponding two these nodes are sufficiently correlated.
The weight of this edge can be the corresponding correlation value.

Fig. 4.4: A bipartite graph representation of the ratings of Figure 4.1 (only ratings
with value in {2,3,4} are shown).

In these models, standard approaches based on correlation predict the rating of a
user u for an item i using only the nodes directly connected to u or i. Graph-based
approaches, on the other hand, allow nodes that are not directly connected to in-
fluence each other by propagating information along the edges of the graph. The
greater the weight of an edge, the more information is allowed to pass through it.
Also, the influence of a node on another should be smaller if the two nodes are fur-
ther away in the graph. These two properties, known as propagation and attenuation
[26, 34], are often observed in graph-based similarity measures.

The transitive associations captured by graph-based methods can be used to rec-
ommend items in two different ways. In the first approach, the proximity of a user u
to an item i in the graph is used directly to evaluate the rating of u for i [19, 26, 34].
Following this idea, the items recommended to u by the system are those that are
the “closest” to u in the graph. On the other hand, the second approach considers the
proximity of two users or item nodes in the graph as a measure of similarity, and uses
this similarity as the weights wuv or wi j of a neighborhood-based recommendation
method [19, 48].
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4.4.2.1 Path-based similarity

In path-based similarity, the distance between two nodes of the graph is evaluated
as a function of the number of paths connecting the two nodes, as well as the length
of these paths.

Shortest path

A recommendation approach that computes the similarity between two users based
on their shortest distance in a graph is the one described in [2]. In this method,
the data is modeled as a directed graph whose nodes are users, and in which edges
are determined based on the notions of horting and predictability. Horting is an
asymmetric relation between two users that is satisfied if these users have rated
similar items. Formally, a user u horts another user v provided either |Iuv| ≥ α or
|Iuv|/|Iu|≥ β is satisfied, where α,β are predetermined thresholds. Predictability,
on the other hand, is a stronger property additionally requiring the ratings of u to
be similar to those of v, under a mapping representing the difference in the rating
scales of u and v. Thus, v predicts u, provided u horts v and there exists a linear
transformation l : S→ S such that

1
|Iuv| ∑

i∈Iuv

|rui− l(rvi)| ≤ γ ,

where γ is another given threshold.
The relations of predictability are represented as directed edges in the graph,

such that there is a directed edge from u to v if v predicts u. Accordingly, a directed
path connecting two users u and v represents the transitive predictability of v for the
ratings of u, under a sequence of transformations. Following this idea, the rating of
user u for a new item i is predicted using the shortest directed paths from u to other
users that have rated i. Let P = {u,v1,v2, . . . ,vm} be such a path, where vm ∈ Ui.
The rating of user vm for item i is transformed in the rating scale of u using the
composition of the linear mappings along the path:

r̂(P)ui = (lm ◦ . . .◦ l2 ◦ l1)(rvi).

The final prediction of rating rui is computed as the average of the predictions r̂(P)ui
obtained for all shortest paths P.

Number of paths

The number of paths between a user and an item in a bipartite graph can also be used
to evaluate their compatibility [34]. Let R be once again the |U |×|I| rating matrix
where rui equals 1 if user u has rated item i, and 0 otherwise. The adjacency matrix
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A of the bipartite graph can be defined from R as

A =

(
0 R+
R 0

)
.

In this approach, the association between a user u and an item i is defined as the sum
of the weights of all distinctive paths connecting u to v (allowing nodes to appear
more than once in the path), whose length is no more than a given maximum length
K. Note that, since the graph is bipartite, K should be an odd number. In order to
attenuate the contribution of longer paths, the weight given to a path of length k is
defined as αk, where α ∈ [0,1]. Using the fact that the number of k length paths
between pairs of nodes is given by Ak, the user-item association matrix SK is

SK =
K

∑
k=1

αkAk

= (I−αA)−1(αA−αKAK). (4.32)

This method of computing distances between nodes in a graph is known as the Katz
measure [38]. Note that this measure is closely related to the Von Neumann Diffusion
kernel [20, 40, 43]

KVND =
∞

∑
k=0

αkAk

= (I−αA)−1 (4.33)

and the Exponential Diffusion kernel

KED =
∞

∑
k=0

1
k!

αkAk

= exp(αA), (4.34)

where A0 = I.
In recommender systems that have a large number of users and items, computing

these association values may require extensive computational resources. To over-
come these limitations, spreading activation techniques [14] have been used in [34].
Essentially, such techniques work by first activating a selected subset of nodes as
starting nodes, and then iteratively activating the nodes that can be reached directly
from the nodes that are already active, until a convergence criterion is met.

4.4.2.2 Random walk similarity

Transitive associations in graph-based methods can also be defined within a prob-
abilistic framework. In this framework, the similarity or affinity between users or
items is evaluated as a probability of reaching these nodes in a random walk. For-



138 Christian Desrosiers and George Karypis

mally, this can be described with a first-order Markov process defined by a set of n
states and a n×n transition probability matrix P such that the probability of jumping
from state i to j at any time-step t is

pi j = Pr
(
s(t+1) = j|s(t) = i

)
.

Denote π(t) the vector containing the state probability distribution of step t, such
that πi(t) = Pr(s(t) = i), the evolution of the Markov chain is characterized by

π(t+1) = P+π(t).

Moreover, under the condition that P is row-stochastic, i.e. ∑ j pi j = 1 for all i, the
process converges to a stable distribution vector π(∞) corresponding to the positive
eigenvector of P+ with an eigenvalue of 1. This process is often described in the
form of a weighted graph having a node for each state, and where the probability
of jumping from a node to an adjacent node is given by the weight of the edge
connecting these nodes.

Itemrank

A recommendation approach, based on the PageRank algorithm for ranking Web
pages [11], is ItemRank [26]. This approach ranks the preferences of a user u for new
items i as the probability of u to visit i in a random walk of a graph in which nodes
correspond to the items of the system, and edges connect items that have been rated
by common users. The edge weights are given by the |I|×|I| transition probability
matrix P for which pi j = |Ui j|/|Ui| is the estimated conditional probability of a user
to rate an item j if it has rated an item i.

As in PageRank, the random walk can, at any step t, either jump using P to an
adjacent node with fixed probability α , or “teleport” to any node with probability
(1−α). Let ru be the u-th row of the rating matrix R, the probability distribution of
user u to teleport to other nodes is given by vector du = ru/||ru||. Following these
definitions, the state probability distribution vector of user u at step t+1 can be
expressed recursively as

πu(t+1) = αP+πu(t) + (1−α)du. (4.35)

For practical reasons, πu(∞) is usually obtained with a procedure that first initializes
the distribution as uniform, i.e. πu(0) = 1

n 1n, and then iteratively updates πu, using
(4.35), until convergence. Once πu(∞) has been computed, the system recommends
to u the item i for which πui is the highest.



4 A Comprehensive Survey of Neighborhood-based Recommendation Methods 139

Average first-passage/commute time

Other distance measures based on random walks have been proposed for the recom-
mendation problem. Among these are the average first-passage time and the aver-
age commute time [19, 20]. The average first-passage time m( j|i) [56] is the average
number of steps needed by a random walker to reach a node j for the first time, when
starting from a node i (= j. Let P be the n×n transition probability matrix, m( j|i)
can be expressed recursively as

m( j|i) =






0 , if i = j

1+
n
∑

k=1
pik m( j|k) , otherwise

A problem with the average first-passage time is that it is not symmetric. A related
measure that does not have this problem is the average commute time n(i, j) =
m( j|i)+m(i| j) [22], corresponding to the average number of steps required by a
random walker starting at node i (= j to reach node j for the first time and go back
to i. This measure has several interesting properties. Namely, it is a true distance
measure in some Euclidean space [22], and is closely related to the well-known
property of resistance in electrical networks and to the pseudo-inverse of the graph
Laplacian matrix [19].

In [19], the average commute time is used to compute the distance between the
nodes of a bipartite graph representing the interactions of users and items in a rec-
ommender system. For each user u there is a directed edge from u to every item
i ∈ Iu, and the weight of this edge is simply 1/|Iu|. Likewise, there is a directed
edge from each item i to every user u ∈ Ui, with weight 1/|Ui|. Average commute
times can be used in two different ways: 1) recommending to u the item i for which
n(u, i) is the smallest, or 2) finding the users nearest to u, according to the commute
time distance, and then suggest to u the item most liked by these users.

4.5 Conclusion

One of the earliest approaches proposed for the task item recommendation, neighbor-
hood-based recommendation still ranks among the most popular methods for this
problem. Although quite simple to describe and implement, this recommendation
approach has several important advantages, including its ability to explain a recom-
mendation with the list of the neighbors used, its computational and space efficiency
which allows it to scale to large recommender systems, and its marked stability in
an online setting where new users and items are constantly added. Another of its
strengths is its potential to make serendipitous recommendations that can lead users
to the discovery of unexpected, yet very interesting items.

In the implementation of a neighborhood-based approach, one has to make sev-
eral important decisions. Perhaps the one having the greatest impact on the accuracy



140 Christian Desrosiers and George Karypis

and efficiency of the recommender system is choosing between a user-based and
an item-based neighborhood method. In typical commercial recommender systems,
where the number of users far exceeds the number of available items, item-based ap-
proaches are typically preferred since they provide more accurate recommendations,
while being more computationally efficient and requiring less frequent updates. On
the other hand, user-based methods usually provide more original recommenda-
tions, which may lead users to a more satisfying experience. Moreover, the different
components of a neighborhood-based method, which include the normalization of
ratings, the computation of the similarity weights and the selection of the nearest-
neighbors, can also have a significant influence on the quality of the recommender
system. For each of these components, several different alternatives are available.
Although the merit of each of these has been described in this document and in
the literature, it is important to remember that the “best” approach may differ from
one recommendation setting to the next. Thus, it is important to evaluate them on
data collected from the actual system, and in light of the particular needs of the
application.

Finally, when the performance of a neighborhood-based approach suffers from
the problems of limited coverage and sparsity, one may explore techniques based on
dimensionality reduction or graphs. Dimensionality reduction provides a compact
representation of users and items that captures their most significant features. An
advantage of such an approach is that it can obtain meaningful relations between
pairs of users or items, even though these users have rated different items, or these
items were rated by different users. On the other hand, graph-based techniques ex-
ploit the transitive relations in the data. These techniques also avoid the problems of
sparsity and limited coverage by evaluating the relationship between users or items
that are not “directly connected”. However, unlike dimensionality reduction, graph-
based methods also preserve some of the “local” relations in the data, which are
useful in making serendipitous recommendations.
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Chapter 5
Advances in Collaborative Filtering

Yehuda Koren and Robert Bell

Abstract
The collaborative filtering (CF) approach to recommenders has recently enjoyed

much interest and progress. The fact that it played a central role within the recently
completed Netflix competition has contributed to its popularity. This chapter surveys
the recent progress in the field. Matrix factorization techniques, which became a first
choice for implementing CF, are described together with recent innovations. We
also describe several extensions that bring competitive accuracy into neighborhood
methods, which used to dominate the field. The chapter demonstrates how to utilize
temporal models and implicit feedback to extend models accuracy. In passing, we
include detailed descriptions of some the central methods developed for tackling the
challenge of the Netflix Prize competition.

5.1 Introduction

Collaborative filtering (CF) methods produce user specific recommendations of
items based on patterns of ratings or usage (e.g., purchases) without need for ex-
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ogenous information about either items or users. While well established methods
work adequately for many purposes, we present several recent extensions available
to analysts who are looking for the best possible recommendations.

The Netflix Prize competition that began in October 2006 has fueled much re-
cent progress in the field of collaborative filtering. For the first time, the research
community gained access to a large-scale, industrial strength data set of 100 million
movie ratings—attracting thousands of scientists, students, engineers and enthusi-
asts to the field. The nature of the competition has encouraged rapid development,
where innovators built on each generation of techniques to improve prediction accu-
racy. Because all methods are judged by the same rigid yardstick on common data,
the evolution of more powerful models has been especially efficient.

Recommender systems rely on various types of input. Most convenient is high
quality explicit feedback, where users directly report on their interest in products.
For example, Netflix collects star ratings for movies and TiVo users indicate their
preferences for TV shows by hitting thumbs-up/down buttons.

Because explicit feedback is not always available, some recommenders infer user
preferences from the more abundant implicit feedback, which indirectly reflects
opinion through observing user behavior [22]. Types of implicit feedback include
purchase history, browsing history, search patterns, or even mouse movements. For
example, a user who purchased many books by the same author probably likes that
author. This chapter focuses on models suitable for explicit feedback. Nonetheless,
we recognize the importance of implicit feedback, an especially valuable informa-
tion source for users who do not provide much explicit feedback. Hence, we show
how to address implicit feedback within the models as a secondary source of infor-
mation.

In order to establish recommendations, CF systems need to relate two funda-
mentally different entities: items and users. There are two primary approaches to
facilitate such a comparison, which constitute the two main techniques of CF: the
neighborhood approach and latent factor models. Neighborhood methods focus on
relationships between items or, alternatively, between users. An item-item approach
models the preference of a user to an item based on ratings of similar items by the
same user. Latent factor models, such as matrix factorization (aka, SVD), comprise
an alternative approach by transforming both items and users to the same latent fac-
tor space. The latent space tries to explain ratings by characterizing both products
and users on factors automatically inferred from user feedback.

Producing more accurate prediction methods requires deepening their founda-
tions and reducing reliance on arbitrary decisions. In this chapter, we describe a
variety of recent improvements to the primary CF modeling techniques. Yet, the
quest for more accurate models goes beyond this. At least as important is the identi-
fication of all the signals, or features, available in the data. Conventional techniques
address the sparse data of user-item ratings. Accuracy significantly improves by also
utilising other sources of information. One prime example includes all kinds of tem-

Y. Koren. “Collaborative Filtering with Temporal Dynamics.” Proc. 15th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pp. 447–456, c© 2009 ACM, Inc.
Reprinted by permission. http://doi.acm.org/10.1145/1557019.1557072
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poral effects reflecting the dynamic, time-drifting nature of user-item interactions.
No less important is listening to hidden feedback such as which items users chose to
rate (regardless of rating values). Rated items are not selected at random, but rather
reveal interesting aspects of user preferences, going beyond the numerical values of
the ratings.

Section 5.3 surveys matrix factorization techniques, which combine implementa-
tion convenience with a relatively high accuracy. This has made them the preferred
technique for addressing the largest publicly available dataset - the Netflix data.
This section describes the theory and practical details behind those techniques. In
addition, much of the strength of matrix factorization models stems from their nat-
ural ability to handle additional features of the data, including implicit feedback
and temporal information. This section describes in detail how to enhance matrix
factorization models to address such features.

Section 5.4 turns attention to neighborhood methods. The basic methods in this
family are well known, and to a large extent are based on heuristics. Some re-
cently proposed techniques address shortcomings of neighborhood techniques by
suggesting more rigorous formulations, thereby improving prediction accuracy. We
continue at Section 5.5 with a more advanced method, which uses the insights of
common neighborhood methods, with global optimization techniques typical of fac-
torization models. This method allows lifting the limit on neighborhood size, and
also addressing implicit feedback and temporal dynamics. The resulting accuracy
is close to that of matrix factorization models, while offering some practical advan-
tages.

Pushing the foundations of the models to their limits reveals surprising links
among seemingly unrelated techniques. We elaborate on this in Section 5.6 to show
that, at their limits, user-user and item-item neighborhood models may converge
to a single model. Furthermore, at that point, both become equivalent to a simple
matrix factorization model. The connections reduce the relevance of some previous
distinctions such as the traditional broad categorization of matrix factorization as
“model based” and neighborhood models as “memory based”.

5.2 Preliminaries

We are given ratings for m users (aka customers) and n items (aka products). We
reserve special indexing letters to distinguish users from items: for users u,v, and
for items i, j, l. A rating rui indicates the preference by user u of item i, where high
values mean stronger preference. For example, values can be integers ranging from
1 (star) indicating no interest to 5 (stars) indicating a strong interest. We distinguish
predicted ratings from known ones, by using the notation r̂ui for the predicted value
of rui.

The scalar tui denotes the time of rating rui. One can use different time units,
based on what is appropriate for the application at hand. For example, when time
is measured in days, then tui counts the number of days elapsed since some early
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time point. Usually the vast majority of ratings are unknown. For example, in the
Netflix data 99% of the possible ratings are missing because a user typically rates
only a small portion of the movies. The (u, i) pairs for which rui is known are stored
in the set K = {(u, i) | rui is known}. Each user u is associated with a set of items
denoted by R(u), which contains all the items for which ratings by u are available.
Likewise, R(i) denotes the set of users who rated item i. Sometimes, we also use
a set denoted by N(u), which contains all items for which u provided an implicit
preference (items that he rented/purchased/watched, etc.).

Models for the rating data are learnt by fitting the previously observed ratings.
However, our goal is to generalize those in a way that allows us to predict future,
unknown ratings. Thus, caution should be exercised to avoid overfitting the observed
data. We achieve this by regularizing the learnt parameters, whose magnitudes are
penalized. Regularization is controlled by constants which are denoted as: λ1,λ2, . . .
Exact values of these constants are determined by cross validation. As they grow,
regularization becomes heavier.

5.2.1 Baseline predictors

CF models try to capture the interactions between users and items that produce
the different rating values. However, much of the observed rating values are due to
effects associated with either users or items, independently of their interaction. A
principal example is that typical CF data exhibit large user and item biases – i.e.,
systematic tendencies for some users to give higher ratings than others, and for some
items to receive higher ratings than others.

We will encapsulate those effects, which do not involve user-item interaction,
within the baseline predictors (also known as biases). Because these predictors tend
to capture much of the observed signal, it is vital to model them accurately. Such
modeling enables isolating the part of the signal that truly represents user-item in-
teraction, and subjecting it to more appropriate user preference models.

Denote by µ the overall average rating. A baseline prediction for an unknown
rating rui is denoted by bui and accounts for the user and item effects:

bui = µ +bu +bi (5.1)

The parameters bu and bi indicate the observed deviations of user u and item i, re-
spectively, from the average. For example, suppose that we want a baseline predictor
for the rating of the movie Titanic by user Joe. Now, say that the average rating over
all movies, µ , is 3.7 stars. Furthermore, Titanic is better than an average movie, so
it tends to be rated 0.5 stars above the average. On the other hand, Joe is a critical
user, who tends to rate 0.3 stars lower than the average. Thus, the baseline predictor
for Titanic’s rating by Joe would be 3.9 stars by calculating 3.7−0.3+0.5. In order
to estimate bu and bi one can solve the least squares problem
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min
b∗

∑
(u,i)∈K

(rui−µ−bu−bi)
2 +λ1(∑

u
b2

u +∑
i

b2
i ) .

Here, the first term ∑(u,i)∈K(rui− µ + bu + bi)2 strives to find bu’s and bi’s that fit
the given ratings. The regularizing term – λ1(∑u b2

u + ∑i b2
i ) – avoids overfitting

by penalizing the magnitudes of the parameters. This least square problem can be
solved fairly efficiently by the method of stochastic gradient descent (described in
Subsection 5.3.1).

For the Netflix data the mean rating (µ) is 3.6. As for the learned user biases (bu),
their average is 0.044 with standard deviation of 0.41. The average of their absolute
values (|bu|) is: 0.32. The learned item biases (bi) average to -0.26 with a standard
deviation of 0.48. The average of their absolute values (|bi|) is 0.43.

An easier, yet somewhat less accurate way to estimate the parameters is by de-
coupling the calculation of the bi’s from the calculation of the bu’s. First, for each
item i we set

bi =
∑u∈R(i)(rui−µ)

λ2 + |R(i)| .

Then, for each user u we set

bu =
∑i∈R(u)(rui−µ−bi)

λ3 + |R(u)| .

Averages are shrunk towards zero by using the regularization parameters, λ2,λ3,
which are determined by cross validation. Typical values on the Netflix dataset are:
λ2 = 25,λ3 = 10.

In Subsection 5.3.3.1, we show how the baseline predictors can be improved by
also considering temporal dynamics within the data.

5.2.2 The Netflix data

In order to compare the relative accuracy of algorithms described in this chapter,
we evaluated all of them on the Netflix data of more than 100 million date-stamped
movie ratings performed by anonymous Netflix customers between November, 1999
and December 2005 [5]. Ratings are integers ranging between 1 and 5. The data
spans 17,770 movies rated by over 480,000 users. Thus, on average, a movie re-
ceives 5600 ratings, while a user rates 208 movies, with substantial variation around
each of these averages. To maintain compatibility with results published by others,
we adopt some standards that were set by Netflix. First, quality of the results is
usually measured by the root mean squared error (RMSE):

√
∑

(u,i)∈TestSet
(rui− r̂ui)2/|TestSet|
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a measure that puts more emphasis on large errors compared with the alternative of
mean absolute error. (Consider Chapter 8 for a comprehensive survey of alternative
evaluation metrics of recommender systems.)

We report results on a test set provided by Netflix (also known as the Quiz set),
which contains over 1.4 million recent ratings. Compared with the training data, the
test set contains many more ratings by users that do not rate much and are therefore
harder to predict. In a way, this represents real requirements for a CF system, which
needs to predict new ratings from older ones, and to equally address all users, not
just the heavy raters.

The Netflix data is part of the Netflix Prize competition, where the benchmark
is Netflix’s proprietary system, Cinematch, which achieved a RMSE of 0.9514 on
the test set. The grand prize was awarded to a team that managed to drive this
RMSE below 0.8563 (10% improvement) after almost three years of extensive ef-
forts. Achievable RMSE values on the test set lie in a quite compressed range, as
evident by the difficulty to win the grand prize. Nonetheless, there is evidence that
small improvements in RMSE terms can have a significant impact on the quality of
the top few presented recommendations [17, 19].

5.2.3 Implicit feedback

This chapter is centered on explicit user feedback. Nonetheless, when additional
sources of implicit feedback are available, they can be exploited for better under-
standing user behavior. This helps to combat data sparseness and can be particularly
helpful for users with few explicit ratings. We describe extensions for some of the
models to address implicit feedback.

For a dataset such as the Netflix data, the most natural choice for implicit feed-
back would probably be movie rental history, which tells us about user preferences
without requiring them to explicitly provide their ratings. For other datasets, brows-
ing or purchase history could be used as implicit feedback. However, such data is
not available to us for experimentation. Nonetheless, a less obvious kind of implicit
data does exist within the Netflix dataset. The dataset does not only tell us the rating
values, but also which movies users rate, regardless of how they rated these movies.
In other words, a user implicitly tells us about her preferences by choosing to voice
her opinion and vote a (high or low) rating. This creates a binary matrix, where
“1” stands for “rated”, and “0” for “not rated”. While this binary data may not be
as informative as other independent sources of implicit feedback, incorporating this
kind of implicit data does significantly improves prediction accuracy. The benefit
of using the binary data is closely related to the fact that ratings are not missing at
random; users deliberately choose which items to rate (see Marlin et al. [21]).
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5.3 Matrix factorization models

Latent factor models approach collaborative filtering with the holistic goal to un-
cover latent features that explain observed ratings; examples include pLSA [15],
neural networks [24], Latent Dirichlet Allocation [7], and models that are induced
by factorization of the user-item ratings matrix (also known as SVD-based mod-
els). Recently, matrix factorization models have gained popularity, thanks to their
attractive accuracy and scalability.

In information retrieval, SVD is well established for identifying latent semantic
factors [9]. However, applying SVD to explicit ratings in the CF domain raises dif-
ficulties due to the high portion of missing values. Conventional SVD is undefined
when knowledge about the matrix is incomplete. Moreover, carelessly addressing
only the relatively few known entries is highly prone to overfitting. Earlier works
relied on imputation [16, 26], which fills in missing ratings and makes the rating ma-
trix dense. However, imputation can be very expensive as it significantly increases
the amount of data. In addition, the data may be considerably distorted due to in-
accurate imputation. Hence, more recent works [4, 6, 10, 17, 23, 24, 28] suggested
modeling directly only the observed ratings, while avoiding overfitting through an
adequate regularized model.

In this section we describe several matrix factorization techniques, with increas-
ing complexity and accuracy. We start with the basic model – “SVD”. Then, we
show how to integrate other sources of user feedback in order to increase prediction
accuracy, through the “SVD++ model”. Finally we deal with the fact that customer
preferences for products may drift over time. Product perception and popularity are
constantly changing as new selection emerges. Similarly, customer inclinations are
evolving, leading them to ever redefine their taste. This leads to a factor model that
addresses temporal dynamics for better tracking user behavior.

5.3.1 SVD

Matrix factorization models map both users and items to a joint latent factor space
of dimensionality f , such that user-item interactions are modeled as inner products
in that space. The latent space tries to explain ratings by characterizing both prod-
ucts and users on factors automatically inferred from user feedback. For example,
when the products are movies, factors might measure obvious dimensions such as
comedy vs. drama, amount of action, or orientation to children; less well defined
dimensions such as depth of character development or “quirkiness”; or completely
uninterpretable dimensions.

Accordingly, each item i is associated with a vector qi ∈ R f , and each user u is
associated with a vector pu ∈ R f . For a given item i, the elements of qi measure the
extent to which the item possesses those factors, positive or negative. For a given
user u, the elements of pu measure the extent of interest the user has in items that
are high on the corresponding factors (again, these may be positive or negative).
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The resulting dot product,1 qT
i pu, captures the interaction between user u and item

i—i.e., the overall interest of the user in characteristics of the item. The final rating
is created by also adding in the aforementioned baseline predictors that depend only
on the user or item. Thus, a rating is predicted by the rule

r̂ui = µ +bi +bu +qT
i pu . (5.2)

In order to learn the model parameters (bu,bi, pu and qi) we minimize the regu-
larized squared error

min
b∗,q∗,p∗

∑
(u,i)∈K

(rui−µ−bi−bu−qT
i pu)

2 +λ4(b2
i +b2

u +‖qi‖2 +‖pu‖2) .

The constant λ4, which controls the extent of regularization, is usually determined
by cross validation. Minimization is typically performed by either stochastic gradi-
ent descent or alternating least squares.

Alternating least squares techniques rotate between fixing the pu’s to solve for the
qi’s and fixing the qi’s to solve for the pu’s. Notice that when one of these is taken as
a constant, the optimization problem is quadratic and can be optimally solved; see
[2, 4].

An easy stochastic gradient descent optimization was popularized by Funk [10]
and successfully practiced by many others [17, 23, 24, 28]. The algorithm loops
through all ratings in the training data. For each given rating rui, a prediction (r̂ui)
is made, and the associated prediction error eui

def
= rui− r̂ui is computed. For a given

training case rui, we modify the parameters by moving in the opposite direction of
the gradient, yielding:

• bu← bu + γ · (eui−λ4 ·bu)
• bi← bi + γ · (eui−λ4 ·bi)
• qi← qi + γ · (eui · pu−λ4 ·qi)
• pu← pu + γ · (eui ·qi−λ4 · pu)

When evaluating the method on the Netflix data, we used the following values for
the meta parameters: γ = 0.005,λ4 = 0.02. Henceforth, we dub this method “SVD”.

A general remark is in place. One can expect better accuracy by dedicating sepa-
rate learning rates (γ) and regularization (λ ) to each type of learned parameter. Thus,
for example, it is advised to employ distinct learning rates to user biases, item biases
and the factors themselves. A good, intensive use of such a strategy is described in
Takács et al. [29]. When producing exemplary results for this chapter, we did not
use such a strategy consistently, and in particular many of the given constants are
not fully tuned.

1 Recall that the dot product between two vectors x,y ∈ R f is defined as: xT y = ∑ f
k=1 xk · yk
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5.3.2 SVD++

Prediction accuracy is improved by considering also implicit feedback, which pro-
vides an additional indication of user preferences. This is especially helpful for those
users that provided much more implicit feedback than explicit one. As explained
earlier, even in cases where independent implicit feedback is absent, one can cap-
ture a significant signal by accounting for which items users rate, regardless of their
rating value. This led to several methods [17, 23, 25] that modeled a user factor by
the identity of the items he/she has rated. Here we focus on the SVD++ method [17],
which was shown to offer accuracy superior to SVD.

To this end, a second set of item factors is added, relating each item i to a factor
vector yi ∈ R f . Those new item factors are used to characterize users based on the
set of items that they rated. The exact model is as follows:

r̂ui = µ +bi +bu +qT
i

(
pu + |R(u)|−

1
2 ∑

j∈R(u)
y j

)
(5.3)

The set R(u) contains the items rated by user u.
Now, a user u is modeled as pu + |R(u)|− 1

2 ∑ j∈R(u) y j. We use a free user-factors
vector, pu, much like in (5.2), which is learnt from the given explicit ratings. This
vector is complemented by the sum |R(u)|− 1

2 ∑ j∈R(u) y j, which represents the per-
spective of implicit feedback. Since the y j’s are centered around zero (by the reg-
ularization), the sum is normalized by |R(u)|− 1

2 , in order to stabilize its variance
across the range of observed values of |R(u)|

Model parameters are determined by minimizing the associated regularized
squared error function through stochastic gradient descent. We loop over all known
ratings in K, computing:

• bu← bu + γ · (eui−λ5 ·bu)
• bi← bi + γ · (eui−λ5 ·bi)

• qi← qi + γ · (eui · (pu + |R(u)|− 1
2 ∑ j∈R(u) y j)−λ6 ·qi)

• pu← pu + γ · (eui ·qi−λ6 · pu)
• ∀ j ∈ R(u) :

y j← y j + γ · (eui · |R(u)|−
1
2 ·qi−λ6 · y j)

When evaluating the method on the Netflix data, we used the following values for
the meta parameters: γ = 0.007, λ5 = 0.005, λ6 = 0.015. It is beneficial to decrease
step sizes (the γ’s) by a factor of 0.9 after each iteration. The iterative process runs
for around 30 iterations until convergence.

Several types of implicit feedback can be simultaneously introduced into the
model by using extra sets of item factors. For example, if a user u has a certain
kind of implicit preference to the items in N1(u) (e.g., she rented them), and a dif-
ferent type of implicit feedback to the items in N2(u) (e.g., she browsed them), we
could use the model
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r̂ui = µ +bi +bu +qT
i



pu + |N1(u)|−
1
2 ∑

j∈N1(u)
y(1)j + |N2(u)|−

1
2 ∑

j∈N2(u)
y(2)j



 .

(5.4)
The relative importance of each source of implicit feedback will be automatically
learned by the algorithm by its setting of the respective values of model parameters.

5.3.3 Time-aware factor model

The matrix-factorization approach lends itself well to modeling temporal effects,
which can significantly improve its accuracy. Decomposing ratings into distinct
terms allows us to treat different temporal aspects separately. Specifically, we iden-
tify the following effects that each vary over time: (1) user biases bu(t), (2) item
biases bi(t), and (3) user preferences pu(t). On the other hand, we specify static
item characteristics, qi, because we do not expect significant temporal variation for
items, which, unlike humans, are static in nature. We start with a detailed discussion
of the temporal effects that are contained within the baseline predictors.

5.3.3.1 Time changing baseline predictors

Much of the temporal variability is included within the baseline predictors, through
two major temporal effects. The first addresses the fact that an item’s popularity
may change over time. For example, movies can go in and out of popularity as
triggered by external events such as the appearance of an actor in a new movie. This
is manifested in our models by treating the item bias bi as a function of time. The
second major temporal effect allows users to change their baseline ratings over time.
For example, a user who tended to rate an average movie “4 stars”, may now rate
such a movie “3 stars”. This may reflect several factors including a natural drift in a
user’s rating scale, the fact that ratings are given in relationship to other ratings that
were given recently and also the fact that the identity of the rater within a household
can change over time. Hence, in our models we take the parameter bu as a function
of time. This induces a template for a time sensitive baseline predictor for u’s rating
of i at day tui:

bui = µ +bu(tui)+bi(tui) (5.5)

Here, bu(·) and bi(·) are real valued functions that change over time. The exact
way to build these functions should reflect a reasonable way to parameterize the
involving temporal changes. Our choice in the context of the movie rating dataset
demonstrates some typical considerations.

A major distinction is between temporal effects that span extended periods of
time and more transient effects. In the movie rating case, we do not expect movie
likability to fluctuate on a daily basis, but rather to change over more extended pe-
riods. On the other hand, we observe that user effects can change on a daily basis,
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reflecting inconsistencies natural to customer behavior. This requires finer time res-
olution when modeling user-biases compared with a lower resolution that suffices
for capturing item-related time effects.

We start with our choice of time-changing item biases bi(t). We found it adequate
to split the item biases into time-based bins, using a constant item bias for each time
period. The decision of how to split the timeline into bins should balance the desire
to achieve finer resolution (hence, smaller bins) with the need for enough ratings per
bin (hence, larger bins). For the movie rating data, there is a wide variety of bin sizes
that yield about the same accuracy. In our implementation, each bin corresponds to
roughly ten consecutive weeks of data, leading to 30 bins spanning all days in the
dataset. A day t is associated with an integer Bin(t) (a number between 1 and 30 in
our data), such that the movie bias is split into a stationary part and a time changing
part

bi(t) = bi +bi,Bin(t) . (5.6)

While binning the parameters works well on the items, it is more of a challenge
on the users side. On the one hand, we would like a finer resolution for users to
detect very short lived temporal effects. On the other hand, we do not expect enough
ratings per user to produce reliable estimates for isolated bins. Different functional
forms can be considered for parameterizing temporal user behavior, with varying
complexity and accuracy.

One simple modeling choice uses a linear function to capture a possible gradual
drift of user bias. For each user u, we denote the mean date of rating by tu. Now, if u
rated a movie on day t, then the associated time deviation of this rating is defined as

devu(t) = sign(t− tu) · |t− tu|β .

Here |t− tu| measures the number of days between dates t and tu. We set the value
of β by cross validation; in our implementation β = 0.4. We introduce a single
new parameter for each user called αu so that we get our first definition of a time-
dependent user-bias

b(1)u (t) = bu +αu ·devu(t) . (5.7)

This simple linear model for approximating a drifting behavior requires learning
two parameters per user: bu and αu.

A more flexible parameterization is offered by splines. Let u be a user associated
with nu ratings. We designate ku time points – {tu

1 , . . . , t
u
ku
} – spaced uniformly across

the dates of u’s ratings as kernels that control the following function:

b(2)u (t) = bu +
∑ku

l=1 e−σ |t−tu
l |bu

tl

∑ku
l=1 e−σ |t−tu

l |
(5.8)

The parameters bu
tl are associated with the control points (or, kernels), and are auto-

matically learned from the data. This way the user bias is formed as a time-weighted
combination of those parameters. The number of control points, ku, balances flexi-
bility and computational efficiency. In our application we set ku=n0.25

u , letting it grow
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with the number of available ratings. The constant σ determines the smoothness of
the spline; we set σ=0.3 by cross validation.

So far we have discussed smooth functions for modeling the user bias, which
mesh well with gradual concept drift. However, in many applications there are sud-
den drifts emerging as “spikes” associated with a single day or session. For example,
in the movie rating dataset we have found that multiple ratings a user gives in a sin-
gle day, tend to concentrate around a single value. Such an effect need not span more
than a single day. The effect may reflect the mood of the user that day, the impact of
ratings given in a single day on each other, or changes in the actual rater in multi-
person accounts. To address such short lived effects, we assign a single parameter
per user and day, absorbing the day-specific variability. This parameter is denoted
by bu,t . Notice that in some applications the basic primitive time unit to work with
can be shorter or longer than a day.

In the Netflix movie rating data, a user rates on 40 different days on average.
Thus, working with bu,t requires, on average, 40 parameters to describe each user
bias. It is expected that bu,t is inadequate as a standalone for capturing the user bias,
since it misses all sorts of signals that span more than a single day. Thus, it serves
as an additive component within the previously described schemes. The time-linear
model (5.7) becomes

b(3)u (t) = bu +αu ·devu(t)+bu,t . (5.9)

Similarly, the spline-based model becomes

b(4)u (t) = bu +
∑ku

l=1 e−σ |t−tu
l |bu

tl

∑ku
l=1 e−σ |t−tu

l |
+bu,t . (5.10)

A baseline predictor on its own cannot yield personalized recommendations, as
it disregards all interactions between users and items. In a sense, it is capturing the
portion of the data that is less relevant for establishing recommendations. Nonethe-
less, to better assess the relative merits of the various choices of time-dependent
user-bias, we compare their accuracy as standalone predictors. In order to learn the
involved parameters we minimize the associated regularized squared error by using
stochastic gradient descent. For example, in our actual implementation we adopt
rule (5.9) for modeling the drifting user bias, thus arriving at the baseline predictor

bui = µ +bu +αu ·devu(tui)+bu,tui +bi +bi,Bin(tui) . (5.11)

To learn the involved parameters, bu,αu,bu,t ,bi and bi,Bin(t), one should solve

min ∑
(u,i)∈K

(rui−µ−bu−αudevu(tui)−bu,tui −bi−bi,Bin(tui))
2

+λ7(b2
u +α2

u +b2
u,tui

+b2
i +b2

i,Bin(tui)
) .
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model static mov linear spline linear+ spline+
RMSE .9799 .9771 .9731 .9714 .9605 .9603

Table 5.1: Comparing baseline predictors capturing main movie and user effects. As
temporal modeling becomes more accurate, prediction accuracy improves (lowering
RMSE).

Here, the first term strives to construct parameters that fit the given ratings. The
regularization term, λ7(b2

u+ . . .), avoids overfitting by penalizing the magnitudes of
the parameters, assuming a neutral 0 prior. Learning is done by a stochastic gradient
descent algorithm running 20–30 iterations, with λ7 = 0.01.

Table 5.1 compares the ability of various suggested baseline predictors to explain
signal in the data. As usual, the amount of captured signal is measured by the root
mean squared error on the test set. As a reminder, test cases come later in time than
the training cases for the same user, so predictions often involve extrapolation in
terms of time. We code the predictors as follows:

• static, no temporal effects: bui = µ +bu +bi.
• mov, accounting only for movie-related temporal effects: bui = µ + bu + bi +

bi,Bin(tui).
• linear , linear modeling of user biases: bui = µ + bu + αu · devu(tui) + bi +

bi,Bin(tui).

• spline, spline modeling of user biases: bui = µ + bu +
∑ku

l=1 e−σ |tui−tul |bu
tl

∑ku
l=1 e−σ |tui−tul |

+ bi +

bi,Bin(tui).
• linear+, linear modeling of user biases and single day effect: bui = µ +bu+αu ·

devu(tui)+bu,tui +bi +bi,Bin(tui).
• spline+, spline modeling of user biases and single day effect: bui = µ + bu +

∑ku
l=1 e−σ |tui−dl |bu

tl

∑ku
l=1 e−σ |tui−tul |

+bu,tui +bi +bi,Bin(tui).

The table shows that while temporal movie effects reside in the data (lowering
RMSE from 0.9799 to 0.9771), the drift in user biases is much more influential.
The additional flexibility of splines at modeling user effects leads to better accuracy
compared to a linear model. However, sudden changes in user biases, which are cap-
tured by the per-day parameters, are most significant. Indeed, when including those
changes, the difference between linear modeling (“linear+”) and spline modeling
(“spline+”) virtually vanishes.

Beyond the temporal effects described so far, one can use the same methodol-
ogy to capture more effects. A primary example is capturing periodic effects. For
example, some products may be more popular in specific seasons or near certain
holidays. Similarly, different types of television or radio shows are popular through-
out different segments of the day (known as “dayparting”). Periodic effects can be
found also on the user side. As an example, a user may have different attitudes or
buying patterns during the weekend compared to the working week. A way to model
such periodic effects is to dedicate a parameter for the combinations of time periods
with items or users. This way, the item bias of (5.6), becomes
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bi(t) = bi +bi,Bin(t) +bi,period(t) .

For example, if we try to capture the change of item bias with the season of the year,
then period(t)∈ {fall,winter,spring,summer}. Similarly, recurring user effects may
be modeled by modifying (5.9) to be

bu(t) = bu +αu ·devu(t)+bu,t +bu,period(t) .

However, we have not found periodic effects with a significant predictive power
within the movie-rating dataset, thus our reported results do not include those.

Another temporal effect within the scope of basic predictors is related to the
changing scale of user ratings. While bi(t) is a user-independent measure for the
merit of item i at time t, users tend to respond to such a measure differently. For
example, different users employ different rating scales, and a single user can change
his rating scale over time. Accordingly, the raw value of the movie bias is not com-
pletely user-independent. To address this, we add a time-dependent scaling feature
to the baseline predictors, denoted by cu(t). Thus, the baseline predictor (5.11) be-
comes

bui = µ +bu +αu ·devu(tui)+bu,tui +(bi +bi,Bin(tui)) · cu(tui) . (5.12)

All discussed ways to implement bu(t) would be valid for implementing cu(t) as
well. We chose to dedicate a separate parameter per day, resulting in: cu(t) =
cu + cu,t . As usual, cu is the stable part of cu(t), whereas cu,t represents day-specific
variability. Adding the multiplicative factor cu(t) to the baseline predictor lowers
RMSE to 0.9555. Interestingly, this basic model, which captures just main effects
disregarding user-item interactions, can explain almost as much of the data variabil-
ity as the commercial Netflix Cinematch recommender system, whose published
RMSE on the same test set is 0.9514 [5].

5.3.3.2 Time changing factor model

In the previous subsection we discussed the way time affects baseline predictors.
However, as hinted earlier, temporal dynamics go beyond this, they also affect user
preferences and thereby the interaction between users and items. Users change their
preferences over time. For example, a fan of the “psychological thrillers” genre
may become a fan of “crime dramas” a year later. Similarly, humans change their
perception on certain actors and directors. This type of evolution is modeled by
taking the user factors (the vector pu) as a function of time. Once again, we need to
model those changes at the very fine level of a daily basis, while facing the built-
in scarcity of user ratings. In fact, these temporal effects are the hardest to capture,
because preferences are not as pronounced as main effects (user-biases), but are split
over many factors.

We modeled each component of the user preferences pu(t)T =(pu1(t), . . . , pu f (t))
in the same way that we treated user biases. Within the movie-rating dataset, we have
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found modeling after (5.9) effective, leading to

puk(t) = puk +αuk ·devu(t)+ puk,t k = 1, . . . , f . (5.13)

Here puk captures the stationary portion of the factor, αuk · devu(t) approximates a
possible portion that changes linearly over time, and puk,t absorbs the very local,
day-specific variability.

At this point, we can tie all pieces together and extend the SVD++ factor model
by incorporating the time changing parameters. The resulting model will be denoted
as timeSVD++, where the prediction rule is as follows:

r̂ui = µ +bi(tui)+bu(tui)+qT
i

(
pu(tui)+ |R(u)|−

1
2 ∑

j∈R(u)
y j

)
(5.14)

The exact definitions of the time drifting parameters bi(t),bu(t) and pu(t) were
given in (5.6), (5.9) and (5.13). Learning is performed by minimizing the associ-
ated squared error function on the training set using a regularized stochastic gradi-
ent descent algorithm. The procedure is analogous to the one involving the original
SVD++ algorithm. Time complexity per iteration is still linear with the input size,
while wall clock running time is approximately doubled compared to SVD++, due
to the extra overhead required for updating the temporal parameters. Importantly,
convergence rate was not affected by the temporal parameterization, and the pro-
cess converges in around 30 iterations.

5.3.4 Comparison

In Table 5.2 we compare results of the three algorithms discussed in this sec-
tion. First is SVD, the plain matrix factorization algorithm. Second, is the SVD++
method, which improves upon SVD by incorporating a kind of implicit feedback.
Finally is timeSVD++, which accounts for temporal effects. The three methods are
compared over a range of factorization dimensions ( f ). All benefit from a growing
number of factor dimensions that enables them to better express complex movie-
user interactions. Note that the number of parameters in SVD++ is comparable to
their number in SVD. This is because SVD++ adds only item factors, while com-
plexity of our dataset is dominated by the much larger set of users. On the other
hand, timeSVD++ requires a significant increase in the number of parameters, be-
cause of its refined representation of each user factor. Addressing implicit feedback
by the SVD++ model leads to accuracy gains within the movie rating dataset. Yet,
the improvement delivered by timeSVD++ over SVD++ is consistently more sig-
nificant. We are not aware of any single algorithm in the literature that could deliver
such accuracy. Further evidence of the importance of capturing temporal dynamics
is the fact that a timeSVD++ model of dimension 10 is already more accurate than
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an SVD model of dimension 200. Similarly, a timeSVD++ model of dimension 20
is enough to outperform an SVD++ model of dimension 200.

Model f =10 f =20 f =50 f =100 f =200
SVD .9140 .9074 .9046 .9025 .9009
SVD++ .9131 .9032 .8952 .8924 .8911
timeSVD++ .8971 .8891 .8824 .8805 .8799

Table 5.2: Comparison of three factor models: prediction accuracy is measured by
RMSE (lower is better) for varying factor dimensionality ( f ). For all models, accu-
racy improves with growing number of dimensions. SVD++ improves accuracy by
incorporating implicit feedback into the SVD model. Further accuracy gains are ach-
ieved by also addressing the temporal dynamics in the data through the timeSVD++
model.

5.3.4.1 Predicting future days

Our models include day-specific parameters. An apparent question would be how
these models can be used for predicting ratings in the future, on new dates for which
we cannot train the day-specific parameters? The simple answer is that for those
future (untrained) dates, the day-specific parameters should take their default value.
In particular for (5.12), cu(tui) is set to cu, and bu,tui is set to zero. Yet, one wonders,
if we cannot use the day-specific parameters for predicting the future, why are they
good at all? After all, prediction is interesting only when it is about the future. To
further sharpen the question, we should mention the fact that the Netflix test sets
include many ratings on dates for which we have no other rating by the same user
and hence day-specific parameters cannot be exploited.

To answer this, notice that our temporal modeling makes no attempt to capture
future changes. All it is trying to do is to capture transient temporal effects, which
had a significant influence on past user feedback. When such effects are identified
they must be tuned down, so that we can model the more enduring signal. This
allows our model to better capture the long-term characteristics of the data, while
letting dedicated parameters absorb short term fluctuations. For example, if a user
gave many higher than usual ratings on a particular single day, our models discount
those by accounting for a possible day-specific good mood, which does not reflects
the longer term behavior of this user. This way, the day-specific parameters accom-
plish a kind of data cleaning, which improves prediction of future dates.

5.3.5 Summary

In its basic form, matrix factorization characterizes both items and users by vectors
of factors inferred from patterns of item ratings. High correspondence between item
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and user factors leads to recommendation of an item to a user. These methods deliver
prediction accuracy superior to other published collaborative filtering techniques. At
the same time, they offer a memory efficient compact model, which can be trained
relatively easy. Those advantages, together with the implementation ease of gradient
based matrix factorization model (SVD), made this the method of choice within the
Netflix Prize competition.

What makes these techniques even more convenient is their ability to address sev-
eral crucial aspects of the data. First, is the ability to integrate multiple forms of user
feedback. One can better predict user ratings by also observing other related actions
by the same user, such as purchase and browsing history. The proposed SVD++
model leverages multiple sorts of user feedback for improving user profiling.

Another important aspect is the temporal dynamics that make users’ tastes evolve
over time. Each user and product potentially goes through a distinct series of
changes in their characteristics. A mere decay of older instances cannot adequately
identify communal patterns of behavior in time changing data. The solution we
adopted is to model the temporal dynamics along the whole time period, allowing
us to intelligently separate transient factors from lasting ones. The inclusion of tem-
poral dynamics proved very useful in improving quality of predictions, more than
various algorithmic enhancements.

5.4 Neighborhood models

The most common approach to CF is based on neighborhood models. Chapter 4
provides an extensive survey on this approach. Its original form, which was shared
by virtually all earlier CF systems, is user-user based; see [14] for a good analy-
sis. User-user methods estimate unknown ratings based on recorded ratings of like-
minded users.

Later, an analogous item-item approach [20, 27] became popular. In those meth-
ods, a rating is estimated using known ratings made by the same user on simi-
lar items. Better scalability and improved accuracy make the item-item approach
more favorable in many cases [2, 27, 28]. In addition, item-item methods are more
amenable to explaining the reasoning behind predictions. This is because users are
familiar with items previously preferred by them, but do not know those allegedly
like-minded users. We focus mostly on item-item approaches, but the same tech-
niques can be directly applied within a user-user approach; see also Subsection
5.5.2.2.

In general, latent factor models offer high expressive ability to describe various
aspects of the data. Thus, they tend to provide more accurate results than neigh-
borhood models. However, most literature and commercial systems (e.g., those of
Amazon [20] and TiVo [1]) are based on the neighborhood models. The prevalence
of neighborhood models is partly due to their relative simplicity. However, there are
more important reasons for real life systems to stick with those models. First, they
naturally provide intuitive explanations of the reasoning behind recommendations,
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which often enhance user experience beyond what improved accuracy may achieve.
(More on explaining recommendations appears in Chapter 15 of this book.) Sec-
ond, they can provide immediate recommendations based on newly entered user
feedback.

The structure of this section is as follows. First, we describe how to estimate the
similarity between two items, which is a basic building block of most neighborhood
techniques. Then, we move on to the widely used similarity-based neighborhood
method, which constitutes a straightforward application of the similarity weights.
We identify certain limitations of this similarity based approach. As a consequence,
in Subsection 5.4.3 we suggest a way to solve these issues, thereby improving pre-
diction accuracy at the cost of a slight increase in computation time.

5.4.1 Similarity measures

Central to most item-item approaches is a similarity measure between items. Fre-
quently, it is based on the Pearson correlation coefficient, ρi j, which measures the
tendency of users to rate items i and j similarly. Since many ratings are unknown,
some items may share only a handful of common observed raters. The empirical
correlation coefficient, ρ̂i j, is based only on the common user support. It is advised
to work with residuals from the baseline predictors (the bui’s; see Section 5.2.1) to
compensate for user- and item-specific deviations. Thus the approximated correla-
tion coefficient is given by

ρ̂i j =
∑u∈U(i, j)(rui−bui)(ru j−bu j)√

∑u∈U(i, j)(rui−bui)2 ·∑u∈U(i, j)(ru j−bu j)2
. (5.15)

The set U(i, j) contains the users who rated both items i and j.
Because estimated correlations based on a greater user support are more reliable,

an appropriate similarity measure, denoted by si j, is a shrunk correlation coefficient
of the form

si j
def
=

ni j−1
ni j−1+λ8

ρi j . (5.16)

The variable ni j = |U(i, j)| denotes the number of users that rated both i and j. A
typical value for λ8 is 100.

Such shrinkage can be motivated from a Bayesian perspective; see Section 2.6
of Gelman et al. [11]. Suppose that the true ρi j are independent random variables
drawn from a normal distribution,

ρi j ∼ N(0,τ2)

for known τ2. The mean of 0 is justified if the bui account for both user and item
deviations from average. Meanwhile, suppose that
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ρ̂i j|ρi j ∼ N(ρi j,σ2
i j)

for known σ2
i j. We estimate ρi j by its posterior mean:

E(ρi j|ρ̂i j) =
τ2ρ̂i j

τ2 +σ2
i j

the empirical estimator ρ̂i j shrunk a fraction, σ2
i j/(τ2+σ2

i j), of the way toward zero.
Formula (5.16) follows from approximating the variance of a correlation by σ2

i j =
1/(ni j−1), the value for ρi j near 0.

Notice that the literature suggests additional alternatives for a similarity measure
[27, 28].

5.4.2 Similarity-based interpolation

Here we describe the most popular approach to neighborhood modeling, and appar-
ently also to CF in general. Our goal is to predict rui – the unobserved rating by user
u for item i. Using the similarity measure, we identify the k items rated by u that
are most similar to i. This set of k neighbors is denoted by Sk(i;u). The predicted
value of rui is taken as a weighted average of the ratings of neighboring items, while
adjusting for user and item effects through the baseline predictors

r̂ui = bui +
∑ j∈Sk(i;u) si j(ru j−bu j)

∑ j∈Sk(i;u) si j
. (5.17)

Note the dual use of the similarities for both identification of nearest neighbors and
as the interpolation weights in equation (5.17).

Sometimes, instead of relying directly on the similarity weights as interpolation
coefficients, one can achieve better results by transforming these weights. For exam-
ple, we have found at several datasets that squaring the correlation-based similarities

is helpful. This leads to a rule like: r̂ui = bui +
∑ j∈Sk(i;u) s2

i j(ru j−bu j)

∑ j∈Sk(i;u) s2
i j

. Toscher et al. [31]

discuss more sophisticated transformations of these weights.
Similarity-based methods became very popular because they are intuitive and

relatively simple to implement. They also offer the following two useful properties:

1. Explainability. The importance of explaining automated recommendations is
widely recognized [13, 30]; see also Chapter 15. Users expect a system to give a
reason for its predictions, rather than presenting “black box” recommendations.
Explanations not only enrich the user experience, but also encourage users to
interact with the system, fix wrong impressions and improve long-term accu-
racy. The neighborhood framework allows identifying which of the past user
actions are most influential on the computed prediction.
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2. New ratings. Item-item neighborhood models can provide updated recommen-
dations immediately after users enter new ratings. This includes handling new
users as soon as they provide feedback to the system, without needing to re-
train the model and estimate new parameters. This assumes that relationships
between items (the si j values) are stable and barely change on a daily basis.
Notice that for items new to the system we do have to learn new parameters. In-
terestingly, this asymmetry between users and items meshes well with common
practices: systems need to provide immediate recommendations to new users
(or new ratings by old users) who expect quality service. On the other hand, it
is reasonable to require a waiting period before recommending items new to the
system.

However, standard neighborhood-based methods raise some concerns:

1. The similarity function (si j), which directly defines the interpolation weights,
is arbitrary. Various CF algorithms use somewhat different similarity measures,
trying to quantify the elusive notion of user- or item-similarity. Suppose that a
particular item is predicted perfectly by a subset of the neighbors. In that case,
we would want the predictive subset to receive all the weight, but that is impos-
sible for bounded similarity scores like the Pearson correlation coefficient.

2. Previous neighborhood-based methods do not account for interactions among
neighbors. Each similarity between an item i and a neighbor j ∈ Sk(i;u) is com-
puted independently of the content of Sk(i;u) and the other similarities: sil for
l ∈ Sk(i;u)− { j}. For example, suppose that our items are movies, and the
neighbors set contains three movies that are highly correlated with each other
(e.g., sequels such as “Lord of the Rings 1–3”). An algorithm that ignores the
similarity of the three movies when determining their interpolation weights,
may end up essentially triple counting the information provided by the group.

3. By definition, the interpolation weights sum to one, which may cause overfit-
ting. Suppose that an item has no useful neighbors rated by a particular user. In
that case, it would be best to ignore the neighborhood information, staying with
the more robust baseline predictors. Nevertheless, the standard neighborhood
formula uses a weighted average of ratings for the uninformative neighbors.

4. Neighborhood methods may not work well if variability of ratings differs sub-
stantially among neighbors.

Some of these issues can be fixed to a certain degree, while others are more
difficult to solve within the basic framework. For example, the third item, dealing
with the sum-to-one constraint, can be alleviated by using the following prediction
rule:

r̂ui = bui +
∑ j∈Sk(i;u) si j(ru j−bu j)

λ9 +∑ j∈Sk(i;u) si j
(5.18)

The constant λ9 penalizes the neighborhood portion when there is not much neigh-
borhood information, e.g., when ∑ j∈Sk(i;u) si j ( λ9. Indeed, we have found that
setting an appropriate value of λ9 leads to accuracy improvements over (5.17).
Nonetheless, the whole framework here is not justified by a formal model. Thus,
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we strive for better results with a more fundamental approach, as we describe in the
following.

5.4.3 Jointly derived interpolation weights

In this section we describe a more accurate neighborhood model that overcomes
the difficulties discussed above, while retaining known merits of item-item models.
As above, we use the similarity measure to define neighbors for each prediction.
However, we search for optimum interpolation weights without regard to values of
the similarity measure.

Given a set of neighbors Sk(i;u) we need to compute interpolation weights
{θ u

i j| j ∈ Sk(i;u)} that enable the best prediction rule of the form

r̂ui = bui + ∑
j∈Sk(i;u)

θ u
i j(ru j−bu j) . (5.19)

Typical values of k (number of neighbors) lie in the range of 20–50; see [2]. Dur-
ing this subsection we assume that baseline predictors have already been removed.
Hence, we introduce a notation for the residual ratings: zui

def
= rui−bui. For notational

convenience assume that the items in Sk(i;u) are indexed by 1, . . . ,k.
We seek a formal computation of the interpolation weights that stems directly

from their usage within prediction rule (5.19). As explained earlier, it is important
to derive all interpolation weights simultaneously to account for interdependencies
among the neighbors. We achieve these goals by defining a suitable optimization
problem.

5.4.3.1 Formal model

To start, we consider a hypothetical dense case, where all users but u rated both i and
all its neighbors in Sk(i;u). In that case, we could learn the interpolation weights by
modeling the relationships between item i and its neighbors through a least squares
problem

min
θ u ∑

v )=u



zvi− ∑
j∈Sk(i;u)

θ u
i jzv j




2

. (5.20)

Notice that the only unknowns here are the θ u
i j’s. The optimal solution to the least

squares problem (5.20) is found by differentiation as a solution of a linear system
of equations. From a statistics viewpoint, it is equivalent to the result of a linear re-
gression (without intercept) of zvi on the zv j for j ∈ Sk(i;u). Specifically, the optimal
weights are given by

Aw = b . (5.21)
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Here, w ∈ Rk is an unknown vector such that w j stands for the sought coefficient
θ u

i j. A is a k× k matrix defined as

A jl = ∑
v )=u

zv jzvl . (5.22)

Similarly the vector b ∈ Rk is given by

b j = ∑
v )=u

zv jzvi . (5.23)

For a sparse ratings matrix there are likely to be very few users who rated i and all
its neighbors Sk(i;u). Accordingly, it would be unwise to base A and b as given in
(5.22)–(5.23) only on users with complete data. Even if there are enough users with
complete data for A to be nonsingular, that estimate would ignore a large proportion
of the information about pairwise relationships among ratings by the same user.
However, we can still estimate A and b, up to the same constant, by averaging over
the given pairwise support, leading to the following reformulation:

Ā jl =
∑v∈U( j,l) zv jzvl

|U( j, l)| (5.24)

b̄ j =
∑v∈U(i, j) zv jzvi

|U(i, j)| (5.25)

As a reminder, U( j, l) is the set of users who rated both j and l.
This is still not enough to overcome the sparseness issue. The elements of Ā jl

or b̄ j may differ by orders of magnitude in terms of the number of users included
in the average. As discussed previously, averages based on relatively low support
(small values of |U( j, l)|) can generally be improved by shrinkage towards a com-
mon value. Specifically, we compute a baseline value that is defined by taking the
average of all possible Ā jl values. Let us denote this baseline value by avg; its pre-
cise computation is described in the next subsection. Accordingly, we define the
corresponding k× k matrix Â and the vector b̂ ∈ Rk:

Â jl =
|U( j, l)| · Ā jl +β ·avg

|U( j, l)|+β (5.26)

b̂ j =
|U(i, j)| · b̄ j +β ·avg

|U(i, j)|+β (5.27)

The parameter β controls the extent of the shrinkage. A typical value would be
β = 500.

Our best estimate for A and b are Â and b̂, respectively. Therefore, we modify
(5.21) so that the interpolation weights are defined as the solution of the linear sys-
tem

Âw = b̂ . (5.28)
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The resulting interpolation weights are used within (5.19) in order to predict rui.
This method addresses all four concerns raised in Subsection 5.4.2. First, inter-

polation weights are derived directly from the ratings, not based on any similarity
measure. Second, the interpolation weights formula explicitly accounts for relation-
ships among the neighbors. Third, the sum of the weights is not constrained to equal
one. If an item (or user) has only weak neighbors, the estimated weights may all be
very small. Fourth, the method automatically adjusts for variations among items in
their means or variances.

5.4.3.2 Computational issues

Efficient computation of an item-item neighborhood method requires pre-computing
certain values associated with each item-item pair for rapid retrieval. First, we need
a quick access to all item-item similarities, by pre-computing all si j values, as ex-
plained in Subsection 5.4.1.

Second, we pre-compute all possible entries of Â and b̂. To this end, for each two
items i and j, we compute

Āi j =
∑v∈U(i, j) zvizv j

|U(i, j)| .

Then, the aforementioned baseline value avg, which is used in (5.26)-(5.27), is taken
as the average entry of the pre-computed n× n matrix Ā. In fact, we recommend
using two different baseline values, one by averaging the non-diagonal entries of Ā
and another one by averaging the generally-larger diagonal entries, which have an
inherently higher average because they sum only non-negative values. Finally, we
derive a full n× n matrix Â from Ā by (5.26), using the appropriate value of avg.
Here, the non-diagonal average is used when deriving the non-diagonal entries of Â,
whereas the diagonal average is used when deriving the diagonal entries of Â.

Because of symmetry, it is sufficient to store the values of si j and Âi j only for
i ! j. Our experience shows that it is enough to allocate one byte for each individual
value, so the overall space required for n items is exactly n(n+1) bytes.

Pre-computing all possible entries of matrix Â saves the otherwise lengthy time
needed to construct entries on the fly. After quickly retrieving the relevant entries
of Â, we can compute the interpolation weights by solving a k× k system of equa-
tions (5.28) using a standard linear solver. However, a modest increase in prediction
accuracy was achieved when constraining w to be nonnegative through a quadratic
program [2]. Solving the system of equations is an overhead over the basic neigh-
borhood method described in Subsection 5.4.2. For typical values of k (between 20
and 50), the extra time overhead is comparable to the time needed for computing the
k nearest neighbors, which is common to neighborhood-based approaches. Hence,
while the method relies on a much more detailed computation of the interpolation
weights compared to previous methods, it does not significantly increase running
time; see [2].
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5.4.4 Summary

Collaborative filtering through neighborhood-based interpolation is probably the
most popular way to create a recommender system. Three major components char-
acterize the neighborhood approach: (1) data normalization, (2) neighbor selection,
and (3) determination of interpolation weights.

Normalization is essential to collaborative filtering in general, and in particular to
the more local neighborhood methods. Otherwise, even more sophisticated methods
are bound to fail, as they mix incompatible ratings pertaining to different unnormal-
ized users or items. We described a suitable approach to data normalization, based
around baseline predictors.

Neighborhood selection is another important component. It is directly related to
the employed similarity measure. Here, we emphasized the importance of shrinking
unreliable similarities, in order to avoid detection of neighbors with a low rating
support.

Finally, the success of neighborhood methods depends on the choice of the in-
terpolation weights, which are used to estimate unknown ratings from neighboring
known ones. Nevertheless, most known methods lack a rigorous way to derive these
weights. We showed how the interpolation weights can be computed as a global
solution to an optimization problem that precisely reflects their role.

5.5 Enriching neighborhood models

Most neighborhood methods are local in their nature – concentrating on only a small
subset of related ratings. This contrasts with matrix factorization, which casts a very
wide net to try to characterize items and users. It appears that accuracy can be im-
proved by employing this global viewpoint, which motivates the methods of this sec-
tion. We suggest a new neighborhood model drawing on principles of both classical
neighborhood methods and matrix factorization models. Like other neighborhood
models, the building stones here are item-item relations (or, alternatively, user-user
relations), which provide the system some practical advantages discussed earlier. At
the same time, much like matrix factorization, the model is centered around a global
optimization framework, which improves accuracy by considering the many weak
signals existing in the data.

The main method, which is described in Subsection 5.5.1, allows us to enrich the
model with implicit feedback data. In addition, it facilitates two new possibilities.
First is a factorized neighborhood model, as described in Subsection 5.5.2, bringing
great improvements in computational efficiency. Second is a treatment of temporal
dynamics, leading to better prediction accuracy, as described in Subsection 5.5.3.
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5.5.1 A global neighborhood model

In this subsection, we introduce a neighborhood model based on global optimiza-
tion. The model offers an improved prediction accuracy, by offering the aforemen-
tioned merits of the model described in Subsection 5.4.3, with additional advantages
that are summarized as follows:

1. No reliance on arbitrary or heuristic item-item similarities. The new model is
cast as the solution to a global optimization problem.

2. Inherent overfitting prevention or “risk control”: the model reverts to robust
baseline predictors, unless a user entered sufficiently many relevant ratings.

3. The model can capture the totality of weak signals encompassed in all of a user’s
ratings, not needing to concentrate only on the few ratings for most similar
items.

4. The model naturally allows integrating different forms of user input, such as
explicit and implicit feedback.

5. A highly scalable implementation (Section 5.5.2) allows linear time and space
complexity, thus facilitating both item-item and user-user implementations to
scale well to very large datasets.

6. Time drifting aspects of the data can be integrated into the model, thereby im-
proving its accuracy; see Subsection 5.5.3.

5.5.1.1 Building the model

We gradually construct the various components of the model, through an ongoing
refinement of our formulations. Previous models were centered around user-specific
interpolation weights – θ u

i j in (5.19) or si j/∑ j∈Sk(i;u) si j in (5.17) – relating item
i to the items in a user-specific neighborhood Sk(i;u). In order to facilitate global
optimization, we would like to abandon such user-specific weights in favor of global
item-item weights independent of a specific user. The weight from j to i is denoted
by wi j and will be learned from the data through optimization. An initial sketch of
the model describes each rating rui by the equation

r̂ui = bui + ∑
j∈R(u)

(ru j−bu j)wi j . (5.29)

This rule starts with the crude, yet robust, baseline predictors (bui). Then, the
estimate is adjusted by summing over all ratings by u.

Let us consider the interpretation of the weights. Usually the weights in a neigh-
borhood model represent interpolation coefficients relating unknown ratings to ex-
isting ones. Here, we adopt a different viewpoint, that enables a more flexible usage
of the weights. We no longer treat weights as interpolation coefficients. Instead, we
take weights as part of adjustments, or offsets, added to the baseline predictors. This
way, the weight wi j is the extent by which we increase our baseline prediction of rui
based on the observed value of ru j. For two related items i and j, we expect wi j to
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be high. Thus, whenever a user u rated j higher than expected (ru j−bu j is high), we
would like to increase our estimate for u’s rating of i by adding (ru j−bu j)wi j to the
baseline prediction. Likewise, our estimate will not deviate much from the baseline
by an item j that u rated just as expected (ru j−bu j is around zero), or by an item j
that is not known to be predictive on i (wi j is close to zero).

This viewpoint suggests several enhancements to (5.29). First, we can use the
form of binary user input, which was found beneficial for factorization models.
Namely, analyzing which items were rated regardless of rating value. To this end,
we add another set of weights, and rewrite (5.29) as

r̂ui = bui + ∑
j∈R(u)

[(ru j−bu j)wi j + ci j] . (5.30)

Similarly, one could employ here another set of implicit feedback, N(u)—e.g.,
the set of items rented or purchased by the user—leading to the rule

r̂ui = bui + ∑
j∈R(u)

(ru j−bu j)wi j + ∑
j∈N(u)

ci j . (5.31)

Much like the wi j’s, the ci j’s are offsets added to the baseline predictor. For two
items i and j, an implicit preference by u for j leads us to adjust our estimate of rui
by ci j, which is expected to be high if j is predictive on i.

Employing global weights, rather than user-specific interpolation coefficients,
emphasizes the influence of missing ratings. In other words, a user’s opinion is
formed not only by what he rated, but also by what he did not rate. For example,
suppose that a movie ratings dataset shows that users that rate “Shrek 3” high also
gave high ratings to “Shrek 1–2”. This will establish high weights from “Shrek 1–2”
to “Shrek 3”. Now, if a user did not rate “Shrek 1–2” at all, his predicted rating for
“Shrek 3” will be penalized, as some necessary weights cannot be added to the sum.

For prior models (5.17) and (5.19) that interpolated rui−bui from {ru j−bu j| j ∈
Sk(i;u)}, it was necessary to maintain compatibility between the bui values and
the bu j values. However, here we do not use interpolation, so we can decouple the
definitions of bui and bu j. Accordingly, a more general prediction rule would be:
r̂ui = b̃ui +∑ j∈R(u)(ru j−bu j)wi j + ci j. The constant b̃ui can represent predictions of
rui by other methods such as a latent factor model. Here, we suggest the following
rule that was found to work well:

r̂ui = µ +bu +bi + ∑
j∈R(u)

[(ru j−bu j)wi j + ci j] (5.32)

Importantly, the bu j’s remain constants, which are derived as explained in Section
5.2.1. However, the bu’s and bi’s become parameters that are optimized much like
the wi j’s and ci j’s.

We have found that it is beneficial to normalize sums in the model leading to the
form
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r̂ui = µ +bu +bi + |R(u)|−α ∑
j∈R(u)

[(ru j−bu j)wi j + ci j] . (5.33)

The constant α controls the extent of normalization. A non-normalized rule (α =
0), encourages greater deviations from baseline predictions for users that provided
many ratings (high |R(u)|). On the other hand, a fully normalized rule, eliminates the
effect of number of ratings on deviations from baseline predictions. In many cases it
would be a good practice for recommender systems to have greater deviation from
baselines for users that rate a lot. This way, we take more risk with well modeled
users that provided much input. For such users we are willing to predict quirkier
and less common recommendations. At the same time, we are less certain about the
modeling of users that provided only a little input, in which case we would like to
stay with safe estimates close to the baseline values. Our experience with the Netflix
dataset shows that best results are achieved with α = 0.5, as in the prediction rule

r̂ui = µ +bu +bi + |R(u)|−
1
2 ∑

j∈R(u)
[(ru j−bu j)wi j + ci j] . (5.34)

As an optional refinement, complexity of the model can be reduced by pruning
parameters corresponding to unlikely item-item relations. Let us denote by Sk(i)
the set of k items most similar to i, as determined by e.g., a similarity measure si j

or a natural hierarchy associated with the item set. Additionally, we use Rk(i;u) def
=

R(u)∩Sk(i).2 Now, when predicting rui according to (5.34), it is expected that the
most influential weights will be associated with items similar to i. Hence, we replace
(5.34) with

r̂ui =µ +bu +bi + |Rk(i;u)|−
1
2 ∑

j∈Rk(i;u)
[(ru j−bu j)wi j + ci j] . (5.35)

When k = ∞, rule (5.35) coincides with (5.34). However, for other values of k it
offers the potential to significantly reduce the number of variables involved.

5.5.1.2 Parameter Estimation

Prediction rule 5.35 allows fast online prediction. More computational work is
needed at a pre-processing stage where parameters are estimated. A major design
goal of the new neighborhood model was facilitating an efficient global optimiza-
tion procedure, which prior neighborhood models lacked. Thus, model parameters
are learned by solving the regularized least squares problem associated with (5.35):

2 Notational clarification: With other neighborhood models it was beneficial to use Sk(i;u), which
denotes the k items most similar to i among those rated by u. Hence, if u rated at least k items, we
will always have |Sk(i;u)| = k, regardless of how similar those items are to i. However, |Rk(i;u)|
is typically smaller than k, as some of those items most similar to i were not rated by u.
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min
b∗,w∗,c∗

∑
(u,i)∈K

(
rui−µ−bu−bi− |Rk(i;u)|−

1
2 ∑

j∈Rk(i;u)
((ru j−bu j)wi j + ci j)

)2

+λ10

(
b2

u +b2
i + ∑

j∈Rk(i;u)
w2

i j + c2
i j

)
(5.36)

An optimal solution of this convex problem can be obtained by least square
solvers, which are part of standard linear algebra packages. However, we have found
that the following simple stochastic gradient descent solver works much faster. Let
us denote the prediction error, rui− r̂ui, by eui. We loop through all known ratings in
K. For a given training case rui, we modify the parameters by moving in the opposite
direction of the gradient, yielding:

• bu← bu + γ · (eui−λ10 ·bu)
• bi← bi + γ · (eui−λ10 ·bi)
• ∀ j ∈ Rk(i;u) :

wi j← wi j + γ ·
(
|Rk(i;u)|− 1

2 · eui · (ru j−bu j)−λ10 ·wi j

)

ci j← ci j + γ ·
(
|Rk(i;u)|− 1

2 · eui−λ10 · ci j

)

The meta-parameters γ (step size) and λ10 are determined by cross-validation. We
used γ = 0.005 and λ10 = 0.002 for the Netflix data. Another important parameter
is k, which controls the neighborhood size. Our experience shows that increasing
k always benefits the accuracy of the results on the test set. Hence, the choice of
k should reflect a tradeoff between prediction accuracy and computational cost. In
Subsection 5.5.2 we will describe a factored version of the model that eliminates
this tradeoff by allowing us to work with the most accurate k = ∞ while lowering
running time.

A typical number of iterations throughout the training data is 15–20. As for time
complexity per iteration, let us analyze the most accurate case where k = ∞, which
is equivalent to using prediction rule (5.34). For each user u and item i ∈ R(u) we
need to modify {wi j,ci j| j ∈ R(u)}. Thus the overall time complexity of the training
phase is O(∑u |R(u)|2).

5.5.1.3 Comparison of accuracy

Experimental results on the Netflix data with the globally optimized neighborhood
model, henceforth dubbed GlobalNgbr, are presented in Figure 5.1. We studied the
model under different values of parameter k. The solid black curve with square
symbols shows that accuracy monotonically improves with rising k values, as root
mean squared error (RMSE) falls from 0.9139 for k = 250 to 0.9002 for k = ∞.
(Notice that since the Netflix data contains 17,770 movies, k = ∞ is equivalent to
k =17,769, where all item-item relations are explored.) We repeated the experiments
without using the implicit feedback, that is, dropping the ci j parameters from our
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model. The results depicted by the solid black curve with X’s show a significant
decline in estimation accuracy, which widens as k grows. This demonstrates the
value of incorporating implicit feedback into the model.

For comparison we provide the results of the two previously described neighbor-
hood models. First is a similarity-based neighborhood model (in Subsection 5.4.2),
which is the most popular CF method in the literature. We denote this model as
CorNgbr. Second is the more accurate model described in Subsection 5.4.3, which
will be denoted as JointNgbr. For both these two models, we tried to pick optimal
parameters and neighborhood sizes, which were 20 for CorNgbr, and 50 for Joint-
Ngbr. The results are depicted by the dotted and dashed lines, respectively. It is clear
that the popular CorNgbr method is noticeably less accurate than the other neigh-
borhood models. On the opposite side, GlobalNgbr delivers more accurate results
even when compared with JointNgbr, as long as the value of k is at least 500. Notice
that the k value (the x-axis) is irrelevant to the previous models, as their different
notion of neighborhood makes neighborhood sizes incompatible. Yet, we observed
that while the performance of GlobalNgbr keeps improving as more neighbors are
added, this was not true with the two other models. For CorNgbr and JointNgbr,
performance peaks with a relatively small number of neighbors and declines ther-
after. This may be explained by the fact that in GlobalNgbr, parameters are directly
learned from the data through a formal optimization procedure that facilitates using
many more parameters effectively.

Finally, let us consider running time. Previous neighborhood models require very
light pre-processing, though, JointNgbr [2] requires solving a small system of equa-
tions for each provided prediction. The new model does involve pre-processing
where parameters are estimated. However, online prediction is immediate by fol-
lowing rule (5.35). Pre-processing time grows with the value of k. Figure 5.2 shows
typical running times per iteration on the Netflix data, as measured on a single pro-
cessor 3.4GHz Pentium 4 PC.

5.5.2 A factorized neighborhood model

In the previous subsection we presented a more accurate neighborhood model,
which is based on prediction rule (5.34) with training time complexity O(∑u |R(u)|2)
and space complexity O(m+n2). (Recall that m is the number of users, and n is the
number of items.) We could improve time and space complexity by sparsifying the
model through pruning unlikely item-item relations. Sparsification was controlled
by the parameter k ! n, which reduced running time and allowed space complex-
ity of O(m+ nk). However, as k gets lower, the accuracy of the model declines as
well. In addition, sparsification required relying on an external, less natural, simi-
larity measure, which we would have liked to avoid. Thus, we will now show how
to retain the accuracy of the full dense prediction rule (5.34), while significantly
lowering time and space complexity.
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Fig. 5.1: Comparison of neighborhood-based models. Accuracy is measured by
RMSE on the Netflix test set, so lower values indicate better performance. We mea-
sure the accuracy of the globally optimized model (GlobalNgbr) with and without
implicit feedback. RMSE is shown as a function of varying values of k, which dic-
tates the neighborhood size. The accuracy of two other models is shown as two
horizontal lines; for each we picked an optimal neighborhood size.

5.5.2.1 Factoring item-item relationships

We factor item-item relationships by associating each item i with three vectors:
qi,xi,yi ∈ R f . This way, we confine wi j to be qT

i xi. Similarly, we impose the struc-
ture ci j = qT

i y j. Essentially, these vectors strive to map items into an f -dimensional
latent factor space where they are measured against various aspects that are revealed
automatically by learning from the data. By substituting this into (5.34) we get the
following prediction rule:

r̂ui =µ +bu +bi + |R(u)|−
1
2 ∑

j∈R(u)
[(ru j−bu j)qT

i x j +qT
i y j] (5.37)

Computational gains become more obvious by using the equivalent rule

r̂ui = µ +bu +bi +qT
i

(
|R(u)|−

1
2 ∑

j∈R(u)
(ru j−bu j)x j + y j

)
. (5.38)
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Fig. 5.2: Running time per iteration of the globally optimized neighborhood model,
as a function of the parameter k.

Notice that the bulk of the rule (|R(u)|− 1
2 ∑ j∈R(u)(ru j−bu j)x j +y j) depends only

on u while being independent of i. This leads to an efficient way to learn the model
parameters. As usual, we minimize the regularized squared error function associated
with (5.38)

min
q∗,x∗,y∗,b∗

∑
(u,i)∈K

(
rui−µ−bu−bi−qT

i

(
|R(u)|−

1
2 ∑

j∈R(u)
(ru j−bu j)x j + y j

))2

+λ11

(
b2

u +b2
i +‖qi‖2 + ∑

j∈R(u)
‖x j‖2 +‖y j‖2

)
. (5.39)

Optimization is done by a stochastic gradient descent scheme, which is described
in the following pseudo code:
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LearnFactorizedNeighborhoodModel(Known ratings: rui, rank: f )
% For each item i compute qi,xi,yi ∈ R f

% which form a neighborhood model
Const #Iterations = 20,γ = 0.002,λ = 0.04
% Gradient descent sweeps:
for count = 1, . . . ,#Iterations do

for u = 1, . . . ,m do
% Compute the component independent of i:
pu← |R(u)|− 1

2 ∑ j∈R(u)(ru j−bu j)x j + y j
sum← 0
for all i ∈ R(u) do

r̂ui← µ +bu +bi +qT
i pu

eui← rui− r̂ui
% Accumulate information for gradient steps on xi,yi:
sum← sum+ eui ·qi
% Perform gradient step on qi,bu,bi:
qi← qi + γ · (eui · pu−λ ·qi)
bu← bu + γ · (eui−λ ·bu)
bi← bi + γ · (eui−λ ·bi)

for all i ∈ R(u) do
% Perform gradient step on xi:
xi← xi + γ · (|R(u)|− 1

2 · (rui−bui) · sum−λ · xi)
% Perform gradient step on yi:
yi← yi + γ · (|R(u)|− 1

2 · sum−λ · yi)
return {qi,xi,yi|i = 1, . . . ,n}

The time complexity of this model is linear with the input size, O( f ·∑u(|R(u)|)),
which is significantly better than the non-factorized model that required time
O(∑u |R(u)|2). We measured the performance of the model on the Netflix data; see
Table 5.3. Accuracy is improved as we use more factors (increasing f ). However,
going beyond 200 factors could barely improve performance, while slowing running
time. Interestingly, we have found that with f " 200 accuracy negligibly exceeds the
best non-factorized model (with k = ∞). In addition, the improved time complexity
translates into a big difference in wall-clock measured running time. For example,
the time-per-iteration for the non-factorized model (with k = ∞) was close to 58
minutes. On the other hand, a factorized model with f = 200 could complete an
iteration in 14 minutes without degrading accuracy at all.

The most important benefit of the factorized model is the reduced space com-
plexity, which is O(m+n f ) – linear in the input size. Previous neighborhood models
required storing all pairwise relations between items, leading to a quadratic space
complexity of O(m+ n2). For the Netflix dataset which contains 17,770 movies,
such quadratic space can still fit within core memory. Some commercial recom-
menders process a much higher number of items. For example, an online movie
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rental service like Netflix is currently offering over 100,000 titles. Music down-
load shops offer even more titles. Such more comprehensive systems with data on
100,000s items eventually need to resort to external storage in order to fit the en-
tire set of pairwise relations. However, as the number of items is growing towards
millions, as in the Amazon item-item recommender system, which accesses stored
similarity information for several million catalog items [20], designers must keep
a sparse version of the pairwise relations. To this end, only values relating an item
to its top-k most similar neighbors are stored thereby reducing space complexity to
O(m+nk). However, a sparsification technique will inevitably degrade accuracy by
missing important relations, as demonstrated in the previous section. In addition,
identification of the top k most similar items in such a high dimensional space is a
non-trivial task that can require considerable computational efforts. All these issues
do not exist in our factorized neighborhood model, which offers a linear time and
space complexity without trading off accuracy.

#factors 50 100 200 500
RMSE 0.9037 0.9013 0.9000 0.8998
time/iteration 4.5 min 8 min 14 min 34 min

Table 5.3: Performance of the factorized item-item neighborhood model. The mod-
els with " 200 factors slightly outperform the non-factorized model, while provid-
ing much shorter running time.

The factorized neighborhood model resembles some latent factor models. The
important distinction is that here we factorize the item-item relationships, rather
than the ratings themselves. The results reported in Table 5.3 are comparable to
those of the widely used SVD model, but not as good as those of SVD++; see
Section 5.3. Nonetheless, the factorized neighborhood model retains the practical
advantages of traditional neighborhood models discussed earlier—the abilities to
explain recommendations and to immediately reflect new ratings.

As a side remark, we would like to mention that the decision to use three separate
sets of factors was intended to give us more flexibility. Indeed, on the Netflix data
this allowed achieving most accurate results. However, another reasonable choice
could be using a smaller set of vectors, e.g., by requiring: qi = xi (implying sym-
metric weights: wi j = w ji).

5.5.2.2 A user-user model

A user-user neighborhood model predicts ratings by considering how like-minded
users rated the same items. Such models can be implemented by switching the roles
of users and items throughout our derivation of the item-item model. Here, we would
like to concentrate on a user-user model, which is dual to the item-item model of
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(5.34). The major difference is replacing the wi j weights relating item pairs, with
weights relating user pairs:

r̂ui = µ +bu +bi + |R(i)|−
1
2 ∑

v∈R(i)
(rvi−bvi)wuv (5.40)

The set R(i) contains all the users who rated item i. Notice that here we decided
to not account for implicit feedback. This is because adding such feedback was not
very beneficial for the user-user model when working with the Netflix data.

User-user models can become useful in various situations. For example, some
recommenders may deal with items that are rapidly replaced, thus making item-item
relations very volatile. On the other hand, a stable user base enables establishment of
long term relationships between users. An example of such a case is a recommender
system for web articles or news items, which are rapidly changing by their nature;
see, e.g., [8]. In such cases, systems centered around user-user relations are more
appealing.

In addition, user-user approaches identify different kinds of relations that item-
item approaches may fail to recognize, and thus can be useful on certain occasions.
For example, suppose that we want to predict rui, but none of the items rated by
user u is really relevant to i. In this case, an item-item approach will face obvious
difficulties. However, when employing a user-user perspective, we may find a set
of users similar to u, who rated i. The ratings of i by these users would allow us to
improve prediction of rui.

The major disadvantage of user-user models is computational. Since typically
there are many more users than items, pre-computing and storing all user-user re-
lations, or even a reasonably sparsified version thereof, is overly expensive or com-
pletely impractical. In addition to the high O(m2) space complexity, the time com-
plexity for optimizing model (5.40) is also much higher than its item-item coun-
terpart, being O(∑i |R(i)|2) (notice that |R(i)| is expected to be much higher than
|R(u)|). These issues have rendered user-user models as a less practical choice.

A factorized model. All those computational differences disappear by factoriz-
ing the user-user model along the same lines as in the item-item model. Now, we
associate each user u with two vectors pu,zu ∈ R f . We assume the user-user rela-
tions to be structured as: wuv = pT

u zv. Let us substitute this into (5.40) to get

r̂ui = µ +bu +bi + |R(i)|−
1
2 ∑

v∈R(i)
(rvi−bvi)pT

u zv . (5.41)

Once again, an efficient computation is achieved by including the terms that depends
on i but are independent of u in a separate sum, so the prediction rule is presented
in the equivalent form

r̂ui = µ +bu +bi + pT
u |R(i)|−

1
2 ∑

v∈R(i)
(rvi−bvi)zv . (5.42)
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In a parallel fashion to the item-item model, all parameters are learned in linear time
O( f ·∑i |R(i)|). The space complexity is also linear with the input size being O(n+
m f ). This significantly lowers the complexity of the user-user model compared to
previously known results. In fact, running time measured on the Netflix data shows
that now the user-user model is even faster than the item-item model; see Table 5.4.
We should remark that unlike the item-item model, our implementation of the user-
user model did not account for implicit feedback, which probably led to its shorter
running time. Accuracy of the user-user model is significantly better than that of
the widely-used correlation-based item-item model that achieves RMSE=0.9406 as
reported in Figure 5.1. Furthermore, accuracy is slightly better than the variant of
the item-item model, which also did not account for implicit feedback (yellow curve
in Figure 5.1). This is quite surprising given the common wisdom that item-item
methods are more accurate than user-user ones. It appears that a well implemented
user-user model can match speed and accuracy of an item-item model. However, our
item-item model could significantly benefit by accounting for implicit feedback.

#factors 50 100 200 500
RMSE 0.9119 0.9110 0.9101 0.9093
time/iteration 3 min 5 min 8.5 min 18 min

Table 5.4: Performance of the factorized user-user neighborhood model.

Fusing item-item and user-user models. Since item-item and user-user models
address different aspects of the data, overall accuracy is expected to improve by
combining predictions of both models. Such an approach was previously suggested
and was shown to improve accuracy; see, e.g. [4, 32]. However, past efforts were
based on blending the item-item and user-user predictions during a post-processing
stage, after each individual model was trained independently of the other model.
A more principled approach optimizes the two models simultaneously, letting them
know of each other while parameters are being learned. Thus, throughout the entire
training phase each model is aware of the capabilities of the other model and strives
to complement it. Our approach, which states the neighborhood models as formal
optimization problems, allows doing that naturally. We devise a model that sums the
item-item model (5.37) and the user-user model (5.41), leading to

r̂ui =µ +bu +bi + |R(u)|−
1
2 ∑

j∈R(u)
[(ru j−bu j)qT

i x j +qT
i y j]

+ |R(i)|−
1
2 ∑

v∈R(i)
(rvi−bvi)pT

u zv . (5.43)

Model parameters are learned by stochastic gradient descent optimization of the
associated squared error function. Our experiments with the Netflix data show that
prediction accuracy is indeed better than that of each individual model. For example,
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with 100 factors the obtained RMSE is 0.8966, while with 200 factors the obtained
RMSE is 0.8953.

Here we would like to comment that our approach allows integrating the neigh-
borhood models also with completely different models in a similar way. For ex-
ample, in [17] we showed an integrated model that combines the item-item model
with a latent factor model (SVD++), thereby achieving improved prediction accu-
racy with RMSE below 0.887. Therefore, other possibilities with potentially better
accuracy should be explored before considering the integration of item-item and
user-user models.

5.5.3 Temporal dynamics at neighborhood models

One of the advantages of the item-item model based on global optimization (Subsec-
tion 5.5.1), is that it enables us to capture temporal dynamics in a principled manner.
As we commented earlier, user preferences are drifting over time, and hence it is im-
portant to introduce temporal aspects into CF models.

When adapting rule (5.34) to address temporal dynamics, two components
should be considered separately. First component, µ + bi + bu, corresponds to the
baseline predictor portion. Typically, this component explains most variability in
the observed signal. Second component, |R(u)|− 1

2 ∑ j∈R(u)(ru j− bu j)wi j + ci j, cap-
tures the more informative signal, which deals with user-item interaction. As for
the baseline part, nothing changes from the factor model, and we replace it with
µ +bi(tui)+bu(tui), according to (5.6) and (5.9). However, capturing temporal dy-
namics within the interaction part requires a different strategy.

Item-item weights (wi j and ci j) reflect inherent item characteristics and are not
expected to drift over time. The learning process should capture unbiased long term
values, without being too affected from drifting aspects. Indeed, the time changing
nature of the data can mask much of the longer term item-item relationships if not
treated adequately. For instance, a user rating both items i and j high within a short
time period, is a good indicator for relating them, thereby pushing higher the value
of wi j. On the other hand, if those two ratings are given five years apart, while
the user’s taste (if not her identity) could considerably change, this provides less
evidence of any relation between the items. On top of this, we would argue that those
considerations are pretty much user-dependent; some users are more consistent than
others and allow relating their longer term actions.

Our goal here is to distill accurate values for the item-item weights, despite the
interfering temporal effects. First we need to parameterize the decaying relations
between two items rated by user u. We adopt exponential decay formed by the
function e−βu·∆ t , where βu > 0 controls the user specific decay rate and should be
learned from the data. We also experimented with other decay forms, like the more
computationally-friendly (1+βu∆ t)−1, which resulted in about the same accuracy,
with an improved running time.

This leads to the prediction rule
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r̂ui = µ+bi(tui)+bu(tui)+ |R(u)|−
1
2 ∑

j∈R(u)
e−βu·|tui−tu j |((ru j−bu j)wi j+ci j) . (5.44)

The involved parameters, bi(tui) = bi + bi,Bin(tui), bu(tui) = bu + αu · devu(tui) +
bu,tui , βu, wi j and ci j, are learned by minimizing the associated regularized squared
error

∑
(u,i)∈K

(
rui−µ−bi−bi,Bin(tui)−bu−αudevu(tui)−bu,tui−

|R(u)|−
1
2 ∑

j∈R(u)
e−βu·|tui−tu j |((ru j−bu j)wi j + ci j)

)2
+

λ12

(
b2

i +b2
i,Bin(tui)

+b2
u +α2

u +b2
u,t +w2

i j + c2
i j

)
. (5.45)

Minimization is performed by stochastic gradient descent. We run the process for
25 iterations, with λ12 = 0.002, and step size (learning rate) of 0.005. An exception
is the update of the exponent βu, where we are using a much smaller step size of
10−7. Training time complexity is the same as the original algorithm, which is:
O(∑u |R(u)|2). One can tradeoff complexity with accuracy by sparsifying the set of
item-item relations as explained in Subsection 5.5.1.

As in the factor case, properly considering temporal dynamics improves the ac-
curacy of the neighborhood model within the movie ratings dataset. The RMSE
decreases from 0.9002 [17] to 0.8885. To our best knowledge, this is significantly
better than previously known results by neighborhood methods. To put this in
some perspective, this result is even better than those reported by using hybrid
approaches such as applying a neighborhood approach on residuals of other algo-
rithms [2, 23, 31]. A lesson is that addressing temporal dynamics in the data can
have a more significant impact on accuracy than designing more complex learning
algorithms.

We would like to highlight an interesting point. Let u be a user whose preferences
are quickly drifting (βu is large). Hence, old ratings by u should not be very influen-
tial on his status at the current time t. One could be tempted to decay the weight of
u’s older ratings, leading to “instance weighting” through a cost function like

∑
(u,i)∈K

e−βu·|t−tui|
(

rui−µ−bi−bi,Bin(tui)−bu−αudevu(tui)−

bu,tui − |R(u)|−
1
2 ∑

j∈R(u)
((ru j−bu j)wi j + ci j)

)2
+λ12(· · ·) .

Such a function is focused at the current state of the user (at time t), while de-
emphasizing past actions. We would argue against this choice, and opt for equally
weighting the prediction error at all past ratings as in (5.45), thereby modeling all
past user behavior. Therefore, equal-weighting allows us to exploit the signal at each
of the past ratings, a signal that is extracted as item-item weights. Learning those
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weights would equally benefit from all ratings by a user. In other words, we can
deduce that two items are related if users rated them similarly within a short time
frame, even if this happened long ago.

5.5.4 Summary

This section follows a less traditional neighborhood based model, which unlike pre-
vious neighborhood methods is based on formally optimizing a global cost func-
tion. The resulting model is no longer localized, considering relationships between
a small set of strong neighbors, but rather considers all possible pairwise relations.
This leads to improved prediction accuracy, while maintaining some merits of the
neighborhood approach such as explainability of predictions and ability to handle
new ratings (or new users) without re-training the model.

The formal optimization framework offers several new possibilities. First, is a
factorized version of the neighborhood model, which improves its computational
complexity while retaining prediction accuracy. In particular, it is free from the
quadratic storage requirements that limited past neighborhood models.

Second addition is the incorporation of temporal dynamics into the model. In or-
der to reveal accurate relations among items, a proposed model learns how influence
between two items rated by a user decays over time. Much like in the matrix factor-
ization case, accounting for temporal effects results in a significant improvement in
predictive accuracy.

5.6 Between neighborhood and factorization

This chapter was structured around two different approaches to CF: factorization
and neighborhood. Each approach evolved from different basic principles, which
led to distinct prediction rules. We also argued that factorization can lead to some-
what more accurate results, while neighborhood models may have some practical
advantages. In this section we will show that despite those differences, the two ap-
proaches share much in common. After all, they are both linear models.

Let us consider the SVD model of Subsection 5.3.1, based on

r̂ui = qT
i pu . (5.46)

For simplicity, we ignore here the baseline predictors, but one can easily reintroduce
them or just assume that they were subtracted from all ratings at an earlier stage.

We arrange all item-factors within the n× f matrix Q = [q1q2 . . .qn]T . Similarly,
we arrange all user-factors within the m× f matrix P = [p1 p2 . . . pm]T . We use the
nu × f matrix Q[u] to denote the restriction of Q to the items rated by u, where
nu = |R(u)|. Let the vector ru ∈ Rnu contain the ratings given by u ordered as in
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Q[u]. Now, by activating (5.46) on all ratings given by u, we can reformulate it in a
matrix form

r̂u = Q[u]pu (5.47)

For Q[u] fixed, ‖ru−Q[u]pu‖2 is minimized by

pu = (Q[u]T Q[u])−1Q[u]T ru

In practice, we will regularize with λ " 0 to get

pu = (Q[u]T Q[u]+λ I)−1Q[u]T ru .

By substituting pu in (5.47) we get

r̂u = Q[u](Q[u]T Q[u]+λ I)−1Q[u]T ru . (5.48)

This expression can be simplified by introducing some new notation. Let us de-
note the f × f matrix (Q[u]T Q[u]+λ I)−1 as W u, which should be considered as a
weighting matrix associated with user u. Accordingly, the weighted similarity be-
tween items i and j from u’s viewpoint is denoted by su

i j = qT
i W uq j. Using this new

notation and (5.48) the predicted preference of u for item i by SVD is rewritten as

r̂ui = ∑
j∈R(u)

su
i jru j . (5.49)

We reduced the SVD model into a linear model that predicts preferences as a linear
function of past actions, weighted by item-item similarity. Each past action receives
a separate term in forming the prediction r̂ui. This is equivalent to an item-item
neighborhood model. Quite surprisingly, we transformed the matrix factorization
model into an item-item model, which is characterized by:

• Interpolation is made from all past user ratings, not only from those associated
with items most similar to the current one.

• The weight relating items i and j is factorized as a product of two vectors, one
related to i and the other to j.

• Item-item weights are subject to a user-specific normalization, through the ma-
trix W u.

Those properties support our findings on how to best construct a neighborhood
model. First, we showed in Subsection 5.5.1 that best results for neighborhood
models are achieved when the neighborhood size (controlled by constant k) is max-
imal, such that all past user ratings are considered. Second, in Subsection 5.5.2 we
touted the practice of factoring item-item weights. As for the user-specific normal-
ization, we used a simpler normalizer: n−0.5

u . It is likely that SVD suggests a more
fundamental normalization by the matrix W u, which would work better. However,
computing W u would be expensive in practice. Another difference between our sug-
gested item-item model and the one implied by SVD is that we chose to work with
asymmetric weights (wi j )= w ji), whereas in the SVD-induced rule: su

i j = su
ji.
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In the derivation above we showed how SVD induces an equivalent item-item
technique. In a fully analogous way, it can induce an equivalent user-user technique,
by expressing qi as a function of the ratings and user factors. This brings us to
three equivalent models: SVD, item-item and user-user. Beyond linking SVD with
neighborhood models, this also shows that user-user and item-item approaches, once
well designed, are equivalent.

This last relation (between user-user and item-item approaches) can also be ap-
proached intuitively. Neighborhood models try to relate users to new items by fol-
lowing chains of user-item adjacencies. Such adjacencies represent preference- or
rating-relations between the respective users and items. Both user-user and item-
item models act by following exactly the same chains. They only differ in which
“shortcuts” are exploited to speed up calculations. For example, recommending
itemB to user1 would follow the chain user1–itemA–user2–itemB (user1 rated
itemA, which was also rated by user2, who rated itemB). A user-user model fol-
lows such a chain with pre-computed user-user similarities. This way, it creates a
“shortcut” that bypasses the sub-chain user1–itemB–user2, replacing it with a sim-
ilarity value between user1 and user2. Analogously, an item-item approach follows
exactly the same chain, but creates an alternative “shortcut”, replacing the sub-chain
itemA–user2–itemB with an itemA–itemB similarity value.

Another lesson here is that the distinction that deems neighborhood models as
“memory based”, while taking matrix factorization and the likes as “model based”
is not always appropriate, at least not when using accurate neighborhood models that
are model-based as much as SVD. In fact, the other direction is also true. The bet-
ter matrix factorization models, such as SVD++, are also following memory-based
habits, as they sum over all memory stored ratings when doing the online predic-
tion; see rule (5.3). Hence, the traditional separation between “memory based” and
“model based” techniques is not appropriate for categorizing the techniques sur-
veyed in this chapter.

So far, we concentrated on relations between neighborhood models and matrix
factorization models. However, in practice it may be beneficial to break these rela-
tions, and to augment factorization models with sufficiently different neighborhood
models that are able to complement them. Such a combination can lead to improved
prediction accuracy [3, 17]. A key to achieve this is by using the more localized
neighborhood models (those of Section 5.4, rather than those of Section 5.5), where
the number of considered neighbors is limited. The limited number of neighbors
might not be the best way to construct a standalone neighborhood model, but it
makes the neighborhood model different enough from the factorization model in
order to add a local perspective that the rather global factorization model misses.
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Chapter 6
Developing Constraint-based Recommenders

Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach and Markus Zanker

6.1 Introduction

Traditional recommendation approaches (content-based filtering [48] and collabora-
tive filtering[40]) are well-suited for the recommendation of quality&taste products
such as books, movies, or news. However, especially in the context of products
such as cars, computers, appartments, or financial services those approaches are
not the best choice (see also Chapter 11). For example, apartments are not bought
very frequently which makes it rather infeasible to collect numerous ratings for one
specific item (exactly such ratings are required by collaborative recommendation al-
gorithms). Furthermore, users of recommender applications would not be satisfied
with recommendations based on years-old item preferences (exactly such prefer-
ences would be exploited in this context by content-based filtering algorithms).

Knowledge-based recommender technologies help to tackle these challenges
by exploiting explicit user requirements and deep knowledge about the underly-
ing product domain [11] for the calculation of recommendations. Those systems
heavily concentrate on knowledge sources that are not exploited by collaborative
filtering and content-based filtering approaches. Compared to collaborative filter-
ing and content-based filtering, knowledge-based recommenders have no cold-start
problems since requirements are directly elicited within a recommendation session.
However, no advantage without disadvantage, knowledge-based recommenders suf-
fer from the so-called knowledge acquisition bottleneck in the sense that knowledge
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engineers must work hard to convert the knowledge possessed by domain experts
into formal, executable representations.

There are two basic specifics of knowledge-based recommenders: case-based
[3, 4, 36] and constraint-based recommenders [11, 13].1 In terms of used knowl-
edge both are similar: user requirements are collected, repairs for inconsistent re-
quirements are automatically proposed in situations where no solutions could be
found [12, 13, 43], and recommendation results are explained. The major difference
lies in the way solutions are calculated [11]. Case-based recommenders determine
recommendations on the basis of similarity metrics whereas constraint-based rec-
ommenders predominantly exploit predefined recommender knowledge bases that
contain explicit rules about how to relate customer requirements with item features.
In this chapter we will focus on an overview of constraint-based recommendation
technologies. For a detailed review of case-based recommender technologies the
reader is referred to [3, 4, 36].

A recommender knowledge base of a constraint-based recommender system (see
[16]) typically is defined by two sets of variables (VC, VPROD) and three different
sets of constraints (CR, CF , CPROD). Those variables and constraints are the major
ingredients of a constraint satisfaction problem [54]. A solution for a constraint
satisfaction problem consists of concrete instantiations of the variables such that all
the specified constraints are fulfilled (see Section 6.4).

Customer Properties VC describe possible requirements of customers, i.e., re-
quirements are instantiations of customer properties. In the domain of financial ser-
vices willingness to take risks is an example for a customer property and willingness
to take risks = low represents a concrete customer requirement.

Product Properties VPROD describe the properties of a given product assortment.
Examples for product properties are recommended investment period, product type,
product name, or expected return on investment.

Constraints CR are systematically restricting the possible instantiations of cus-
tomer properties, for example, short investment periods are incompatible with high
risk investments.

Filter Conditions CF define the relationship between potential customer require-
ments and the given product assortment. An example for a filter condition is the
following: customers without experiences in the financial services domain should
not receive recommendations which include high-risk products.

Products Finally, allowed instantiations of product properties are represented by
CPROD. CPROD represents one constraint in disjunctive normal form that defines ele-
mentary restrictions on the possible instantiations of variables in VPROD.

A simplified recommender knowledge base for the domain of financial services
is the following (see Example 6.1).

1 Utility-based recommenders are often as well categorized as knowledge-based, see for example
[4]. For a detailed discussion on utility-based approaches we refer the interested reader to [4, 13].
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Example 6.1. Recommender knowledge base (VC, VPROD, CR, CF , CPROD)

VC = {klc: [expert, average, beginner] . . . . . . . . . . . . . . . . . . . . /* level of expertise */
wrc: [low, medium, high] . . . . . . . . . . . . . . . . . . . . . . . /* willingness to take risks */
idc: [shortterm, mediumterm, longterm] . . . . . . . . . . . /* duration of investment */
awc: [yes, no] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /* advisory wanted ? */
dsc: [savings, bonds, stockfunds, singleshares] . . . . . . /* direct product search */
slc: [savings, bonds] . . . . . . . . . . . . . . . . . . . . . . . . /* type of low-risk investment */
avc: [yes, no] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /* availability of funds */
shc: [stockfunds, singlshares] . . . . . . . . . . . . . . /* type of high-risk investment */ }

VPROD = {namep: [text] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /* name of the product */
erp: [1..40] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /* expected return rate */
rip: [low, medium, high] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /* risk level */
mnivp: [1..14] . . . . . . . . . . . . /* minimum investment period of product in years */
instp: [text] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /* financial institute */ }

CR = {CR1: wrc = high→ idc "= shortterm,
CR2: klc = beginner→ wrc "= high}

CF = {CF1: idc = shortterm→ mnivp < 3,
CF2: idc = mediumterm→ mnivp ≥ 3∧mnivp < 6,
CF3: idc = longterm→ mnivp ≥ 6,
CF4: wrc = low→ rip = low,
CF5: wrc = medium→ rip = low∨ rip = medium,
CF6: wrc = high→ rip = low∨ rip = medium∨ rip = high,
CF7: klc = beginner→ rip "= high,
CF8: slc = savings→ namep = savings,
CF9: slc = bonds→ namep = bonds }

CPROD = {CPROD1: namep = savings∧erp = 3∧rip = low∧mnivp = 1∧ instp = A;
CPROD2: namep = bonds∧ erp = 5∧ rip = medium∧mnivp = 5∧ instp = B;
CPROD3: namep = equity∧ erp = 9∧ rip = high∧mnivp = 10∧ instp = B}

On the basis of such a recommender knowledge base and a given set of customer
requirements we are able to calculate recommendations. The task of identifying a
set of products fitting a customer’s wishes and needs is denoted as recommendation
task (see Definition 6.1).

Definition 6.1. A recommendation task can be defined as a constraint satisfaction
problem (VC, VPROD, CC ∪CF ∪CR ∪CPROD) where VC is a set of variables repre-
senting possible customer requirements and VPROD is a set of variables describing
product properties. CPROD is a set of constraints describing product instances, CR is
a set of constraints describing possible combinations of customer requirements, and
CF (also called filter conditions) is a set of constraints describing the relationship
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between customer requirements and product properties. Finally, CC is a set of unary
constraints representing concrete customer requirements.

Example 6.2. Based on the recommender knowledge base of Example 6.1, the defi-
nition of a concrete recommendation task could be completed with the following set
of requirements CC={wrc = low,klc = beginner, idc = shortterm,slc = savings}.

Based on the definition of a recommendation task, we can introduce the notion
of a solution (consistent recommendation) for a recommendation task.

Definition 6.2. An assignment of the variables in VC and VPROD is denoted as consis-
tent recommendation for a recommendation task (VC, VPROD, CC∪CF ∪CR∪CPROP)
iff it does not violate any of the constraints in CC ∪CF ∪CR∪CPROD.

Example 6.3. A consistent recommendation with regard to the recommender knowl-
edge base of Example 6.1 and the customer requirements defined in Example 6.2 is
klc = beginner,wrc = low, idc = shortterm,slc = savings,namep = savings,erp =
3,rip = low,mnivp = 1, instp = A.

In addition to the recommender knowledge base we have to define the intended
behavior of the recommender user interface. In order to support intuitive dialogs,
a recommender interface must be adaptive (see Section 3). There exist different
alternatives to describe the intended behavior of recommender user interfaces. For
example, dialogs can be modeled explicitly in the form of finite state models [20] or
can be structured even more flexibly in a form where users themselves are enabled
to select interesting properties they would like to specify [37].

In this chapter we will focus on the first alternative: recommendation dialogs
are modeled explicitly in the form in finite state models [20]. Transitions between
the states are represented as acceptance criteria on the user input. For example, an
expert (klc = expert) who is not interested in a recommendation session regarding
financial services (awc = no) is automatically forwarded to q4 (search interface that
supports the specificiation of technical product features). Figure 6.1 depicts a finite
state model of the intended behavior of a financial services recommender applica-
tion.

The remainder of this chapter is organized as follows. In Section 6.2 we give an
overview of knowledge acquisition concepts for the development of recommender
knowledge bases and recommender process definitions. In Section 6.3 we intro-
duce major techniques for guiding and actively supporting the user in a recommen-
dation dialog. A short overview of approaches to solve recommendation tasks is
given in Section 6.4. In Section 6.5 we discuss successful applications of constraint-
based recommender technologies. In Section 6.6 we present future research issues
in constraint-based recommendation. With Section 6.7 we conclude the chapter.
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Fig. 6.1: Recommender user interface description: a simple example recommenda-
tion process for financial services. The process starts in state q0, and, depending on
the user’s knowledge level, is forwarded to either state q2 or state q3. In the final
state (one of the states q4, q6, q7) the recommended items are presented. Each state
qi has an assigned customer property var(qi) that represents a question to be asked
in this state.

6.2 Development of Recommender Knowledge Bases

The major precondition for successfully applying constraint-based technologies in
commercial settings are technologies that actively support knowledge engineers and
domain experts in the development and maintenance of recommender applications
and thus help to limit knowledge acquisition bottlenecks as much as possible. Due
to very limited programming skills of domain experts, there typically is a discrep-
ancy between knowledge engineers and domain experts in terms of knowledge base
development and maintenance know-how [13]. Thus domain experts are solely re-
sponsible for knowledge provision but not for the formalization into a corresponding
executable representation (recommender knowledge base).

The major goal of the commercially available CWAdvisor environment presented
in [13] is to reduce the above mentioned knowledge acquisition bottleneck: it sup-
ports autonomous knowledge base development and maintenance processes for do-
main experts. In the following sections we will present parts of the CWAdvisor envi-
ronment for demonstration purposes. The CWAdvisor knowledge acquisition envi-
ronment (CWAdvisor Designer) takes into account major design principles that are
crucial for effective knowledge acquisition and maintenance [8, 13].

• First, rapid prototyping processes support the principle of concreteness where
the user can immediately inspect the effects of introduced changes to expla-
nation texts, properties of products, images, recommender process definitions,
and recommendation rules. This functionality is implemented in the form of
templates that enable a direct translation of graphically defined model proper-
ties into a corresponding executable recommender application.

• Second, changes to all the mentioned information units can be performed on a
graphical level. This functionality is very important to make knowledge aquisi-
tion environments more accessible to domain experts without a well-grounded
technical education. Domain experts are protected from programming details -
an approach that follows the principle of a strict separation of application logic
and implementation details.
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• Third, an integrated testing and debugging environment supports the princi-
ple of immediate feedback in the sense that erroneous definitions in the rec-
ommender knowledge base and the recommendation process are automatically
detected and reported (end-user debugging support). Thus, knowledge bases are
maintained in a structured way and not deployed in a productive environment
until all test cases specified for the knowledge base are fulfilled. As a direct
consquence, domain experts develop a higher trust level since erroneous rec-
ommendations become the exception of the rule.

Figure 6.2 provides examples for major modeling concepts supported by the
CWAdvisor recommender development environment [13]. This environment can be
used for the design of a recommender knowledge base (see Example 6.2), i.e., cus-
tomer properties (VC), product properties (VPROD), constraints (CR), filter conditions
(CF ), and the product assortment (CProd) can be specified on a graphical level. Figure
6.2 (upper part) depicts an interface for the design of filter conditions (CF ) whereas
the lower part represents an interface for the context-oriented specification of com-
patibility constraints. Figure 6.3 shows the CWAdvisor Process Designer user inter-
face. This component enables the graphical design of recommendation processes.
Given such a process definition, the recommender application can be automatically
generated (see, e.g., Figure 6.4).

Sometimes recommendation processes are faulty, for example, the transition con-
ditions between the states are defined in a way that does not allow the successful
completion of a recommendation session. If we would change the transition condi-
tion c1 : klc = beginner in Figure 6.1 to c′1 : klc = expert, users who have nearly no
knowledge about the financial services domain would not be forwarded to any of the
following states (q2 or q3). For more complex process definitions, the manual iden-
tification and repair of such faults is tedious and error-prone. In [20] an approach is
presented which helps to automatically detect and repair such faulty statements. It
is based on the concepts of model-based diagnosis [20] that help to locate minimal
sets of faulty transition conditions.

In addition to a graphical process definition, CWAdvisor Designer supports the
automated generation of test cases (input sequences including recommended prod-
ucts) [16]. On the one hand, such test cases can be exploited for the purpose of
regression testing, for example, before the recommender application is deployed in
the production environment. On the other hand, test cases can be used for debugging
faulty recommender knowledge bases (if some of the test cases are not fulfilled) and
faulty process definitions (e.g., when the recommender process gets stuck).

The basic principle of recommender knowledge base debugging [10, 12, 13, 16]
will now be shown on the basis of Example 6.4.2 Readers interested in the auto-
mated debugging of faulty recommender process definitions are referred to [20]. A
typical approach to identify faults in a recommender knowledge base is to test the
knowledge base with a set of examples (test cases) ei ∈ E. For simplicity, let us
assume that e1 : wrc = high∧ rrc ≥ 9% is the only example provided by domain
experts up to now. Testing e1 ∪CR results in the empty solution set due to the fact

2 For simplicity, we omit the specification of VPROD, CF , and CPROD.
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Fig. 6.2: CWAdvisor Designer Environment. Filter constraints (conditions) as well
as compatibility constraints can be defined in a context-sensitive editing environ-
ment.
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that e1 is inconsistent with CR. A more detailed look at the example shows that the
constraints CR2, CR3 are inconsistent with e1. CR2,CR3 is denoted as conflict set
[33, 45] that can be resolved (under the minimality assumption) by simply delet-
ing one of its elements. For example, if we delete CR3 from CR, the consistency of
e1∪CR is restored. The calculation of conflict sets can be realized using the conflict
detection algorithm proposed by [33], the automated resolution of conflicts is shown
in detail in [20].

Example 6.4. Faulty Recommender knowledge base (VC, VPROD, CR, CF , CPROD)

VC = {rrc: [1-3%, 4-6%, 7-9%, 9%] . . . . . . . . . . . . . . . . . . . . . . . . . . . /* return rate */
wrc: [low, medium, high] . . . . . . . . . . . . . . . . . . . . . . . /* willingness to take risks */
idc: [shortterm, mediumterm, longterm] . . . . . . . . . /* duration of investment */ }

CR = {CR1: wrc = medium→ idc "= shortterm
CR2: wrc = high→ idc = long
CR3: idc = long→ rrc = 4−6%∨ rrc = 7−9%
CR4: rrc ≥ 9%→ wrc = high
CR5: rrc = 7−9%→ wrc "= low }

VPROD = {} CF = {} CPROD = {}

Experiences from commercial projects in domains such as financial services [18],
electronic equipments [13], or e-tourism [74] clearly point out the importance of
the above mentioned principles regarding the design of knowledge acquisition and
maintenance environments. Within the scope of user studies [10] significant time
savings in development and maintenance processes have been detected due to the
availability of a graphical development, test, and automated debugging environment.
Experiences from the financial services domain [18] show that initially knowledge
bases have to be developed within the scope of a cooperation between domain ex-
perts and technical experts (knowledge engineers). Thereafter, most development
and maintenance requests are directly processed by the domain experts (e.g., updates
in product tables, adaptations of constraints, or recommender process definitions).

6.3 User Guidance in Recommendation Processes

As constraint-based recommender systems operate on the basis of explicit state-
ments about the current customer’s needs and wishes, the knowledge about these
user requirements has to be made available to the system before recommendations
can be made. The general options for such a requirements elicitation process in
increasing order of implementation complexity include the following.

1. Session-independent customer profiles: users enter their preferences and inter-
ests in their user profile by, for example, specifying their general areas of inter-
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Fig. 6.3: CWAdvisor Designer Environment. Recommendation processes are spec-
ified on a graphical level and can be automatically translated into a corresponding
executable representation. Faulty transition conditions can be identified automati-
cally on the basis of model-based diagnosis [20].

est (see also Chapter 22). This is a common approach in web portals or social
networking platforms.

2. Static fill-out forms per session: customers fill out a static web-based form every
time they use the recommender system. Such interfaces are easy to implement
and web users are well-acquainted with such interfaces, which are often used
on web shops search for items.

3. Conversational recommendation dialogs: the recommender system incremen-
tally acquires the user’s preferences in an interactive dialog, based on, for ex-
ample, “critiquing” [8] (see also Chapter 13), “wizard-like“ and form-based
preference elicitation dialogs [13], natural-language interaction [59] or a com-
bination of these techniques.
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In the context of constraint-based recommendation, particularly this last type of
preference elicitation plays an important role and will be in the focus of this chapter,
because recommendation in complex domains such as financial services [18] or
electronic consumer goods [25] often induces a significant cognitive load on the
end user interacting with the system. Thus, adequate user interfaces are required to
make sure that the system is usable for a broad community of online users.

Of course, the static information available in some user-specified customer pro-
file can also be an input source for a constraint-based recommender. The integration
of such general profile information (including particularly demographic informa-
tion) into the recommendation process is straightforward. In many cases, however,
this information is rather unspecific and broad so that the utility of these information
pieces is limited for an in-detail knowledge-based recommendation process.

Static fill-out forms for some applications work well for the above-mentioned
reasons. However, in knowledge-intensive domains, for which constraint-based rec-
ommenders are often built, this approach might be too simplistic, particularly be-
cause the online user community can be heterogeneous with respect to their techni-
cal background, so that it is inappropriate to ask all users the same set of questions
or at the same level of technical detail [25].

Finally, we will also not focus on natural language interaction in this chapter as
only few examples such as [59] exist, that use a (complementing) natural language
recommender system user interface. Despite the advances in the field of Natural
Language Processing and although human-like virtual advisors can be found as an
add-on to different web sites, they are barely used for recommending items to users
today, for which there are different reasons. First, such dialogs are often user-driven,
i.e., the user is expected to actively ask questions. In complex domains, however,
in particular novice users are not capable of formulating such questions about, for
example, the right medium-term investment strategy. In addition, the knowledge-
acquisition effort for such systems is relatively high, as the system should also be
capable of conducting casual conversation. Finally, end users often attribute more
intelligence to such human-like avatars than is warranted which carries the risk of
leaving them disappointed after interacting with the system.

Critiquing Critiquing is a popular interaction style for knowledge-based recom-
mender systems, which was first proposed in [6] in the context of Case-Based Rea-
soning (CBR) approaches to conversational recommendation. The idea is to present
individual items (instances), for example, digital cameras or financial products, to
the user who can then interactively give feedback in terms of critiques on individual
features. A user might, for instance, ask for a financial product with a “shorter in-
vestment period” or a “lower risk”. This recommend-review-revise cycle is repeated
until the desired item is found. Note that although this method was developed for
CBR recommendation approaches3, it can also be applied to constraint-based rec-
ommendation, as the critiques can be directly translated into additional constraints
that reflect the user’s directional preferences on some feature.

3 The general idea of exploring a database by criticizing successive examples is in fact much older
and was already proposed in the early 1980s in an information retrieval context [55].
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When compared with detailed search forms that can be found on many online
shops, the critiquing interaction style has the advantage that it supports the user
in interactively exploring the item space. Moreover, the approach, which is often
also called tweaking, is relatively easy to understand also for novice users. De-
veloping a critiquing application, however, requires some domain knowledge, for
example, about the set of features the user can give feedback, suitable increment
values for number-valued attributes or logical orderings of attributes with enumera-
tion domains. In addition, when mappings from customer needs to product features
are needed, additional engineering effort is required.

The basic critiquing scheme was later on extended to also support compound
critiques [44, 52], where users can give feedback on several features in a single in-
teraction cycle. In the domain of financial services, a user could therefore ask for
a product that has lower risk and a longer investment horizon in one step, thus de-
creasing the number of required interaction cycles. While some sort of pre-designed
compound critiques were already possible in the initial proposal from [6], it is ar-
gued in [44] that the set of possible critiques should be dynamically determined
depending on the remaining items in the current user’s item space and in particular
on the level of variation among these remaining items. The results of experimen-
tal evaluations show that such compound critiques can help to significantly reduce
the number of required interaction cycles, thus making the whole interaction pro-
cess more efficient. In addition, the experiments indicate that compound critiques
(if limited to a size that is still understandable to the user) can also help the user
understand the logic of the recommendations generated by the system.

Recent developments in critiquing include the use of elaborate visual interfaces
[62], the application of the approach in mobile recommender systems [74], or the
evaluation of critiquing styles regarding decision accuracy and cognitive effort [20].

Personalized preference elicitation dialogs Another form of acquiring the user’s
wishes and needs for a constraint-based recommender system is to rely on explicitly
modeled and adaptive preference elicitation dialogs. Such dialog models can for
instance be expressed using a dialog grammar [2] or by using finite-state automaton
as done in the CWAdvisor system [20, 13].

In the later system, the end user is guided by a “virtual advisor” through a series
of questions about the particular needs and requirements before a recommendation
is displayed, see Figure 6.4 for an example dialog. In contrast to static fill-out forms,
the set of questions is personalized, i.e., depending on the current situation and
previous user answers, a different set of questions (probably also using a different
technical or non-technical language [29]) will be asked by the system.

In the CWAdvisor system, the required user interface adaptation is based on
manually-engineered personalization rules and on an explicit dialog model in the
form of a finite-state automaton as shown in Figure 6.1. Thus, a method is chosen
that represents a compromise between fill-out forms to which web users are well-
acquainted and fully free conversation as provided by approaches based on Natural
Language Processing.



198 Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach and Markus Zanker

Fig. 6.4: Interactive and personalized preference elicitation example. Customers
specify their preferences by answering questions.

Technically, the vertices of the finite-state automaton in Figure 6.1 are annotated
with logical expressions over the constraint variables that are used to capture the
user requirements. The process of developing the dialog and personalization model
is supported in the CWAdvisor system by an end-user oriented graphical process
modeling editor. At run time, the interaction-handling component of the framework
collects the user inputs and evaluates the transition conditions in order to decide
how to continue the dialog, see [13] for more details.

Beside the personalization of the dialog, different other forms of adaptation on
the level of content, interaction and presentation are implemented in the system [30]
in order to support the design of preference elicitation and explanation dialogs that
support the end user in the best possible way.

While highly-dynamic and adaptive web applications can be valuable in terms
of ease-of-use and user experience, the technical realization and in particular the
maintenance of such flexible user interfaces for a constraint-based recommender
can be challenging. The main problem in this context are the strong interrelation-
ships between the “model”, the “view” and the control logic of such applications:
consider, for instance, the situation, where the dialog model should be extended with
a new question (variable), a new answer option (new variable domain), or whole di-
alog page (new dialog automaton state). In each case, the web pages that represent
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the “view” of the recommender application, have to be adapted accordingly. There-
fore, toolkits for developing personalized preference elicitation processes, have to
provide mechanisms to at least partially automate the process of updating the user
interface, see [30] for details of the template-based approach in CWAdvisor.

Dealing with unfulfillable or too loose user requirements The issue of the de-
velopment of the user interface is not the only challenging problem in the context of
personalized preference elicitation in constraint-based recommenders. In the follow-
ing, we will sketch further aspects that have to be dealt with in practical applications
of this technology (see also Chapter 15 and Chapter 16).

In constraint-based recommenders, the situation can easily arise that no item in
the catalog fulfills all the constraints of the user. During an interactive recommen-
dation session, a message such as “no matching product found” is however highly
undesirable. The question therefore arises, how to deal with such a situation that
can also occur in CBR-based recommenders that in many cases at least initially
rely on some query mechanism to retrieve an initial set of cases from the product
catalog (case base). One possible approach proposed in the context of CBR-based
recommenders is based on query relaxation [39, 43, 47, 23, 27]. In the context of
CBR recommenders, the set of recommendable items are conceptually stored in a
database table; the case retrieval process consists of sending a conjunctive query Q
(of user requirements) to this case base. Query relaxation then refers to finding a
(maximal) subquery Q′ of the original query Q that returns at least one item.

The general idea of query relaxation techniques can also be applied in constraint-
based recommendation. Consider Example 6.5 (adapted from [27]), where the cata-
log of four items CPROD is shown in tabular form in Figure 6.5.

namep slp
(type of low
risk inv.)

rip
(associated
risk)

mnivp
(min. invest-
ment period)

erp
(expected
return)

instp
(financial
institute)

p1 stockfunds medium 4 5 % ABank
p2 singleshares high 3 5 % ABank
p3 stockfunds medium 2 4 % BInvest
p4 singleshares high 4 5 % CMutual

Fig. 6.5: Example item catalog (financial services).

Example 6.5. Query Relaxation
For sake of clarity and simplicity of the example, let us assume that the customer
can directly specify the desired properties of the investment product on an “ex-
pert screen” of the advisory application. The set of corresponding customer proper-
ties Vc thus contains slc (investment type), ric (risk class), minimum returnc (min-
imum value for expected return) and investment durationc (desired investment du-
ration). The filter constraints (conditions) in this example simple map customer re-
quirements from Cc to item features, i.e., CF = {CF1 : slc = slp, CF2 : ric = rip,
CF3 : investment durationc >= mnivp, CF4 : erp >= minimum returnc}
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Let the concrete customer requirements CC be as follows: {slc = singleshares,
ric = medium, investment durationc = 3, minimum returnc = 5}.

As can be easily seen, no item in the catalog (see Figure 6.5) fulfills all relevant
constraints in the given task, i.e., no consistent recommendation can be found for the
recommendation task. When following a “constraint relaxation“ approach, the goal
now consists of finding a maximal subset of the constraints of CF , for which a rec-
ommendation can be found. The maximization criterion is typically chosen because
the constraints directly relate to customer requirements, i.e., the more constraints
can be retained, the better the retrieved items will match these requirements.

While this problem of finding consistency-establishing subsets of CF seems to be
not too complex at a first glance, in practical settings, computational effectiveness
becomes an issue. Given a constraint base consisting of n constraints, the number of
possible subsets is 2n. Since real-world recommender systems have to serve many
users in parallel and typically the acceptable response time is about one second,
naive subset probing is not appropriate.

Different techniques have therefore been proposed to solve this problem more
efficiently. In [39], for instance, an incremental mixed-initiative to recovery from
failing queries in a CBR recommender was suggested. In [47], a relaxation method
based on manually-defined feature hierarchies was proposed, which despite its in-
complete nature has shown to be an effective help in a travel recommender sys-
tem. Finally, in [27] and [26] a set of complete algorithms for the query relaxation
problem in constraint-based recommenders was developed. The algorithms not only
support the computation of minimum relaxations in linear time (at the cost of a
preprocessing step and slightly increased memory requirements) but also the com-
putation of relaxations that lead to “at least n” remaining items. In addition, also
a conflict-directed algorithm for interactive and incremental query relaxation was
proposed which makes use of recent conflict-detection technology [33].

The main idea of the linear-time constraint relaxation technique can be sketched
as follows. Instead of testing combinations of constraints, the relevant constraints are
evaluated individually, resulting in a data structure that assigns to every constraint
the list of catalog items that fulfill the constraint, see Figure 6.6.

ID Product p1 Product p2 Product p3 Product p4
CF1 0 1 0 1
CF2 1 0 1 0
CF3 0 1 1 0
CF4 1 1 0 1

Fig. 6.6: Evaluating the subqueries individually. For example, product p1 is filtered
out by the filter condition CF1 under the assumption that slc = singleshares.

The table should be interpreted as follows. Constraint CF1 on the type of invest-
ment (single shares) in line 1 of the table would filter out products p1 and p3.
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Given this table, it can be easily determined, which constraints of a given set CF
have to be relaxed to have a certain product in the result set, i.e., consistent with the
constraints and the user requirements. For example, in order to have p1 in the result
set, the constraints CF1 and CF3 of CF have to be relaxed. Let us call this a “product-
specific relaxation” for p1. The main idea of the method from [27] is that the overall
“best” relaxation for given products CPROD, filter conditions CF and a given set of
concrete requirements CC has to be among the product-specific relaxations. Thus, it
is sufficient to scan the set of product-specific relaxations, i.e., no further constraint
solving step is required in this phase.

In the example, the relaxation of constraint CF2 is optimal, when the number of
relaxed constraints determines the best choice as only one customer requirement has
to be given up. All other relaxations require at least two constraints to be ignored,
which can be simply determined by counting the number of zeros in each column.
Note that the number of involved constraints is only one possible optimization cri-
terion. Other optimization criteria that take additional “costs of compromise” per
constraint into account can also be implemented based on this technique as long as
the cost function’s value is monotonically increasing with the size of the relaxation.

Technically, the computation of product-specific relaxations can be done very
efficiently based on bit-set operations [27]. In addition, the computation can partially
also be done in advance in the start-up phase of the recommender.

Suggesting alternatives for unfulfillable requirements In some application do-
mains, the automated or interactive relaxation of individual constraints alone may
be not suffice as a means to help the user out of a situation, in which his or her
requirements cannot be fulfilled. Consider, for instance, a situation where the rec-
ommender in an interactive relaxation scenario proposes a set of alternatives of con-
straints to be relaxed. Let us assume that the user accepts one of the proposals, i.e.,
agrees to relax the constraints related to two variables of VC, for example, A and B.
If, however, the values of A and B are particularly important to him (or mandatory),
he will later on put different constraints on these variables. These new values can,
however, again cause an inconsistency with the other requirements of the user. This
might finally lead to an undesirable situation, in which the user ends up in trying out
different values but gets no clear advise, which values to take to receive a consistent
recommendation.

Overall, it would be thus desirable, if the system could immediately come up
with suggestions for new values for A and B, for which it is guaranteed that some
items remain in the result set when the user’s other requirements are also further
taken into account.

Let us first consider the basic CBR-style case retrieval problem setting as used
in [39, 43, 47], in which constraints are directly placed on item features. The con-
straints in this example shall be {slp = singleshares, rip = medium, minvp < 3,
erp >= 5 }. Again, no item fulfills these requirements.

In such a setting, the detailed information about the catalog items can be used
to compute a set of suggestions for alternative constraints (“repairs”) on individual
features. Based on this information, the system could – instead of only proposing the
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user to relax the constraints on the investment type and on the investment duration –
inform the user that “if the single shares requirement is abandoned and the minimum
investment duration is set to 4” one or more items will be found. Thus, the user will
be prevented from (unsuccessfully) trying a minimum investment duration of 3.

In this example, the calculation of such alternative values can be accomplished by
the system by choosing one relaxation alternative (investment duration and invest-
ment type) and searching the catalog for items that fulfill the remaining constraints.
The values for the investment duration and the investment type (e.g., of product 1 in
Figure 6.5) can be directly taken as suggestions for the end user [19] [14].

While this approach seems intuitive and simple, in practical applications the fol-
lowing problems have to be dealt with.

• The number of possible repairs. In realistic scenarios, the number of possible
repair alternatives is typically very large as for every possible relaxation – there
might be already many of them – various solutions exist. In practice, however,
end users cannot be confronted with more than a few overall alternatives. Thus,
the problem exists to select and prioritize the repair alternatives.

• The size/length of the repair proposals. Repair suggestions that contain alter-
native values for more than three features are not easy to understand for end
users.

• Computational complexity for non-trivial constraints. When only simple con-
straints on product features are allowed, the information from the item catalog
can help to determine possible repairs as described above. In constraint-based
systems such as CWAdvisor, however, the definition of constraints that relate
often qualitative user needs to (technical) product features is possible. Con-
sequently, also the repair suggestions must relate to user requirements, which
means that the search space of possible repair alternatives is determined by the
domains of the user-related variables. In addition, determining whether or not
a specific combination of user requirements (i.e., a repair alternative) leads to a
non-empty result set, requires a probably costly catalog query.

In order to address these issues at least to some extent, the CWAdvisor system
uses a combination of query relaxation and different search heuristics and additional
domain-specific knowledge for the calculation of repair suggestions in a financial
services application [17].

The method implemented in the system interleaves the search for relaxations
with a bounded search for repair alternatives. The possible relaxations are deter-
mined in increasing order of their cardinality. For each relaxation, repair alterna-
tives are determined by varying the values of the variables that are involved in the
relaxed constraints. The selection of alternative values can for instance be guided
by a “nearness” heuristic that is based on an externally or implicitly defined order
of the values. Thus, when varying for instance a user requirement of “at least 5 %
expected return”, the neighboring value of “4 %” is evaluated, assuming that such
an alternative will be more acceptable for the end user than an even stronger relax-
ation. In order to avoid too many similar repair suggestions, the algorithm can be
parameterized with several threshold values that, for example, determine the number
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of repairs for a relaxation, the maximum size of a relaxation and so forth. Overall,
anecdotal evidence in the financial service domain indicates that such a repair fea-
ture, even if it is based on heuristics, is well-appreciated by end users as a means for
shortening the required dialog length.

Query tightening Beside having no item in the result set, having too many items
in the result set is also not desirable in an interactive recommender. In many real-
world applications the user is informed that “too many items have been found” and
that more precise search constraints have to be specified. Often, only the first few
results are displayed (as to, e.g., avoid long page loading times). Such a selection
may however not be optimal for the current user, since the selection is often simply
based on the alphabetic order of the catalog entries.

In order to better support the user also in this situation, in [48] an Interactive
Query Management approach for CBR recommenders is proposed, that also in-
cludes techniques for “query tightening”. The proposed tightening algorithms takes
as an input a query Q and its large result set and selects – on the basis of information-
theoretic considerations and the entropy measure – three features that are presented
to the user as proposals to refine the query.

Overall, an evaluation of Interactive Query Management within a travel recom-
mender system that implemented both query relaxation and query tightening [50],
revealed that the relaxation feature was well-appreciated by end users. With respect
to the tightening functionality, the evaluation indicated that query tightening was not
that important to end users who were well capable of refining their queries by them-
selves. Thus, in [41] a different feature selection method was proposed, that also
take a probabilistic model of feature popularity into account. An evaluation showed
that in certain situations the method of [41] is preferable since it is better accepted
by end users as a means to further refine their queries.

6.4 Calculating Recommendations

Following our characterization of a recommendation task (see Definition 1), we
will now discuss corresponding problem solving approaches. Typical approaches to
solve a recommendation task are constraint satisfaction algorithms [54] and con-
junctive database queries [46] .

Constraint Satisfaction Solutions for constraint satisfaction problems are calcu-
lated on the basis of search algorithms that use different combinations of back-
tracking and constraint propagation - the basic principle of both concepts will be
explained in the following.

Backtracking. In each step, backtracking chooses a variable and assigns all the
possible values to this variable. It checks the consistency of the assignment with
the already existing assignments and defined set of constraints. If all the possible
values of the current variable are inconsistent with the existing assignments and
the constraints, the constraint solver backtracks which means that the previously
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instantiated variable is selected again. In the case that a consistent assignment has
been identified, a recursive activation of the backtracking algorithm is performed
and the next variable is selected [54].

Constraint Propagation. The major disadvantage of pure backtracking-based
search is ”trashing” where parts of the search space are revisited although no so-
lution exists in these parts. In order to make constraint solving more efficient, con-
straint propagation techniques have been introduced. These techniques try to modify
an existing constraint satisfaction problem such that the search space can be reduced
significantly. The methods try to create a state of local consistency that guarantees
consistent instantiations among groups of variables. The mentioned modification
steps turn an existing constraint satisfaction problem into an equivalent one. A well
known type of local consistency is arc consistency [54] which states that for two
variables X and Y there must not exist a value in the domain of Y which does not
have a corresponding consistent value in X. Thus, arc consistency is a directed con-
cept which means that if X is arc consistent with Y, the reverse must not necessarily
be the case.

When using a constraint solver, constraints are typically represented in the form
of expressions of the corresponding programming language. Many of the exist-
ing constraint solvers are implemented on the basis of Java (see, for example, ja-
cop.osolpro.com).

Conjunctive Database Queries Solutions to conjunctive queries are calculated on
the basis of database queries that try to retrieve items which fulfill all of the defined
customer requirements. For details on the database technologies and the execution
of queries on database tables see, for example, [46].

Ranking Items Given a recommendation task, both constraint solvers and database
engines try to identify a set of items that fulfill the given customer requirements.
Typically, we have to deal with situations where more than one item is part of a
recommendation result. In such situations the items (products) in the result set have
to be ranked. In both cases (constraint solvers and database engines), we can apply
the concepts of multi-attribute utility theory (MAUT) [56] that helps to determine
a ranking for each of the items in the result set. Examples for the application of
MAUT can be found in [13].

An alternative to the application of MAUT in combination with conjunctive
queries are probabilistic databases [35] which allow a direct specification of rank-
ing criteria within a query. Example 6.6 shows such a query which selects all prod-
ucts that fulfill the criteria in the WHERE clause and orders the result conform to a
similarity metric (defined in the ORDER BY clause). Finally, instead of combining
the mentioned standard constraint solvers with MAUT, we can represent a recom-
mendation task in the form of soft constraints where the importance (preference) for
each combination of variable values is determined on the basis of a corresponding
utility operation (for details see, for example, [1]).

Example 6.6. Queries in probabilistic databases
Result = SELECT * /* calculate a solution */
FROM Products /* select items from ”Products” */
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WHERE x1=a1 and x2=a2 /* ”must” criteria */
ORDER BY score(abs(x3-a3), ..., abs(xm-am)) /* similarity-based utility function */
STOP AFTER N; /* at most N items in the solution (result set) */

6.5 Experiences from Projects and Case Studies

The CWAdvisor system has been commercialized in 2002 and since then more than
35 different applications have been instantiated and fielded. They have been ap-
plied in commercial domains ranging from financial services [17] to electronic con-
sumer goods or tourism applications [32] as well as to application domains that are
considered rather untypical for recommender systems such as providing counsel-
ing services on business plans [28] or supporting software engineers in selecting
appropriate software estimation methods [43].

Based on this installation base different forms of empirical research have been
conducted that try to assess the impact and business value of knowledge based rec-
ommender systems as well as to identify opportunities for advancing their state-of-
the-art. In the following we will differentiate them based on their study design into
user studies, evaluations on historical data and case studies of productive systems.

Experimental user studies simulate real user interactions and research the accep-
tance or rejection of different hypotheses. [15] conducted a study to evaluate the
impact of specific functionalities of conversational knowledge-based recommenders
like explanations, proposed repair actions or product comparisons. The study as-
signed users randomly to different versions of the recommender system that varied
the functionalities and applied pre- and post-interaction surveys to identify users’
level of knowledge in the domain, their trust in the system or the perceived compe-
tence of the recommender. Quite interestingly, the study showed that study partici-
pants appreciate these specific functionalities as they increase their perceived level
of knowledge in the domain and their trust in the system’s recommendations.

The COHAVE project initiated a line of research that investigated how psycho-
logical theories might be applied to explain users’ behavior in online choice situa-
tions. For instance, asymmetric dominance effects arise if proposed itemsets contain
decoy products that are dominated by other products due to their relative similarity
but a lower overall utility. Several user studies in domains such as electronic con-
sumer goods, tourism and financial services showed, that knowing about these ef-
fects a recommender can increase the conversion rate of some specific items as well
as a users confidence in the buying decision.

Algorithm evaluations on historical datasets are off-line experimentations [25].
A dataset that contains past user transactions is split into a training and testing set.
Consequently, the training set is exploited to learn a model or tune algorithm’s pa-
rameters in order to enable the recommender to predict the historic outcomes of
the user sessions contained in the testing set. Such an evaluation scenario enables
comparative research on algorithm performance. While collaborative and content-
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based recommendation paradigms have been extensively evaluated in the literature,
comparing knowledge-based recommendation algorithms with other recommenda-
tion paradigms received only few attention in the past. One reason is that they are
hard to compare, because they require different types of algorithm input: collabo-
rative filtering typically exploits user ratings while constraint-based recommender
systems require explicit user requirements, catalog data and domain knowledge.
Consequently, datasets that contain all these types of input data - like the Entree
dataset provided by Burke [14] - would allow such comparisons, however they are
very rare. One of the few is described in [61]. The dataset stems from a retailer
offering premium cigars and includes implicit ratings signifying users’ purchase
actions, users’ requirements input to a conversational recommender and a product
catalog with detailed item descriptions. Therefore, offline experiments compared
knowledge-based algorithm variants that exploited user requirements with content-
based and collaborative algorithms working on ratings. One of the interesting re-
sults were that knowledge-based recommenders did not perform worse in terms
of serendipity measured by the catalog coverage metric than collaborative filter-
ing. This is especially true if a constraint-based recommender is cascaded with a
utility-based item ranking scheme like the CWAdvisor system. However, collabora-
tive filtering does better in terms of accuracy, if there are 10 and more ratings known
from users. Nevertheless, an evaluation of a knowledge-based recommender always
measures the quality of the encoded knowledge base and the inferencing itself.

Another study was instrumented in [60] that focuses on explicit user require-
ments as the sole input for personalization mechanisms. It compares different hy-
bridization variants between knowledge-based and collaborative algorithms, where
collaborative filtering interprets explicit requirements as a form of rating. Result sets
of knowledge-based recommenders turn out to be very precise, if users formulated
some specific requirements. However, when only few constraints apply and result
sets are large the ranking function is not always able to identify the best matching
items. In contrast, collaborative filtering learns the relationships between require-
ments and actually purchased items. Therefore, the study shows that a cascading
strategy where the knowledge-based recommender removes candidates based on
hard criteria and a collaborative algorithm does the ranking does best.

Consequently, in [57] a meta-level hybridization approach between knowledge-
based and collaborative filtering was proposed and validated. There collaborative
filtering learns constraints that map users’ requirements onto catalog properties of
purchased items and feeds them as input into a knowledge-based recommender that
acts as the principal component. Offline experiments on historical data provided
initial evidence that such an approach is able to outperform the knowledge base
elicited from the domain experts with respect to algorithm’s accuracy. Based on
these first promising results further research on automatically extracting constraints
from historic transaction data will take place.

Case studies on productive systems are the most realistic form of evaluation be-
cause users act under real-world conditions and possess an intrinsic motivation to
use the system. In [13] experiences from two commercial projects in the domains
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of financial services and electronic consumer goods are reported. In the latter do-
main a conversational recommender for digital cameras has been fielded that was
utilized by more than 200.000 online shoppers at a large Austrian price comparison
platform. Replies to an online questionnaire supported the hypothesis that advisor
applications help users to better orientate themselves when being confronted with
large sets of choices. A significantly higher share of users successfully completed
their product search when using the conversational recommender compared to those
that did not use it. Installations of knowledge-based recommenders in the financial
services domain follow a different business model as they support sales agents while
interacting with their prospective clients. Empirical surveys among sales representa-
tives figured out that time savings when interacting with clients are a big advantage
which in turn allows sales staff to identify sales opportunities [13, 17].

In [58] a case study researches how the application of a knowledge-based conver-
sational sales recommender on a Webshop for Cuban cigars affects online shoppers
behavior. Therefore the sales records in the period before and after introducing the
recommender were analyzed. One interesting finding of this study is that the list
of top ranked items in the two periods differs considerably. In fact items that were
infrequently sold in the period before but very often recommended by the system
experienced a very high demand. Thus the relative increase of items was positively
correlated with how often the recommender proposed these items. The advice given
by recommendation applications is followed by users and leads to online conver-
sions. This confirms the results of user studies like [15] that were initially discussed.
Finally, another evaluation of a knowledge-based recommender in the tourism do-
main was conducted to compare conversion rates, i.e., the share of users that turned
into bookers, between users and non-users of the interactive sales guide [59]. This
study strongly empirically confirms that the probability of users issuing a booking
request is more than twice as high for those having interacted with the interactive
travel advisor than for the others.

Thus, based on these results we are able to summarize that constraint-based rec-
ommendation has been successfully deployed in several commercial application do-
mains and is well accepted by their users.

6.6 Future Research Issues

On the one hand constraint-based recommender systems have proven their utility in
many fielded applications on the other hand we can identify several challenges for
improvements. Such improvements will lead to enhancing the quality for users, the
broadness of the application fields, and the development of recommender software.

Automated product data extraction A constraint-based recommender is only as
good as its knowledge base. Consequently, the knowledge base has to be correct,
complete, and up-to-date in order to guarantee high quality recommendations. This
implies significant maintenance tasks, especially in those domains where data and
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recommendation knowledge changes frequently, for example, electronic consumer
products. Currently, maintenance is done by human experts, for example, collecting
product data or updating rule-bases. However, in many domains at least product data
is accessible for machines on the web. By exploiting the internet as a resource for
data and knowledge almost all necessary pieces for many recommender applications
could be collected. The major research focuses in this context are the automated
extraction of product data from different information sources and the automated de-
tection and adaptation of outdated product data. This includes identifying relevant
information sources (for instance, Web pages), extracting product data, and resolv-
ing contradictions in those data. A related recent challenge is extracting product
information directly from digital multimedia products such as books, CDs, DVDs,
and TV programs.

However, the fundamental problem for machines is the presentation of data in
the web. Data in the Web is usually presented with the goal that humans can easily
access and comprehend information. Unfortunately, the opposite is true for comput-
ers which are currently not particulary capable in interpreting visual information.
Therefore, a fundamental research question is how we can enable machines such
that they can “read” the web similarly as humans do. In fact, this task goes far be-
yond recommender systems and is a central endeavor of the Semantic Web and on
a more general level of Artificial Intelligence. Although it seems that currently this
task is far too ambitious to be solved in the near future, we can exploit the particular-
ities of recommendation domains. For example, when dealing with the extraction of
product data from the web, we can search for product descriptions in tabular form,
extract the data of these product descriptions, and instantiate a product database
[31]. Of course the success of such methods depends on the domains. For example
in the domain of electronic consumer products like digital cameras the description
of cameras follows a common structure (e.g., data-sheets of different brands are
very similar) whereas in other domains like holiday resorts product descriptions are
mostly expressed by natural language text. It has to be mentioned that instead of an
automatic translation of human readable content in machine processable data there
is the alternative to provide such machine processable data in addition or instead
of human readable content. Indeed strong market forces like internet search engine
vendors might offer improved search services if machine processable information
is provided. For example, product vendors supply their data in specific formats and
benefit by an improved ranking in search results. However, in this scenario search
machine vendors dictate which descriptions of which products are available for rec-
ommendations purposes which leads to a strong dependency on single authorities.
Therefore, the aim to enable computers to read the web as humans do remains an
important point on the research agenda.

Community-based knowledge acquisition The cornerstone of constraint-based
recommendation is efficient knowledge acquisition and maintenance. This problem
has been addressed in the past in different dimensions, the main focus lying on
knowledge representation and conceptualization issues as well as on process mod-
els for capturing and formalizing a domain expert’s knowledge. Historically, one
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main assumption of these approaches was that there shall exist one single point of
knowledge formalization and in consequence one (user-oriented) conceptualization
and a central knowledge acquisition tool. In most cases in real world, however, the
domain knowledge is in the heads of different stakeholders, typical examples being
cross-department or cross-organization business rules or new types of applications,
in which large user communities are sharing knowledge in an open-innovation ,
web-based environment. Only recently, with the emergence and spread of Web 2.0
and Semantic Web technologies, the opportunities and also the problems of collab-
orative knowledge acquisition have again become a topic of interest. With regard
to the types of knowledge to be acquired, the main focus of these recent develop-
ments, however, is on acquiring “structural” knowledge, i.e., on terms, concepts, and
relationships among them. New developments aim at going a step further and tar-
get at the collaborative acquisition and refinement of domain-constraints and busi-
ness rules as they represent the most crucial, frequently updated, and thus costly
part in many knowledge-based applications. The main questions to be answered
comprise the following: How can we automatically detect and resolve conflicts
if knowledge acquisition is distributed between different knowledge contributors?
How can we assist the knowledge contributors to acquire knowledge by asking them
the “right” questions, i.e., minimizing the interaction needed? How can we gener-
ate “good” proposals for changing the knowledge base from different, possibly only
partially-defined knowledge chunks, i.e., find plausible (in the eyes of the contribu-
tors) changes of the knowledge base?

Usually the term knowledge acquisition refers to methods supporting the user
to formulate rules, constraints, or other logical descriptions depending on the em-
ployed language. This task is complicated in recommender systems since in most
cases the output includes a preference relation over the recommended items. Conse-
quently, knowledge acquisition has to support also the formulation, debugging, and
testing of such preference descriptions [21].

A further factor which complicates the search for a satisfying knowledge base
is the demand for high quality explanations . Explanations in constraint-based rec-
ommender systems are generated by exploiting the content of the knowledge base.
In fact, different knowledge bases can provide the equivalent input/output behavior
with respect to recommendations but show significant differences in their explana-
tory quality. Consequently, a further important goal of knowledge acquisition is sup-
porting the formulation of comprehensible knowledge bases which serve the user to
gain confidence in the recommendations.

Knowledge bases for recommender systems have to be considered as dynamic.
Unfortunately this dynamics are not only caused by changing product catalogs but
also by shifts of customer preferences. For example, the pixel resolution of digi-
tal photos considered to be sufficient for printing an A4 picture changes over time
because of higher demands for quality. Consequently, automatic detection of such
shifts and supporting a subsequent adaptation of the knowledge base are of great
interest.
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Validation Successfully developing and maintaining recommender knowledge bases
requires intelligent testing environments that can guarantee the recommendations’
correctness. Particularly in application areas where a certain recommendation qual-
ity must be assured (e.g., financial products) a company employing recommender
systems has to be sure about the quality of the recommendation process and its
outcome. So, future research must focus on developing mechanisms to automati-
cally configure optimal test suites that both maximize the probability of identifying
faulty elements in the recommender knowledge base and minimize the number of
test cases needed to achieve this goal. Minimizing the number of test cases is im-
portant because domain experts must validate them manually. This validation output
fits nicely with supporting knowledge acquisition since any feedback from a knowl-
edge engineer can be exploited for learning recommendation knowledge bases. In
particular an interesting research question is to which extend arguments of a user in
favor or against a recommendation can be exploited to improve knowledge bases. In
[51] an algorithm is described which learns constraints based on arguments why an
example (e.g., a product) should be recommended or not.

Recommendation of configurable products and services With the production of
the Model T about 100 years ago, Henry Ford revolutionized manufacturing by
employing mass production (the efficient production of many identical products).
Nowadays, mass production is an outmoded business model, and companies must
provide goods and services that fit customers’ individual needs. In this context,
mass customization – the production of highly variant products and services un-
der mass production pricing conditions – has become the new paradigm. A phe-
nomenon accompanying mass customization is mass confusion, which occurs when
items are too numerous and complex for users to survey. Developing recommender
technologies that apply to configurable products and services can help tackle mass
confusion. For example, recommender technology could be adapted to help the
uninformed customer to discover her wishes, needs, and product requirements in
a domain of almost unlimited product variants. However, recommendation of con-
figurable products pushes the limits of current recommender technologies. Current
techniques assume that items to be recommended can be extensionally represented.
But configuration domains frequently offer such a high product variance that the
set of all possible configurations can only be intensionally characterized by config-
uration descriptions. For example, configurable systems may comprise thousand
of components and connections. In these domains searching for the most preferred
configurations satisfying the customer requirements is a challenging task.

Intelligibility and explanation To be convincing, recommendations must be ex-
plained to customers. When they can challenge a recommendation and see why a
system recommended a specific product customers will start to trust that system. In
general, explanations are provided for outputs of recommender systems and serve
a wide spectrum of tasks, for example, increase transparency and trust, persuade a
customer, or improve customer satisfaction just to name some. These explanations
depend on the state of the recommendation process and the user profile, for ex-
ample, her aims, desires, and prior knowledge. The vision of future recommender
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systems is that pro-actively information is provided to the user such that explanation
goals are optimized, i.e., if the recommender recognizes that a customer does not
understand the differences between alternative products then explanations of these
differences are offered. Conversely, customers with a rich background of a product
domain and a clear understanding what they want can be offered a quick jump to a
recommendation with a detailed technical justification. Consequently, the research
challenge is to create an artificial recommender agent that acts flexibly to the needs
of customers. Explanations are a cornerstone in such a general endeavor.

Theories of consumer buying behavior A truly intelligent recommender agent
adapts to the user. This implies that the recommender has a model of the user which
allows predictions about her reaction depending on the information provided. In
particular, if we have a model about the influencing factors of consumer buying
behavior then it is possible to reason about the best next actions a recommender
agent can take. Therefore, research in recommender technology can greatly benefit
from insights of cognitive and decision psychology. One can argue that such “intelli-
gent” behavior of recommender agents is questionable from an ethical point of view.
However, every information provided to a customer influences her buying behavior.
Therefore, it is important to understand the consequences of communications with
the customer thus allowing a more planned design of recommender systems.

Context awareness and ambient intelligence Recommender systems may not
only be regarded as simple software tools accessible via a PC but rather as intel-
ligent agents recommending actions in various situations. For example, in future
cars artificial assistants will provide advice for various driving tasks, such as, over-
taking, turning, or parking. In order to give recommendations in such environments
the recommender has to be aware of the situation and the goals of a user. Other
typical scenarios are recommendations for tourists during their journeys. In such
situations, recommendations depend not only on customer preferences but also on
the context, which can include attributes such as time of day, season, weather con-
ditions, and ticket availability. Note, that the mentioned scenarios requires so called
ambient intelligence. Not the traditional computer is the only interface to the cus-
tomer but speech and gesture play an important role for the communication between
user and recommender.

Semantic Web The W3C states “The Semantic Web provides a common frame-
work that allows data to be shared and reused across application, enterprise, and
community boundaries.” In particular Semantic Web technologies offer methods to
relate data in the web. This can be exploited to implement a decentralized web of
entities who trust each other or relations between customers and products they rated.
Based on such relations between customers or products many improvements are fea-
sible. We already mentioned that the extraction of product data and knowledge ac-
quisition can benefit from the machine readable content descriptions. However, we
can go a step further and use the information in the Semantic Web to improve the
quality of recommendations [22, 63]. In particular, an agent can consider only those
ratings of trustworthy agents in order to avoid intentional misguidance. Further-
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more, the Semantic Web allows to integrate data of various sources in the reasoning
process. On the one hand this enhances knowledge-based recommendation since
knowledge is contributed and maintained by a community on a decentralized com-
puting infrastructure and therefore knowledge-acquisition efforts are shared. How-
ever, on the other hand many research questions for this scenario arise: How can the
quality of recommendations be guaranteed or at least assessed? How can we assess
the trustworthiness and quality of knowledge sources? How can we make sure that
for the description of products and services there is a common agreement on the
concepts and values used? How can we deal with differences in the meaning of con-
cepts and values? How can we assess not only the correctness of recommendations
but also their completeness?

6.7 Summary

In this chapter we provided an overview of major constraint-based recommendation
technologies. These technologies are especially applicable to large and potentially
complex product assortments where collaborative filtering and content-based filter-
ing technologies have their drawbacks. The usefulness of constraint-based recom-
mendation technologies has been shown in different commercial applications - those
applications have been analyzed in this chapter. Finally, to trigger further research in
the field, we provide an extensive overview of important future research directions.
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Chapter 7
Context-Aware Recommender Systems

Gediminas Adomavicius and Alexander Tuzhilin

Abstract The importance of contextual information has been recognized by re-
searchers and practitioners in many disciplines, including e-commerce personal-
ization, information retrieval, ubiquitous and mobile computing, data mining, mar-
keting, and management. While a substantial amount of research has already been
performed in the area of recommender systems, most existing approaches focus on
recommending the most relevant items to users without taking into account any ad-
ditional contextual information, such as time, location, or the company of other peo-
ple (e.g., for watching movies or dining out). In this chapter we argue that relevant
contextual information does matter in recommender systems and that it is important
to take this information into account when providing recommendations. We discuss
the general notion of context and how it can be modeled in recommender systems.
Furthermore, we introduce three different algorithmic paradigms – contextual pre-
filtering, post-filtering, and modeling – for incorporating contextual information into
the recommendation process, discuss the possibilities of combining several context-
aware recommendation techniques into a single unifying approach, and provide a
case study of one such combined approach. Finally, we present additional capabil-
ities for context-aware recommenders and discuss important and promising direc-
tions for future research.
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7.1 Introduction and Motivation

The majority of existing approaches to recommender systems focus on recommend-
ing the most relevant items to individual users and do not take into consideration any
contextual information, such as time, place and the company of other people (e.g.,
for watching movies or dining out). In other words, traditionally recommender sys-
tems deal with applications having only two types of entities, users and items, and
do not put them into a context when providing recommendations.

However, in many applications, such as recommending a vacation package, per-
sonalized content on a Web site, or a movie, it may not be sufficient to consider only
users and items – it is also important to incorporate the contextual information into
the recommendation process in order to recommend items to users under certain cir-
cumstances. For example, using the temporal context, a travel recommender system
would provide a vacation recommendation in the winter that can be very different
from the one in the summer. Similarly, in the case of personalized content delivery
on a Web site, it is important to determine what content needs to be delivered (rec-
ommended) to a customer and when. More specifically, on weekdays a user might
prefer to read world news when she logs on in the morning and the stock market
report in the evening, and on weekends to read movie reviews and do shopping.

These observations are consistent with the findings in behavioral research on
consumer decision making in marketing that have established that decision making,
rather than being invariant, is contingent on the context of decision making. There-
fore, accurate prediction of consumer preferences undoubtedly depends upon the
degree to which the recommender system has incorporated the relevant contextual
information into a recommendation method.

More recently, companies started incorporating some contextual information into
their recommendation engines. For example, when selecting a song for the customer,
Sourcetone interactive radio (www.sourcetone.com) takes into the consideration the
current mood of the listener (the context) that she specified. In case of music recom-
menders, some of the contextual information, such as listener’s mood, may matter
for providing better recommendations. However, it is still not clear if context matters
for a broad range of other recommendation applications.

In this chapter we discuss the topic of context-aware recommender systems
(CARS), address this and several other related questions, and demonstrate that, de-
pending on the application domain and the available data, at least certain contextual
information can be useful for providing better recommendations. We also propose
three major approaches in which the contextual information can be incorporated
into recommender systems, individually examine these three approaches, and also
discuss how these three separate methods can be combined into one unified ap-
proach. Finally, the inclusion of the contextual information into the recommenda-
tion process presents opportunities for richer and more diverse interactions between
the end-users and recommender systems. Therefore, in this chapter we also discuss
novel flexible interaction capabilities in the form of the recommendation query lan-
guage for context-aware recommender systems.
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The rest of the chapter is organized as follows. Section 7.2 discusses the general
notion of context as well as how it can be modeled in recommender systems. Sec-
tion 7.3 presents three different algorithmic paradigms for incorporating contextual
information into the recommendation process. Section 7.4 discusses the possibili-
ties of combining several context-aware recommendation techniques and provides
a case study of one such combined approach. Additional important capabilities for
context-aware recommender systems are described in Section 7.5, and the conclu-
sions and some opportunities for future work are presented in Section 7.6.

7.2 Context in Recommender Systems

Before discussing the role and opportunities of contextual information in recom-
mender systems, in Section 7.2.1 we start by discussing the general notion of con-
text. Then, in Section 7.2.2, we focus on recommender systems and explain how
context is specified and modeled there.

7.2.1 What is Context?

Context is a multifaceted concept that has been studied across different research dis-
ciplines, including computer science (primarily in artificial intelligence and ubiqui-
tous computing), cognitive science, linguistics, philosophy, psychology, and orga-
nizational sciences. In fact, an entire conference – CONTEXT (see, for example,
http://context-07.ruc.dk) – is dedicated exclusively to studying this topic and incor-
porating it into various other branches of science, including medicine, law, and busi-
ness. In reference to the latter, a well-known business researcher and practitioner C.
K. Prahalad has stated that “the ability to reach out and touch customers anywhere
at anytime means that companies must deliver not just competitive products but also
unique, real-time customer experiences shaped by customer context” and that this
would be the next main issue (“big thing”) for the CRM practitioners [57].

Since context has been studied in multiple disciplines, each discipline tends to
take its own idiosyncratic view that is somewhat different from other disciplines
and is more specific than the standard generic dictionary definition of context as
“conditions or circumstances which affect some thing” [70]. Therefore, there ex-
ist many definitions of context across various disciplines and even within specific
subfields of these disciplines. Bazire and Brézillon [17] present and examine 150
different definitions of context from different fields. This is not surprising, given the
complexity and the multifaceted nature of the concept. As Bazire and Brézillon [17]
observe:

“. . . it is difficult to find a relevant definition satisfying in any discipline. Is context a frame
for a given object? Is it the set of elements that have any influence on the object? Is it
possible to define context a priori or just state the effects a posteriori? Is it something static
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or dynamic? Some approaches emerge now in Artificial Intelligence [. . .]. In Psychology, we
generally study a person doing a task in a given situation. Which context is relevant for our
study? The context of the person? The context of the task? The context of the interaction?
The context of the situation? When does a context begin and where does it stop? What are
the real relationships between context and cognition?”

Since we focus on recommender systems in this paper and since the general
concept of context is very broad, we try to focus on those fields that are directly
related to recommender systems, such as data mining, e-commerce personalization,
databases, information retrieval, ubiquitous and mobile context-aware systems, mar-
keting, and management. We follow Palmisano et al. [54] in this section when de-
scribing these areas.

Data Mining. In the data mining community, context is sometimes defined as those
events which characterize the life stages of a customer and that can determine a
change in his/her preferences, status, and value for a company [18]. Examples of
context include a new job, the birth of a child, marriage, divorce, and retirement.
Knowledge of this contextual information helps (a) mining patterns pertaining to
this particular context by focusing only on the relevant data; for example, the data
pertaining to the daughter’s wedding, or (b) selecting only relevant results, i.e., those
data mining results that are applicable to the particular context, such as the discov-
ered patterns that are related to the retirement of a person.

E-commerce Personalization. Palmisano et al. [54] use the intent of a purchase
made by a customer in an e-commerce application as contextual information. Dif-
ferent purchasing intents may lead to different types of behavior. For example, the
same customer may buy from the same online account different products for dif-
ferent reasons: a book for improving her personal work skills, a book as a gift, or
an electronic device for her hobby. To deal with different purchasing intentions,
Palmisano et al. [54] build a separate profile of a customer for each purchasing con-
text, and these separate profiles are used for building separate models predicting
customer’s behavior in specific contexts and for specific segments of customers.
Such contextual segmentation of customers is useful, because it results in better
predictive models across different e-commerce applications [54].

Recommender systems are also related to e-commerce personalization, since per-
sonalized recommendations of various products and services are provided to the
customers. The importance of including and using the contextual information in rec-
ommendation systems has been demonstrated in [3], where the authors presented a
multidimensional approach that can provide recommendations based on contextual
information in addition to the typical information on users and items used in many
recommendation applications. It was also demonstrated by Adomavicius et al. [3]
that the contextual information does matter in recommender systems: it helps to
increase the quality of recommendations in certain settings.

Similarly, Oku et al. [53] incorporate additional contextual dimensions (such as
time, companion, and weather) into the recommendation process and use machine
learning techniques to provide recommendations in a restaurant recommender sys-
tem. They empirically show that the context-aware approach significantly outper-
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forms the corresponding non-contextual approach in terms of recommendation ac-
curacy and user’s satisfaction with recommendations.

Since we focus on the use of context in recommender systems in this paper, we
will describe these and similar approaches later in the chapter.

Ubiquitous and mobile context-aware systems. In the literature pertaining to the
context-aware systems, context was initially defined as the location of the user, the
identity of people near the user, the objects around, and the changes in these ele-
ments [63]. Other factors have been added to this definition subsequently. For in-
stance, Brown et al. [23] include the date, the season, and the temperature. Ryan
et al. [61] add the physical and conceptual statuses of interest for a user. Dey et al.
[33] include the user’s emotional status and broaden the definition to any informa-
tion which can characterize and is relevant to the interaction between a user and an
application. Some associate the context with the user [33, 35], while others empha-
size how context relates to the application [60, 69]. More recently, a number of other
techniques for context-aware systems have been discussed in research literature, in-
cluding hybrid techniques for mobile applications [59, 71] and graphical models for
visual recommendation [20].

This contextual information is crucial for providing a broad range of Location-
Based Services (LBSes) to the mobile customers [64]. For example, a Broadway the-
ater may want to recommend heavily discounted theater tickets to the Time Square
visitors in New York thirty minutes before the show starts (since these tickets will
be wasted anyway after the show begins) and send this information to the visitors’
smart phones or other communication devices. Note that time, location, and the type
of the communication device (e.g., smart phone) constitute contextual information
in this application. Brown et al. [22] introduce another interesting application that
allows tourists interactively share their sightseeing experiences with remote users,
demonstrating the value that context-aware techniques can provide in supporting
social activities.

A survey of context-aware mobile computing research can be found in [30],
which discusses different models of contextual information, context-sensing tech-
nologies, different possible architectures, and a number of context-aware application
examples.

Databases. Contextual capabilities have been added to some of the database man-
agement systems by incorporating user preferences and returning different answers
to database queries depending on the context in which the queries have been ex-
pressed and the particular user preferences corresponding to specific contexts. More
specifically, in Stephanidis et al. [66] a set of contextual parameters is introduced
and preferences are defined for each combination of regular relational attributes and
these contextual parameters. Then Stephanidis et al. [66] present a context-aware
extension of SQL to accommodate for such preferences and contextual informa-
tion. Agrawal et al. [7] present another method for incorporating context and user
preferences into query languages and develop methods of reconciling and ranking
different preferences in order to expeditiously provide ranked answers to contextual
queries. Mokbel and Levandoski [52] describe the context-aware and location-aware



222 Gediminas Adomavicius and Alexander Tuzhilin

database server CoreDB and discuss several issues related to its implementation,
including challenges related to context-aware query operators, continuous queries,
multi-objective query processing, and query optimization.

Information Retrieval. Contextual information has been proven to be helpful in
information retrieval and access [40], although most existing systems base their re-
trieval decisions solely on queries and document collections, whereas information
about search context is often ignored [9]. The effectiveness of a proactive retrieval
system depends on the ability to perform context-based retrieval, generating queries
which return context-relevant results [46, 65]. In Web searching, context is consid-
ered as the set of topics potentially related to the search term. For instance, Lawrence
[45] describes how contextual information can be used and proposes several special-
ized domain-specific context-based search engines. Integration of context into the
Web services composition is suggested by Maamar et al. [51]. Most of the current
context-aware information access and retrieval techniques focus on the short-term
problems and immediate user interests and requests (such as “find all files created
during a spring meeting on a sunny day outside an Italian restaurant in New York”),
and are not designed to model long-term user tastes and preferences.

Marketing and Management. Marketing researchers have maintained that the
purchasing process is contingent upon the context in which the transaction takes
place, since the same customer can adopt different decision strategies and prefer
different products or brands depending on the context [19, 50]. According to Lilien
et al. [47], “consumers vary in their decision-making rules because of the usage sit-
uation, the use of the good or service (for family, for gift, for self) and purchase
situation (catalog sale, in-store shelf selection, and sales person aided purchase).”
Therefore, accurate predictions of consumer preferences should depend on the de-
gree to which we have incorporated the relevant contextual information. In the mar-
keting literature, context has been also studied in the field of behavioral decision
theory. In Lussier and Olshavsky [50], context is defined as a task complexity in the
brand choice strategy.

The context is defined in Prahalad [57] as “the precise physical location of a cus-
tomer at any given time, the exact minute he or she needs the service, and the kind
of technological mobile device over which that experience will be received.” Fur-
ther, Prahalad [57] focuses on the applications where the contextual information is
used for delivering “unique, real-time customer experiences” based on this contex-
tual information, as opposed to the delivery of competitive products. Prahalad [57]
provides an example about the case when he left his laptop in a hotel in Boston,
and was willing to pay significant premiums for the hotel shipping the laptop to him
in New York in that particular context (he was in New York and needed the laptop
really urgently in that particular situation).

To generalize his statements, Prahalad [57] really distinguishes among the fol-
lowing three dimensions of the contextual information: temporal (when to deliver
customer experiences), spatial (where to deliver), and technological (how to de-
liver). Although Prahalad focuses on the real-time experiences (implying that it is
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really the present time, “now”), the temporal dimension can be generalized to the
past and the future (e.g., I want to see a movie tomorrow in the evening).

As this section clearly demonstrates, context is a multifaceted concept used
across various disciplines, each discipline taking a certain angle and putting its
“stamp” on this concept. To bring some “order” to this diversity of views, Dourish
[34] introduces taxonomy of contexts, according to which contexts can be classified
into the representational and the interactional views. In the representational view,
context is defined with a predefined set of observable attributes, the structure (or
schema, using database terminology) of which does not change significantly over
time. In other words, the representational view assumes that the contextual attributes
are identifiable and known a priori and, hence, can be captured and used within the
context-aware applications. In contrast, the interactional view assumes that the user
behavior is induced by an underlying context, but that the context itself is not neces-
sarily observable. Furthermore, Dourish [34] assumes that different types of actions
may give rise to and call for different types of relevant contexts, thus assuming a
bidirectional relationship between activities and underlying contexts: contexts in-
fluence activities and also different activities giving rise to different contexts.

In the next section, we take all these different definitions and approaches to con-
text and adapt them to the idiosyncratic needs of recommender systems. As a result,
we will also revise and enhance the prior definitions of context used in recommender
systems, including those provided in [3, 53, 72].

7.2.2 Modeling Contextual Information in Recommender Systems

Recommender systems emerged as an independent research area in the mid-1990s,
when researchers and practitioners started focusing on recommendation problems
that explicitly rely on the notion of ratings as a way to capture user preferences
for different items. For example, in case of a movie recommender system, John
Doe may assign a rating of 7 (out of 10) for the movie “Gladiator,” i.e., set
Rmovie(John Doe, Gladiator)=7. The recommendation process typically starts with
the specification of the initial set of ratings that is either explicitly provided by the
users or is implicitly inferred by the system. Once these initial ratings are specified,
a recommender system tries to estimate the rating function R

R : User× Item→ Rating

for the (user, item) pairs that have not been rated yet by the users. Here Rating is
a totally ordered set (e.g., non-negative integers or real numbers within a certain
range), and User and Item are the domains of users and items respectively. Once the
function R is estimated for the whole User × Item space, a recommender system
can recommend the highest-rated item (or k highest-rated items) for each user. We
call such systems traditional or two-dimensional (2D) since they consider only the
User and Item dimensions in the recommendation process.
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In other words, in its most common formulation, the recommendation problem
is reduced to the problem of estimating ratings for the items that have not been seen
by a user. This estimation is usually based on the ratings given by this user to other
items, ratings given to this item by other users, and possibly on some other infor-
mation as well (e.g., user demographics, item characteristics). Note that, while a
substantial amount of research has been performed in the area of recommender sys-
tems, the vast majority of the existing approaches focus on recommending items to
users or users to items and do not take into the consideration any additional contex-
tual information, such as time, place, the company of other people (e.g., for watching
movies). Motivated by this, in this chapter we explore the area of context-aware rec-
ommender systems (CARS), which deal with modeling and predicting user tastes and
preferences by incorporating available contextual information into the recommen-
dation process as explicit additional categories of data. These long-term preferences
and tastes are usually expressed as ratings and are modeled as the function of not
only items and users, but also of the context. In other words, ratings are defined with
the rating function as

R : User× Item×Context→ Rating,

where User and Item are the domains of users and items respectively, Rating is the
domain of ratings, and Context specifies the contextual information associated with
the application. To illustrate these concepts, consider the following example.

Example 7.1. Consider the application for recommending movies to users,
where users and movies are described as relations having the following at-
tributes:

• Movie: the set of all the movies that can be recommended; it is defined as
Movie(MovieID, Title, Length, ReleaseYear, Director, Genre).

• User: the people to whom movies are recommended; it is defined as
User(UserID, Name, Address, Age, Gender, Profession).

Further, the contextual information consists of the following three types that
are also defined as relations having the following attributes:

• Theater: the movie theaters showing the movies; it is defined as The-
ater(TheaterID, Name, Address, Capacity, City, State, Country).

• Time: the time when the movie can be or has been seen; it is defined
as Time(Date, DayOfWeek, TimeOfWeek, Month, Quarter, Year). Here,
attribute DayOfWeek has values Mon, Tue, Wed, Thu, Fri, Sat, Sun, and
attribute TimeOfWeek has values “Weekday” and “Weekend”.

• Companion: represents a person or a group of persons with whom one can
see a movie. It is defined as Companion(companionType), where attribute
companionType has values “alone”, “friends”, “girlfriend/boyfriend”, “fam-
ily”, “co-workers”, and “others”.

Then the rating assigned to a movie by a person also depends on where and
how the movie has been seen, with whom, and at what time. For example,
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the type of movie to recommend to college student Jane Doe can differ sig-
nificantly depending on whether she is planning to see it on a Saturday night
with her boyfriend vs. on a weekday with her parents.

As we can see from this example and other cases, the contextual information
Context can be of different types, each type defining a certain aspect of context,
such as time, location (e.g., Theater), companion (e.g., for seeing a movie), purpose
of a purchase, etc. Further, each contextual type can have a complicated structure
reflecting complex nature of the contextual information. Although this complex-
ity of contextual information can take many different forms, one popular defining
characteristic is the hierarchical structure of contextual information that can be rep-
resented as trees, as is done in most of the context-aware recommender and profiling
systems, including [3] and [54]. For instance, the three contexts from Example 1 can
have the following hierarchies associated with them: Theater: TheaterID→ City→
State→ Country; Time: Date→ DayOfWeek→ TimeOfWeek, Date→ Month→
Quarter→ Year.1

Furthermore, we follow the representational view of Dourish [34], as described
at the end of Section 7.2.1, and assume that the context is defined with a predefined
set of observable attributes, the structure of which does not change significantly
over time. Although there are some papers in the literature that take the interac-
tional approach to modeling contextual recommendations, such as [11] that models
context through a short-term memory (STM) interactional approach borrowed from
psychology, most of the work on context-aware recommender systems follows the
representational view. As stated before, we also adopt this representational view in
this chapter and assume that there is a predefined finite set of contextual types in a
given application and that each of these types has a well-defined structure.

More specifically, we follow Palmisano et al. [54], and also Adomavicius et al.
[3] to some extent, in this paper and define the contextual information with a set
of contextual dimensions K, each contextual dimension K in K being defined by a
set of q attributes K = (K1, . . . ,Kq) having a hierarchical structure and capturing a
particular type of context, such as Time or CommunicatingDevice. The values taken
by attribute Kq define finer (more granular) levels, while K1 values define coarser
(less granular) levels of contextual knowledge. For example, Figure 7.1(a) presents
a four-level hierarchy for the contextual attribute K specifying the intent of a pur-
chasing transaction in an e-retailer application. While the root (coarsest level) of the
hierarchy for K defines purchases in all possible contexts, the next level is defined
by attribute K1 = {Personal, Gift}, which labels each customer purchase either as a
personal purchase or as a gift. At the next, finer level of the hierarchy, “Personal”
value of attribute K1 is further split into a more detailed personal context: personal
purchase made for the work-related or other purposes. Similarly, the Gift value for
K1 can be split into a gift for a partner or a friend and a gift for parents or others.

1 For the sake of completeness, we would like to point out that not only the contextual dimen-
sions, but also the traditional User and Item dimensions can have their attributes form hierarchical
relationships. For example, the main two dimensions from Example 1 can have the following hier-
archies associated with them: Movie: MovieID→Genre; User: UserID→Age, UserID→Gender,
UserID→ Profession.
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Thus, the K2 level is K2 = {PersonalWork, PersonalOther, GiftPartner/Friend, Gift-
Parent/Other}. Finally, attribute K2 can be split into further levels of hierarchy, as
shown in Figure 7.1(a).2

Fig. 7.1: Contextual information hierarchical structure: (a) e-retailer dataset, (b)
food dataset [54].

Contextual information was also defined in [3] as follows. In addition to the clas-
sical User and Item dimensions, additional contextual dimensions, such as Time,
Location, etc., were also introduced using the OLAP-based3 multidimensional
data (MD) model widely used in the data warehousing applications in databases
[29, 41]. Formally, let D1,D2, . . . ,Dn be dimensions, two of these dimensions be-
ing User and Item, and the rest being contextual. Each dimension Di is a sub-
set of a Cartesian product of some attributes (or fields) Ai j,( j = 1, . . . ,ki), i.e.,
Di ⊆ Ai1 ×Ai2 × . . .×Aiki , where each attribute defines a domain (or a set) of val-
ues. Moreover, one or several attributes form a key, i.e., they uniquely define the
rest of the attributes [58]. In some cases, a dimension can be defined by a single
attribute, and ki =1 in such cases. For example, consider the three-dimensional rec-
ommendation space User × Item×Time, where the User dimension is defined as
User ⊆ UName×Address× Income×Age and consists of a set of users having
certain names, addresses, incomes, and being of a certain age. Similarly, the Item
dimension is defined as Item ⊆ IName×Type×Price and consists of a set of items
defined by their names, types and the price. Finally, the Time dimension can be de-
fined as Time ⊆Year×Month×Day and consists of a list of days from the starting
to the ending date (e.g. from January 1, 2003 to December 31, 2003).

Given dimensions D1,D2, . . . ,Dn, we define the recommendation space for these
dimensions as a Cartesian product S = D1 ×D2 × . . .Dn. Moreover, let Rating be
a rating domain representing the ordered set of all possible rating values. Then the
rating function is defined over the space D1 × . . .×Dn as

R : D1 × . . .×Dn → Rating.

2 For simplicity and illustration purposes, this figure uses only two-way splits. Obviously, three-
way, four-way and, more generally, multi-way splits are also allowed.
3 OLAP stands for OnLine Analytical Processing, which represents a popular approach to manip-
ulation and analysis of data stored in multi-dimensional cube structures and which is widely used
for decision support.



7 Context-Aware Recommender Systems 227

For instance, continuing the User × Item × Time example considered above, we
can define a rating function R on the recommendation space User × Item × Time
specifying how much user u ∈ User liked item i ∈ Item at time t ∈ Time, R(u, i, t).

Visually, ratings R(d1, . . . ,dn) on the recommendation space S = D1×D2× . . .×
Dn can be stored in a multidimensional cube, such as the one shown in Figure 7.2.
For example, the cube in Figure 7.2 stores ratings R(u, i, t) for the recommendation
space User × Item× Time, where the three tables define the sets of users, items, and
times associated with User, Item, and Time dimensions respectively. For example,
rating R(101,7,1) = 6 in Figure 7.2 means that for the user with User ID 101 and
the item with Item ID 7, rating 6 was specified during the weekday.

Fig. 7.2: Multidimensional model for the User × Item × Time recommendation
space.

The rating function R introduced above is usually defined as a partial function,
where the initial set of ratings is known. Then, as usual in recommender systems,
the goal is to estimate the unknown ratings, i.e., make the rating function R total.

The main difference between the multidimensional (MD) contextual model de-
scribed above and the previously described contextual model lies in that contextual
information in the MD model is defined using classical OLAP hierarchies, whereas
the contextual information in the previous case is defined with more general hierar-
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chical taxonomies, that can be represented as trees (both balanced and unbalanced),
directed acyclic graphs (DAGs), or various other types of taxonomies. Further, the
ratings in the MD model are stored in the multidimensional cubes, whereas the rat-
ings in the other contextual model are stored in more general hierarchical structures.

We would also like to point out that not all contextual information might be
relevant or useful for recommendation purposes. Consider, for example, a book rec-
ommender system. Many types of contextual data could potentially be obtained by
such a system from book buyers, including: (a) purpose of buying the book (possi-
ble options: for work, for leisure, . . .); (b) planned reading time (weekday, weekend,
. . .); (c) planned reading place (at home, at school, on a plane, . . .); (d) the value of
the stock market index at the time of the purchase. Clearly some types of contextual
information can be more relevant in a given application than some other types. For
example, in the previous example, the value of a stock market can be less relevant
as contextual information than the purpose of buying a book. There are several ap-
proaches to determining the relevance of a given type of contextual information.
In particular, the relevance determination can either be done manually, e.g., using
domain knowledge of the recommender system’s designer or a market expert in a
given application domain, or automatically, e.g., using numerous existing feature
selection procedures from machine learning [42], data mining [48], and statistics
[28], based on existing ratings data during the data preprocessing phase. The de-
tailed discussion of the specific feature selection procedures is beyond the scope of
this paper; in the remainder of this chapter we will assume that only the relevant
contextual information is stored in the data.

7.2.3 Obtaining Contextual Information

The contextual information can be obtained in a number of ways, including:

• Explicitly, i.e., by directly approaching relevant people and other sources of
contextual information and explicitly gathering this information either by ask-
ing direct questions or eliciting this information through other means. For ex-
ample, a website may obtain contextual information by asking a person to fill
out a web form or to answer some specific questions before providing access to
certain web pages.

• Implicitly from the data or the environment, such as a change in location of the
user detected by a mobile telephone company. Alternatively, temporal contex-
tual information can be implicitly obtained from the timestamp of a transaction.
Nothing needs to be done in these cases in terms of interacting with the user or
other sources of contextual information – the source of the implicit contextual
information is accessed directly and the data is extracted from it.

• Inferring the context using statistical or data mining methods. For example, the
household identity of a person flipping the TV channels (husband, wife, son,
daughter, etc.) may not be explicitly known to a cable TV company; but it can
be inferred with reasonable accuracy by observing the TV programs watched
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and the channels visited using various data mining methods. In order to in-
fer this contextual information, it is necessary to build a predictive model (i.e.,
a classifier) and train it on the appropriate data. The success of inferring this
contextual information depends very significantly on the quality of such classi-
fier, and it also varies considerably across different applications. For example,
it was demonstrated in [54] that various types of contextual information can
be inferred with a reasonably high degree of accuracy in certain applications
and using certain data mining methods, such as Naı̈ve Bayes classifiers and
Bayesian Networks.

Finally, the contextual information can be “hidden” in the data in some latent
form, and we can use it implicitly to better estimate the unknown ratings without ex-
plicitly knowing this contextual information. For instance, in the previous example,
we may want to estimate how much a person likes a particular TV program by mod-
eling the member of the household (husband, wife, etc.) watching the TV program
as a latent variable. It was also shown in [54] that this deployment of latent variables,
such as intent of purchasing a product (e.g., for yourself vs. as a gift, work-related vs.
pleasure, etc.), whose true values were unknown but that were explicitly modeled as
a part of a Bayesian Network (BN), indeed improved the predictive performance of
that BN classifier. Therefore, even without any explicit knowledge of the contextual
information (e.g., which member of the household is watching the program), recom-
mendation accuracy can still be improved by modeling and inferring this contextual
information implicitly using carefully chosen learning techniques (e.g., by using la-
tent variables inside well-designed recommendation models). A similar approach of
using latent variables is presented in [11].

As explained in Section 7.2.1, we focus on the representational view of Dourish
[34], and assume that the context is defined with a predefined set of contextual at-
tributes, the structure of which does not change over time. The implication of this
assumption is that we need to identify and acquire contextual information before
actual recommendations are made. If the acquisition process of this contextual in-
formation is done explicitly or even implicitly, it should be conducted as a part of
the overall data collection process. All this implies that the decisions of which con-
textual information should be relevant and collected for an application should be
done at the application design stage and well in advance of the time when actual
recommendations are provided.

One methodology of deciding which contextual attributes should be used in a
recommendation application (and which should not) is presented in [3]. In particu-
lar, Adomavicius et al. [3] propose that a wide range of contextual attributes should
be initially selected by the domain experts as possible candidates for the contextual
attributes for the application. For example, in a movie recommendation application
described in Example 1, we can initially consider such contextual attributes as Time,
Theater, Companion, Weather, as well as a broad set of other contextual attributes
that can possibly affect the movie watching experiences, as initially identified by
the domain experts for the application. Then, after collecting the data, including the
rating data and the contextual information, we may apply various types of statisti-
cal tests identifying which of the chosen contextual attributes are truly significant
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in the sense that they indeed affect movie watching experiences, as manifested by
significant deviations in ratings across different values of a contextual attribute. For
example, we may apply pairwise t-tests to see if good weather vs. bad weather or
seeing a movie alone vs. with a companion significantly affect the movie watching
experiences (as indicated by statistically significant changes in rating distributions).
This procedure provides an example of screening all the initially considered con-
textual attributes and filtering out those that do not matter for a particular recom-
mendation application. For example, we may conclude that the Time, Theater and
Companion contexts matter, while the Weather context does not in the considered
movie recommendation application.

7.3 Paradigms for Incorporating Context in Recommender
Systems

The usage of contextual information in recommender systems can be traced to the
work by Herlocker and Konstan [36], who hypothesized that the inclusion of knowl-
edge about the user’s task into the recommendation algorithm in certain applications
can lead to better recommendations. For example, if we want to recommend books
as gifts for a child, then we might want to specify several books that the child al-
ready has (and likes) and provide this information (i.e., a task profile) to the rec-
ommender system for calculating new recommendations. Note that this approach
operates within the traditional 2D User × Item space, since the task specification
for a specific user consists of a list of sample items; in other words, besides the
standard User and Item dimensions, no additional contextual dimensions are used.
However, this approach serves as a successful illustration of how additional rele-
vant information (in the form of user-specified task-relevant item examples) can be
incorporated into the standard collaborative filtering paradigm. Further, the use of
interest scores assigned to topics has been applied to building contextual user pro-
files in recommender systems [73].

Different approaches to using contextual information in the recommendation pro-
cess can be broadly categorized into two groups: (1) recommendation via context-
driven querying and search, and (2) recommendation via contextual preference elic-
itation and estimation. The context-driven querying and search approach has been
used by a wide variety of mobile and tourist recommender systems [2, 27, 68].
Systems using this approach typically use contextual information (obtained either
directly from the user, e.g., by specifying current mood or interest, or from the envi-
ronment, e.g., obtaining local time, weather, or current location) to query or search
a certain repository of resources (e.g., restaurants) and present the best matching
resources (e.g., nearby restaurants that are currently open) to the user. One of the
early examples of this approach is the Cyberguide project [2], which developed
several tour guide prototypes for different hand-held platforms. Abowd et al. [2]
discuss different architectures and features necessary to provide realistic tour guide
services to mobile users and, more specifically, the role that the contextual knowl-
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edge of the user’s current and past locations can play in the recommendation and
guiding process. Among the many other examples of context-aware tourist guide
systems proposed in research literature we can mention GUIDE [31], INTRIGUE
[14], COMPASS [68], and MyMap [32] systems.

The other general approach to using contextual information in the recommenda-
tion process, i.e., via contextual preference elicitation and estimation, represents a
more recent trend in context-aware recommender systems literature [3, 53, 55, 72].
In contrast to the previously discussed context-driven querying and search approach
(where the recommender systems use the current context information and speci-
fied current user’s interest as queries to search for the most appropriate content),
techniques that follow this second approach attempt to model and learn user pref-
erences, e.g., by observing the interactions of this and other users with the systems
or by obtaining preference feedback from the user on various previously recom-
mended items. To model users’ context-sensitive preferences and generate recom-
mendations, these techniques typically either adopt existing collaborative filtering,
content-based, or hybrid recommendation methods to context-aware recommenda-
tion settings or apply various intelligent data analysis techniques from data mining
or machine learning (such as Bayesian classifiers or support vector machines).

While both general approaches offer a number of research challenges, in the
remainder of this chapter we will focus on the second, more recent trend of the con-
textual preference elicitation and estimation in recommender systems. We do want
to mention that it is possible to design applications that combine the techniques
from both general approaches (i.e., both context-driven querying and search as well
as contextual preference elicitation and estimation) into a single system. For exam-
ple, the UbiquiTO system [27], which implements a mobile tourist guide, provides
intelligent adaptation not only based on the specific context information, but also
uses various rule-based and fuzzy set techniques to adapt the application content
based on the user preferences and interests. Similarly, the News@hand system [26]
uses semantic technologies to provide personalized news recommendations that are
retrieved using user’s concept-based queries or calculated according to a specific
user’s (or a user group’s) profile.

To start the discussion of the contextual preference elicitation and estimation
techniques, note that, in its general form, a traditional 2-dimensional (2D) (User×
Item) recommender system can be described as a function, which takes partial user
preference data as its input and produces a list of recommendations for each user
as an output. Accordingly, Figure 7.3 presents a general overview of the traditional
2D recommendation process, which includes three components: data (input), 2D
recommender system (function), and recommendation list (output). Note that, as in-
dicated in Figure 7.3, after the recommendation function is defined (or constructed)
based on the available data, recommendation list for any given user u is typically
generated by using the recommendation function on user u and all candidate items
to obtain a predicted rating for each of the items and then by ranking all items ac-
cording to their predicted rating value. Later in this section, we will discuss how the
use of contextual information in each of those three components gives rise to three
different paradigms for context-aware recommender systems.
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Fig. 7.3: General components of the traditional recommendation process.

As mentioned in Section 7.2.2, traditional recommender systems are built based
on the knowledge of partial user preferences, i.e., user preferences for some (of-
ten limited) set of items, and the input data for traditional recommender systems
is typically based on the records of the form < user, item,rating >. In contrast,
context-aware recommender systems are built based on the knowledge of par-
tial contextual user preferences and typically deal with data records of the form
< user, item,context,rating >, where each specific record includes not only how
much a given user liked a specific item, but also the contextual information in which
the item was consumed by this user (e.g., Context = Saturday). Also, in addition
to the descriptive information about users (e.g., demographics), items (e.g., item
features), and ratings (e.g., multi-criteria rating information), context-aware recom-
mender systems may also make use of additional context attributes, such as context
hierarchies (e.g., Saturday → Weekend) mentioned in Section 7.2.2. Based on the
presence of this additional contextual data, several important questions arise: How
contextual information should be reflected when modeling user preferences? Can
we reuse the wealth of knowledge in traditional (non-contextual) recommender sys-
tems to generate context-aware recommendations? We will explore these questions
in this chapter in more detail.

In the presence of available contextual information, following the diagrams in
Figure 7.4, we start with the data having the form U × I×C×R, where C is addi-
tional contextual dimension and end up with a list of contextual recommendations
i1, i2, i3 . . . for each user. However, unlike the process in Figure 7.3, which does not
take into account the contextual information, we can apply the information about the
current (or desired) context c at various stages of the recommendation process. More
specifically, the context-aware recommendation process that is based on contextual
user preference elicitation and estimation can take one of the three forms, based on
which of the three components the context is used in, as shown in Figure 7.4:

• Contextual pre-filtering (or contextualization of recommendation input). In this
recommendation paradigm (presented in Figure 7.4a), contextual information
drives data selection or data construction for that specific context. In other
words, information about the current context c is used for selecting or construct-
ing the relevant set of data records (i.e., ratings). Then, ratings can be predicted
using any traditional 2D recommender system on the selected data.

• Contextual post-filtering (or contextualization of recommendation output). In
this recommendation paradigm (presented in Figure 7.4b), contextual informa-
tion is initially ignored, and the ratings are predicted using any traditional 2D
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recommender system on the entire data. Then, the resulting set of recommenda-
tions is adjusted (contextualized) for each user using the contextual information.

• Contextual modeling (or contextualization of recommendation function). In this
recommendation paradigm (presented in Figure 7.4c), contextual information is
used directly in the modeling technique as part of rating estimation.

Fig. 7.4: Paradigms for incorporating context in recommender systems.

In the remainder of this section we will discuss these three approaches in detail.

7.3.1 Contextual Pre-Filtering

As shown in Figure 7.4a, the contextual pre-filtering approach uses contextual infor-
mation to select or construct the most relevant 2D (User × Item) data for generating
recommendations. One major advantage of this approach is that it allows deploy-
ment of any of the numerous traditional recommendation techniques previously
proposed in the literature [5]. In particular, in one possible use of this approach,
context c essentially serves as a query for selecting (filtering) relevant ratings data.
An example of a contextual data filter for a movie recommender system would be:
if a person wants to see a movie on Saturday, only the Saturday rating data is used
to recommend movies. Note that this example represents an exact pre-filter. In other
words, the data filtering query has been constructed using exactly the specified con-
text.

For example, following the contextual pre-filtering paradigm, Adomavicius et al.
[3] proposed a reduction-based approach, which reduces the problem of multidi-
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mensional (MD) contextual recommendations to the standard 2D User × Item rec-
ommendation space. Therefore, as with any contextual pre-filtering approach, one
important benefit of the reduction-based approach is that all the previous research on
2D recommender systems is directly applicable in the MD case after the reduction
is done. In particular, let RD

User×Item: U × I → Rating be any 2D rating estimation
function that, given existing ratings D (i.e., D contains records < user, item,rating>
for each of the known, user-specified ratings), can calculate a prediction for any rat-
ing, e.g., RD

User×Item(John,StarWars). Then, a 3-dimensional rating prediction func-
tion supporting the context of time can be defined similarly as RD

User×Item×Time :
U × I×T → Rating, where D contains records < user, item, time,rating > for the
user-specified ratings. Then the 3-dimensional prediction function can be expressed
through a 2D prediction function in several ways, including:

∀(u, i, t) ∈U× I×T,RD
User×Item×Time(u, i, t) = RD[Time=t](User,Item,Rating)

User×Item (u, i).

Here [Time = t] denotes a simple contextual pre-filter, and D[Time = t](User,
Item, Rating) denotes a rating dataset obtained from D by selecting only the records
where Time dimension has value t and keeping only the values for User and Item
dimensions, as well as the value of the rating itself. I.e., if we treat a dataset of 3-
dimensional ratings D as a relation, then D[Time = t](User, Item,Rating) is simply
another relation obtained from D by performing two relational operations: selection
and, subsequently, projection.

However, the exact context sometimes can be too narrow. Consider, for example,
the context of watching a movie with a girlfriend in a movie theater on Saturday
or, i.e., c = (Girlfriend, Theater, Saturday). Using this exact context as a data fil-
tering query may be problematic for several reasons. First, certain aspects of the
overly specific context may not be significant. For example, user’s movie watching
preferences with a girlfriend in a theater on Saturday may be exactly the same as
on Sunday, but different from Wednesday’s. Therefore, it may be more appropri-
ate to use a more general context specification, i.e., Weekend instead of Saturday.
And second, exact context may not have enough data for accurate rating prediction,
which is known as the “sparsity” problem in recommender systems literature. In
other words, the recommender system may not have enough data points about the
past movie watching preferences of a given user with a girlfriend in a theater on
Saturday.

Context generalization. Adomavicius et al. [3] introduce the notion of general-
ized pre-filtering, which allows to generalize the data filtering query obtained based
on a specified context. More formally, let’s define c′ = (c′1, . . . ,c

′
k) to be a general-

ization of context c = (c1, . . . ,ck) if and only if ci→ c′i for every i = 1, . . . ,k in the
corresponding context hierarchy. Then, c′ (instead of c) can be used as a data query
to obtain contextualized ratings data.

Following the idea of context generalization, Adomavicius et al. [3] proposed to
use not a simple pre-filter [Time = t], which represents the exact context t of the
rating (u, i, t), but rather a generalized pre-filter [Time ∈ St], where St denotes some
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superset of context t. Here St is called a contextual segment [3]. For example, if we
would like to predict how much John Doe would like to see the “Gladiator” movie on
Monday, i.e., to calculate RD

User×Item×Time(JohnDoe,Gladiator,Monday), we could
use not only other user-specified Monday ratings for prediction, but Weekday ratings
in general. In other words, for every (u, i, t) where t ∈Weekday, we can predict the
rating as RD

User×Item×Time(u, i, t) = RD[Time∈Weekday](User,Item,AGGR(Rating))
User×Item (u, i). More

generally, in order to estimate some rating R(u, i, t), we can use some specific con-
textual segment St as: RD

User×Item×Time(u, i, t)=RD[Time∈St ](User,Item,AGGR(Rating))
User×Item (u, i).

Note, that we have used the AGGR(Rating) notation in the above expressions,
since there may be several user-specified ratings with the same User and Item values
for different Time instances in dataset D belonging to some contextual segment St
(e.g., different ratings for Monday and Tuesday, all belonging to segment Weekday).
Therefore, we have to aggregate these values using some aggregation function, e.g.,
averaging, when reducing the dimensionality of the recommendation space. The
above 3-dimensional reduction-based approach can be extended to a general pre-
filtering method reducing an arbitrary n-dimensional recommendation space to an
m-dimensional one (where m< n). In this chapter we will assume that m = 2 because
traditional recommendation algorithms are only designed for the two-dimensional
User× Item case. Note, that there typically exist multiple different possibilities for
context generalization, based on the context taxonomy and the desired context gran-
ularity. For example, let’s assume that we have the following contextual taxonomies
(is-a or belongs-to relationships) that can be derived from context hierarchies:

• Company: Girlfriend→ Friends→ NotAlone→ AnyCompany;
• Place: Theater→ AnyPlace;
• Time: Saturday→Weekend→ AnyTime.

Then, the following are just several examples of possible generalizations c′ of the
above-mentioned context c = (Girlfriend, Theater, Saturday):

• c′ = (Girlfriend, AnyPlace, Saturday);
• c′ = (Friends, Theater, AnyTime);
• c′ = (NotAlone, Theater, Weekend);

Therefore, choosing the “right” generalized pre-filter becomes an important
problem. One option is to use a manual, expert-driven approach; e.g., always gener-
alize specific days of week into more general Weekday or Weekend. Another option
is to use a more automated approach, which could empirically evaluate the pre-
dictive performance of the recommender system on contextualized input datasets
obtained from each generalized pre-filter, and then would automatically choose
the pre-filter with best performance. An interesting and important research issue
is how to deal with potential computational complexity of this approach due to con-
text granularity; in other words, in cases of applications with highly granular con-
texts, there may exist a very large number of possible context generalizations, for
which exhaustive search techniques would not be practical. For such cases, effec-
tive greedy approaches would need to be developed. Among the related work, Jiang
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and Tuzhilin [39] examine optimal levels of granularity of customer segments in
order to maximize predictive performance of segmentation methods. Applicability
of these techniques in the context-aware recommender systems settings constitutes
an interesting problem for future research.

Also note that the reduction-based approach is related to the problems of build-
ing local models in machine learning and data mining [10]. Rather than building the
global rating estimation model utilizing all the available ratings, the reduction-based
approach builds a local rating estimation model that uses only the ratings pertaining
to the user-specified criteria in which a recommendation is made (e.g., morning).
It is important to know if a local model generated by the reduction-based approach
outperforms the global model of the traditional 2D technique, where all the infor-
mation associated with the contextual dimensions is simply ignored. For example,
it is possible that it is better to use the contextual pre-filtering to recommend movies
to see in the movie theaters on weekends, but use the traditional 2D technique for
movies to see at home on VCRs. This is the case because the reduction-based ap-
proach, on the one hand, focuses recommendations on a particular segment and
builds a local prediction model for this segment, but, on the other hand, computes
these recommendations based on a smaller number of points limited to the consid-
ered segment. This tradeoff between having more relevant data for calculating an
unknown rating based only on the ratings with the same or similar context and hav-
ing fewer data points used in this calculation belonging to a particular segment (i.e.,
the sparsity effect) explains why the reduction-based recommendation method can
outperform traditional 2D recommendation techniques on some segments and un-
derperform on others. Which of these two trends dominates on a particular segment
may depend on the application domain and on the specifics of the available data.
Based on this observation, Adomavicius et al. [3] propose to combine a number of
contextual pre-filters with the traditional 2D technique (i.e., as a default filter, where
no filtering is done); this approach will be described as a case study in Section 7.4.

Among some recent developments, Ahn et al. [8] use a technique similar to the
contextual pre-filtering to recommend advertisements to mobile users by taking into
account user location, interest, and time, and Lombardi et al. [49] evaluate the ef-
fect of contextual information using a pre-filtering approach on the data obtained
from an online retailer. Also, Baltrunas and Ricci [16] take a somewhat different
approach to contextual pre-filtering in proposing and evaluating the benefits of the
item splitting technique, where each item is split into several fictitious items based
on the different contexts in which these items can be consumed. Similarly to the item
splitting idea, Baltrunas and Amatriain [15] introduce the idea of micro-profiling (or
user splitting), which splits the user profile into several (possibly overlapping) sub-
profiles, each representing the given user in a particular context. The predictions
are done using these contextual micro-profiles instead of a single user model. Note
that these data construction techniques fit well under the contextual pre-filtering
paradigm, because they are following the same basic idea (as the data filtering tech-
niques described earlier) – using contextual information to reduce the problem of
multidimensional recommendations to the standard 2D User × Item space, which
then allows to use any traditional recommendation techniques for rating prediction.
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7.3.2 Contextual Post-Filtering

As shown in Figure 7.4b, the contextual post-filtering approach ignores context in-
formation in the input data when generating recommendations, i.e., when generat-
ing the ranked list of all candidate items from which any number of top-N recom-
mendations can be made, depending on specific values of N. Then, the contextual
post-filtering approach adjusts the obtained recommendation list for each user using
contextual information. The recommendation list adjustments can be made by:

• Filtering out recommendations that are irrelevant (in a given context), or
• Adjusting the ranking of recommendations on the list (based on a given context).

For example, in a movie recommendation application, if a person wants to see
a movie on a weekend, and on weekends she only watches comedies, the system
can filter out all non-comedies from the recommended movie list. More generally,
the basic idea for contextual post-filtering approaches is to analyze the contextual
preference data for a given user in a given context to find specific item usage pat-
terns (e.g., user Jane Doe watches only comedies on weekends) and then use these
patterns to adjust the item list, resulting in more “contextual” recommendations, as
depicted in Figure 7.5.

Fig. 7.5: Final phase of the contextual post-filtering approach: recommendation list
adjustment.

As with many recommendation techniques, the contextual post-filtering ap-
proaches can be classified into heuristic and model-based techniques. Heuristic
post-filtering approaches focus on finding common item characteristics (attributes)
for a given user in a given context (e.g., preferred actors to watch in a given context),
and then use these attributes to adjust the recommendations, including:

• Filtering out recommended items that do not have a significant number of these
characteristics (e.g., to be recommended, the movies must have at least two of
the preferred actors in a given context), or

• Ranking recommended items based on how many of these relevant characteris-
tics they have (e.g., the movies that star more of the user’s preferred actors in a
given context will be ranked higher).
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In contrast, model-based post-filtering approaches can build predictive models
that calculate the probability with which the user chooses a certain type of item in
a given context, i.e., probability of relevance (e.g., likelihood of choosing movies
of a certain genre in a given context), and then use this probability to adjust the
recommendations, including:

• Filtering out recommended items that have the probability of relevance smaller
than a pre-defined minimal threshold (e.g., remove movies of genres that have
a low likelihood of being picked), or

• Ranking recommended items by weighting the predicted rating with the proba-
bility of relevance.

Panniello et al. [55] provide an experimental comparison of the exact pre-filtering
method (discussed in Section 7.3.1) versus two different post-filtering methods –
Weight and Filter – using several real-world e-commerce datasets. The Weight post-
filtering method reorders the recommended items by weighting the predicted rating
with the probability of relevance in that specific context, and the Filter post-filtering
method filters out recommended items that have small probability of relevance in
the specific context. Interestingly, the empirical results show that the Weight post-
filtering method dominates the exact pre-filtering, which in turn dominates the Filter
post-filtering method, thus, indicating that the best approach to use (pre- or post-
filtering) really depends on a given application.

As was the case with the contextual pre-filtering approach, a major advantage of
the contextual post-filtering approach is that it allows using any of the numerous tra-
ditional recommendation techniques previously proposed in the literature [5]. Also,
similarly to the contextual pre-filtering approaches, incorporating context general-
ization techniques into post-filtering techniques constitutes an interesting issue for
future research.

7.3.3 Contextual Modeling

As shown in Figure 7.4c, the contextual modeling approach uses contextual in-
formation directly in the recommendation function as an explicit predictor of a
user’s rating for an item. While contextual pre-filtering and post-filtering approaches
can use traditional 2D recommendation functions, the contextual modeling ap-
proach gives rise to truly multidimensional recommendation functions, which essen-
tially represent predictive models (built using decision tree, regression, probabilistic
model, or other technique) or heuristic calculations that incorporate contextual infor-
mation in addition to the user and item data, i.e., Rating = R(User, Item,Context).
A significant number of recommendation algorithms – based on a variety of heuris-
tics as well as predictive modeling techniques – have been developed over the last
10-15 years, and some of these techniques can be extended from the 2D to the
multidimensional recommendation settings. We present a few examples of multidi-
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mensional heuristic-based and model-based approaches for contextual modeling [4]
in the rest of this section.

7.3.3.1 Heuristic-Based Approaches

The traditional two-dimensional (2D) neighborhood-based approach [21, 62] can be
extended to the multidimensional case, which includes the contextual information,
in a straightforward manner by using an n-dimensional distance metric instead of
the user-user or item-item similarity metrics traditionally used in such techniques.
To see how this is done, consider an example of the User× Item×Time recommen-
dation space. Following the traditional nearest neighbor heuristic that is based on
the weighted sum of relevant ratings, the prediction of a specific rating ru,i,t in this
example can be expressed as (see [4] for additional details):

ru,i,t = k ∑
(u′,i′,t ′)&=(u,i,t)

W ((u, i, t),(u′, i′, t ′))× ru′,i′,t ′ ,

where W ((u, i, t),(u′, i′, t ′)) describes the “weight” rating ru′,i′,t ′ carries in the predic-
tion of ru,i,t , and k is a normalizing factor. Weight W ((u, i, t),(u′, i′, t ′)) is typically
inversely related to the distance between points (u, i, t) and (u′, i′, t ′) in multidimen-
sional space, i.e., dist[(u, i, t),(u′, i′, t ′)]. In other words, the closer the two points are
(i.e., the smaller the distance between them), the more weight ru′,i′,t ′ carries in the
weighted sum. One example of such relationship would be W ((u, i, t),(u′, i′, t ′)) =
1/dist[(u, i, t),(u′, i′, t ′)], but many alternative specifications are also possible. As
before, the choice of the distance metric dist is likely to depend on a specific ap-
plication. One of the simplest ways to define a multidimensional dist function is by
using the reduction-like approach (somewhat similar to the one described in Sec-
tion 7.3.1), by taking into account only the points with the same contextual infor-
mation, i.e.,

dist[(u, i, t),(u′, i′, t ′)] =
{

dist[(u, i),(u′, i′)], if t = t ′
+∞, otherwise

This distance function makes ru,i,t depend only on the ratings from the segment
of points having the same values of time t. Therefore, this case is reduced to the stan-
dard 2-dimensional rating estimation on the segment of ratings having the same con-
text t as point (u, i, t). Furthermore, if we further refine function dist[(u, i),(u′, i′)]
in so that it depends only on the distance between users when i = i′, then we would
obtain a method that is similar to the pre-filtering approach described earlier. More-
over this approach easily extends to an arbitrary n-dimensional case by setting the
distance d between two rating points to dist[(u, i),(u′, i′)] if and only if the contexts
of these two points are the same.

Other ways to define the distance function would be to use the weighted Manhat-
tan distance metric, i.e.,
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dist[(u, i, t),(u′, i′, t ′)] = w1d1(u,u′)+w2d2(i, i′)+w3d3(t, t ′),

or the weighted Euclidean distance metric, i.e.,

dist[(u, i, t),(u′, i′, t ′)] =
√

w1d2
1(u,u′)+w2d2

2(i, i′)+w3d2
3(t, t ′)

where d1,d2, and d3 are distance functions defined for dimensions User, Item, and
Time respectively, and w1,w2, and w3 are the weights assigned for each of these
dimensions (e.g., according to their importance). In summary, distance function
dist[(u, i, t),(u′, i′, t ′)] can be defined in many different ways and, while in many
systems it is typically computed between ratings of the same user or of the same
item, it constitutes an interesting research problem to identify various more general
ways to define this distance and compare these different ways in terms of predictive
performance.

7.3.3.2 Model-Based Approaches

There have been several model-based recommendation techniques proposed in rec-
ommender systems literature for the traditional two-dimensional recommendation
model [5]. Some of these methods can be directly extended to the multidimensional
case, such as the method proposed in [12], who show that their 2D technique out-
performs some of the previously known collaborative filtering methods.

The method proposed by Ansari et al. [12] combines the information about users
and items into a single hierarchical regression-based Bayesian preference model that
uses Markov Chain Monte Carlo (MCMC) techniques to estimate its parameters.
Specifically, let’s assume that there are NU users, where each user u is defined by
vector zu of observed attributes of user u, such as gender, age, and income. Also
assume that there are NI items, where each item i is defined by vector wi of attributes
of the item, such as price, weight, and size. Let rui be the rating assigned to item i by
user u, where rui is a real-valued number. Moreover, ratings rui are only known for
some subset of all possible (user, item) pairs. Then the unknown rating estimation
problem is defined as

rui = x′uiµ + z′uγi +w′iλu + eui, eui ∼ N(0,σ2), λu ∼ N(0,Λ), γi ∼ N(0,Γ )

where observed (known) values of the model are ratings rui assigned by user u for
item i, user attributes zu, item attributes wi, and vector xui = zu

⊗
wi, where

⊗
is the

Kronecker product, i.e., a long vector containing all possible cross-product combi-
nations between individual elements of zu and wi. Intuitively, this equation presents
a regression model specifying unknown ratings rui in terms of the characteristics
zu of user u, the characteristics wi of item i, and the interaction effects xui between
them. Interaction effects arise from the hierarchical structure of the model and are
intended to capture effects such as how the age of a user changes his or her pref-
erences for certain genres of movies. Vector µ in the above equation represents
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unobserved (unknown) slope of the regression line, i.e., unknown coefficients in
the regression model that need to be estimated, as discussed below. Vector γi rep-
resents weight coefficients specific to item i that determine idiosyncrasy of item i,
i.e., the unobserved heterogeneity of item i that are not explicitly recorded in the
item profiles, such as direction, music and acting for the movies. Similarly, vector
λu represents weight coefficients specific to user u that determine idiosyncrasy of
that user, i.e., the unobserved user effects (heterogeneity) of user u. Finally, the error
term eui is normally distributed with mean zero and standard deviation σ . Further,
we consider a hierarchical model and assume that regression parameters γi and λu
are normally distributed as γi ∼ N(0,Γ ) and λu ∼ N(0,Λ), where Γ and Λ are un-
known covariance matrices. The parameters of the model are µ,σ2,Λ , and Γ . They
are estimated from the data containing the already known ratings using the MCMC
methods described in [12].

While the approach presented in [12] is described in the context of the traditional
two-dimensional recommender systems, it can be directly extended to include the
contextual information. For example, assume that we have a third dimension Time
that is defined by the following two attributes (variables): (a) Boolean variable week-
end specifying whether a movie was seen on a weekend or not, and (b) a positive
integer variable numdays indicating the number of days after the release when the
movie was seen.

In such a case, the Ansari et al. [12] model can be extended to the third (Time)
dimension as in Adomavicius and Tuzhilin [4]:

ruit = x′uit µ + p′uiθt +q′itλu + r′tuγi + z′uδit +w′iπtu + y′tσui + euit

where euit ∼N(0,σ2), γi∼N(0,Γ ),λu∼N(0,Λ),θt ∼N(0,Θ),δit ∼N(0,∆),πtu∼
N(0,Π), and σui ∼ N(0,Σ).

This model encompasses the effects of observed and unobserved user-, item- and
temporal-variables and their interactions on rating ruit of user u for movie i seen at
time t. The variables zu, wi and yt stand for the observed attributes of users (e.g.,
demographics), movies (e.g., genre) and time dimension (e.g., weekend, numdays).
The vector xuit represents the interaction effects of the user, movies, and time vari-
ables, and its coefficient µ represents the unobserved (unknown) slope of the re-
gression line, i.e., unknown coefficients in the above regression model that need to
be estimated, as discussed below. The vectors λu, γi and θt are random effects that
stand for the unobserved sources of heterogeneity of users (e.g., their ethnic back-
ground), movies (e.g., the story, screenplay, etc.) and temporal effects (e.g., was the
movie seen on a holiday or not, the season when it was released, etc). The vector
pui represents the interaction of the observed user and item variables, and likewise
qit and rtu. The vector σui represents the interaction of the unobserved user and item
attributes, and vectors πtu and δit have similar types of interactions. Finally, the pa-
rameters µ,σ2,Λ ,Γ ,Θ ,∆ ,Π , and Σ of the model can be estimated from the data of
the already known ratings using Markov Chain Monte Carlo (MCMC) methods, as
was done in [12].
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Finally, note that the number of parameters in the above model that would need
to be estimated rises with the number of dimensions and, therefore, the sparsity of
known ratings may become a problem. If this is a serious problem for a particular
application, then some of the terms in the above model can be dropped, leading to
a simplified model. For example, we may decide to drop the term qitλu, or perhaps
some other terms, which would lead to a simpler model with fewer parameters. Note
that this simpler model would still take into account the contextual information,
e.g., time in this case. Furthermore, parameter estimation of this model can be very
time consuming and not scalable. Therefore, one of the research challenges is to
make such models more scalable and more robust in terms of the more accurate
estimations of unknown ratings. Some of the initial ideas of how to make these
approaches more scalable are presented in [67].

In addition to possible extensions of existing 2D recommendation techniques
to multiple dimensions, there have also been some new techniques developed
specifically for context-aware recommender systems based on the context model-
ing paradigm. For example, following the general contextual modeling paradigm,
Oku et al. [53] propose to incorporate additional contextual dimensions (such as
time, companion, and weather) directly into recommendation space and use ma-
chine learning technique to provide recommendations in a restaurant recommender
system. In particular, they use support vector machine (SVM) classification method,
which views the set of liked items and the set of disliked items of a user in various
contexts as two sets of vectors in an n-dimensional space, and constructs a sepa-
rating hyperplane in this space, which maximizes the separation between the two
data sets. The resulting hyperplane represents a classifier for future recommenda-
tion decisions (i.e., a given item in a specific context will be recommended if it falls
on the “like” side of the hyperplane, and will not be recommended if it falls on the
“dislike” side). Furthermore, Oku et al. [53] empirically show that context-aware
SVM significantly outperforms non-contextual SVM-based recommendation algo-
rithm in terms of predictive accuracy and user’s satisfaction with recommendations.
Similarly, Yu et al. [72] use contextual modeling approach to provide content rec-
ommendations for smart phone users by introducing context as additional model di-
mensions and using hybrid recommendation technique (synthesizing content-based,
Bayesian-classifier, and rule-based methods) to generate recommendations.

Finally, another model-based approach is presented in [1] where a Personalized
Access Model (PAM) is presented that provides a set of personalized context-based
services, including context discovery, contextualization, binding and matching ser-
vices. Then Abbar et al. [1] describe how these services can be combined to form
Context-Aware Recommender Systems (CARS) and deployed in order to provide
superior context-aware recommendations.

In this section we described various ways to incorporate contextual informa-
tion into recommendation algorithms within the framework of pre-filtering, post-
filtering, and contextual modeling methods. Since CARS is a new and an emerging
area of recommender systems, the presented methods constitute only the initial ap-
proaches to providing recommendations, and better-performing methods need and
should be developed across all these three approaches.
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In the next section, we discuss how these different individual methods can be
combined together into one common approach.

7.4 Combining Multiple Approaches

As has been well-documented in recommender systems literature, often a combi-
nation (a “blend” or an ensemble) of several solutions provides significant perfor-
mance improvements over the individual approaches [24, 25, 43, 56]. The three
paradigms for context-aware recommender systems offer several different opportu-
nities for employing combined approaches.

One possibility is to develop and combine several models of the same type. For
example, Adomavicius et al. [3] followed this approach to develop a technique that
combines information from several different contextual pre-filters. The rationale for
having a number of different pre-filters is based on the fact that, as mentioned earlier,
typically there can be multiple different (and potentially relevant) generalizations of
the same specific context. For example, context c = (Girlfriend, Theater, Saturday)
can be generalized to c1 = (Friend, AnyPlace, Saturday), c2 = (NotAlone, Theater,
AnyTime), and a number of other contexts. Following this idea, Adomavicius et al.
[3] use pre-filters based on the number of possible contexts for each rating, and then
combine recommendations resulting from each contextual pre-filter. The general
overview of this approach is shown in Figure 7.6. Note that the combination of
several pre-filters can be done in multiple ways. For example, for a given context,
(a) one could choose the best-performing pre-filter, or (b) use an “ensemble” of pre-
filters. In the remainder of Section 7.4, we will discuss the approach developed by
Adomavicius et al. [3] in more detail as a case study.

Fig. 7.6: Combining multiple pre-filters: an overview.



244 Gediminas Adomavicius and Alexander Tuzhilin

Another interesting possibility stems from an observation that complex contex-
tual information can be split into several components, and the utility of each piece of
contextual information may be different depending on whether it is used in the pre-
filtering, post-filtering, or modeling stage. For example, time information (weekday
vs. weekend) may be most useful to pre-filter relevant data, but weather information
(sunny vs. rainy) may be the most appropriate to use as a post-filter. Determining
the utility of different contextual information with respect to different paradigms of
context-aware recommender systems constitutes an interesting and promising direc-
tion for future research.

7.4.1 Case Study of Combining Multiple Pre-Filters: Algorithms

The combined approach to rating estimation consists of two phases [3]: (i) using
known user-specified ratings (i.e., training data), determine the use of which pre-
filters outperforms the traditional CF method; (ii) in order to predict a specific rating
in a given context, choose the best pre-filter for that particular context and use the
two-dimensional recommendation algorithm on this segment.

The first phase is a pre-processing phase and is usually performed “offline.” It
can work with any traditional 2D rating estimation method A, and consists of the
following three steps [3]:

1. Among all possible generalized pre-filters, find the ones which result in contex-
tual segments having a significantly large amount of data, i.e., segments with
more than N ratings, where N is some predetermined threshold (e.g., N = 250
was used in that study). If the recommendation space is “small” (in the number
of dimensions and the ranges of attributes in each dimension), the large seg-
ments can be obtained simply by doing an exhaustive search in the space of all
possible segments. Alternatively, the help of a domain expert (e.g., a marketing
manager) or some greedy heuristics could be used to determine the important
large segments for the application.

2. For each generalized pre-filter c′ determined in Step 1, algorithm A is run us-
ing this pre-filter and its predictive performance is determined using a chosen
performance metric (this study used F-measure, which is defined as a harmonic
mean of Precision and Recall – two standard decision support metrics widely
used in information retrieval and, more recently, in recommender systems [37]).
Only those pre-filters are kept, where the performance of algorithm A on con-
textually pre-filtered inputs exceeds the performance of the standard, i.e., non-
filtered, version of algorithm A on that same data segment.

3. Among the remaining pre-filters, if there exist pre-filters c′ and c′′ such that
c′ → c′′ (i.e., c′′ is strictly more general than c′) and algorithm A demonstrates
better performance using pre-filter c′′ than pre-filter c′, then c′ is deemed to be
redundant (less general and less accurate) and is removed from the set of pre-
filters. The set of remaining contextual segments, denoted SEGM∗, constitutes
the result of the “offline” phase of the combined approach.
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Once the set of high-performing pre-filters SEGM∗ is computed, we can per-
form the second phase of the combined approach and determine which pre-filter to
use in “real-time” when an actual recommendation needs to be produced. Given the
specific context c of recommendation, the best-performing pre-filter c′ ∈ SEGM∗
such that c→ c′ or c = c′ is used in conjunction with algorithm A. If no such pre-
filter c′ exists, then the standard 2D non-filtered algorithm A (i.e., trained on the
entire dataset) is used for rating prediction.

The main advantage of the combined pre-filtering approach described in this sec-
tion is that it uses the contextual pre-filters only for those contextual situations where
this method outperforms the standard 2D recommendation algorithm, and continues
to use the latter where there is no improvement. Therefore, the combined approach
is expected to perform equally well or better than the pure 2D approach in prac-
tice. The extent to which the combined approach can outperform the 2D approach
depends on many different factors, such as the problem domain or quality of data.

7.4.2 Case Study of Combining Multiple Pre-Filters: Experimental
Results

To illustrate how the combined approach presented in Section 7.4.1 performs in
practice, it was evaluated on a real-world movie recommendation application and
compared its performance with the traditional 2D CF method [3]. In this application,
in addition to being asked to rate their movie-going experience, the users were asked
to specify: (a) time when the movie was seen (choices: weekday, weekend, don’t
remember); furthermore, if seen on a weekend, was it the opening weekend for
the movie (choices: yes, no, don’t remember); (b) place where the movie was seen
(choices: in a movie theater, at home, don’t remember); and (c) companion with
whom the movie was seen (choices: alone, with friends, with boyfriend/girlfriend,
with family or others). Overall, 1755 ratings were entered by 117 students over a
period of 12 months (May’01-Apr’02). Since some students rated very few movies,
those students with fewer than 10 ratings were dropped in our analysis. Therefore,
from an initial data, the final dataset had only 62 students, 202 movies and 1457
total ratings.

During the first step of the “offline”, pre-filter selection phase, 9 large contextual
segments were discovered, as presented in Table 7.1. However, after comparing the
performance of the standard CF technique and the contextual pre-filtering CF tech-
nique on each of these segments (i.e., second step of the pre-filter selection phase),
only 4 “high-performing” segments were found; one of them was subsequently re-
moved after the redundancy check (i.e., third step of the pre-filter selection phase,
as described in Section 7.4.1). The remaining set of 3 high-performing pre-filters is
shown in Table 7.2, i.e., SEGM∗ = {Theater-Weekend, Theater, Weekend}.

Finally, the resulting high-performing segments SEGM∗ were used in the “on-
line”, rating estimation phase. Overall, there were 1373 (of the 1457 collected) rat-
ings that both 2D CF and the combined pre-filtering CF approaches were able to
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Table 7.1: Large contextual segments generated in Step 1 of the pre-filter selection
algorithm.

Name Size Description

Home 727 Movies watched at home
Friends 565 Movies watched with friends
NonRelease 551 Movies watched on other than the opening weekend
Weekend 538 Movies watched on weekends
Theater 526 Movies watched in the movie theater
Weekday 340 Movies watched on weekdays
GBFriend 319 Movies watched with girlfriend/boyfriend
Theater-Weekend 301 Movies watched in the movie theater on weekends
Theater-Friends 274 Movies watched in the movie theater with friends

predict (not all ratings were predicted because of the sparsity-related limitations of
data). The results show that the combined pre-filtering CF approach substantially
outperformed the traditional 2D CF (1st row in Table 7.3).

Table 7.2: High-performing large contextual segments.

Segment CF: Segment-trained F-measure CF: Whole-data-trained F-measure

Theater-Weekend 0.641 0.528
Theater 0.608 0.479
Weekend 0.542 0.484

Note that, as discussed earlier, the combined pre-filtering CF approach incorpo-
rates the standard CF approach, since it would use the standard 2D CF to predict the
value of any rating that does not belong to any of the discovered high-performing
pre-filters. Consequently, in this application, the predictions of the two approaches
are identical for all ratings that do not belong to any segment in {Theater-Weekend,
Theater, Weekend}. Since such ratings do not contribute to the differentiation be-
tween the two approaches, it is important to determine how well the two approaches
do on the ratings from SEGM∗. In this case, there were 743 such ratings in SEGM∗
(out of 1373), and the difference in F-measure performance of the two approaches is
0.095 (2nd row in Table 7.3), which is even more substantial than for the previously
described case.

In this section, we discussed combining multiple pre-filtering, post-filtering, and
contextual modeling methods to generate better predictions, focusing primarily on
combining multiple pre-filters, based on [3]. We outlined only some of the main
ideas, while leaving most of the problems in this area as wide open and subject of
future research. We believe that creative combinations of multiple methods using
ensemble techniques from machine learning can significantly increase performance
of CARS and constitute an important and interesting area of research.
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Table 7.3: Overall comparison based on F-measure.

Comparison Overall F-measure Difference between F-measures
Standard 2D CF Combined reduction-

based CF

All predictions
(1373 ratings) 0.463 0.526 0.063

Predictions on
ratings from SEGM∗
(743 ratings) 0.450 0.545 0.095

7.5 Additional Issues in Context-Aware Recommender Systems

In addition to the three paradigms of incorporating context in recommender systems
and the methods of combining these three paradigms, there are several other im-
portant topics in context-aware recommender systems, such as how to better utilize
contextual information, how to develop richer interaction capabilities with CARS
that make recommendations more flexible, and how to build high-performing CARS
systems. We discuss these issues in the rest of this section.

Studying Tradeoffs Between Pre-, Post-Filtering, and Contextual Modeling Ap-
proaches and Developing Better Understanding of How to Combine Them. In Sec-
tion 7.3, we only described three types of general CARS paradigms and did not
consider tradeoffs between them. In order to achieve better understanding of pre-
filtering, post-filtering, and contextual modeling approaches, it is important to con-
duct studies comparing all the three approaches and identify relative advantages
and disadvantages of these methods. One such study is described in [55], where
a pre-filtering method is compared to a particular type of post-filtering method in
terms of the quality of recommendations. It was shown that neither method dom-
inated the other in terms of providing better recommendations, as measured using
the F-measure. Furthermore, Panniello et al. [55] proposed a procedure identifying
a set of conditions under which the pre-filtering method should be used vis-à-vis the
post-filtering methods.

The work reported in [55] constitutes only the first step towards a systematic pro-
gram of comparing the pre-filtering, post-filtering, and contextual modeling meth-
ods, and much more work is required to develop comprehensive understanding of
the relative merits of each of the three methods and to understand which methods
perform better than others and under which conditions.

Similarly, more work is required to better understand the combined approach
discussed in Section 7.4. This is a fruitful area of research that is open to numerous
improvements and important advances including various types of deployments of
ensemble methods combining the pre- and post-filtering as well contextual modeling
approaches.
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Developing Richer Interaction and More Flexible Recommendation Capabilities
of CARS. Context-aware recommendations have the following two important prop-
erties:

• Complexity. Since CARS involve not only users and items in the recommen-
dation process, but also various types of contextual information, the types of
such recommendations can be significantly more complex in comparison to the
traditional non-contextual cases. For example, in a movie recommendation ap-
plication, a certain user (e.g., Tom) may seek recommendations for him and his
girlfriend of top 3 movies and the best times to see them over the weekend.

• Interactivity. The contextual information usually needs to be elicited from the
user in the CARS settings. For example, to utilize the available contextual infor-
mation, a CARS system may need to elicit from the user (Tom) with whom he
wants to see a movie (e.g., girlfriend) and when (e.g., over the weekend) before
providing any context-specific recommendations.

The combination of these two features calls for the development of more flexible
recommendation methods that allow the user to express the types of recommenda-
tions that are of interest to them rather than being “hard-wired” into the recommen-
dation engines provided by most of the current vendors that, primarily, focus on
recommending top-N items to the user and vice versa. The second requirement of
interactivity also calls for the development of tools allowing users to provide inputs
into the recommendation process in an interactive and iterative manner, preferably
via some well-defined user interface (UI).

Such flexible context-aware recommendations can be supported in several ways.
First, Adomavicius et al. [6] developed a recommendation query language RE-
QUEST4 that allows its users to express in a flexible manner a broad range of recom-
mendations that are tailored to their own individual needs and, therefore, more ac-
curately reflect their interests. REQUEST is based on the multidimensional contex-
tual recommendation model described in Section 7.2.2 and also in [3]. REQUEST
supports a wide variety of features, and the interested reader can find the detailed
account of these features as well as the formal syntax and various properties of
the language in [6]. In addition, Adomavicius et al. [6] provide a discussion of the
expressive power of REQUEST and present a multidimensional recommendation
algebra that provides the theoretical basis for this language.

So far, we have briefly mentioned only the recommendation query language it-
self. Since a major argument for introducing such a language is its use by the end-
users, it is also very important to develop simple, friendly, and expressive user in-
terfaces (UIs) for supporting flexible but sometimes complex contextual recommen-
dations. High-quality UIs should reduce the complexity and simplify interactions
between the end-users and the recommender system and make them available to
wider audiences. Developing such UIs constitutes a topic of future research.

Another proposal to provide flexible recommendations is presented in [44],
where the FlexRecs system and framework are described. FlexRecs approach sup-
ports flexible recommendations over structured data by decoupling the definition of
4 REQUEST is an acronym for REcommendation QUEry STatements.
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a recommendation process from its execution. In particular, a recommendation can
be expressed declaratively as a high-level parameterized workflow containing tra-
ditional relational operators and novel recommendation-specific operators that are
combined together into a recommendation workflow.

In addition to developing languages for expressing context-aware recommenda-
tions, it is also important to provide appropriate user interfaces so that the users were
able to express flexible recommendations in an interactive manner. For FlexRecs,
this entails building a UI for defining and managing recommendation workflows,
and for REQUEST this entails providing front-end UI allowing users to express
REQUEST queries using visual and interactive methods.

Developing High-Performing CARS Systems and Testing Them on Practical Ap-
plications. Most of the work on context-aware recommender systems has been con-
ceptual, where a certain method has been developed, tested on some (often limited)
data, and shown to perform well in comparison to certain benchmarks. There has
been little work done on developing novel data structures, efficient storage meth-
ods, and new systems architectures for CARS. One example of such work is the
paper by Hussein et al. [38], where the authors introduce a service-oriented archi-
tecture enabling to define and implement a variety of different “building blocks”
for context-aware recommender systems, such as recommendation algorithms, con-
text sensors, various filters and converters, in a modular fashion. These building
blocks can then be combined and reused in many different ways into systems that
can generate contextual recommendations. Another example of such work is Abbar
et al. [1], where the authors present a service-oriented approach that implements
the Personalized Access Model (PAM) previously proposed by the authors. The im-
plementation is done using global software architecture of CARS developed by the
authors and described in [1]. These two papers constitute only the initial steps to-
wards developing better understanding of how to build more user-friendly, scalable,
and better performing CARS systems, and much more work is required to achieve
this goal.

7.6 Conclusions

In this chapter we argued that relevant contextual information does matter in rec-
ommender systems and that it is important to take this contextual information into
account when providing recommendations. We also explained that the contextual
information can be utilized at various stages of the recommendation process, in-
cluding at the pre-filtering and the post-filtering stages and also as an integral part
of the contextual modeling. We have also showed that various techniques of using
the contextual information, including these three methods, can be combined into
a single recommendation approach, and we presented a case study describing one
possible way of such combining.

Overall, the field of context-aware recommender systems (CARS) is a relatively
new and underexplored area of research, and much more work is needed to inves-
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tigate it comprehensively. We provided suggestions of several possible future re-
search directions that were presented throughout the paper. In conclusion, CARS
constitutes a newly developing and promising research area with many interesting
and practically important research problems.
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Chapter 8
Evaluating Recommendation Systems

Guy Shani and Asela Gunawardana

Abstract Recommender systems are now popular both commercially and in the
research community, where many approaches have been suggested for providing
recommendations. In many cases a system designer that wishes to employ a rec-
ommendation system must choose between a set of candidate approaches. A first
step towards selecting an appropriate algorithm is to decide which properties of the
application to focus upon when making this choice. Indeed, recommendation sys-
tems have a variety of properties that may affect user experience, such as accuracy,
robustness, scalability, and so forth. In this paper we discuss how to compare recom-
menders based on a set of properties that are relevant for the application. We focus
on comparative studies, where a few algorithms are compared using some evaluation
metric, rather than absolute benchmarking of algorithms. We describe experimental
settings appropriate for making choices between algorithms. We review three types
of experiments, starting with an offline setting, where recommendation approaches
are compared without user interaction, then reviewing user studies, where a small
group of subjects experiment with the system and report on the experience, and fi-
nally describe large scale online experiments, where real user populations interact
with the system. In each of these cases we describe types of questions that can be
answered, and suggest protocols for experimentation. We also discuss how to draw
trustworthy conclusions from the conducted experiments. We then review a large
set of properties, and explain how to evaluate systems given relevant properties. We
also survey a large set of evaluation metrics in the context of the properties that they
evaluate.
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8.1 Introduction

Recommender systems can now be found in many modern applications that expose
the user to a huge collections of items. Such systems typically provide the user with
a list of recommended items they might prefer, or predict how much they might
prefer each item. These systems help users to decide on appropriate items, and ease
the task of finding preferred items in the collection.

For example, the DVD rental provider Netflix1 displays predicted ratings for ev-
ery displayed movie in order to help the user decide which movie to rent. The online
book retailer Amazon2 provides average user ratings for displayed books, and a list
of other books that are bought by users who buy a specific book. Microsoft provides
many free downloads for users, such as bug fixes, products and so forth. When a
user downloads some software, the system presents a list of additional items that are
downloaded together. All these systems are typically categorized as recommender
systems, even though they provide diverse services.

In the past decade, there has been a vast amount of research in the field of rec-
ommender systems, mostly focusing on designing new algorithms for recommenda-
tions. An application designer who wishes to add a recommendation system to her
application has a large variety of algorithms at her disposal, and must make a deci-
sion about the most appropriate algorithm for her goals. Typically, such decisions
are based on experiments, comparing the performance of a number of candidate
recommenders. The designer can then select the best performing algorithm, given
structural constraints such as the type, timeliness and reliability of availability data,
allowable memory and CPU footprints. Furthermore, most researchers who suggest
new recommendation algorithms also compare the performance of their new algo-
rithm to a set of existing approaches. Such evaluations are typically performed by
applying some evaluation metric that provides a ranking of the candidate algorithms
(usually using numeric scores).

Initially most recommenders have been evaluated and ranked on their predic-
tion power — their ability to accurately predict the user’s choices. However, it is
now widely agreed that accurate predictions are crucial but insufficient to deploy
a good recommendation engine. In many applications people use a recommenda-
tion system for more than an exact anticipation of their tastes. Users may also be
interested in discovering new items, in rapidly exploring diverse items, in preserv-
ing their privacy, in the fast responses of the system, and many more properties of
the interaction with the recommendation engine. We must hence identify the set of
properties that may influence the success of a recommender system in the context
of a specific application. Then, we can evaluate how the system preforms on these
relevant properties.

In this paper we review the process of evaluating a recommendation system.
We discuss three different types of experiments; offline, user studies and online
experiments.

1 www.Netflix.com
2 www.amazon.com
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Often it is easiest to perform offline experiments using existing data sets and a
protocol that models user behavior to estimate recommender performance measures
such as prediction accuracy. A more expensive option is a user study, where a small
set of users is asked to perform a set of tasks using the system, typically answering
questions afterwards about their experience. Finally, we can run large scale experi-
ments on a deployed system, which we call online experiments. Such experiments
evaluate the performance of the recommenders on real users who are oblivious to
the conducted experiment. We discuss what can and cannot be evaluated for each of
these types of experiments.

We can sometimes evaluate how well the recommender achieves its overall goals.
For example, we can check an e-commerce website revenue with and without the
recommender system and thereby estimate the value of the system to the website.
In other cases, it can also be useful to evaluate how recommenders perform in terms
of some specific properties, allowing us to focus on improving properties that fall
short. First, one must show that a property is indeed relevant to users and affect their
experience. Then, we can design algorithms that improve upon these properties. In
improving one property we may reduce the quality of another property, creating a
a trade-off between a set of properties. In many cases it is also difficult to say how
these trade-offs affect the overall performance of the system, and we have to either
run additional experiments to understand this aspect, or use the opinions of domain
experts.

This paper focuses on property-directed evaluation of recommender algorithms.
We provide an overview of a large set of properties that can be relevant for sys-
tem success, explaining how candidate recommenders can be ranked with respect
to these properties. For each property we discuss the relevant experiment types—
offline, user study, and online experiments—and explain how an evaluation can be
conducted in each case. We explain the difficulties and outline the pitfalls in evalu-
ating each property. For all these properties we focus on ranking recommenders on
that property, assuming that better handling the property will improve user experi-
ence.

We also review a set of previous suggestions for evaluating recommendation sys-
tems, describing a large set of popular methods and placing them in the context
of the properties that they measure. We especially focus on the widely researched
accuracy and ranking measurements, describing a large set of evaluation metrics
for these properties. For other, less studied properties, we suggest guidelines from
which specific measures can be derived. We provide examples of such specific im-
plementations where appropriate.

The rest of the paper is structured as follows. In Section 8.2 we discuss the dif-
ferent experimental settings in which recommender systems can be evaluated, dis-
cussing the appropriate use of offline experiments, user studies, and online trials.
We also outline considerations that go into making reliable decisions based on these
experiments, including generalization and statistical significance of results. In Sec-
tion 8.3 we describe a large variety of properties of recommendation systems that
may impact their performance, as well as metrics for measuring these properties.
Finally, we conclude in Section 8.4.
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8.2 Experimental Settings

In this section we describe three levels of experiments that can be used in order
to compare several recommenders. The discussion below is motivated by evalua-
tion protocols in related areas such as machine learning and information retrieval,
highlighting practices relevant to evaluating recommendation systems. The reader
is referred to publications in these fields for more detailed discussions [49, 13, 60].

We begin with offline experiments, which are typically the easiest to conduct,
as they require no interaction with real users. We then describe user studies, where
we ask a small group of subjects to use the system in a controlled environment, and
then report on their experience. In such experiments we can collect both quantitative
and qualitative information about the systems, but care must be taken to consider
various biases in the experimental design. Finally, perhaps the most trustworthy
experiment is when the system is used by a pool of real users, typically unaware
of the experiment. While in such an experiment we are able to collect only certain
types of data, this experimental design is closest to reality.

In all experimental scenarios, it is important to follow a few basic guidelines in
general experimental studies:

• Hypothesis: before running the experiment we must form an hypothesis. It is
important to be concise and restrictive about this hypothesis, and design an
experiment that tests the hypothesis. For example, an hypothesis can be that
algorithm A better predicts user ratings than algorithm B. In that case, the ex-
periment should test the prediction accuracy, and not other factors.

• Controlling variables: when comparing a few candidate algorithms on a cer-
tain hypothesis, it is important that all variables that are not tested will stay
fixed. For example, suppose that we wish to compare the prediction accuracy
of movie ratings of algorithm A and algorithm B, that both use different collab-
orative filtering models. If we train A on the MovieLens data set, and B on the
Netflix data set, and algorithm A presents superior performance, we can not tell
whether the performance was due to the superior CF model, or due to the better
input data, or both. We therefore must train the algorithms on the same data set
(or over unbiased samples from the same data set), or train the same algorithms
over the two different data sets, in order to understand the cause of the superior
performance.

• Generalization power: when drawing conclusions from experiments, we may
desire that our conclusions generalize beyond the immediate context of the ex-
periments. When choosing an algorithm for a real application, we may want
our conclusions to hold on the deployed system, and generalize beyond our ex-
perimental data set. Similarly, when developing new algorithms, we want our
conclusions to hold beyond the scope of the specific application or data set that
we experimented with. To increase the probability of generalization of the re-
sults we must typically experiment with several data sets or applications. It is
important to understand the properties of the various data sets that are used.
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Generally speaking, the more diverse the data used, the more we can generalize
the results.

8.2.1 Offline Experiments

An offline experiment is performed by using a pre-collected data set of users choos-
ing or rating items. Using this data set we can try to simulate the behavior of users
that interact with a recommendation system. In doing so, we assume that the user
behavior when the data was collected will be similar enough to the user behavior
when the recommender system is deployed, so that we can make reliable decisions
based on the simulation. Offline experiments are attractive because they require no
interaction with real users, and thus allow us to compare a wide range of candidate
algorithms at a low cost. The downside of offline experiments is that they can an-
swer a very narrow set of questions, typically questions about the prediction power
of an algorithm. In particular, we must assume that users’ behavior when interact-
ing with a system including the recommender system chosen will be modeled well
by the users’ behavior prior to that system’s deployment. Thus we cannot directly
measure the recommender’s influence on user behavior in this setting.

Therefore, the goal of the offline experiments is to filter out inappropriate ap-
proaches, leaving a relatively small set of candidate algorithms to be tested by the
more costly user studies or online experiments. A typical example of this process is
when the parameters of the algorithms are tuned in an offline experiment, and then
the algorithm with the best tuned parameters continues to the next phase.

8.2.1.1 Data sets for offline experiments

As the goal of the offline evaluation is to filter algorithms, the data used for the
offline evaluation should match as closely as possible the data the designer expects
the recommender system to face when deployed online. Care must be exercised to
ensure that there is no bias in the distributions of users, items and ratings selected.
For example, in cases where data from an existing system (perhaps a system with-
out a recommender) is available, the experimenter may be tempted to pre-filter the
data by excluding items or users with low counts, in order to reduce the costs of ex-
perimentation. In doing so, the experimenter should be mindful that this involves a
trade-off, since this introduces a systematic bias in the data. If necessary, randomly
sampling users and items may be a preferable method for reducing data, although
this can also introduce other biases into the experiment (e.g. this could tend to favor
algorithms that work better with more sparse data). Sometimes, known biases in
the data can be corrected for by techniques such as reweighing data, but correcting
biases in the data is often difficult.

Another source of bias may be the data collection itself. For example, users may
be more likely to rate items that they have strong opinions on, and some users may
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provide many more ratings than others. Thus, the set of items on which explicit
ratings are available may be biased by the ratings themselves [38]. Once again,
techniques such as resampling or reweighting the test data may be used to attempt
to correct such biases.

8.2.1.2 Simulating user behavior

In order to evaluate algorithms offline, it is necessary to simulate the online process
where the system makes predictions or recommendations, and the user corrects the
predictions or uses the recommendations. This is usually done by recording histor-
ical user data, and then hiding some of these interactions in order to simulate the
knowledge of how a user will rate an item, or which recommendations a user will
act upon. There are a number of ways to choose the ratings/selected items to be hid-
den. Once again, it is preferable that this choice be done in a manner that simulates
the target application as closely as possible. In many cases, though, we are restricted
by the computational cost of an evaluation protocol, and must make compromises
in order to execute the experiment over large data sets.

Ideally, if we have access to time-stamps for user selections, we can simulate
what the systems predictions would have been, had it been running at the time the
data set was collected. We can begin with no available prior data for computing
predictions, and step through user selections in temporal order, attempting to predict
each selection and then making that selection available for use in future predictions.
For large data sets, a simpler approach is to randomly sample test users, randomly
sample a time just prior to a user action, hide all selections (of all users) after that
instant, and then attempt to recommend items to that user. This protocol requires
changing the set of given information prior to each recommendation, which can still
be computationally quite expensive.

An even cheaper alternative is to sample a set of test users, then sample a single
test time, and hide all items after the sampled test time for each test user. This
simulates a situation where the recommender system is built as of the test time, and
then makes recommendations without taking into account any new data that arrives
after the test time. Another alternative is to sample a test time for each test user,
and hide the test user’s items after that time, without maintaining time consistency
across users. This effectively assumes that the sequence in which items are selected
is important, not the absolute times when the selections are made. A final alternative
is to ignore time. We would first sample a set of test users, then sample the number
na of items to hide for each user a, and finally sample na items to hide. This assumes
that the temporal aspects of user selections are unimportant. We may be forced to
make this assumption if the timestamps of user actions are not known. All three of
the latter alternatives partition the data into a single training set and single test set. It
is important to select an alternative that is most appropriate for the domain and task
of interest (see Chapter 11), given the constraints, rather than the most convenient
one.
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A common protocol used in many research papers is to use a fixed number of
known items or a fixed number of hidden items per test user (so called “given n” or
“all but n” protocols). This protocol is useful for diagnosing algorithms and identi-
fying in which cases they work best. However, when we wish to make decisions on
the algorithm that we will use in our application, we must ask ourselves whether we
are truly interested in presenting recommendations only for users who have rated
exactly n items, or are expected to rate exactly n items more. If that is not the case,
then results computed using these protocols have biases that make them unreliable
in predicting the performance of the algorithms online.

8.2.1.3 More complex user modeling

All the protocols that we discuss above make some assumptions concerning the be-
havior of users, which could be regarded as a user-model for the specific application.
While we discuss only very simple user-models it is possible to suggest more com-
plicated models for user behavior [37]. Using advanced user models we can execute
simulations of users interactions with the system, thus reducing the need for expen-
sive user studies and online testing. However, care must be made when designing
user-models; First, user-modeling is a difficult task, and there is a vast amount of
research on the subject (see, e.g. [15]). Second, when the user model is inaccurate,
we may optimize a system whose performance in simulation has no correlation with
its performance in practice. While it is reasonable to design an algorithm that uses
complex user-models to provide recommendations, we should be careful in trusting
experiments where algorithms are verified using such complex, difficult to verify
user models.

8.2.2 User Studies

Many recommendation approaches rely on the interaction of users with the system
(see, e.g., Chapters 23, 13, 6). It is very difficult to create a reliable simulation of
users interactions with the system, and thus, offline testing are difficult to conduct. In
order to properly evaluate such systems, real user interactions with the system must
be collected. Even when offline testing is possible, interactions with real users can
still provide additional information about the system performance. In these cases we
typically conduct user studies.

A user study is conducted by recruiting a set of test subjects, and asking them
to perform several tasks requiring an interaction with the recommendation system.
While the subjects perform the tasks, we observe and record their behavior, collect-
ing any number of quantitative measurements, such as what portion of the task was
completed, the accuracy of the task results, or the time taken to perform the task.
In many cases we can ask qualitative questions before, during, and after the task
is completed. Such questions can collect data that is not directly observable, such
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as whether the subject enjoyed the user interface, or whether the user perceived the
task as easy to complete.

A typical example of such an experiment is to test the influence of a recom-
mendation algorithm on the browsing behavior of news stories. In this example, the
subjects are asked to read a set of stories that are interesting to them, in some cases
including related story recommendations and in some cases without recommenda-
tions. We can then check whether the recommendations are used, and whether peo-
ple read different stories with and without recommendations. We can collect data
such as how many times a recommendation was clicked, and even, in certain cases,
track eye movement to see whether a subject looked at a recommendation. Finally,
we can ask qualitative questions such as whether the subject thought the recommen-
dations were relevant.

Of course, in many other research areas user studies are a central tool, and thus
there is much literature on the proper design of user studies. This section only
overviews the basic considerations that should be taken when evaluating a recom-
mender system through a user study, and the interested reader can find much deeper
discussions elsewhere (see. e.g. [5]).

8.2.2.1 Advantages and Disadvantages

User studies can perhaps answer the widest set of questions of all three experimental
settings that we survey here. Unlike offline experiments this setting allows us to test
the behavior of users when interacting with the recommendation system, and the
influence of the recommendations on user behavior. In the offline case we typically
make assumptions such as “given a relevant recommendation the user is likely to use
it” which are tested in the user study. Second, this is the only setting that allows us to
collect qualitative data that is often crucial for interpreting the quantitative results.
Also, we can typically collect in this setting a large set of quantitative measurements
because the users can be closely monitored while performing the tasks.

User studies however have some disadvantages. Primarily, user studies are very
expensive to conduct; collecting a large set of subjects and asking them to perform
a large enough set of tasks is costly in terms of either user time, if the subjects are
volunteers, or in terms of compensation if paid subjects are employed. Therefore,
we must typically restrict ourselves to a small set of subjects and a relatively small
set of tasks, and cannot test all possible scenarios. Furthermore, each scenario has
to be repeated several time in order to make reliable conclusions, further limiting
the range of distinct tasks that can be tested.

As these experiments are expensive to conduct we should collect as much data
about the user interactions, in the lowest possible granularity. This will allow us
later to study the results of the experiment in detail, analyzing considerations that
were not obvious prior to the trial. This guideline can help us to reduce the need for
successive trials to collect overlooked measurements.

Furthermore, in order to avoid failed experiments, such as applications that mal-
function under certain user actions, researchers often execute pilot user studies.
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These are small scale experiments, designed not to collect statistical data, but to test
the systems for bugs and malfunctions. In some cases, the results of these pilot stud-
ies are then used to improve the recommender. If this is the case, then the results of
the pilot become “tainted”, and should not be used when computing measurements
in the final user study.

Another important consideration is that the test subjects must represent as closely
as possible the population of users of the real system. For example, if the system is
designed to recommend movies, the results of a user study over avid movie fans
may not carry to the entire population. This problem is most persistent when the
participants of the study are volunteers, as in this case people who are originally
more interested in the application may tend to volunteer more readily.

However, even when the subjects represent properly the true population of users,
the results can still be biased because they are aware that they are participating in an
experiment. For example, it is well known that paid subjects tend to try and satisfy
the person or company conducting the experiment. If the subjects are aware of the
hypothesis that is tested they may unconsciously provide evidence that supports it.
To accommodate that, it is typically better not to disclose the goal of the experiment
prior to collecting data. Another, more subtle effect occurs when the payment to sub-
jects takes the form of a complete or partial subsidy of items they select. This may
bias the data in cases where final users of the system are not similarly subsidized, as
users’ choices and preferences may be different when they pay full price.

8.2.2.2 Between vs. Within Subjects

As typically a user study compares a few candidate approaches, each candidate must
be tested over the same tasks. To test all candidates we can either compare the can-
didates between subjects, where each subject is assigned to a candidate method and
experiments with it, or within subjects, where each subject tests a set of candidates
on different tasks [20].

Typically, within subjects experiments are more informative, as the superiority of
one method cannot be explained by a biased split of users between candidate meth-
ods. It is also possible in this setting to ask comparative questions about the different
candidates, such as which candidate the subject preferred. However, in these types
of tests users are more conscious of the experiment, and hiding the distinctions be-
tween candidates is more difficult.

Between subjects experiments, also known as A-B testing (All Between), provide
a setting that is closer to the real system, as each user experiments with a single sys-
tem. Such experiments can also test long term effects of using the system, because
the user is not required to switch systems. Thus we can test how the user becomes
accustomed to the system, and estimate a learning curve of expertise.
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8.2.2.3 Variable Counter Balance

As we have noted above, it is important to control all variables that are not specif-
ically tested. However, when a subject is presented with the output of several can-
didates, as is done in within subject experiments, we must counter balance several
variables.

When presenting several results to the subject, the results can be displayed ei-
ther sequentially, or together. In both cases there are certain biases that we need to
correct for. When presenting the results sequentially the previously observed results
influence the user opinion of the current results. For example, if the results that were
displayed first seem inappropriate, the results displayed afterwards may seem better
than they actually are. When presenting two sets of results, there can be certain bi-
ases due to location. For example, users from many cultures tend to observe results
left to right and top to bottom. Thus, the user may observe the results displayed on
top as superior.

A common approach to correct for such untested variables is by using the Latin
square [5] procedure. This procedure randomizes the order or location of the various
results each time, thus canceling out biases due to these untested variables.

8.2.2.4 Questionnaires

User studies allow us to use the powerful questionnaire tool. Prior, during, and after
subjects perform their tasks we can ask them questions about their experience. These
questions can provide information about properties that are difficult to measure,
such as the subject’s state of mind, or whether the subject enjoyed the system.

While these questions can provide valuable information, they can also provide
misleading information. It is important to ask neutral questions, that do not suggest
a “correct” answer. People may also answer untruthfully, for example when they
perceive the answer as private, or if they think the true answer may put them in an
unflattering position.

Indeed, vast amount of research was conducted in other areas about the art of
questionnaire writing, and we refer the readers to that literature (e.g. [46]) for more
details.

8.2.3 Online Evaluation

In many realistic recommendation applications the designer of the system wishes to
influence the behavior of users. We are therefore interested in measuring the change
in user behavior when interacting with different recommendation systems. For ex-
ample, if users of one system follow the recommendations more often, or if some
utility gathered from users of one system exceeds utility gathered from users of the
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other system, then we can conclude that one system is superior to the other, all else
being equal.

The real effect of the recommendation system depends on a variety of factors
such as the user’s intent (e.g. how specific their information needs are, how much
novelty vs. how much risk they are seeking), the user’s context (e.g. what items they
are already familiar with, how much they trust the system), and the interface through
which the recommendations are presented.

Thus, the experiment that provides the strongest evidence as to the true value
of the system is an online evaluation, where the system is used by real users that
perform real tasks. It is most trustworthy to compare a few systems online, obtaining
a ranking of alternatives, rather than absolute numbers that are more difficult to
interpret.

For this reason, many real world systems employ an online testing system [32],
where multiple algorithms can be compared. Typically, such systems redirect a small
percentage of the traffic to different alternative recommendation engine, and record
the users interactions with the different systems.

There are a few considerations that must be made when running such tests. For
example, it is important to sample (redirect) users randomly, so that the comparisons
between alternatives are fair. It is also important to single out the different aspects
of the recommenders. For example, if we care about algorithmic accuracy, it is im-
portant to keep the user interface fixed. On the other hand, if we wish to focus on a
better user interface, it is best to keep the underlying algorithm fixed.

In some cases, such experiments are risky. For example, a test system that pro-
vides irrelevant recommendations, may discourage the test users from using the real
system ever again. Thus, the experiment can have a negative effect on the system,
which may be unacceptable in commercial applications.

For these reasons, it is best to run an online evaluation last, after an extensive
offline study provides evidence that the candidate approaches are reasonable, and
perhaps after a user study that measures the user’s attitude towards the system. This
gradual process reduces the risk in causing significant user dissatisfaction.

Online evaluations are unique in that they allow direct measurement of overall
system goals, such as long-term profit or user retention. As such, they can be used to
understand how these overall goals are affected by system properties such as recom-
mendation accuracy and diversity of recommendations, and to understand the trade-
offs between these properties. However, since varying such properties independently
is difficult, and comparing many algorithms through online trials is expensive, it can
be difficult to gain a complete understanding of these relationships.

8.2.4 Drawing Reliable Conclusions

In any type of experiment it is important that we can be confidant that the candidate
recommender that we choose will also be a good choice for the yet unseen data the
system will be faced with in the future. As we explain above, we should exercise
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caution in choosing the data in an offline experiments, and the subjects in a user
study, to best resemble the online application. Still, there is a possibility that the
algorithm that performed best on this test set did so because the experiment was
fortuitously suitable for that algorithm. To reduce the possibility of such statistical
mishaps, we must perform significance testing on the results.

8.2.4.1 Confidence and p-values

A standard tool for significance testing is a significance level or p-value — the prob-
ability that the obtained results were due to luck. Generally, we will reject the null
hypothesis that algorithm A is no better than algorithm B if the p-value is above
some threshold. That is, if the probability that the observed ranking is achieved by
chance exceeds the threshold, then the results of the experiment are not deemed
significant. Traditionally, people choose p = 0.05 as their threshold, which indi-
cates less than 95% confidence. More stringent significance levels (e.g. 0.01 or even
lower) can be used in cases where the cost of making the wrong choice is higher.

8.2.4.2 Paired Results

In order to perform a significance test that algorithm A is indeed better than algo-
rithm B, we often use the results of several independent experiments comparing A
and B. Indeed, the protocol we have suggested for generating our test data (Sec-
tion 8.2.1.2) allows us to obtain such a set of results. Assuming that test users are
drawn independently from some population, the performance measures of the algo-
rithms for each test user give us the independent comparisons we need. However,
when recommendations or predictions of multiple items are made to the same user,
it is unlikely that the resulting per-item performance metrics are independent. There-
fore, it is better to compare algorithms on a per-user basis.

Given such paired per-user performance measures for algorithms A and B a sim-
ple test of significance is the sign test [13]. We count the number of users for whom
algorithm A outperforms algorithm B (nA) and the number of users for whom algo-
rithm B outperforms algorithm A (nB). The significance level is the probability that
A is not truly better than B, and is estimated as the probability of at least nA out of
n = nA + nB 0.5-probability Binomial trials succeeding (i.e. nA out of nA + nB fair
coin-flips coming up “heads”), and is given by

p = (0.5)n
n

∑
i=nA

n!
i!(n− i)!

(8.1)

The sign test is an attractive choice due to its simplicity, and lack of assumptions
over the distribution of cases. While tied results are traditionally ignored, Demšar
[13] recommends splitting them between A and B, since they provide evidence for
the null hypothesis that the algorithms are no different. When nA + nB is large, we
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can take advantage of large sample theory to approximate (8.1) by a normal dis-
tribution. However, this is usually unnecessary with powerful modern computers.
Some authors (e.g. [49]) use the term McNemar’s test to refer to the use of a χ2

approximation to the two-sided sign test.
Note that sometimes, the sign test may indicate that system A outperforms system

B with high probability, even though the average performance of system B is higher
than that of system A. This happens in cases where system B occasionally outper-
forms system A overwhelmingly. Thus, the reason for this seemingly inconsistent
result is that the test only examines the probability of one system outperforming the
other, without regard to the magnitude of the difference.

The sign test can be extended to cases where we want to know the probability
that one system outperforms the other by some amount. For example, suppose that
system A is much more resource intensive than system B, and is only worth deploy-
ing if it outperforms system B by some amount. We can define “success” in the sign
test as A outperforming B by this amount, and find the probability of A not truly
outperforming B by this amount as our p value in equation (8.1).

A commonly used test that takes the magnitude of the differences into account
is the paired Student’s t-test, which looks at the average difference between the
performance scores of algorithms A and B, normalized by the standard deviation
of the score difference. Using this test requires that the differences in scores for
different users is comparable, so that averaging these differences is reasonable. For
small numbers of users, the validity of the test also depends on the differences being
Normally distributed. Demšar [13] points out that this assumption is hard to verify
when the number of samples is small and that the t-test is susceptible to outliers.
He recommends the use of Wilcoxon signed rank test, which like the t-test, uses
the magnitude of the differences between algorithms A and B, but without making
distributional assumptions on the differences. However, using the Wilcoxon signed
rank test still requires that differences between the two systems are comparable
between users.

Another way to improve the significance of our conclusions is to use a larger
test set. In the offline case, this may require using a smaller training set, which may
result in an experimental protocol that is not representative of the amount of training
data available after deployment. In the case of user studies, this implies an additional
expense. In the case of online testing, increasing the amount of data collected for
each algorithm requires either the added expense of a longer trial or the comparison
of fewer algorithms.

8.2.4.3 Unpaired Results

The tests described above are suitable for cases where observations are paired. That
is, each algorithm is run on each test case, as is often done in offline tests. In online
tests, however, it is often the case that users are assigned to one algorithm or the
other, so that the two algorithms are not evaluated on the same test cases. The Mann-
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Whitney test is an extension of the Wilcoxon test to this scenario. Suppose we have
nA results from algorithm A and nB results from algorithm B.

The performance measures of the two algorithms are pooled and sorted so that
the best result is ranked first and the worst last. The ranks of ties are averaged. For
example if the second through fifth place tie, they are all assigned a rank of 3.5. The
Mann-Whitney test computes the probability of the null hypothesis that nA randomly
chosen results from the total nA +nB have at least as good an average rank as the nA
results that came from algorithm A.

This probability can be computed exactly be enumerating all (nA+nB)!
nA!nB! choices and

counting the choices that have at least the required average rank, or can be approx-
imated by repeatedly resampling nA of the results. When nA and nB are both large
enough (typically over 5), the distribution of the average rank of nA results randomly
selected from a pool of nA + nB under the null hypothesis is well approximated by
a Gaussian with mean 1

2 (nA +nB +1) and standard deviation
√

1
12

nA
nB
(nA +nB +1).

Thus, in this case we can compute the average rank of the nA results from system A,
subtract 1

2 (nA + nB + 1), divide by
√

1
12

nA
nB
(nA +nB +1), and evaluate the standard

Gaussian CDF at this value to get the p value for the test.

8.2.4.4 Multiple tests

Another important consideration, mostly in the offline scenario, is the effect of eval-
uating multiple versions of algorithms. For example, an experimenter might try out
several variants of a novel recommender algorithm and compare them to a baseline
algorithm until they find one that passes a sign test at the p= 0.05 level and therefore
infer that their algorithm improves upon the baseline with 95% confidence. How-
ever, this is not a valid inference. Suppose the experimenter evaluated 10 different
variants all of which are statistically the same as the baseline. If the probability that
any one of these trials passes the sign test mistakenly is p= 0.05, the probability that
at least one of the ten trials passes the sign test mistakenly is 1−(1−0.05)10 = 0.40.
This risk is colloquially known as “tuning to the test set” and can be avoided by
separating the test set users into two groups–a development (or tuning) set, and an
evaluation set. The choice of algorithm is done based on the development test, and
the validity of the choice is measured by running a significance test on the evaluation
set.

A similar concern exists when ranking a number of algorithms, but is more diffi-
cult to circumvent. Suppose the best of N +1 algorithms is chosen on the develop-
ment test set. To achieve a confidence 1− p that the chosen algorithm is indeed the
best, it must outperform the N other algorithms on the evaluation set with signifi-
cance 1−(1− p)1/N . This is known as the Bonferroni correction, and should be used
when pair-wise significant tests are used multiple times. Alternatively, approaches
such as ANOVA or the Friedman test for ranking, which are generalization of the
Student’s t-test and Wilcoxon’s rank test. ANOVA makes strong assumptions about
the Normality of the different algorithms’ performance measures, and about the re-
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lationships of their variances. We refer the reader to [13] for further discussion of
these and other tests for ranking multiple algorithms.

A more subtle version of this concern is when a pair of algorithms are com-
pared in a number of ways. For example, two algorithms may be compared using
a number of accuracy measures, a number of coverage measures, etc. Even if the
two algorithms are identical in all measures, the probability of finding a measure
by which one algorithm seems to outperform the other with some significance level
increases with the number of measures examined. If the different measures are in-
dependent, the Bonferroni correction mentioned above can be used. However, since
the measures are often correlated, the Bonferroni correction may be too stringent,
and other approaches such as controlling for false discovery rate [2] may be used.

8.2.4.5 Confidence Intervals

Even though we focus here on comparative studies, where one has to choose the
most appropriate algorithm out of a set of candidates, it is sometimes desirable to
measure the value of some property. For example, an administrator may want to es-
timate the error in the system predictions, or the net profit that the system is earning.
When measuring such quantities it is important to understand the reliability of your
estimates. A popular approach for doing this is to compute confidence intervals.

For example, one may estimate that the RMSE of a system is expected to be 1.2,
and that it will be between 1.1 and 1.35 with probability 0.95. The simplest method
for computing confidence intervals is to assume that the quantity of interest is Gaus-
sian distributed, and then estimate its mean and standard deviations from multiple
independent observations. When we have many observations, we can dispense with
this assumption by computing the distribution of the quantity of interest with a non-
parametric method such as a histogram and finding upper and lower bounds such
that include the quantity of interest with the desired probability.

8.3 Recommendation System Properties

In this section we survey a range of properties that are commonly considered when
deciding which recommendation approach to select. As different applications have
different needs, the designer of the system must decide on the important proper-
ties to measure for the concrete application at hand. Some of the properties can be
traded-off, the most obvious example perhaps is the decline in accuracy when other
properties (e.g. diversity) are improved. It is important to understand and evaluate
these trade-offs and their effect on the overall performance. However, the proper
way of gaining such understanding without intensive online testing or defering to
the opinions of domain experts is still an open question.

Furthermore, the effect of many of these properties on the user experience is
unclear, and depends on the application. While we can certainly speculate that users
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would like diverse recommendations or reported confidence bounds, it is essential to
show that this is indeed important in practice. Therefore, when suggesting a method
that improves one of this properties, one should also evaluate how changes in this
property affects the user experience, either through a user study or through online
experimentation.

Such an experiment typically uses a single recommendation method with a tun-
able parameter that affects the property being considered. For example, we can en-
vision a parameter that controls the diversity of the list of recommendations. Then,
subjects should be presented with recommendations based on a variety of values
for this parameter, and we should measure the effect of the parameter on the user
experience. We should measure here not whether the user noticed the change in the
property, but whether the change in property has affected their interaction with the
system. As is always the case in user studies, it is preferable that the subjects in a
user study and users in an online experiment will not know the goal of the experi-
ment. It is difficult to envision how this procedure could be performed in an offline
setting because we need to understand the user response to this parameter.

Once the effects of the specific system properties in affecting the user experience
of the application at hand is understood, we can use differences in these properties
to select a recommender.

8.3.1 User Preference

As in this paper we are interested in the selection problem, where we need to choose
one out of a set of candidate algorithms, an obvious option is to run a user study
(within subjects) and ask the participants to choose one of the systems [25]. This
evaluation does not restrict the subjects to specific properties, and it is generally
easier for humans to make such judgments than to give scores for the experience.
Then, we can select the system that had the largest number of votes.

However, aside from the biases in user studies discussed earlier, there are addi-
tional concerns that we must be aware of. First, the above scheme assumes that all
users are equal, which may not always be true. For example, an e-commerce website
may prefer the opinion of users who buy many items to the opinion of users who
only buy a single item. We therefore need to further weight the vote by the impor-
tance of the user, when applicable. Assigning the right importance weights in a user
study may not be easy.

It may also be the case that users who preferred system A, only slightly preferred
it, while users who preferred B, had a very low opinion of A. In this case, even if
more users preferred A we may still wish to choose B. To measure this we need
non-binary answers for the preference question in the user study. Then, the problem
of calibrating scores across users arises.

Finally, when we wish to improve a system, it is important to know why people
favor one system over the other. Typically, it is easier to understand that when com-
paring specific properties. Therefore, while user satisfaction is important to mea-
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sure, breaking satisfaction into smaller components is helpful to understand the sys-
tem and improve it.

8.3.2 Prediction Accuracy

Prediction accuracy is by far the most discussed property in the recommendation
system literature. At the base of the vast majority of recommender systems lie a
prediction engine. This engine may predict user opinions over items (e.g. ratings of
movies) or the probability of usage (e.g. purchase).

A basic assumption in a recommender system is that a system that provides more
accurate predictions will be preferred by the user. Thus, many researchers set out to
find algorithms that provide better predictions.

Prediction accuracy is typically independent of the user interface, and can thus be
measured in an offline experiment. Measuring prediction accuracy in a user study
measures the accuracy given a recommendation. This is a different concept from
the prediction of user behavior without recommendations, and is closer to the true
accuracy in the real system.

We discuss here three broad classes of prediction accuracy measures; measuring
the accuracy of ratings predictions, measuring the accuracy of usage predictions,
and measuring the accuracy of rankings of items.

8.3.2.1 Measuring Ratings Prediction Accuracy

In some applications, such as in the new releases page of the popular Netflix DVD
rental service, we wish to predict the rating a user would give to an item (e.g. 1-star
through 5-stars). In such cases, we wish to measure the accuracy of the system’s
predicted ratings.

Root Mean Squared Error (RMSE) is perhaps the most popular metric used
in evaluating accuracy of predicted ratings. The system generates predicted ratings
r̂ui for a test set T of user-item pairs (u, i) for which the true ratings rui are known.
Typically, rui are known because they are hidden in an offline experiment, or because
they were obtained through a user study or online experiment. The RMSE between
the predicted and actual ratings is given by:

RMSE =

√
1
|T | ∑

(u,i)∈T
(r̂ui− rui)2 (8.2)

Mean Absolute Error (MAE) is a popular alternative, given by

MAE =

√
1
|T | ∑

(u,i)∈T
|r̂ui− rui| (8.3)
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Compared to MAE, RMSE disproportionately penalizes large errors, so that,
given a test set with four hidden items RMSE would prefer a system that makes
an error of 2 on three ratings and 0 on the fourth to one that makes an error of 3 on
one rating and 0 on all three others, while MAE would prefer the second system.

Normalized RMSE (NMRSE) and Normalized MAE (NMAE) are versions
of RMSE and MAE that have been normalized by the range of the ratings (i.e.
rmax− rmin). Since they are simply scaled versions of RMSE and MAE, the result-
ing ranking of algorithms is the same as the ranking given by the unnormalized
measures.

Average RMSE and Average MAE adjust for unbalanced test sets. For example,
if the test set has an unbalanced distribution of items, the RMSE or MAE obtained
from it might be heavily influenced by the error on a few very frequent items. If
we need a measure that is representative of the prediction error on any item, it is
preferable to compute MAE or RMSE separately for each item and then take the
average over all items. Similarly, one can compute a per-user average RMSE or
MAE if the test set has an unbalanced user distribution and we wish to understand
the prediction error a randomly drawn user might face.

RMSE and MAE depend only on the magnitude of the errors made. In some ap-
plications, the semantics of the ratings may be such that the impact of a prediction
error does not depend only on its magnitude. In such domains it may be preferable
to use a suitable distortion measure d(r̂,r) than squared difference or absolute dif-
ference. For example in an application with a 3-star rating system where 1 means
“disliked,” 2 means “neutral” and 3 means “liked,” and where recommending an
item the user dislikes is worse that not recommending an item a user likes, a distor-
tion measure with d(3,1) = 5, d(2,1) = 3, d(3,2) = 3, d(1,2) = 1, d(2,3) = 1, and
d(1,3) = 2 may be reasonable.

8.3.2.2 Measuring Usage Prediction

In many applications the recommendation system does not predict the user’s pref-
erences of items, such as movie ratings, but tries to recommend to users items that
they may use. For example, when movies are added to the queue, Netflix suggests
a set of movies that may also be interesting, given the added movie. In this case
we are interested not in whether the system properly predicts the ratings of these
movies but rather whether the system properly predicts that the user will add these
movies to the queue (use the items).

In an offline evaluation of usage prediction, we typically have a data set con-
sisting of items each user has used. We then select a test user, hide some of her
selections, and ask the recommender to predict a set of items that the user will use.
We then have four possible outcomes for the recommended and hidden items, as
shown in Table 8.1.

In the offline case, since the data isn’t typically collected using the recommender
system under evaluation, we are forced to assume that unused items would have not
be used even if they had they been recommended — i.e. that they are uninteresting
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Recommended Not recommended
Used True-Positive (tp) False-Negative (fn)
Not used False-Positive (fp) True-Negative (tn)

Table 8.1: Classification of the possible result of a recommendation of an item to a
user.

or useless to the user. This assumption may be false, such as when the set of unused
items contains some interesting items that the user did not select. For example, a
user may not have used an item because she was unaware of its existence, but after
the recommendation exposed that item the user can decide to select it. In this case
the number of false positives is over estimated.

We can count the number of examples that fall into each cell in the table and
compute the following quantities:

Precision =
#tp

#tp+#fp
(8.4)

Recall (True Positive Rate) = #tp
#tp+#fn

(8.5)

False Positive Rate (1 - Specificity) =
#fp

#fp+#tn
(8.6)

Typically we can expect a trade off between these quantities — while allowing
longer recommendation lists typically improves recall, it is also likely to reduce
the precision. In applications where the number of recommendations that can be
presented to the user is preordained, the most useful measure of interest is Precision
at N.

In other applications where the number of recommendations that are presented
to the user is not preordained, it is preferable to evaluate algorithms over a range of
recommendation list lengths, rather than using a fixed length. Thus, we can com-
pute curves comparing precision to recall, or true positive rate to false positive rate.
Curves of the former type are known simply as precision-recall curves, while those
of the latter type are known as a Receiver Operating Characteristic3 or ROC curves.
While both curves measure the proportion of preferred items that are actually recom-
mended, precision-recall curves emphasize the proportion of recommended items
that are preferred while ROC curves emphasize the proportion of items that are not
preferred that end up being recommended.

We should select whether to use precision-recall or ROC based on the properties
of the domain and the goal of the application; suppose, for example, that an online
video rental service recommends DVDs to users. The precision measure describes
the proportion of their recommendations were actually suitable for the user. Whether
the unsuitable recommendations represent a small or large fraction of the unsuitable
DVDs that could have been recommended (i.e. the false positive rate) may not be

3 A reference to their origins in signal detection theory.
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as relevant as what proportion of the relevant items the system recommended to
the user, so a precision-recall curve would be suitable for this application. On the
other hand, consider a recommender system that is used for selecting items to be
marketed to users, for example by mailing an item to the user who returns it at no
cost to themselves if they do not purchase it. In this case, where we are interested
in realizing as many potential sales as possible while minimizing marketing costs,
ROC curves would be more relevant than precision-recall curves.

Given two algorithms, we can compute a pair of such curves, one for each al-
gorithm. If one curve completely dominates the other curve, the decision about the
superior algorithm is easy. However, when the curves intersect, the decision is less
obvious, and will depend on the application in question. Knowledge of the applica-
tion will dictate which region of the curve the decision will be based on.

Measures that summarize the precision recall of ROC curve such as F-measure
[58] and the Area Under the ROC Curve (AUC) [1] are useful for comparing
algorithms independently of application, but when selecting an algorithm for use in
a particular task, it is preferable to make the choice based on a measure that reflects
the specific needs at hand.

Precision-Recall and ROC for Multiple Users

When evaluating precision-recall or ROC curves for multiple test users, a number of
strategies can be employed in aggregating the results, depending on the application
at hand.

In applications where a fixed number of recommendations is made to each user
(e.g. when a fixed number of headlines are shown to a user visiting a news portal),
we can compute the precision and recall (or true positive rate and false positive rate)
at each recommendation list length N for each user, and then compute the average
precision and recall (or true positive rate and false positive rate) at each N [51]. The
resulting curves are particularly valuable because they prescribe a value of N for
each achievable precision and recall (or true positive rate and false positive rate),
and conversely, can be used to estimate performance at a given N. An ROC curve
obtained in this manner is termed a Customer ROC (CROC) curve [52].

When different numbers of recommendations can be shown to each user (e.g.
when presenting the set of all recommended movies to each user), we can compute
ROC or precision-recall curves by aggregating the hidden ratings from the test set
into a set of reference user-item pairs, using the recommender system to generate a
single ranked list of user-item pairs, picking the top recommendations from the list,
and scoring them against the reference set. An ROC curve calculated in this way
is termed a Global ROC (GROC) curve [52]. Picking an operating point on the
resulting curve can result in a different number of recommendations being made to
each user.

A final class of applications is where the recommendation process is more in-
teractive, and the user is able to obtain more and more recommendations. This is
typical of information retrieval tasks, where the user can keep asking the system for
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more recommended documents. In such applications, we compute a precision-recall
curve (or ROC curve) for each user and then average the resulting curves over users.
This is the usual manner in which precision-recall curves are computed in the infor-
mation retrieval community, and in particular in the influential TREC competitions
[59]. Such a curve can be used to understand the trade-off between precision and
recall (or false positives and false negatives) a typical user would face.

8.3.2.3 Ranking Measures

In many cases the application presents to the user a list of recommendations, typ-
ically as vertical or horizontal list, imposing a certain natural browsing order. For
example, in Netflix, the “movies you’ll love” tab, shows a set of categories, and in
each category, a list of movies that the system predicts the user to like. These lists
may be long and the user may need to continue to additional “pages” until the entire
list is browsed. In these applications, we are not interested in predicting an explicit
rating, or selecting a set of recommended items, as in the previous sections, but
rather in ordering items according to the user’s preferences. This task is typically
known as ranking of items. There are two approaches for measuring the accuracy
of such a ranking. We can try to determine the correct order of a set of items for
each user and measure how close a system comes to this correct order, or we can
attempt to measure the utility of the system’s raking to a user. We first describe these
approaches for offline tests, and then describe their applicability to user studies and
online tests.

Using a Reference Ranking

In order to evaluate a ranking algorithm with respect to a reference ranking (a correct
order), it is first necessary to obtain such a reference. In cases where explicit user
ratings of items are available, we can rank the rated items in decreasing order of the
ratings, with ties. For example, in the case of Netflix, movies ranked by a user can be
ranked in order of decreasing order of rating, with 5-star movies tied, followed by 4-
star movies which are themselves tied, etc. In cases where we only have usage data,
it may be appropriate to construct a reference ranking where items used by the user
are ranked above unused items. However, this is only valid if we know that the user
was aware of the unused items, so that we can infer that the user actually preferred
the used items to the unused items. Thus, for example, logs from an online music
application such as Pandora4 can be used to construct a reference ranking where
tracks that a user listened to are ranked above ones they skipped. Once again, used
items should be tied with each other and unused items should be tied with each
other.

4 www.pandora.com
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In both kinds of reference rankings above, two items are tied when we have no
information about the user’s relative ranking of the two. However, a recommender
system used in an application such as Netflix’s “movies you’ll love” needs to strictly
rank items with no ties. In such cases, a system under evaluation should not be penal-
ized for ranking one item over another when they are tied in the reference ranking.
The Normalized Distance-based Performance Measure (NDPM) measure [61] is
suitable for such cases. If we have reference rankings rui and system rankings r̂ui of
nu items i for user u, we can define

C+ = ∑
i j

sgn(rui− ru j)sgn(r̂ui− r̂u j) (8.7)

C− = ∑
i j

sgn(rui− ru j)sgn(r̂u j− r̂ui) (8.8)

Cu = ∑
i j

sgn2(rui− ru j) (8.9)

Cs = ∑
i j

sgn2(r̂ui− r̂u j) (8.10)

Cu0 =Cu− (C++C−) (8.11)

where the sums range over the 1
2 nu(nu− 1) pairs of items. Thus, Cu is the number

of pairs of items for which the reference ranking asserts an ordering (i.e. not tied),
while C+ and C− are the number of these pairs that the system ranking asserts the
correct order and the incorrect order respectively. Cu0 is the number of pairs where
the reference ranking does not tie but the system ranking ties. The NDPM is then
given by

NDPM =
C−+0.5Cu0

Cu (8.12)

Thus, the NDPM measure gives a perfect score of 0 to systems that correctly pre-
dicts every preference relation asserted by the reference. The worst score of 1 is
assigned to systems that contradict every reference preference relation. Not predict-
ing a reference preference relation is penalized only half as much as contradicting it.
Predicting preferences that the reference does not order (i.e. when we do not know
the user’s true preference) is not penalized.

In some cases, we may completely know the user’s true preferences for some
set of items. For example, we may elicit the user’s true ordering by presenting the
user with binary choices. In this case, when a pair of items are tied in the reference
ranking it means that the user is actually indifferent between the items. Thus, a
perfect system should not rank one item higher than the other. In such cases, rank
correlation measures such as Spearman’s ρ or Kendall’s τ [30, 31] can be used.
These measures tend to be highly correlated in practice [18]. Kendall’s τ is given by

τ =
C+−C−√

Cu
√

Cs
(8.13)
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while Spearman’s ρ is given by

ρ =
1
nu

∑i(ri,u− r)(r̂i,u− r̂)
σ(r)σ(r̂)

(8.14)

where ·̄ and σ(·) denote the mean and standard deviation. Note that in the case of
ties, each tied item should be assigned the average ranking, so that, e.g., if two items
are tied for second and third place, they are assigned a rank of 2.5 [31].

Utility-based ranking

While using a reference ranking scores a ranking on its correlation with some “true”
ranking, there are other criteria for deciding on ordering a list of items. One popular
alternative is to assume that the utility of a list of recommendations is additive, given
by the sum of the utilities of the individual recommendations. The utility of each
recommendation is the utility of the recommended item discounted by a factor that
depends on its position in the list of recommendations. One example of such a utility
is the likelihood that a user will observe a recommendation at position i in the list. It
is usually assumed that users scan recommendation lists from the beginning to the
end, with the utility of recommendations being discounted more heavily towards
the end of the list. The discount can also be interpreted as the probability that a
user would observe a recommendation in a particular position in the list, with the
utility of the recommendation given that it was observed depending only on the
item recommend. Under this interpretation, the probability that a particular position
in the recommendation list is observed is assumed to depend only on the position
and not on the items that are recommended.

In many applications, the user can use only a single, or a very small set of items,
or the recommendation engine is not used as the main browsing tool. In such cases,
we can expect the users to observe only a few items of the top of the recommenda-
tions list. We can model such applications using a very rapid decay of the positional
discount down the list. The R-Score metric [8] assumes that the value of recom-
mendations decline exponentially down the ranked list to yield the following score
for each user u:

Ru = ∑
u

∑
j

max(rui j −d,0)

2
j−1

α−1
(8.15)

where i j is the item in the jth position, rui is user u’s rating of item i, d is a task
dependent neutral (“don’t care”) rating, and α is a half-life parameter, which con-
trols the exponential decline of the value of positions in the ranked list. In the case
of ratings prediction tasks, rui is the rating given by the user to each item (e.g. 4
stars), and d is the don’t care vote (e.g. 3 stars), and the algorithm only gets credit
for ranking items with rating above the “don’t care” vote higher than d (e.g. 4 or 5
stars). In usage prediction tasks, rui is typically 1 if u selects i and 0 otherwise, while
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d is 0. Using rui =− log(popularity(i)) if i is used and 0 otherwise [54] can capture
the amount of information in the recommendation. The resulting per-user scores are
aggregated using:

R = 100∑u Ru

∑u R∗u
(8.16)

where R∗u is the score of the best possible ranking for user u.
In other applications the user is expected to read a relatively large portion of

the list. In certain types of search, such as the search for legal documents [24],
users may look for all relevant items, and would be willing to read large portions
of the recommendations list. In such cases, we need a much slower decay of the
positional discount. Normalized Cumulative Discounted Gain (NDCG) [27] is a
measure from information retrieval, where positions are discounted logarithmically.
Assuming each user u has a “gain” gui from being recommended an item i, the
average Discounted Cumulative Gain (DCG) for a list of J items is defined as

DCG =
1
N

N

∑
u=1

J

∑
j=1

gui j

max(1, logb j)
(8.17)

where the logarithm base is a free parameter, typically between 2 and 10. A loga-
rithm with base 2 is commonly used to ensure all positions are discounted. NDCG
is the normalized version of DCG given by

NDCG =
DCG
DCG∗

(8.18)

where DCG∗ is the ideal DCG.
We show the two methods here as they were originally presented, but note that

the numerator in the two cases contains a utility function that assigns a value for
each item. One can replace the original utility functions with a function that is more
appropriate to the designed application. A measure closely related to R-score and
NDCG is Average Reciprocal Hit Rank (ARHR) [14] which is an un-normalized
measure that assigns a utility 1/k to a successful recommendation at position k.
Thus, ARHR decays more slowly than R score but faster than NDCG.

Online evaluation of ranking

In an online experiment designed to evaluate the ranking of the recommendation list,
we can look at the interactions of users with the system. When a recommendation
list is presented to a user, the user may select a number of items from the list. We can
now assume that the user has scanned the list at least as deep as the last selection.
That is, if the user has selected items 1, 3, and 10, we can assume that the user has
observed items 1 through 10. We can now make another assumption, that the user
has found items 1,3, and 10 to be interesting, and items 2,4,5,6,7,8, and 9 to be
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uninteresting. In some cases we can have additional information whether the user
has observed more items. For example, if the list is spread across several pages, and
only 20 results are presented per page, then, in the example above, if the user moved
to the second page we can also assume that she has observed results 11 through 20
and had found them to be irrelevant.

In the scenario above, the results of this interaction is a division of the list into 3
parts — the interesting items (1,3,10 in the example above), the uninteresting items
(the rest of the items from 1 through 20), and the unknown items (21 till the end of
the list). We can now use an appropriate reference ranking metric to score the origi-
nal list. This can be done in two different ways. First, the reference list can contain
the interesting items at the top, then the unknown items, and the uninteresting items
at the bottom. This reference list captures the case where the user may only select a
small subset of the interesting items, and therefore the unknown items may contain
more interesting items. Second, the reference list can contain the interesting items
at the top, followed by the uninteresting items, with the unknown items completely
ignored. This is useful when making unreasonable preference assumptions, such as
that some unknown items are preferred to the uninteresting items, may have nega-
tive consequences. In either case, it should be borne in mind that the semantics of
the reference ranking are different from the case of offline evaluations. In offline
evaluations, we have a single reference ranking which is assumed to be correct, and
we measure how much each recommender deviates from this “correct” ranking. In
the online case, the reference ranking is assumed to be the ranking that the user
would have preferred given that were presented with the recommender’s ranking. In
the offline case, we assume that there is one correct ranking, while in the online case
we allow for the possibility of multiple correct rankings.

In the case of utility ranking, we can evaluate a list based on the sum of the
utilities of the selected items. Lists that place interesting items with high utility
close to the beginning of the list, will hence be preferred to lists that place these
interesting items down the list, because we expect that in the latter case, the user
will often not observe these interesting items at all, generating no utility for the
recommender.

8.3.3 Coverage

As the prediction accuracy of a recommendation system, especially in collaborative
filtering systems, in many cases grows with the amount of data, some algorithms
may provide recommendations with high quality, but only for a small portion of the
items where they have huge amounts of data. The term coverage can refer to several
distinct properties of the system that we discuss below.
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8.3.3.1 Item Space Coverage

Most commonly, the term coverage refers to the proportion of items that the recom-
mendation system can recommend. This is often referred to as catalog coverage.
The simplest measure of catalog coverage is the percentage of all items that can
ever be recommended. This measure can be computed in many cases directly given
the algorithm and the input data set.

A more useful measure is the percentage of all items that are recommended to
users during an experiment, either offline, online, or a user study. In some cases
it may be desirable to weight the items, for example, by their popularity or utility.
Then, we may agree not to be able to recommend some items which are very rarely
used anyhow, but ignoring high profile items may be less tolerable.

Another measure of catalog coverage is the sales diversity [16], which measures
how unequally different items are chosen by users when a particular recommender
system is used. If each item i accounts for a proportion p(i) of user choices, the Gini
Index is given by:

G =
1

n−1

n

∑
j=1

(2 j−n−1)p(i j) (8.19)

where i1, · · · in is the list of items ordered according to increasing p(i). The index is 0
when all items are chosen equally often, and 1 when a single item is always chosen.
The Gini index of the number of times each item is recommended could also be
used. Another measure of distributional inequality is the Shannon Entropy:

H =−
n

∑
i=1

p(i) log p(i) (8.20)

The entropy is 0 when a single item is always chosen or recommended, and logn
when n items are chosen or recommended equally often.

8.3.3.2 User Space Coverage

Coverage can also be the proportion of users or user interactions for which the sys-
tem can recommend items. In many applications the recommender may not provide
recommendations for some users due to, e.g. low confidence in the accuracy of pre-
dictions for that user. In such cases we may prefer recommenders that can provide
recommendations for a wider range of users. Clearly, such recommenders should be
evaluated on the trade-off between coverage and accuracy.

Coverage here can be measured by the richness of the user profile required to
make a recommendation. For example, in the collaborative filtering case this could
be measured as the number of items that a user must rate before receiving recom-
mendations. This measurement can be typically evaluated in offline experiments.
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8.3.3.3 Cold Start

Another, related set of issues are the well known cold start problems — the perfor-
mance of the system on new items and on new users. Cold start can be considered
as a sub problem of coverage because it measures the system coverage over a spe-
cific set of items and users. In addition to measuring how large the pool of cold start
items or users are, it may also be important to measure system accuracy for these
users and items.

Focusing on cold start items, we can use a threshold to decide on the set of cold
items. For example, we can decide that cold items are only items with no ratings or
usage evidence [52], or items that exist in the system for less than a certain amount
of time (e.g., a day), or items that have less than a predefined evidence amount (e.g.,
less than 10 ratings). Perhaps a more generic way is to consider the “coldness” of
an item using either the amount of time it exists in the system or the amount of data
gathered for it. Then, we can credit the system more for properly predicting colder
items, and less for the hot items that are predicted.

It may be possible that a system better recommends cold items at the price of a
reduced accuracy for hotter items. This may be desirable due to other considerations
such as novelty and serendipity that are discussed later. Still, when computing the
system accuracy on cold items it may be wise to evaluate whether there is a trade-off
with the entire system accuracy.

8.3.4 Confidence

Confidence in the recommendation can be defined as the system’s trust in its recom-
mendations or predictions [128, 22]. As we have noted above, collaborative filtering
recommenders tend to improve their accuracy as the amount of data over items
grows. Similarly, the confidence in the predicted property typically also grows with
the amount of data.

In many cases the user can benefit from observing these confidence scores [22].
When the system reports a low confidence in a recommended item, the user may
tend to further research the item before making a decision. For example, if a system
recommends a movie with very high confidence, and another movie with the same
rating but a lower confidence, the user may add the first movie immediately to the
watching queue, but may further read the plot synopsis for the second movie, and
perhaps a few movie reviews before deciding to watch it.

Perhaps the most common measurement of confidence is the probability that the
predicted value is indeed true, or the interval around the predicted value where a
predefined portion, e.g. 95% of the true values lie. For example, a recommender
may accurately rate a movie as a 4 star movie with probability 0.85, or have 95% of
the actual ratings lie within −1 and + 1

2 of the predicted 4 stars. The most general
method of confidence is to provide a complete distribution over possible outcomes
[40].
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Given two recommenders that perform similarly on other relevant properties,
such as prediction accuracy, is can be desirable to choose the one that can provide
valid confidence estimates. In this case, given two recommenders with, say, iden-
tical accuracy, that report confidence bounds in the same way, we will prefer the
recommender that better estimates its confidence bounds.

Standard confidence bounds, such as the ones above, can be directly evaluated
in regular offline trials, much the same way as we estimate prediction accuracy. We
can design for each specific confidence type a score that measures how close the
method confidence estimate is to the true error in prediction. This procedure cannot
be applied when the algorithms do not agree on the confidence method, because
some confidence methods are weaker and therefore easier to estimate. In such a
case a more accurate estimate of a weaker confidence metric does not imply a better
recommender.

Example 8.1. Recommenders A and B both report confidence intervals over possible
movie ratings. We train A and B over a confidence threshold, ranging of 95%. For
each trained model, we run A and B on offline data, hiding a part of the user ratings
and requesting each algorithm to predict the missing ratings. Each algorithm pro-
duces, along with the predicted rating, a confidence interval. We compute A+ and
A−, the number of times that the predicted rating of algorithm A was within and out-
side the confidence interval (respectively), and do the same for B. Then we compute
the true confidence of each algorithm using A+

A−+A+
= 0.97 and B+

A−+A+
= 0.94. The

result indicates that A is over conservative, and computes intervals that are too large,
while B is liberal and computes intervals that are too small. As we do not require the
intervals to be conservative, we prefer B because its estimated intervals are closer to
the requested 95% confidence.

Another application of confidence bounds is in filtering recommended items
where the confidence in the predicted value is below some threshold. In this scenario
we assume that the recommender is allowed not to predict a score for all values, as
is typically the case when presenting top n recommendations. We can hence design
an experiment around this filtering procedure by comparing the accuracy of two
recommenders after their results were filtered by removing low confidence items. In
such experiments we can compute a curve, estimating the prediction accuracy for
each portion of filtered items, or for different filtering thresholds. This evaluation
procedure does not require both algorithms to agree on the confidence method.

While user studies and online experiments can study the effect of reporting con-
fidence on the user experience, it is difficult to see how these types of tests can be
used to provide further evidence as to the accuracy of the confidence estimate.
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8.3.5 Trust

While confidence is the system trust in its ratings, in trust we refer here to the user’s
trust in the system recommendation5. For example, it may be beneficial for the sys-
tem to recommend a few items that the user already knows and likes. This way,
even though the user gains no value from this recommendation, she observes that
the system provides reasonable recommendations, which may increase her trust in
the system recommendations for unknown items. Another common way of enhanc-
ing trust in the system is to explain the recommendations that the system provides
(see Chapter 15). Trust in the systems is also called the credibility of the system.

If we do not restrict ourselves to a single method of gaining trust, such as the
one suggested above, the obvious method for evaluating user trust is by asking users
whether the system recommendations are reasonable in a user study [22, 12, 11, 47].
In an online test one could associate the number of recommendations that were fol-
lowed with the trust in the recommender, assuming that higher trust in the recom-
mender would lead to more recommendations being used. Alternatively, we could
also assume that trust in the system is correlated with repeated users, as users who
trust the system will return to it when performing future tasks. However, such mea-
surements may not separate well other factors of user satisfaction, and may not be
accurate. It is unclear how to measure trust in an offline experiment, because trust is
built through an interaction between the system and a user.

8.3.6 Novelty

Novel recommendations are recommendations for items that the user did not know
about [33]. In applications that require novel recommendation, an obvious and easy
to implement approach is to filter out items that the user already rated or used.
However, in many cases users will not report all the items they have used in the
past. Thus, this simple method is insufficient to filter out all items that the user
already knows.

While we can obviously measure novelty in a user study, by asking users whether
they were already familiar with a recommended item [9, 28], we can also gain some
understanding of a system’s novelty through offline experiments. For such an exper-
iment we could split the data set on time, i.e. hide all the user ratings that occurred
after a specific point in time. In addition, we can hide some ratings that occurred
prior to that time, simulating the items that the user is familiar with, but did not
report ratings for. When recommending, the system is rewarded for each item that
was recommended and rated after the split time, but would be punished for each
item that was recommended but rated prior to the split time.

5 Not to be confused with trust in the social network research, used to measure how much a user
believes another user. Some literature on recommender systems uses such trust measurements to
filter similar users [39] and Chapter 20.
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To implement the above procedure we must carefully model the hiding process
such that it would resemble the true preference discovery process that occurs in the
real system. In some cases the set of rated items is not a uniform sample of the
set of all items the user is familiar with, and such bias should be acknowledged
and handled if possible. For example, if we believe that the user will provide more
ratings about special items, but less ratings for popular items, then the hiding process
should tend to hide more popular items.

In using this measure of novelty, it is important to control for accuracy, as irrel-
evant recommendations may be new to the user, but still worthless. One approach
would be to consider novelty only among the relevant items [63].

Example 8.2. We wish to evaluate the novelty of a set of movie recommenders in
an offline test. As we believe that users of our system rate movies after they watch
them, we split the user ratings in a sequential manner. For each test user profile we
choose a cutoff point randomly along the time-based sequence of movie ratings,
hiding all movies after a certain point in the sequence.

User studies on our system showed that people tend not to report ratings of
movies that they did not feel strongly about, but occasionally also do not report a
rating of a movie that they liked or disliked strongly. Therefore, we hide a rating of
a movie prior to the cutoff point with probability 1− |r−3|

2 where r ∈ {1,2,3,4,5} is
the rating of the movie, and 3 is the neutral rating. We would like to avoid predicting
these movies with hidden ratings because the user already knows about them.

Then, for each user, each recommender produces a list of 5 recommendations,
and we compute precision only over items after the cutoff point. That is, the recom-
menders get no credit for recommending movies with hidden ratings that occurred
prior to the cutoff point. In this experiment the algorithm with the highest precision
score is preferred.

Another method for evaluating novel recommendations uses the above assump-
tion that popular items are less likely to be novel. Thus, novelty can be taken into
account be using an accuracy metric where the system does not get the same credit
for correctly predicting popular items as it does when it correctly predicts non-
popular items [53]. Ziegler et al. [64] and Celma and Herrera [9] also give accuracy
measures that take popularity into account.

Finally, we can evaluate the amount of new information in a recommendation to-
gether with the relevance of the recommended item. For example, when item ratings
are available, we can multiply the hidden rating by some information measurement
of the recommended item (such as the conditional entropy given the user profile) to
produce a novelty score.

8.3.7 Serendipity

Serendipity is a measure of how surprising the successful recommendations are. For
example, if the user has rated positively many movies where a certain star actor
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appears, recommending the new movie of that actor may be novel, because the user
may not know of it, but is hardly surprising. Of course, random recommendations
may be very surprising, and we therefore need to balance serendipity with accuracy.

One can think of serendipity as the amount of relevant information that is new
to the user in a recommendation. For example, if following a successful movie rec-
ommendation the user learns of a new actor that she likes, this can be considered as
serendipitous. In information retrieval, where novelty typically refers to the new in-
formation contained in the document (and is thus close to our definition of serendip-
ity), Zhang et al. [63] suggested to manually label pairs of documents as redundant.
Then, they compared algorithms on avoiding recommending redundant documents.
Such methods are applicable to recommender systems when some meta-data over
items, such as content information, is available.

To avoid human labeling, we could design a distance measurement between items
based on content (see Chapter 3). Then, we can score a successful recommendation
by its distance from a set of previously rated items in a collaborative filtering sys-
tem, or from the user profile in a content-based recommender [62]. Thus, we are
rewarding the system for successful recommendations that are far from the user
profile.

Example 8.3. In a book recommendation application, we would like to recommend
books from authors that the reader is less familiar with. We therefore design a dis-
tance metric between a book b and a set of books B (the books that the user has pre-
viously read); Let cB,w be the number of books by writer w in B. Let cB = maxw cB,w

the maximal number of books from a single writer in B. Let d(b,B) =
1+cB−cB,w(b)

1+cB
,

where w(b) is the writer of book b.
We now run an offline experiment to evaluate which of the candidate algorithms

generates more serendipitous recommendations. We split each test user profile —
set of books that the user has read — into sets of observed books Bo

i and hidden
books Bh

i . We use Bo
i as the input for each recommender, and request a list of 5 rec-

ommendations. For each hidden book b ∈ Bh
i that appeared in the recommendation

list for user i, the recommender receives a score of d(b,Bo
i ). Thus the recommender

is getting more credit for recommending books from writers that the reader has read
less often. In this experiment the recommender that received a higher score is se-
lected for the application.

One can also think of serendipity as deviation from the “natural” prediction [44].
That is, given a prediction engine that has a high accuracy, the recommendations
that it issues are “obvious”. Therefore, we will give higher serendipity scores to
successful recommendations that the prediction engine would deem unlikely.

We can evaluate the serendipity of a recommender in a user study by asking the
users to mark the recommendations that they find unexpected. Then, we can also
see whether the user followed these recommendations, which would make them
unexpected and successful and therefore serendipitous. In an online study, we can
assume that our distance metric is correct and evaluate only how distance from the
user profile affected the probability that a user will follow the recommendation. It is



288 Guy Shani and Asela Gunawardana

important to check the effect of serendipity over time, because users might at first be
intrigued by the unexpected recommendations and try them out. If after following
the suggestion they discover that the recommendations are inappropriate, they may
stop following them in the future, or stop using the recommendation engine at all.

8.3.8 Diversity

Diversity is generally defined as the opposite of similarity. In some cases suggesting
a set of similar items may not be as useful for the user, because it may take longer to
explore the range of items. Consider for example a recommendation for a vacation
[55], where the system should recommend vacation packages. Presenting a list with
5 recommendations, all for the same location, varying only on the choice of hotel, or
the selection of attraction, may not be as useful as suggesting 5 different locations.
The user can view the various recommended locations and request more details on
a subset of the locations that are appropriate to her.

The most explored method for measuring diversity uses item-item similarity, typ-
ically based on item content, as in Section 8.3.7. Then, we could measure the diver-
sity of a list based on the sum, average, min, or max distance between item pairs, or
measure the value of adding each item to the recommendation list as the new item’s
diversity from the items already in the list [64, 6]. The item-item similarity measure-
ment used in evaluation can be different from the similarity measurement used by
the algorithm that computes the recommendation lists. For example, we can use for
evaluation a costly metric that produces more accurate results than fast approximate
methods that are more suitable for online computations.

As diversity may come at the expanse of other properties, such as accuracy [62],
we can compute curves to evaluate the decrease in accuracy vs. the increase in di-
versity.

Example 8.4. In a book recommendation application, we are interested in presenting
the user with a diverse set of recommendations, with minimal impact to accuracy.
We use d(b,B) from Example 8.3 as the distance metric. Given candidate recom-
menders, each with a tunable parameter that controls the diversity of the recommen-
dations, we train each algorithm over a range of values for the diversity parameters.
For each trained model, we now compute a precision score, and a diversity score as
follows; we take each recommendation list that an algorithm produces, and compute
the distance of each item from the rest of the list, averaging the result to obtain a
diversity score. We now plot the precision-diversity curves of the recommenders in
a graph, and select the algorithm with the dominating curve.

In recommenders that assist in information search (see Chapter 18), we can as-
sume that more diverse recommendations will result in shorter search interactions
[55]. We could use this in an online experiment measuring interaction sequence
length as a proxy for diversification. As is always the case in online testing, shorter
sessions may be due to other factors of the system, and to validate this claim it is
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useful to experiment with different diversity thresholds using the same prediction
engine before comparing different recommenders.

8.3.9 Utility

Many e-commerce websites employ a recommendation system in order to improve
their revenue by, e.g., enhancing cross-sell. In such cases the recommendation en-
gine can be judged by the revenue that it generates for the website [54]. In general,
we can define various types of utility functions that the recommender tries to opti-
mize. For such recommenders, measuring the utility, or the expected utility of the
recommendations may be more significant than measuring the accuracy of recom-
mendations. It is also possible to view many of the other properties, such as diversity
or serendipity, as different types of utility functions, over single items or over lists.
In this paper, however, we define utility as the value that either the system or the
user gains from a recommendation.

Utility can be measured cleanly from the perspective of the recommendation en-
gine or the recommender system owner. Care must be taken, though, when measur-
ing the utility that the user receives from the recommendations. First, user utilities
or preferences are difficult to capture and model, and considerable research has fo-
cused on this problem [7, 21, 48]. Second, it is unclear how to aggregate user utilities
across users for computing a score for a recommender. For example, it is tempting to
use money as a utility thus selecting a recommender that minimizes user cost. How-
ever, under the diminishing returns assumption [56], the same amount of money
does not have the same utility for people with different income levels. Therefore,
the average cost per purchase, for example, is not a reasonable aggregation across
users.

In an application where users rate items, it is also possible to use the ratings
as a utility measurement [8]. For example, in movie ratings, where a 5 star movie
is considered an excellent movie, we can assume that a recommending a 5 star
movie has a higher utility for the user than recommending a movie that the user will
rate with 4 stars. As users may interpret ratings differently, user ratings should be
normalized before aggregating across users.

While we typically only assign positive utilities to successful recommendations,
we can also assign negative utilities to unsuccessful recommendations. For example,
if some recommended item offends the user, then we should punish the system for
recommending it by assigning a negative utility. We can also add a cost to each
recommendation, perhaps based on the position of the recommended item in the
list, and subtract it from the utility of the item.

For any utility function, the standard evaluation of the recommender is to com-
pute the expected utility of a recommendation. In the case where the recommender
is trying to predict only a single item, such as when we evaluate the system on time-
based splits and try to predict only the next item in the sequence, the value of a
correct recommendation should simply be the utility of the item. In the task where
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the recommender predicts n items we can use the sum of the utilities of the correct
recommendations in the list. When negative utilities for failed recommendations are
used, then the sum is over all recommendations, successful or failed. We can also in-
tegrate utilities into ranking measurements, as discussed in Section 8.3.2.3. Finally,
we can normalize the resulting score using the maximal possible utility given the
optimal recommendation list.

Evaluating utility in user studies and online is easy in the case of recommender
utility. If the utility we optimize for is the revenue of the website, measuring the
change in revenue between users of various recommenders is simple. When we
try to optimize user utilities the online evaluation becomes harder, because users
typically find it challenging to assign utilities to outcomes. In many cases, however,
users can say whether they prefer one outcome to another. Therefore, we can try to
elicit the user preferences [26] in order to rank the candidate methods.

8.3.10 Risk

In some cases a recommendation may be associated with a potential risk. For ex-
ample, when recommending stocks for purchase, users may wish to be risk-averse,
preferring stocks that have a lower expected growth, but also a lower risk of col-
lapsing. On the other hand, users may be risk-seeking, preferring stocks that have a
potentially high, even if less likely, profit. In such cases we may wish to evaluate not
only the (expected) value generated from a recommendation, but also to minimize
the risk.

The standard way to evaluate risk sensitive systems is by considering not just the
expected utility, but also the utility variance. For example, we may use a parameter
q and compare two systems on E[X ]+q ·Var(X). When q is positive, this approach
prefers risk-seeking (also called bold [41]) recommenders, and when q is negative,
the system prefers risk-averse recommenders.

8.3.11 Robustness

Robustness (see Chapter 25) is the stability of the recommendation in the presence
of fake information [45], typically inserted on purpose in order to influence the
recommendations. As more people rely on recommender systems to guide them
through the item space, influencing the system to change the rating of an item may
be profitable to an interested party. For example, an owner of an hotel may wish
to boost the rating for their hotel. This can be done by injecting fake user profiles
that rate the hotel positively, or by injecting fake users that rate the competitors
negatively.

Such attempts to influence the recommendation are typically called attacks [43,
35]. Coordinated attacks occur when a malicious user intentionally queries the data
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set or injects fake information in order to learn some private information of some
users. In evaluating such systems, it is important to provide a complete description
of the attack protocol, as the sensitivity of the system typically varies from one
protocol to another.

In general, creating a system that is immune to any type of attack is unrealistic.
An attacker with an ability to inject an infinite amount of information can, in most
cases, manipulate a recommendation in an arbitrary way. It is therefore more useful
to estimate the cost of influencing a recommendation, which is typically measured
by the amount of injected information. While it is desirable to theoretically analyze
the cost of modifying a rating, it is not always possible. In these cases, we can
simulate a set of attacks by introducing fake information into the system data set,
empirically measuring average cost of a successful attack [36, 10].

As opposed to other evaluation criteria discussed here, it is hard to envision ex-
ecuting an attack on a real system as an online experiment. It may be fruitful, how-
ever, to analyze the real data collected in the online system to identify actual attacks
that are executed against the system.

Another type of robustness is the stability of the system under extreme con-
ditions, such as a large number of requests. While less discussed, such robust-
ness is very important to system administrators, who must avoid system malfunc-
tion. In many cases system robustness is related to the infrastructure, such as the
database software, or to the hardware specifications, and is related to scalability
(Section 8.3.14).

8.3.12 Privacy

In a collaborative filtering system, a user willingly discloses his preferences over
items to the system in the hope of getting useful recommendations. However, it is
important for most users that their preferences stay private, that is, that no third party
can use the recommendation system to learn something about the preferences of a
specific user.

For example, consider the case where a user who is interested in the wonderful,
yet rare art of growing Bahamian orchids has bought a book titled “The Divorce Or-
ganizer and Planner”. The spouse of that user, looking for a present, upon browsing
the book “The Bahamian and Caribbean Species (Cattleyas and Their Relatives)”
may get a recommendation of the type “people who bought this book also bought”
for the divorce organizer, thus revealing sensitive private information.

It is generally considered inappropriate for a recommendation system to disclose
private information even for a single user. For this reason analysis of privacy tends
to focus on a worst case scenario, illustrating theoretical cases under which users
private information may be revealed. Other researchers [17] compare algorithms by
evaluating the portion of users whose private information was compromised. The
assumption in such studies is that complete privacy is not realistic and that therefore
we must compromise on minimizing the privacy breaches.
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Another alternative is to define different levels of privacy, such as k-identity [17],
and compare algorithms sensitivity to privacy breaches under varying levels of pri-
vacy.

Privacy may also come at the expense of the accuracy of the recommendations.
Therefore, it is important to analyze this trade-off carefully. Perhaps the most infor-
mative experiment is when a privacy modification has been added to an algorithm,
and the accuracy (or any other trade-off property) can be evaluated with or without
the modification [42].

8.3.13 Adaptivity

Real recommendation systems may operate in a setting where the item collection
changes rapidly, or where trends in interest over items may shift. Perhaps the most
obvious example of such systems is the recommendation of news items or related
stories in online newspapers [19]. In this scenario stories may be interesting only
over a short period of time, afterwards becoming outdated. When an unexpected
news event occurs, such as the tsunami disaster, people become interested in arti-
cles that may not have been interesting otherwise, such as a relatively old article
explaining the tsunami phenomenon. While this problem is similar to the cold-start
problem, it is different because it may be that old items that were not regarded as
interesting in the past suddenly become interesting.

This type of adaptation can be evaluated offline by analyzing the amount of in-
formation needed before an item is recommended. If we model the recommendation
process in a sequential manner, we can record, even in an offline test, the amount
of evidence that is needed before the algorithm recommends a story. It is likely that
an algorithm can be adjusted to recommend items faster once they become inter-
esting, by sacrificing some prediction accuracy. We can compare two algorithms by
evaluating a possible trade-off between accuracy and the speed of the shift in trends.

Another type of adaptivity is the rate by which the system adapts to a user’s
personal preferences [37], or to changes in user profile [34]. For example, when
users rate an item, they expect the set of recommendations to change. If the rec-
ommendations stay fixed, users may assume that their rating effort is wasted, and
may not agree to provide more ratings. As with the shift in trends evaluation, we
can again evaluate in an offline experiment the changes in the recommendation list
after adding more information to the user profile such as new ratings. We can eval-
uate an algorithm by measuring the difference between the recommendation lists
before and after the new information was added. The Gini index and Shannon en-
tropy measures discussed in Section 8.3.3 can be used to measure the variability of
recommendations made to a user as the user profile changes.
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8.3.14 Scalability

As recommender systems are designed to help users navigate in large collections
of items, one of the goals of the designers of such systems is to scale up to real
data sets. As such, it is often the case that algorithms trade other properties, such as
accuracy or coverage, for providing rapid results even for huge data sets consisting
of millions of items (e.g. [12]).

With the growth of the data set, many algorithms are either slowed down or
require additional resources such as computation power or memory. One standard
approach in computer science research is to evaluate the computational complexity
of an algorithm in terms of time or space requirements (as done, e.g., in [29, 4]). In
many cases, however, the complexity of two algorithms is either identical, or could
be reduced by changing some parameters, such as the complexity of the model,
or the sample size. Therefore, to understand the scalability of the system it is also
useful to report the consumption of system resources over large data sets.

Scalability is typically measured by experimenting with growing data sets, show-
ing how the speed and resource consumption behave as the task scales up (see, e.g.
[19]). It is important to measure the compromises that scalability dictates. For exam-
ple, if the accuracy of the algorithm is lower than other candidates that only operate
on relatively small data sets, one must show over small data sets the difference in
accuracy. Such measurements can provide valuable information both on the poten-
tial performance of recommender systems in general for the specific task, and on
future directions to explore.

As recommender systems are expected in many cases to provide rapid recom-
mendations online, it is also important to measure how fast does the system provides
recommendations [23, 50]. One such measurement is the throughput of the system,
i.e., the number of recommendations that the system can provide per second. We
could also measure the latency (also called response time) — the required time for
making a recommendation online.

8.4 Conclusion

In this paper we discussed how recommendation algorithms could be evaluated in
order to select the best algorithm from a set of candidates. This is an important step
in the research attempt to find better algorithms, as well as in application design
where a designer chooses an existing algorithm for their application. As such, many
evaluation metrics have been used for algorithm selection in the past.

We describe the concerns that need to be addressed when designing offline and
online experiments and user studies. We outline a few important measurements that
one must take in addition to the score that the metric provides, as well as other
considerations that should be taken into account when designing experiments for
recommendation algorithms.
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We specify a set of properties that are sometimes discussed as important for
the recommendation system. For each such property we suggest an experiment that
can be used to rank recommenders with regards to that property. For less explored
properties, we restrict ourselves to generic descriptions that could be applied to
various manifestations of that property. Specific procedures that can be practically
implemented can then be developed for the specific property manifestation based on
our generic guidelines.
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Chapter 9
A Recommender System for an IPTV Service
Provider: a Real Large-Scale Production
Environment

Riccardo Bambini, Paolo Cremonesi and Roberto Turrin

Abstract In this chapter we describe the integration of a recommender system into
the production environment of Fastweb, one of the largest European IP Televi-
sion (IPTV) providers. The recommender system implements both collaborative and
content-based techniques, suitable tailored to the specific requirements of an IPTV
architecture, such as the limited screen definition, the reduced navigation capabil-
ities, and the strict time constraints. The algorithms are extensively analyzed by
means of off-line and on-line tests, showing the effectiveness of the recommender
systems: up to 30% of the recommendations are followed by a purchase, with an
estimated lift factor (increase in sales) of 15%.

9.1 Introduction

IP Television (IPTV) broadcasts multimedia content (e.g., movies, news programs,
documentaries) in digital format via broadband Internet networks [23, 17]. IPTV
services include scheduled television programs and video on demand (VoD) con-
tents [30]. In the rest of the chapter we will generically refer to both scheduled
television programs and video-on-demand contents as items.

In this chapter we present the integration of the Neptuny’s ContentWise recom-
mender system in Fastweb, the first company in the world to have launched fully
IP-based broadband TV services, in 2001. Fastweb serves hundreds of thousands of
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IPTV customers, with a catalog of thousands of multimedia contents. Since 2007
Fastweb is part of the Swisscom group. ContentWise recommender algorithms have
been developed with the cooperation of the Computer Science Department at the
Politecnico di Milano.

Differently from conventional television, IPTV allows an interactive navigation
of the available content [13] and, in particular, IPTV allows to collect implicit usage
data and explicit user preferences for providing a personalized user navigation. The
user interacts with the IPTV system by means of a special electronic appliance,
referred to as set-top-box (STB). There are substantial peculiarities of the STB that
limit the user interaction: (i) users control the STB by means of a remote control,
which is rather limited in the set of actions it allows to perform, (ii) the user interface
is shown on a TV screen typically designed to be looked at from a distance larger
than that between a PC and the user, and (iii) the system deals with multimedia
content, whose navigation is not particularly fast, mainly because of the channel
switching time.

Differently from traditional e-commerce domains (e.g., Amazon, Netflix, iTunes,
IMDB, Last.fm) where recommender systems have been exploited, IPTV recom-
mender systems need to satisfy particular requirements:

• the list of proposed items has to be small because of the limited screen definition
and the reduced navigation capabilities;

• the generation of the recommended items must respect very strict time con-
straints (few milliseconds) because TV’s customers are used to a very respon-
sive system;

• the system needs to scale up in a successful manner with both the number of
customers and items in the catalog;

• part of the catalog is highly dynamic because of live broadcast channels.

The recommender system deployed in Fastweb generates recommendations by
means of two collaborative algorithms (based on item-to-item similarities and di-
mensionality reduction techniques) and one content-based algorithm (based on la-
tent semantic analysis). The recommender system selects the proper algorithm de-
pending on the context. For instance, if the user is reading a movie synopsis, looking
for movies with his preferred actors, the algorithm used is the content-based one. In
order to respect the strict real-time requirements, the recommender system and the
underlying algorithms follow a model-based approach and have been logically di-
vided into two asynchronous stages, the batch stage and the real-time stage.

The input data of the whole architecture is composed by: (i) the item-content
matrix and (ii) the user-rating matrix. The item-content matrix (ICM) describes the
main attributes (metadata) of each item, such as the title of a movie, the set of actors
and its genre(s). The user-rating matrix (URM) collects the ratings (i.e., preferences)
of users about items. Ratings are mainly implicit, e.g., the system can detect if a
user watched a program, without knowing explicitly the user’s opinion about that
program.

Before deploying the recommender system in production, extensive performance
analysis has been performed by means of k-fold cross validation. The results sug-



9 A Recommender System for an IPTV Service Provider 301

gests a 2.5% recall for the content-based algorithm, while the collaborative algo-
rithms are able to reach a recall of more than 20%.

The recommender system has released to production environment in October
2008 and is now available for one of the Fastweb VOD catalogs. The system is ac-
tually providing, on average, 30000 recommendations per day, with peaks of almost
120 recommendations per minute during peak hours. On-line analysis shows that al-
most 20% of the recommendations are followed by a purchase from the users. The
estimated lift factor (i.e., increase in VOD sales) is 15%.

The rest of the chapter is organized as follows. Section 9.2 shows the typical
architecture of an IPTV provider. Section 9.3 presents the architecture of the recom-
mender system. Section 9.4 describes the implemented recommender algorithms.
Section 9.5 explains the recommender services implemented into the Fastweb IPTV
architecture. Section 9.6 evaluates the quality of recommendations. Finally, Section
9.7 draws the conclusions.

9.2 IPTV Architecture

IPTV, also called Internet Protocol Television, is a video service that delivers high
quality traditional TV channels and on-demand video and audio contents over a pri-
vate IP-based broadband network. From the end users perspective, IPTV looks and
operates just like a standard TV service. The providers involved in deploying IPTV
services range from cable and satellite TV carriers to large telephone companies and
private network operators. IPTV has a number of unique features [13]:

Support for interactive TV: differently from conventional TV, where the com-
munication is unidirectional, the two-way capabilities of IPTV systems allow the
user to interact with the system.

Time shifting: IPTV permits the temporal navigation of programs (e.g., fast for-
ward, pause and rewind) thanks to the Personal Video Recording (PVR), a mech-
anism for recording and storing IPTV content for later viewing.

Personalization: IPTV allows end users to personalize their TV viewing expe-
rience by letting them decide what they want to watch and when they want to
watch it.

Figure 9.1 shows a generic IPTV system architecture that supports live broadcast
TV channels (also called linear channels) and video on-demand (VOD) . Broadcast
TV service consists in the simultaneous reception by the users of traditional TV
channels either free-to-air or pay-per-view. Video on-demand service consists in
viewing multimedia content made available by the service provider, upon request.

The IPTV data center (also known as the head end) receives linear channels from
a variety of sources including terrestrial, satellite and cable carriers. Once received, a
number of different hardware components, ranging from encoders and video servers,
are used to prepare the video content for delivery over an IP based network. On-
demand contents are stored in fast storage boxes (e.g., using solid-state disks).



302 Riccardo Bambini, Paolo Cremonesi and Roberto Turrin

Fig. 9.1: Architecture of an IPTV system.

The set-top-box (STB) is an electronic appliance that connects to both the net-
work and the home television: it is responsible for processing the incoming packet
stream and displaying the resulting video on the television. The user interacts with
the STB by means of a hand-held remote control. The remote control gives the
user access to additional features of the STB, such as the Electronic Program Guide
(EPG), a listing of available channels and program for an extended time period (typ-
ically 36 hours or more).

9.2.1 IPTV Search Problems

To benefit from the rich set of IPTV channels and contents, users need to be able
to rapidly and easily find what they are actually interested in, and do so effortlessly
while relaxing on the couch in their living room, a location where they typically do
not have easy access to the keyboard, mouse, and close-up screen display typical of
desktop web browsing. However, searching for a live channel or a VOD content is
a challenging problem for IPTV users [11].

When watching live television, users browse through a set of available chan-
nels until they find something interesting. Channel selection (zapping) involves two
steps: (a) sampling the content to decide whether to continue or stop watching the
channel, and (b) switching across multiple channels for repeated sampling, until
a desired channel is found. The problem of quickly finding the right channel be-
comes harder as the number of channel offerings grows in modern IPTV systems.
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Moreover, IPTV channel switching time is not particularly responsive, compared to
traditional TV, because of technological limitations [19].

When searching for VOD content, IPTV users generally have to either navigate a
complex, pre-defined, and often deeply embedded menu structure or type in titles or
other key phrases using an on-screen keyboard or triple tap input on the remote con-
trol keypad. These interfaces are cumbersome and do not scale well as the range of
content available increases. Moreover, the television screens usually offer a limited
resolution with respect to traditional personal computer screens, making traditional
graphical user interfaces difficult to use.

This differs from traditional web-based domains (e.g., e-commerce web sites),
where the content is textual, suited for information categorization and keyword-
based seek and retrieval, and the input devices (keyboard and mouse) allow to point
an arbitrary object on the screen and to easily enter text.

The integration of a recommender system into the IPTV infrastructure improves
the user experience by providing a new and more effective way of browsing for
interesting programs and movies. However, such integration has to deal with the
following issues:

User identification. The STB is used indistinctly by all the components of a fam-
ily, and the IPTV recommender system can not identify who is actually watching
a certain program.

Real-time requirements. The IPTV recommender systems must generate rec-
ommendations within very strict real-time constraints (few milliseconds) in order
to avoid a slow down of the user navigation, already affected by the long channel
switching time.

Quality of content metadata. Differently from web-based domains, content-ba-
sed IPTV recommender algorithms makes use of low-quality metadata. This as-
pect is particularly evident with live channels, where new content is added every
day at a very high rate, and the only available metadata that can be used to de-
scribe programs can be found in the EPG (electronic program guide).

9.3 Recommender System Architecture

The architecture of the Fastweb recommender system is shown in Figure 9.2. These
components are discussed in the following section. Section 9.3.1 describes the infor-
mation available to the recommender system. Section 9.3.2 describes the two-stage
architecture of the recommender algorithms, separating between batch and real-time
stage. Section 9.4 details the three algorithms implemented in ContentWise. Finally,
Section 9.5 shows the integration of the recommender system into the existing Fast-
web architecture.
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Fig. 9.2: Architecture of the recommender system ContentWise.

9.3.1 Data Collection

The logical component in charge of pre-processing the data and generating the in-
put of the recommender algorithm is referred to as data collector. The data collector
gathers data from different sources, such as the EPG for information about the live
programs, the content provider for information about the VOD catalog and the ser-
vice provider for information about the users.

The Fastweb recommender system does not rely on personal information from
the users (e.g., age, gender, occupation). Recommendations are based on the past
users’ behavior (what they watched) and on any explicit preference they have ex-
pressed (e.g., preferred genres). If the users did not specify any explicit preferences,
the system is able to infer them by analyzing the users’ past activities.

An important question has been raised in Section 9.2: users interact with the
IPTV system by means of the STB, but typically we can not identify who is actually
in front of the TV. Consequently, the STB collects the behavior and the preferences
of a set of users (e.g., the component of a family). This represents a considerable
problem since we are limited to generate per-STB recommendations. In order to
simplify the notation, in the rest of the paper we will refer to user and STB to
identify the same entity. The user-disambiguation problem has been partially solved
by separating the collected information according to the time slot they refer to. For
instance, we can roughly assume the following pattern: housewives use to watch
TV during the morning, children during the afternoon, the whole family at evening,
while only adults watch TV during the night. By means of this simple time slot
distinction we are able to distinguish among different potential users of the same
STB.

Formally, the available information has been structured into two main matrices,
practically stored into a relational database: the item-content matrix (ICM) and the
user-rating matrix (URM).

The former describes the principal characteristics (metadata) of each item. In
the following we will refer to the item-content matrix as W, whose elements wci
represent the relevance of characteristic (metadata) c for item i. The ICM is gen-
erated from the analysis of the set of information given by the content provider
(i.e., the EPG). Such information concerns, for instance, the title of a movie, the
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actors, the director(s), the genre(s) and the plot. Note that in a real environment
we can face with inaccurate information especially because of the rate new con-
tent is added every day. The information provided by the ICM is used to generate a
content-based recommendation, after being filtered by means of techniques for PoS
(Part-of-Speech) tagging, stop words removal, and latent semantic analysis [32].
Moreover, the ICM can be used to perform some kind of processing on the items
(e.g., parental control).

The URM represents the ratings (i.e., preferences) of users about items. In the
following we will refer to such matrix as R, whose elements rpi represent the rating
of user p about item i. Such preferences constitute the basic information for any
collaborative algorithm. The user rating can be either explicit or implicit, according
to the fact that the ratings are explicitly expressed by users or are implicitly collected
by the system, respectively.

Explicit ratings confidently represent the user opinion, even though they can be
affected by biases [4] due to: user subjectivity, item popularity or global rating ten-
dency. The first bias depends on arbitrary interpretations of the rating scale. For
instance, in a rating scale between 1 and 5, some user could use the value 3 to indi-
cate an interesting item, someone else could use 3 for a not much interesting item.
Similarly, popular items tend to be overrated, while unpopular items are usually un-
derrated. Finally, explicit ratings can be affected by global attitudes (e.g., users are
more willing to rate movies they like).

On the other hand, implicit ratings are inferred by the system on the basis of the
user-system interaction, which might not match the user opinion. For instance, the
system is able to monitor whether a user has watched a live program on a certain
channel or whether the user has uninterruptedly watched a movie. Despite explicit
ratings are more reliable than implicit ratings in representing the actual user interest
towards an item, their collection can be annoying from the user’s perspective.

The current deployment of the Fastweb recommender system collects only im-
plicit ratings, but the system is thought to work when implicit and explicit ratings
coexist. The rating scale is between 1 and 5, where values less than 3 express neg-
ative ratings, values greater or equal to 3 express positive ratings. In absence of
explicit information, the rating implicitly inferred by monitoring the user behav-
ior is assumed to be positive (i.e., greater or equal than 3). In fact, whether a user
starts watching a certain program, there must be some characteristic of this program
appealing for the user (e.g., actors or genre). The fact that in well-know, explicit
datasets, such as Netflix and Movielens, the average rating is higher than 3, moti-
vates this assumption. The system treats differently live IPTV programs and VOD
content:

IPTV programs. The rating is proportional to the percentage user play time
(e.g., [18, 35]), i.e., the percentage of program the user has watched. Let us as-
sume L is the program play time and t is the user play time. Play times less than 5
minutes are discarded. If a user watched the entire program the rating is 5, if the
user watched 5 minutes the rating is 3, otherwise the rating is a value between 3
and 5 given by:
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r̂ = 3+2
t−5
L−5

, 5≤ t ≤ L (9.1)

where t and L are expressed in minutes.
At this early stage of the project, the main goal is not to define an accurate im-
plicit rating mechanism, but rather, to filter out noisy information (e.g., TV chan-
nel zapping).

VOD movies. When watching a VOD movie, users explicitly request to buy and
to pay for that movie. For that reason, independently from the user play time,
when a user requests a VOD movie, the system assign an implicit ratings equals
to 4.

As aforementioned, should Fastweb start collecting explicit ratings too, they will
naturally coexist with implicit ratings in the URM.

The ratings stored in the URM, before being used by the recommender algo-
rithms, are normalized by subtracting the constant value 2.5. This allows the algo-
rithms to distinguish between positive and negative ratings, because values greater
or equals to 2.5 (i.e., 3, 4, and 5) remain positive, while values less than 2.5 (i.e., 1
and 2) become negative. In the rest of the chapter we will assume that the recom-
mender algorithms receive as input a normalized URM.

Finally, users can express explicit preferences about the content they would like
to watch. For instance, by means of the graphical interface, a user can set his pre-
ferred actors. The content-based algorithm explained in Section 9.4.2 takes into
consideration such information and biases the recommended movies toward the ex-
pressed preferences.

9.3.2 Batch and Real-Time Stages

The recommender algorithms process the ICM and the URM described in Section
9.3.1 and they interface with the STB server by means of web services, as shown in
Figure 9.3.

In order to respect the strict real-time requirements, the recommender system
and the underlying algorithms follow a model-based approach [33, 9], i.e., they
first develop a model of the user ratings and/or of the items, then they compute the
recommendations. Consequently, the algorithms have been logically divided into
two stages, the batch stage and the real-time stage:

• the batch stage creates a low dimensional representation (i.e., a model) of the
input data. It is usually executed during the service off-peak hours, with a fre-
quency which depends on the rate new items/users are added into the system
(e.g., once a day);

• the real-time part uses the model in order to serve calls coming from the web
services interface and satisfying the real-time constraints. The system output
can be further constrained by post-processing, marketing rules (e.g., pushing up
some movies, or filtering some channels).
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The model repository makes the two stages asynchronous, e.g., while the real-time
stage is recommending users by using a certain model, the batch stage can compute
a new, updated model.

Fig. 9.3: Recommender system: batch and real-time stage.

Despite such logical division of the recommending process, the model construc-
tion in real domains can still be challenging because of input data size and the re-
lated time and memory requirements. For this reason, we have implemented high-
performing, parallel versions of the most demanding matrix operations, optimized
for sparse and big matrices, such as: matrix-matrix and matrix-vector multiplication,
matrix transposition, column/row normalization, and singular value decomposition
(svd). In particular, svd has been used with two of the three recommender algo-
rithms (one content-based and one collaborative), allowing to greatly reduce the
space dimensionality, with benefits both in terms of memory and time complexity.
As we will show in the following sections, by its own, svd defines a model of the
data, cleaning up the data noise and strengthening the correlation among similar
information.

Realistic datasets with millions of users and items can have in principle pro-
hibitive memory requirements. Fortunately, matrices such as URM and ICM are
typically very sparse. In fact, most of the users interact (e.g., rate or watch) with
very few items compared with the size of the catalog (e.g., the average users have
watched few dozens of movies in a catalog of thousands). Sparse matrices can be
treated using very efficient representations. Note that, even though such matrices are
sparse, we could have difficulties in maintaining the data in memory. For such rea-
sons, we opted for a solution based on a sort of memory virtualization, similar to the
swap capability of any operating systems. Differently from the operating system vir-
tual memory, our virtualization policy is tailored ad-hoc for each matrix operation,
in order to limit the data exchange between memory and storage.
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9.4 Recommender Algorithms

The recommender system implements one content-based algorithm (CB) and two
collaborative algorithms (CF):

• a latent-semantic analysis content-based algorithm, referred to as LSA-CB;
• an item-based collaborative algorithm, referred to as item-based-CF;
• a dimensionality-reduction-based collaborative algorithm, referred to as SVD-

CF.

In the following section we present a brief overview of the recommender algorithms.
Section 9.4.2, 9.4.3, and 9.4.4 present the details of the three algorithms, i.e., respec-
tively, the LSA, the item-based, and the dimensionality-reduction algorithms.

9.4.1 Overview of Recommender Algorithms

Recommender algorithms can be classified into content-based and collaborative al-
gorithms.

The content-based (see Chapter 3) approach to recommendation has its roots in
information retrieval, which provides a set of tools for searching for textual infor-
mation, such as in documents, web sites, usenet news and mail messages.

A content-based system is based on the analysis of the content of the items.
The model of an item is so composed by a set of features representing its content.
The assumption underlying content-based techniques is that the meaning and the
relevance of items can be captured by such features:

• each feature is assigned to a weight indicating how representative it is for an
item;

• similar items contain similar features;
• the more items contain a feature, the less representative the feature is (i.e., it is

less important in order to distinguish an item from an other).

The feature extraction is probably the most critical phase of such systems and it
can be particularly challenging in IPTV, where resources are non-textual, such as
audio/video streams. For instance, the textual features of a movie can be the genre
(e.g., commedy), the list of actors, etc. While more interesting information could be
obtained by analyzing the audio/video tracks, this technology [11] is fairly recent
and it is necessary to examine whether it can really bring some improvement in this
specific domain.

The classical way of representing items in content-based recommender is by
means of the bag-of-words (BOW) approach [6], where we consider textual features
and we only retain frequencies of words, discarding any grammar/semantic con-
nection. Usually the words are pre-processed by means of tokenisation, stop-words
removal and stemming [32]. The former simply splits text into tokens (e.g., words).
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Tokens not useful for representing an item in a certain domain are discarded (stop-
words). Finally, stemming is used to normalize some kind of grammar variability
by converting tokens to their morphological root. For example, the words ’play’,
’player’, ’playing’, and ’played’ would all be converted to their root form, ’play’.
After the pre-processing, each token has assigned a weight which is proportional to
its frequency normalized using various schemes, the most known being the TF-IDF
scheme [26, 32].

The BOW representation can be summarized in the matrix W, where column i
represents item i and the element wci represents the weight (relevance) of metadata
c for item i. The metadata c can be the movie genre, an actor or the director, as
well as a token extracted from the movie synopsis. We will present in Section 9.4.2
how the different kind of metadata have been dealt with. Analogously, also users are
represented as vectors in the space of tokens. In fact, the profile of a user is derived
by means of a linear combination of the vectors corresponding to the items he has
rated, weighted with the related user rating. Recommendations are then obtained by
comparing the similarity between the vector representing the user profile and the
vectors representing the items. The most similar items are then proposed to the user.
Similarity between two vectors can be expressed by several metrics, such as the
euclidean distance and the cosine distance [26].

Content-based systems [1, 3, 21] recommend items similar to those that a user
liked in the past, by considering their features. For example, the system analyzes
the movies that a user liked in the past and it constructs a model of the user, whose
features are the actors, the producers, the genres, the directors, etc., that such user
prefers. Then, those movies that have a high degree of similarity to the user’s pref-
erences would be recommended. For instance, whether a user is used to watch many
action movies, he will be recommended other action movies. This characteristic of
content-based recommender systems has two direct effects: it assures that the rec-
ommended items are coherent with the user’s interests, but, at the same time, the
set of recommended items could be obvious and too homogeneous. This issue is
usually referred to as over-specialization problem [3].

The main advantage of content-based techniques is that, since they are based on
evident resource features, they can provide an understandable and immediate expla-
nation of the recommended items. Furthermore, content-based filtering is based on
a well-know and mature technology.

In contrast to content-based, collaborative systems (see Chapter 5) try to suggest
items to a particular user on the basis of the other-users’ preferences [29, 1]. In fact,
in everyday life, we often rely on recommendations from other people such as by
word of mouth or movie reviews. Such systems use the opinions of a community
of users to help individuals more effectively identify content of interest. Collabora-
tive systems assist and augment this process. They are based on the following two
assumptions:

• there are groups of users with similar tastes, which rate the items similarly;
• correlated items are rated by a group of users similarly.
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The concept of correlation is strongly different to the content-based similarity
among items. For instance, here we are saying that whatever the content of a movie
is, such movie is considered somehow “similar” to another one because the commu-
nity expressed the same evaluation for both the movies. For instance, if a user has
watched the movie “Forrest Gump”, from a collaborative point of view the system
could suggest him to watch the movie “The Sixth Sense”. The relation among these
movies has apparently no sense because, looking at the content, they are not similar
movies, but they are actually strongly-correlated because most of the people who
have watched “Forrest Gump”, also watched “The Sixth Sense”.

Starting from the previous two assumption, we can define two classes of collab-
orative recommenders, respectively, the user-based and the item-based [34]. Both
of them are based on social interactions. In practice, user-based recommenders are
seldom used because of their poor quality and their memory and time requirements.

Note that collaborative recommendation does not need to extract any feature from
the items. Thus, such systems do not have the same shortcomings that content-based
systems have. In particular, since collaborative systems use other-users’ preferences,
they can deal with any kind of content. Furthermore they can recommend any items,
even the ones with a content which does not correspond to any item previously liked.

However, also collaborative systems have their own limitations. The main draw-
back is that collaborative recommenders are affected by the (or first-rater) problem.
Since such systems recommend the items most correlated to those preferred by the
current user, a new item can not be recommended because nobody has rated it so
far and the system can not define a model for such item. Therefore, until the new
item is rated by a substantial number of users, the recommender system will not be
able to recommend it. For such reasons, collaborative algorithms are not practicable
in live TV domains, where new programs enter the system at a very high rate and
appear and receive ratings for a very limited time window (e.g., few hours). Note
that content-based recommenders do not suffer for such a problem because when
new items enter into the collection their model is given by their own features.

A second issue is called the sparsity problem. In fact, the effectiveness of collab-
orative systems depend on the availability of sets of users with similar preferences.
Unfortunately, in any recommender system, the number of ratings already obtained
is usually very small compared to the number of ratings to estimate. As a conse-
quence, it might not be possible to recommend someone with unique tastes, because
there will not be anyone enough similar to him.

As a consequence of the above two points, at the beginning of its activity, a brand
new system will not be able to provide any accurate recommendation; it is called the
cold start problem. The problem is common to all kinds of recommender systems,
both content-based and collaborative recommenders, but in the latter the issue is
particularly evident since their model is based only on user ratings.

In addition, since popular items are the most rated, collaborative recommenders
are likely to be biased toward the most popular items. For instance, if a movie has
been rated by only few people, this movie would be recommended very rarely, be-
cause the predicted rating might be not reliable.
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9.4.2 LSA Content-Based Algorithm

The content-based algorithm implemented in Fastweb is based on the BOW ap-
proach, enhanced by means of latent semantic analysis.

Referring to Figure 9.2, the retrieving of features available for each item in the
catalog is performed by the data collector. The features are filtered and weighted,
forming the ICM. The features of an item are classified into several groups, referred
to as metadata. Different kinds of items have different sets of metadata:

• VOD content: actors, directors, producers, title, series title, episode name, stu-
dio name, country, year, runtime, synopsis, available languages;

• Live IPTV program: actors, directors, producers, channel and time scheduling,
country, runtime, year, synopsis.

The main difference between VOD and live IPTV content is that the former can be
accessed by users at any time upon request, while the latter can only be accessed
by users at the time it is broadcasted on a certain channel. This must be taken into
consideration by the recommender algorithms.

For any item, each metadata is represented by either a string (e.g., the title) or
a vector of strings (e.g., the list of actors). According to the kind of metadata,
each string is differently pre-processed and weighted. Whether the metadata con-
tains proper names (i.e., actors and directors) we do not apply any processing, but
we simply keep the string as it is. On the other hand, metadata containing sen-
tences (i.e., the title and the synopsis) are tokenized, filtered (stop-word removal)
and stemmed. Furthermore, some metadata are more important than others, and so
the assigned weights. By means of cross-validation we obtained the weights of each
kind of metadata (i.e., title, synopsis, actors, and directors). In addition, the weights
of each stem in the synopsis are further multiplied for the corresponding TF-IDF
value (e.g., see [26, 32]).

For instance, let us consider a movie with the following metadata:

• title: ‘the title’;
• genre: ‘comedy’;
• actors: ‘FirstName1 LastName1’, ‘FirstName2 LastName2’;
• synopsis: ‘The movie’s plot’.

The related column in the ICM matrix W will have non-null weights in correspon-
dence of the following elements:

• titl;
• genre;
• FirstName1-LastName1;
• FirstName2-LastName2;
• movi;
• plot;

where actors and genre are taken as-is, while the synopsis and the title are tokenized,
stemmed (e.g., ‘titl’ is the stem of ‘title’) and stop-words are removed (e.g., ‘the’).
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In addition to this data pre-processing, the content-based algorithm is powered
by LSA (latent semantic analysis), a method well-known in the settings of infor-
mation retrieval for automatic indexing and searching of documents [16, 8]. The
approach takes advantage of the implicit structure (latent semantic) in the associa-
tion of terms with documents. The technique consists in decomposing W into a set
of orthogonal factors whose linear combination approximates the original matrix.
The decomposition is performed by means of singular value decomposition (SVD)

Supposing the ICM is a c×n matrix (c metadata and n items), it can be factorized
into three matrices, U (c× l), S (l× l), and V (n× l) so that:

W≈ USVT (9.2)

where l is the number of latent semantic characteristics of items. Generally l is
unknown and it must be computed with cross-validation techniques. S contains the
first l singular value of W that, roughly speaking, are related to the importance of
each latent characteristic. The columns of U and V are orthonormal and represent,
respectively, the left and right singular vectors. The product USVT is the best rank-
l linear approximation of W in terms of the Frobenius norm [25]. Note that SVD
is unique except for some linear combinations of rows and columns of the three
resulting matrices and, conventionally, the diagonal elements of S are constructed
so to be positive and sorted by decreasing magnitude.

The SVD defines a new vector space, whose dimensions are not the c metadata,
but the l << c latent semantic features. We can represent item i into the latent space
by projecting (folding-in) the related column of W; being di such column vector, its
projection d̃i is given by:

d̃i = UTdi (9.3)

Similarly, metadata c can be represented into the latent space as the projection of
the related row of W, referred to as wc, into the latent space:

w̃ = wcVS (9.4)

Figure 9.4 describes the folding-in. Let’s observe that we can project back the
vectors into the original space, obtaining an approximate representation of the orig-
inal vector. Although LSA is an approximation of the original BOW space, it has
two main advantages:

• it constitutes a great improvement in terms of memory and computation require-
ments. In fact, once the SVD has been computed by the batch stage, the system
works at real-time on the low-dimensional space defined by the l latent semantic
dimensions, much smaller than the BOW space;

• by keeping only the l most important characteristics, we filter out the data noise
and we strengthen the relationships between items and metadata. For instance, if
two metadata co-appear in many items, this means they are somehow correlated
and they will be represented similarly in the latent space. The correlation might
also be indirect, discovering hidden dependences [31, 16].
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Fig. 9.4: LSA: folding-in of users, items and metadata into the common latent se-
mantic space.

The major issue with SVD is its computational complexity: in fact, in the general
case, the decomposition of a m×n matrix is O(mn2). Anyway, in the case of sparse
matrices, there exist very efficient and scalable solutions. For instance, the SVD
implementation by Lanczos [5] is optimized for sparse, large matrices: referring to
z as the number of non-zero elements in the URM, the memory requirement is O(z),
and the computational complexity is O(zl), i.e., directly proportional to z and to the
number of singular values to be computed [36, 28]. In the Fastweb recommender
system we have adopted the Lanczos implementation for the SVD, porting it to run
on multi-processor architectures.

Recommending items to a user requires to estimate their relevance (rating). Thus,
as well as we represented items in the latent space, we represent users in the same
space, so that we can compute user-item correlations. A user is represented as a
set of ratings and, as well as a row of the ICM (i.e., a metadata), the user ratings
can be projected into the latent space by means of 9.4, where wc must be replaced
with the user profile, i.e., a row vector of ratings. Once items and users have been
represented in the same vector space, we can compute the relevance of item i for user
p, referred to as r̂pi, by means of any correlation metric among vectors. The metric
used in Fastweb is a shrank version of the cosine. Assuming that the l-dimensional
vectors r̃p and d̃i represent, respectively, the projected user and the projected item,
the estimated rating of user p about item i is given by:

r̂pi =
∑l

e=1 r̃pe · d̃ie√
∑l

e=1 [r̃pe]
2 ·
√

∑l
e=1

[
d̃ie

]2
+ γ

(9.5)

where, for instance, r̃pe indicates the e-th element of vector r̃p. The constant γ is
the shrinking factor which corrects the metric in the case of scarce information,
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i.e., when user or item vectors are meaningless because very close to the origin
(e.g., an item with few metadata).

Observe that this representation allows to integrate explicit user preferences,
e.g., the actors a user has explicitly declared to like. In fact, a vector of explicit
user preferences can be treat similarly to an item, i.e., a vector of metadata. Once
the explicit preferences have been folded into the latent space, the projected user
and the projected explicit preferences can be combined to form a new user profile
biased toward the explicit preferences.

9.4.3 Item-based Collaborative Algorithm

Item-based collaborative algorithms [9, 27] capture the fundamental relationships
among items. As explained in Section 9.4.1, two items are similar (from a ‘collab-
orative’ point of view) if the community agrees about their ratings. Such similarity
can be represented in a m×m matrix, referred to as D, where the element di j ex-
presses the similarity between item i and item j. Note that, potentially, D could be
non-symmetric (e.g., the conditional probability-based similarity described in [9]),
i.e., di j %= d ji. That means that, for instance, item i could be very similar to item j
(thus if a user likes item i he would like item j), even if item j is not similar to item
i.

Item-based algorithms represent items in the user-rating space, i.e., an item is
a vector whose dimensions are the ratings given by the n users. The coordinate of
each dimension is the user rating. As a consequence, item i corresponds to the i-
th column of R, and the relationships among items are expressed by means of the
similarities among the related vectors. In the following sections we describe several
techniques to calculate the similarities among these vectors.

According to the system architecture shown in Figure 9.3, matrix D represents
the model of the recommender system and its calculation, being computational in-
tensive, is delegated to the batch part of the recommender system. The real-time
part generates a recommendation list by using such model. Given the profile of the
target user p to recommend (represented by a vector of ratings), we can predict the
rating r̂pi by computing the weighted sum of the ratings given by user p on the items
similar to i. Such ratings are weighted by the similarity with item i. Referring to Qi
as the set of items similar to i, the prediction of r̂pi can be formulated as:

r̂pi =
∑ j∈Qi d ji · rp j

F
(9.6)

where F is a normalization factor. Such factor could be simply set to 1 or, as dis-
cussed in [27], it can be computed as:

F = ∑
j∈Qi

∣∣d ji
∣∣ (9.7)
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thus assuring that r̂pi is within the predefined rating scale. Note that, being an item-
based, model-based approach, user p can be recommended even tough it is not taken
into account during the model construction (in fact the batch stage computes a model
of the items). This allows, for example, (i) to build the model with a subsample of
users (e.g., in order to respect time and memory constraints) and (ii) to recommend
a user even if his profile is new or update with respect to the moment the model was
calculated.

Once computed the predicted ratings for all the items in the dataset that have not
been rated by the target user, such ratings are sorted and the N highest-rated items
compose the top-N recommendation list.

The set Qi can be reduced by considering, for instance, only the items with a
similarity greater than a certain threshold, or the k most similar items. This latter
approach is the classical kNN (k-nearest-neighbors) approach. Section 9.6 shows
that, by varying k, the quality of recommendations varies accordingly.

When using implicit datasets, similarity metric is usually computed using a
frequency-based approach, as the one discussed by Deshpande and Karypis in [9].
For instance, when we only dispose of binary values, a high similarity between item
i and item j means that when someone buys item i, it is very likely that he will buy
also item j.

We can treat implicit datasets by considering each item as a vector in the user-
rating space, where now the coordinates are binary values. Again, the similarity
between two items can be computed as the similarity between the correspondent
vectors, for example by means of the cosine metric.

With regard to implicit ratings, the cosine similarity is a special case of a more
general approach that we refer in the following as direct relations (DR). In its basis
formulation, the item-to-item matrix D used with the DR is given by:

D = RT ·R (9.8)

The elements dii on the principal diagonal is the total number of ratings for item
i, while the other elements di j represent the number of users that have seen both
item i and item j. The model (i.e., D) can be post-processed by means of a post-
normalization, whose general expression is [9]:

di j←
di j

dii
β d j j

γ + c
(9.9)

where γ , β , and c are constant parameters whose optimal values depend on the
dataset. The constant c is a shrinking factor [14], correcting the item-to-item simi-
larity measure where poor information is available.

The model has been further enhanced by considering a kNN (k-nearest-neigh-
borhood) approach. For each item, we consider only the k most similar items (re-
ferred to as the item’s neighborhood), where k is to be chosen, for instance, by means
of cross-validation techniques. By keeping only these items, we discard the noise of
the items poorly correlated to the target item, improving the quality of recommen-
dations.
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Note that the aforementioned approaches are based on counting the co-rated
items and they can be efficiently performed by any DBMS (Database Management
System) using simple SQL statements without the need of external programs.

9.4.4 Dimensionality-Reduction-Based Collaborative Algorithm

Collaborative algorithms based on dimensionality reduction techniques describe the
dataset (i.e., users and items) by means of a limited set of features. These features are
different in their meaning from the features typically extracted in the case of content-
based algorithms. In fact, the latter are characteristics concerning the content of
items (e.g., the genre of a movie, the singer of a song,. . . ), while the features used
by collaborative algorithms are not based on the content, but on the implicit way the
user community interacts with the items.

Let us assume that an item can be described by means of l features, i.e., it is
represented as a vector in the l-dimensional feature space. Similarly, a user is rep-
resented by a vector in the same space. As a consequence, the correlation between
user p and item i (i.e., how much the item matches the user interests) can be com-
puted as the similarity between the correspondent vectors, for instance by means of
their inner product:

r̂pi =
l

∑
e=1

ape ·bie (9.10)

where, ape and bie are the e-th (unknown) features for user p and item i, respectively.
The point is to compute the l features which minimize the prediction error be-

tween the estimated r̂pi and the actual value rpi.
For instance, Paterek in [20] applies an optimization method, referred to as reg-

ularized singular value decomposition, already used in the domain of natural lan-
guage processing [12]. The l features of users and items are estimated by minimiz-
ing the metric RMSE (Root Mean Square Error), one feature at a time, using an
optimization technique based on gradient descent. The metric RMSE is defined as:

RMSE =

√
1
n ∑

p,i
(r̂pi− rpi)

2 (9.11)

In this implementation we have used again SVD, that has applied directly to the
URM, similarly to the LSA. In fact, the URM can be factorized as:

R̂ = U ·S ·VT (9.12)

where, again, U is a n× l orthonormal matrix, V is a m× l orthonormal matrix, and
S is a l× l diagonal matrix containing the first l singular values, sorted in decreasing
order.

The rating of user p about item i can be predicted as:
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r̂pi =
l

∑
e=1

upe · see · vie (9.13)

where upe is the element in the p-th row and e-th column of U, vie is the element in
the i-th row and e-th column of V, and see is the singular value in the e-th row and
e-th column of S.

Assuming that up represents the p-row of U and vi the i-row of V, (9.13) can be
rewritten as:

r̂pi = up ·S ·vT
i (9.14)

Reminding that U and V have orthonormal columns, by multiplying both terms of
(9.12) by V, we can state that:

up ·S = rp ·V (9.15)

where rp is the p-th row of R (i.e., the profile vector of user p). Consequently, (9.14)
can be reformulated as:

r̂pi = rp ·V ·vi
T (9.16)

By means of (9.16) we are able to recommend any user, even if his profile rp is new
or it has been updated since our model was created (i.e., since the SVD was per-
formed). This represents a great advantage when compared, for instance, with other
dimensionality-reduction techniques (e.g., the regularized SVD), where the features
for a certain user are pre–computed and fixed during the model construction.

In order to predict all the ratings for user p, (9.16) can be straightforwardly ex-
tended as:

r̂p = rp ·V ·VT (9.17)

Note that the product between V and VT results into a m×m item-to-item matrix,
whose meaning is very similar to the item-to-item matrix D discussed in Section
9.4.3 about item-based algorithms.

Similarly to LSA, there are several advantages in using such SVD-based ap-
proach:

• SVD represents items and users in a low-dimensional space. Once R has been
factorized, which can result particularly challenging, the system operates with
vectors having only l dimensions, much less than the original space of n users
and m items;

• SVD reduces the noise in the data. In fact, by neglecting the singular values with
low magnitude we are discarding the least-informative data, which is typically
noisy [10, 8];

• SVD strengthens the relationships among the data. Thus, if two vectors (ei-
ther users or items) are similar (because somehow related), they are represented
closer in the l-dimensional feature space than in the original space. Observe
that the relationship might also be indirect, i.e., by means of the SVD we could
discover hidden dependences among users or items.
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With regard to the algorithm architecture described in Section 9.3.2, the matrix
factorization (9.12) is delegated to the batch part, while the prediction of ratings
(9.16) can be performed at real-time. The real-time process estimates the ratings
for all the unrated items of the target user, then such ratings are sorted and the N
highest-rated items are selected to form the top-N recommendation list. In our tests,
the time spent for computing the top-N recommendation list of a certain user by
means of (9.16) is few milliseconds, fitting any real-time requirements.

9.5 Recommender Services

This section presents the implemented recommender services and how they impact
into the user interfaces and the IPTV architecture. The recommender system can
generate both content-based and collaborative-based recommendations. As summa-
rized in Figure 9.5, content-based algorithms are applied both to VOD and live TV
domains, while collaborative algorithms are applied only to VOD. In fact, we have
already observed in Section 9.4.1 that collaborative algorithms are not practicable
in this domain since new programs continuously enter the system, and collabora-
tive algorithms are not able to recommend new items till they are viewed/rated by a
substantial number of people.

Fig. 9.5: Application of recommender algorithms to VOD and live TV.

At the current stage of the integration, Fastweb is exposing the full set of recom-
mender services to a selected set of beta test users before the effective release. The
other customers have access to a reduced set of the recommender functionalities.
An example of the user interface available by means of the STB is shown in Figure
9.6.

The services released to the full customer base concern one of the catalog of
VOD domain. Recommendations are provided by the LSA-CB algorithm presented
in Section 9.4.2. The content-based algorithm has been preferred for the first few
months of activity because collaborative algorithms suffer from the cold-start prob-
lem, as explained in Section 9.4.1. Moreover, collaborative recommenders need to
record the behavior of users. This faces Fastweb with delicate legal questions that



9 A Recommender System for an IPTV Service Provider 319

require, for instance, to obtain authorizations from customers for storing and man-
aging their data, and to implement solutions to grant confidentiality and anonymity
of such information.

Fig. 9.6: Recommender system user interface

9.6 System Evaluation

In this section we first discuss the quality of the recommender system (see Chapter
8) by means of accuracy metrics computed adopting an off-line testing. We later
present some feedbacks from the on-line analysis of the recommender system.

The off-line tests are based on the views collected during 7 months of users’
activity from one of the VOD catalogs. Figure 9.7 shows the evolution of the number
of views. The average number of views per days is about 1600, with up to 3300
views during week-end days. Figure 9.8, 9.9, and 9.10 complete the analysis by
showing the time evolution of, respectively, the number of active users, the number
of active items, and the dataset density. Active users are users that have rated at least
one item. Similarly, active items are items that have been rated by at least one user.
The dataset density is the ratio between the number of ratings and the product of the
number of active users and the number of active items. We can notice from Figure
9.10 that the trend is not monotone. In fact, when a new user watches her/his first
item, we have one new active user, and the dataset decrease its density.
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Fig. 9.7: Number of views collected during 7 months of users’ activity from one of
the VOD catalogs.

Fig. 9.8: Number of active users from the same VOD catalog.

Fig. 9.9: Number of active items from the same VOD catalog.
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Fig. 9.10: Evolution of rating density in the same VOD catalog. Density is computed
by considering the number of views (i.e., ratings) with respect to the number of
active users and active items.

9.6.1 Off-Line Analysis

Typical approaches for recommender system evaluation are based either on error
metrics (e.g., RMSE and MAE) [22] or classification accuracy metrics (e.g., recall,
precision, and fall-out) [15, 7]. Since only implicit ratings are at disposal, express-
ing positive user interests, we are practically constrained in evaluating the quality of
the system by means of accuracy metrics. To this end, Tables 9.1 and 9.2 present the
recall of the three algorithms described in Sections 9.4.2, 9.4.3, and 9.4.4, respec-
tively: the LSA-CB, the item-based-CF and the SVD-CF algorithms.

Recall is often used in information retrieval, where it specifies the percentage
of relevant items that have been retrieved by, for instance, a search engine. In our
domain, recall indicates how many movies that users have effectively watched are
recommended by the recommender algorithm. To this purpose, we follow a leave-
one-out approach:

• for each user in the test set, we select one rated item
• the selected item is removed from the user profile, and we generate a recom-

mendation for this modified user profile; items already rated by the user are
filtered out from the recommendation list.

• if the removed item is recommended within the first 5 positions we have a hit,
i.e., a movie that has been watched by a user has been recommended by the
algorithm (accordingly to the Fastweb user interface, the recommended list is
limited to 5 items);

• the process is repeated for each item and for each user.

The recall is the percentage of hits with respect to the number of tests.
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The test set is selected differently according to the kind of algorithm. In fact,
content-based algorithms build their model by using the ICM, and the test set can
be the whole URM. On the other hand, the model of collaborative algorithms is
based on the URM itself, so they have been evaluated with a 10-fold cross validation
approach, i.e., we have randomly split the users into 10 folds and, in turn, one fold
has been used as test set for computing the recall, while the remaining nine folds
have been used to generate the model. Each test fold is analyzed by means of the
leave-one-out approach. The reported results are the average recall among the 10
folds.

The tables report the recall of the recommender algorithms both after 3 months
of activity and after 6 months of activity, showing the time evolution of the system.
Furthermore, the quality of recommendation of the three algorithms described in
Section 9.4 are compared with a trivial algorithm, used only for comparison pur-
poses: the top-rated. The top-rated algorithm is a basic collaborative algorithm that
recommends to any user a fix list of items, ordered from the most popular to the less
popular (discarding items already rated by the user).

Algorithm Parameter Recall
3 months 6 months

Item-based-CF

k = 10 16.8% 14.9%
k = 50 18.7% 16.4%

k = 100 19.0% 16.6%
k = 150 18.8% 16.5%

SVD-CF

l = 5 15.1% 12.7%
l = 15 12.6% 13.3%
l = 25 10.9% 11.5%
l = 50 9.3% 9.9%

l = 100 6.3% 8.0%

LSA-CB

l = 50 1.9% 1.7%
l = 100 2.3% 2.3%
l = 150 2.4% 2.4%
l = 200 2.5% 2.5%

Top-rated 12.2% 7.7%
Table 9.1: Recommendation quality concerning the considered VOD catalog.

For instance, Table 9.1 shows that during these 6 months of activity the best
algorithm is the item-based collaborative algorithm, and the best configuration is
with a neighborhood size k equals to 100. From Table 9.1 we can observe some
particular aspects:

1. in some cases the quality of recommendations after 6 months is lower than after
3 months;

2. the quality of the top-rated algorithm is fairly good;
3. the quality of the content-based is poor, even less than the top-rated algorithm.

As for the first observation, we expect that as the system collects ratings, it ac-
quires more precise user profiles and the quality of recommendations should im-
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proves. However, this is not always true, as, for instance, [7] shows about a family
of item-based collaborative algorithms based on naive Bayesian networks (NBN).
Furthermore, the analysis we are conducing is not taking into consideration that time
evolution concerns not only the ratings, but the items too. Indeed, after 3 months of
activity there are 510 active items, while after 6 months we have 621 active items.
In terms of probability, after 3 months an algorithm has to pick up 1 items among
510 candidates, while after 6 months the number of candidates is 621, as shown in
Figure 9.9. As a partial counter-effect, while active items are increasing, users rate
more items, and algorithms discard these items. Anyway, this minimally compen-
sates the item-increase effect. In fact, while active items increase from 510 to 621,
the average profile length increases from about 3 items per user to about 6 items per
user, as shown in Figure 9.11.

Fig. 9.11: Time evolution of the average user profile length. Profile lengths are com-
puted on users active in one of the VOD catalogs.

As for the second and the third observations, they find a common explanation.
The scarce quality of the content-based algorithm and the high quality of the top-
rated algorithm partially depend on the testing methodology based on the leave-
one-out approach. Indeed, the recall resulting from leave-one-out is biased toward
the recall of the algorithm on popular items, since they are the most numerous, so
the most tested. Content-based is extremely poor because it disregards item pop-
ularity. On the other hand, top-rated is particularly advantaged because, when the
user profiles are short (e.g., during the cold start), most of the users have probably
watched the most popular items, as shown in [7]. Furthermore, often users expect
novel possibilities from a recommender system and recommending popular items
does not address this concept known as serendipity [15].

For the above reasons, we present in the following a further evaluation of the
quality of the recommender algorithms, where the most popular items have been
excluded from the tests and the recall is computed only on the non-popular items,
addressing the well-know concept referred to as long-tail [2]. Figure 9.12 illustrates
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the distribution of ratings between popular and unpopular items. For instance, we
can observe that about the 50% of ratings is concentrated in the 10% of the most-
popular items (short-head), while the remaining 90% of items (long-tail) refers only
to the 50% of ratings: one of the primary reason for integrating a recommender sys-
tem is to push up the sells of long-tail items, since they represent potential incoming
for a service provider. However, recommending long-tail items is harder than rec-
ommending short-head items.

Fig. 9.12: Long-tail effect: 50% of ratings concerns 10-12% of popular items (short
head).

Table 9.2 reports the recall when the 10 most-popular items have been discarded
from testing (referred to as non-top-10), and the recall when the short-head (most-
popular) items, representing the 50% of the total number of ratings, have been dis-
carded from testing (referred to as non-top-50%).

From Table 9.2 we can note that:

1. the quality of the content-based algorithm is constant;
2. collaborative algorithms decrease their quality when recommending unpopular

items, and top-rated fails;
3. unpopular items are better recommended by the dimensionality-reduction-based

collaborative algorithm than by the item-based collaborative algorithm.

As for the first observation, the content-based algorithm is confirmed not to be
affected by item popularity.

On the contrary, the recall of collaborative algorithms decreases. Among them,
the top-rated algorithm quality drastically falls down and, in fact, top-rated is not
able to recommend long-tail items.

Moreover, we can observe that for recommending non-top-10 items the best al-
gorithm is again the item-based collaborative algorithm. However, when we focus
on the long-tail (non-top-50%), the dimensionality-reduction-based collaborative al-
gorithm overtakes the item-based. Again, we can observe that the dimensionality-
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Algorithm Parameter
Recall non-top-10 Recall non-top-50%

3 months 6 months 3 months 6 months

Item-based-CF

k = 10 14.0% 13.2% 7.7% 9.6%
k = 50 14.0% 13.8% 6.8% 9.0%

k = 100 13.8% 13.5% 6.2% 8.3%
k = 150 13.5% 13.2% 6.1% 7.9%

SVD-CF

l = 5 6.6% 6.8% 0.7% 1.4%
l = 15 11.5% 10.2% 1.2% 3.5%
l = 25 12.6% 12.0% 2.2% 4.9%
l = 50 11.4% 11.2% 4.8% 7.8%

l = 100 7.6% 9.3% 9.8% 11.8%

LSA-CB

l = 50 2.1% 1.8% 1.8% 1.7%
l = 100 2.3% 2.3% 2.0% 2.5%
l = 150 2.5% 2.5% 2.1% 2.5%
l = 200 2.6% 2.6% 2.2% 2.6%

Top-rated 0.4% 1.0% 0% 0%
Table 9.2: Recommendation quality in one of the VOD catalogs for long-tail items,
i.e., items not in the top-10 and not in the top-50%, respectively.

reduction-based collaborative algorithm follows a positive trend as the system col-
lects more ratings, increasing its capability in recommending unpopular items.

9.6.2 On-line Analysis

In this section we integrate the previous results, obtained from an off-line analysis
of the recommender algorithms, with an on-line analysis, i.e., we directly study
the feedback on the running recommender system. As explained in Section 9.5,
the reported data refer to the content-based algorithm applied on one of the VOD
catalogs.

In order to empirically evaluate the recall, we assume that whether a user watches
a movie after it has been recommended by the system, such movie is relevant for
the user and this represents a success for the recommender system.

Let us define the recommendation success, which measure the number of movies
that have been viewed within a certain time period after being recommended. Indi-
cating with b(t) the recommendation success and with w(t) the number of movies
watched by the same users within a time period t from a recommendation, we can
compute an empirical recall as the percentage ratio between the recommendation
success and the number of views:

empirical recall(t) =
b(t)
w(t)

(9.18)

The empirical recall represents the percentage of views that have been triggered by
the recommender algorithm. The specified indexes depend on the time period t that
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is taken into consideration after the recommendation has been provided to the user.
Please note that a too long time period t could loose the dependency between the
recommendation and the view. Table 9.3 shows the average quality of the system
computed by monitoring the views within 2 hours, within 24 hours, and within 7
days from the recommendation. The reported results distinguish between popular
and unpopular items.

From the table we can observe that the empiric recall is larger for unpopular
movies with respect to popular movies. In fact, popular movies are already known
by users, even without being suggested by the recommender system. For instance,
either the user has already watched a popular movie (e.g., at cinema) or it is not
interested in it.

As a further analysis, about 64% of the recommendation successes refers to
unpopular movies (i.e., non-top 50%), while only 36% refers to popular movies
(i.e., top 50%), i.e., the recommender system is stimulating users to watch un-
popoular movies, with a positive effect on the long-tail.

2 hours 24 hours 7 days
All 17.0% 19.8% 24.7%
Top 10 5.1% 7.0% 10.6%
Non-top 10 24.2% 27.6% 32.1%
Top 50% 9.4% 11.5% 16.2%
Non-top 50% 28.4% 32.2% 36.1%

Table 9.3: Average empiric recall on the considered VOD catalog. Results refer to
three time periods after the recommendation (2 hours, 24 hours, and 7 days) and are
separated between popular and unpopular movies.

Moreover, we highlight the benefits of the recommender system by measuring
the lift factor that it introduces in the number of views, i.e., the increase of views
due to the recommender system. Generally speaking, the number of views in IPTV
systems depends on the size of the customer base. Furthermore, we have to take
into consideration that new users tend to view more movies than existing users. In
addition to a constant incoming of new users, we have bursts of new users corre-
sponding to marketing campaigns. For instance, Figure 9.13 shows the trend of the
whole Fastweb customer base during more than two-year activity. The steep parts
of new users are related to promotional campaigns. For privacy reasons, the real
number of users is hidden and replaced with a proportional value.

In order to describe the correlation between users and views, we have defined an
autoregressive moving average (ARMAX) model, whose inputs are the current size
of the customer base and the number of new users. The parameters of the ARMAX
model are estimated and validated by considering 50 weeks of users’ activity before
the integration of ContentWise. Figure 9.14 compares the actual number of views
with the number of views estimated by the model. In order to smooth daily vari-
ability, views are aggregated by week. Splitting the data into training and validation
sets, the RMSE on the validation set results below 2%.
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Fig. 9.13: Number of Fastweb users. The real number of users is proportional to the
reported value.

Fig. 9.14: Weekly number of views before the introduction of ContentWise.

The model is then used to estimate the number of views in the first 20 weeks after
the integration of the recommender system. As shown in Figure 9.15, we have an
increase of views with respect to the number of views estimated by the model, and
this increase can be attributed to the impact of the recommender system, since the
other potential factors (e.g., marketing campaigns) are included into the ARMAX
model. On average, the lift factor within this period is equals to 15.5%.

Finally, we analyze how users look for interesting content in the considered VOD
catalog. Figure 9.16 shows the daily number of search requests by means of the rec-
ommender system, the keyword-based search engine, and the alphabetic browsing,
respectively. The gap between the requests to the recommender system and the re-
quests to the other searching tools indicates that users effectively utilize the recom-
mender algorithm to search for movies.
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Fig. 9.15: Weekly number of views after the introduction of ContentWise.

Fig. 9.16: Comparison among different ways of searching for interesting content:
the recommender system (related movies), the keyword-based search engine, and
the alphabetic browsing. Values are reported in a logarithmic scale.
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9.7 Conclusions

The integration of the ContentWise recommender systems into the Fastweb archi-
tecture positively impacts both the customers and the service provider. Three major
considerations derive from the on-line analysis, confirming the positive effects of
the recommender system: (i) users prefers to browse the VOD catalog by means of
the recommender interface, (ii) users tend to watch recommended movies within
few hours, and (iii) users increase the number of watched movies.

Further experiments are currently running on the other catalogs of Fastweb, test-
ing and tuning the quality of all the implemented recommender algorithms and mon-
itoring the cold-start phase of the system in order to complete the release of recom-
mender services. Other ongoing works are addressing the problem of accurately
estimating implicit ratings from user behavior.
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3. Balabanović, M., Shoham, Y.: Fab: content-based, collaborative recommendation. Commun.
ACM 40(3), 66–72 (1997). DOI http://doi.acm.org/10.1145/245108.245124

4. Bell, R.M., Koren, Y.: Scalable collaborative filtering with jointly derived neighborhood in-
terpolation weights. 7th IEEE Int. Conf. on Data Mining pp. 43–52 (2007)

5. Berry, M.W.: Large-scale sparse singular value computations. The International Journal
of Supercomputer Applications 6(1), 13–49 (1992). URL citeseer.ist.psu.edu/
berry92large.html

6. Chai, K.M.A., Chieu, H.L., Ng, H.T.: Bayesian online classifiers for text classification and
filtering pp. 97–104 (2002). DOI http://doi.acm.org/10.1145/564376.564395

7. Cremonesi, P., Lentini, E., Matteucci, M., Turrin, R.: An evaluation methodology for rec-
ommender systems. 4th Int. Conf. on Automated Solutions for Cross Media Content and
Multi-channel Distribution pp. 224–231 (2008)

8. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by
latent semantic analysis. Journal of the American Society of Information Science 41(6), 391–
407 (1990). URL http://citeseer.ist.psu.edu/deerwester90indexing.
html

9. Deshpande, M., Karypis, G.: Item-based top-n recommendation algorithms. ACM Trans-
actions on Information Systems (TOIS) 22(1), 143–177 (2004). DOI http://doi.acm.org/10.
1145/963770.963776

10. Furnas, G.W., Deerwester, S., Dumais, S.T., Landauer, T.K., Harshman, R.A., Streeter, L.A.,
Lochbaum, K.E.: Information retrieval using a singular value decomposition model of latent
semantic structure. pp. 465–480. ACM Press, New York, NY, USA (1988). DOI http://doi.
acm.org/10.1145/62437.62487

11. Geneve, U.D., Marchand-maillet, S.: Vision content-based video retrieval: An overview



330 Riccardo Bambini, Paolo Cremonesi and Roberto Turrin

12. Gorrell, G.: Generalized Hebbian Algorithm for Incremental Singular Value Decomposition
in Natural Language Processing. 11th Conference of the European Chapter of the Associa-
tion for Compuational Linguistics (2006)

13. Hand, S., Varan, D.: Interactive narratives: Exploring the links between empathy, interactivity
and structure pp. 11–19 (2008)

14. Herlocker, J., Konstan, J., Riedl, J.: An algorithmic framework for performing collaborative
filtering. 22nd ACM SIGIR Conf. on R&D in Information Retrieval pp. 230–237 (1999)

15. Herlocker, J., Konstan, J., Terveen, L., Riedl, J.: Evaluating collaborative filtering recom-
mender systems. ACM Transactions on Information Systems (TOIS) 22(1), 5–53 (2004)

16. Husbands, P., Simon, H., Ding, C.: On the use of singular value decomposition for text re-
trieval (2000). URL citeseer.ist.psu.edu/article/husbands00use.html

17. Jensen, J.F.: Interactive television - a brief media history 5066, 1–10 (2008)
18. Kelly, D., Teevan, J.: Implicit feedback for inferring user preference: a bibliography. SIGIR

Forum 37(2), 18–28 (2003). DOI http://doi.acm.org/10.1145/959258.959260
19. Lee, Y., Lee, J., Kim, I., Shin, H.: Reducing iptv channel switching time using h.264 scalable

video coding. Consumer Electronics, IEEE Transactions on 54(2), 912–919 (2008). DOI
10.1109/TCE.2008.4560178

20. Paterek, A.: Improving regularized singular value decomposition for collaborative filtering.
Proceedings of KDD Cup and Workshop (2007)

21. Pazzani, M., Billsus, D.: Content-based recommendation systems. The Adaptive Web: Meth-
ods and Strategies of Web Personalization, Lecture Notes in Computer Science pp. 325–341
(2006)

22. Powers, D.M.W.: Evaluation: From Precision, Recall and F-Factor to ROC, Informedness,
Markedness and Correlation (2000)

23. Rafey, R.A., Gibbs, S., Hoch, M., Gong, H.L.V., Wang, S.: Enabling custom enhancements
in digital sports broadcasts pp. 101–107 (2001). DOI http://doi.acm.org/10.1145/363361.
363384

24. Rokach, L., Maimon, O., Averbuch, M., Information Retrieval System for Medical Narrative
Reports, Lecture Notes in Artificial intelligence 3055, page 217-228 Springer-Verlag (2004)

25. Saad, Y.: Numerical methods for large eigenvalue problems. Halsted Press New York (1992)
26. Salton, G. (ed.): Automatic text processing. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA (1988)
27. Sarwar, B., Karypis, G., Konstan, J., Reidl, J.: Item-based collaborative filtering recommen-

dation algorithms. 10th Int. Conf. on World Wide Web pp. 285–295 (2001)
28. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Application of Dimensionality Reduction in

Recommender System-A Case Study. Defense Technical Information Center (2000)
29. Schafer, J., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender sys-

tems. pp. 291–324 (2007)
30. Sun, J., Gao, S.: Iptv based on ip network and streaming media service station. MIPPR

2007: Remote Sensing and GIS Data Processing and Applications; and Innovative Multi-
spectral Technology and Applications 6790(1), 67904Q (2007). DOI 10.1117/12.749611.
URL http://link.aip.org/link/?PSI/6790/67904Q/1

31. Valle-Lisboa, J.C., Mizraji, E.: The uncovering of hidden structures by latent semantic anal-
ysis. Inf. Sci. 177(19), 4122–4147 (2007). DOI http://dx.doi.org/10.1016/j.ins.2007.04.007

32. Van Rijsbergen, C.J.: Information Retrieval, 2nd edition. Dept. of Computer
Science, University of Glasgow (1979). URL citeseer.ist.psu.edu/
vanrijsbergen79information.html

33. Vozalis, E., Margaritis, K.: Analysis of recommender systems algorithms. Proc. of the 6th
Hellenic European Conf. on Computer Mathematics and its Applications (2003)

34. Wang, J., de Vries, A.P., Reinders, M.J.T.: Unifying user-based and item-based collaborative
filtering approaches by similarity fusion. pp. 501–508. ACM Press, New York, NY, USA
(2006). DOI http://doi.acm.org/10.1145/1148170.1148257



9 A Recommender System for an IPTV Service Provider 331

35. Zhang, H., Zheng, S., Yuan, J.: A personalized tv guide system compliant with mhp. Con-
sumer Electronics, IEEE Transactions on 51(2), 731–737 (2005). DOI 10.1109/TCE.2005.
1468026

36. Zhang, X., Berry, M.W., Raghavan, P.: Level search schemes for information filtering and
retrieval. Information Processing and Management 37(2), 313–334 (2001). DOI http://dx.
doi.org/10.1016/S0306-4573(00)00032-7





Chapter 10
How to Get the Recommender Out of the Lab?
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Abstract A personalised system is a complex system made of many interacting
parts, from data ingestion to presenting the results to the users. A plethora of meth-
ods, tools, algorithms and approaches exist for each piece of such a system: many
data and metadata processing methods, many user models, many filtering tech-
niques, many accuracy metrics, many personalisation levels. In addition, a real-
world recommender is a piece of an even larger and more complex environment
on which there is little control: often the recommender is part of a larger applica-
tion introducing constraints for the design of the recommender, e.g. the data may
not be in a suitable format, or the environment may impose some architectural or
privacy constraints. This can make the task of building such a recommender system
daunting, and it is easy to make errors. Based on the experience of the authors and
the study of other works, this chapter intends to be a guide on the design, imple-
mentation and evaluation of personalised systems. It presents the different aspects
that must be studied before the design is even started, and how to avoid pitfalls, in
a hands-on approach. The chapter presents the main factors to take into account to
design a recommender system, and illustrates them through case studies of existing
systems to help navigate in the many and complex choices that have to be faced.
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10.1 Introduction

A personalised system is a complex piece of software made of many interacting
parts, from data ingestion to presenting the results to the users. A plethora of meth-
ods, tools, algorithms and approaches exist for each piece of such a system: many
data and metadata processing methods, many user models, many filtering tech-
niques, many accuracy metrics, many personalisation levels. . . In addition, a real-
world recommender is a piece of an even larger and more complex environment
over which there is little control: often it is part of a larger application introducing
constraints for the design of the recommender, e.g. the data may not be in a suitable
format, or the environment may impose some architectural or privacy constraints.
This can make the task of building such a recommender system daunting.

This chapter intends to be a guide to the design, implementation and evaluation
of personalised systems. It will present the different aspects that must be studied
before the design is even started, and how to avoid pitfalls, in a hands-on approach.

10.2 Designing Real-World Recommender Systems

Previous work in the literature provides guidelines on many aspects of building a
recommender system. For example, [49] lists some characteristics and general prin-
ciples that should drive a personalised system design, such as taking into account
content specificity, importance of trust in the system and of involving users. [25]
provides an extensive analysis of methods and metrics for evaluating collaborative
filtering systems, including also a taxonomy of user tasks for recommender systems,
and an interesting description of dataset properties. This work is extremely useful
once initial technological choices have been made (user model, choice of algorithm,
etc.). But how can we make sensible choices when initially designing the system?
This is a major concern as any change later in the development is costly.

In order to tackle this problem in a systematic way, it is useful to step back and
see from a wider perspective what are the main design decisions to make and the
factors which influence them. Fig. 10.1 illustrates the approach suggested in this
chapter.

Designing a recommender system means making choices that can be categorised
into the following domains:
• Algorithms: which recommendation methods to use ;
• Architecture: how will the system be deployed, will it be centralised or dis-

tributed?
• User profile: what is the user model, is profile adaptation needed?

For a large part, these choices are constrained by the environment of the recom-
mender. It is thus important to systematically study the environment the system will
be situated in. We propose to describe it along three dimensions:
• Users: who are the users, what are their goals?
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Fig. 10.1: The Recommender in its environment

• Data: what are the characteristics of the data on which recommendations are
based?

• Application: what is the overall application the recommender is part of?

We propose to build a model of the environment based on these three dimensions,
and base the recommender system design on these models.

The following sections of this chapter will describe this process. The next section
first describes the three models that should be built prior to the system design and
how they affect the design decisions. In section 10.4 we will then show how these
models can help in evaluating the system. The section 10.5 will finally present a
use-case of the methodology.

10.3 Understanding the Recommender Environment

As mentioned in the previous section, we propose to define three models (user, data,
and application). These models will assist the recommender designer in decision
making processes, helping them understand the key constraints of their future sys-
tem, ask themselves the right questions and define constraints for making decisions
about three main aspects: choice of the recommendation algorithm, choice about the
recommender system architecture and choice in the possible adaptation of the user
profile. Our methodology to define the environment models consists in defining key
aspects of each model and the key questions to be asked throughout the process.

10.3.1 Application Model

Though a recommender system is itself a complex piece of software, it is by na-
ture part of a larger system. A recommender is one of the features of an overall
application. It may be a minor feature or a main selling point; the application may
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be pre-existing or built together with the recommender, but in any case the design
of a recommender system has to be integrated within the design of the application
hosting it. This section studies the main factors regarding the host application that
should influence the recommender design along two main lines: the role of the rec-
ommender and the influence of the application implementation (Table 10.1).

Table 10.1: Application model.

Model’s features Possible values
Recommender purpose main service, long-tail focused, increase revenues,

increase loyalty, increase system efficiency
Recommender type single item, multiple items, sequence
Integration with navigation features yes, no
Performance criteria (correctness,
transparency, serendipity, risk-taking,
response speed, robustness to attack)

performance target on each criterion

Device to support the application fixed, mobile, multiple
Number of users single, group
Application infrastructure browser-based application, distributed application
Screen real-estate limited, not limited

10.3.1.1 Understanding the recommender role in the application

The main question to solve before designing a recommender system is to be very
clear on its goals within the overall application. This is often not as easy as it seems,
and can have fundamental consequences on the type of system to be built. Two
perspectives have to be studied: the application point of view and the user point of
view. They overlap, but are still separate. The user point of view is studied in detail
in section 10.3.2. This section focuses on the application point of view.

Purpose of the recommender: From the application side, a recommender sys-
tem may have different purposes, for instance:
• It may be a major service provided by the application. Many such recom-

mender systems have been developed in different fields such as music (Pan-
dora1, last.fm2, MyStrands3 . . . ) or movies (MovieLens4 , Netflix5 . . . )

• To take advantage of the ’Long Tail’, as first described by Chris Anderson in
[5]. The idea that recommendations can give easy access to previously hard

1 Pandora Internet Radio : http://www.pandora.com
2 Last FM : http://www.last.fm
3 MyStrands, Social Recommendation and Discovery : http://www.mystrands.com/
4 MovieLens, Movies Recommendations : http://www.movielens.org/
5 Netflix: http://www.netflix.com/
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to find items is central to the business model of many e-commerce web sites.
In that case, the recommendations have to be focused on lesser known items,
accurately tailored to each user.

• To increase loyalty of users: customers return to the services that best match
their needs. Loyalty can be increased by involving users in the recommendation
process (ask for ratings or manual profile, highlight new recommendations, etc.)

• To increase revenues through the promotion of targeted products. In that case,
the recommendations would be determined both by the user preferences and
some marketing rules defined to follow a particular strategy. It is necessary
to carefully balance the expectations of the users and the business strategy, to
ensure users perceive value in the system.

• To increase system efficiency. By allowing the user to more directly get the
content he is looking for, a recommender system can lower the amount of data
to be exchanged, thus lowering the costs of running a system.

Recommendation type: a recommender can provide several sorts of recommen-
dations, from a single item (or a simple list of items) to a sequence (e.g. in a travel
recommender system). Single item or simple list recommenders do not take into ac-
count how the choice of an item by the user at a given point of time may influence
the choice of next items. The choice of the recommendation type may be driven by
the need or presence of a logical order in the recommendations. For example, in a
travel recommender system, a trip can be seen as a sequence of travel steps (such
as visiting a museum, going to the beach, etc.), which can be connected through
various logical features, such as geography, culture, history, leisure, etc. in order to
provide a good travel experience. Recommendations of sequences of items may be
particularly useful when users are new to a domain and need a path in the selection
of diverse items, helping them to go through their personal development goals: the
logical order of the recommendations help them progressing in their learning curve
by providing the next most appropriate step(s). Unfortunately, there is to date lit-
tle work on recommenders of sequences. Some of our ongoing work is addressing
this issue; other techniques coming from data mining domain, such as the Apriori
algorithm [2], may be used.

Integration with content navigation features: Another key point to study is
how the recommendations will integrate with other content navigation features. In
most cases, users will be offered other means to browse content in addition to get-
ting recommendations. A good integration of these different navigation methods can
greatly enhance the user experience.
• Users may request recommendations completely separately from content brows-

ing. This can be a good choice if recommendations are to be highlighted as a
main feature of the application. Such recommendations may also appear on the
home page of a web site or home screen of an application.

• It can also be beneficial to have recommendations dependant on the current
interaction context. The typical case is to recommend items that are similar
to those the user is currently browsing. In that case, the recommender system
must be able to provide recommendations tailored to the context, e.g. the current
genre when browsing music.
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• It is also important to consider whether the use of the recommender system is
optional or a mandatory part of the interaction model. This has strong implica-
tions on the expected reliability of the system: failure to complete a major task
on a website because the only way of completing that task was using a recom-
mender system which offered inaccurate recommendations could be a source of
major user dissatisfaction. However within a system design where the recom-
mender sat in parallel to more tradition navigation methods, the impact of the
same recommender may be many times less severe.

Performance criteria: Once these goals are clarified, it is possible to define tar-
gets for the performance of the system along a number of criteria. Not only these
criteria will allow evaluating the system once it is built, but they are also key to
selecting the proper algorithms. Many criteria can be used, see [25] for a compre-
hensive reference of many possible criteria. Some key ones could include:
• Correctness metrics, such as accuracy, precision and recall: these are the tech-

nical criteria that can be used to evaluate recommendation algorithms, and have
been the focus of many studies over the years. However, they are actually not
sufficient to evaluate user satisfaction [33].

• Transparency and explanability: how important is it that users understand how
the recommendations have been determined? A good level of transparency can
be more difficult to achieve with some families of algorithms. For instance,
collaborative filtering offers little transparency naturally, but [24] proposes an
analysis of the problem and some solutions.

• Serendipity: should users be (hopefully pleasantly) surprised by some of the
recommendations or is it desirable to allow obvious recommendations? Canon-
ical collaborative filtering tends to recommend items that are very popular, and
may be considered obvious and of little use to most users. Techniques exist to
correct this tendency; some are described in [25].

• Risk taking: related to the previous criterion, should the recommendations be
made only for items that the user has a high probability of liking? More risky
items can be recommended if the goal is to allow the user to discover content
they would not be aware of without the help of the system.

• Response speed / performance: in many cases, the reactivity of the application
is a major concern and can be sometimes more important than the accuracy
of the results. Knowing how many recommendations are needed per time unit
allows to better choose algorithms or decide if recommendations should be pre-
computed.

• Reliability: What is the criticality of the recommender output in the context
of the given application? For instance the design of a recommender for an e-
commerce website would not be approached in the same way as a solution for
an organ donor matching system in a hospital.

• Robustness to attacks: in particular if the recommender system has a commer-
cial role (for instance if it recommends products for purchase), it may be subject
to attacks to skew the results. [34] presents a thorough analysis of possible at-
tacks and some solutions for collaborative filtering algorithms.
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10.3.1.2 Understanding the influence of the application implementation

In addition to the features seen by the users, some aspects of the application imple-
mentation also have a large influence on how the recommender can be designed.

Single or multiple devices: the same application may be accessed from a single
or multiple devices (e.g. a news recommender system on mobile, PC, set-top box).
It must be studied whether the recommendations should depend on the user context
(see section 10.3.2). But in term of implementation, it also raises additional ques-
tions: should the collected preferences be merged or should they remain separate
to enable contextual recommendations? Where should the preferences be stored? If
the preferences are stored on a server, are they transmitted to the server in real-time
(implying a constant connection) or in batches? Answering such questions is impor-
tant even if access from multiple devices is not initially planned, as it is becoming
the norm that web applications are derived into mobile versions.

Single or multiple users: conversely, the same device may be used by sev-
eral users. The consequences of this user social environment are studied in sec-
tion 10.3.2. In addition, users that interact with the personalised application may
be either registered or anonymous and may interact frequently or occasionally. This
impacts the architecture of the recommender (requires diffent identification means,
e.g. login vs. cookies), algorithm choice (e.g. session profile in case of anonymous
occasional users vs. persistent profile in case of registered users), and algorithm pa-
rameters (e.g. the degree of adaptability of the system to the user – i.e. the rapidity
of profile adaptation: long-term vs. short-term – should depend on the frequency of
use).

Application infrastructure: The infrastructure the application runs on puts
strong constraints on the types of recommendation algorithms that can be used and
on their specific implementation. In particular, the scalability of the solution has to
be carefully studied. Two main cases can be identified, whether the application is
accessed through a browser or if an application runs locally on the user device.
• Browser-based application. In the case of a browser-based application, the pro-

cessing done on the client will be minimal. As all information is available at a
single point, any kind of algorithm can be used. However, scalability will be a
major focus in the design.

• Distributed application. When the user device runs a local application, different
architectures may be used. To determine the most suitable distributed architec-
ture, the following criteria must be studied:
– Processing power of the relevant devices. Is the client device able to sup-

port intensive tasks? Can the server-side computing resources be extended
as needed when the number of users grows?

– Network connectivity. Is the network connection permanent? Does the data
transfer have a cost for the users? For mobile devices, what is the impact of
the connection to the battery life?

– Data source. How are the data that the recommendations are drawn from
accessed? Is it from a database (information retrieval) or a stream of data
(information filtering)?
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Content filtering algorithms may run entirely on the client device. This has several
advantages: privacy is preserved as no personal information has to be transmitted;
such an architecture is very scalable as the number of users has minimal impact
on the server load. On the other hand, algorithms such as collaborative filtering re-
quire that information from all or large subsets of users be collated. In that case, a
fully centralised architecture may be used with most of the same pros and cons as
a browser-based application, but with the additional need for a mechanism to up-
date the client application when needed. More sophisticated architectures can also
be designed, such as in the case of the TV programme recommender TiVo [3]. In
this system, a part of the computation is done server-side and another part is done
on each set-top box. Other complex architectures include distributed profile man-
agement [13] or mechanisms to make different recommenders running on different
devices communicate [28]. The choice of infrastructure may be influenced by other
components the system should connect to such as external web services.

Screen real-estate: a point that is easily overlooked in the early stages of the
design is how much screen space the recommendations will use. In many cases it
is very limited and constrained by the application user interface design. This is not
only a quantitative issue and can have influences on the very nature of the rec-
ommendations that are provided. For instance, if it is intended to provide more
exploratory recommendations, it is necessary to have a sufficient number of rec-
ommendations and thus sufficient space. The same problem may arise for example
in the display of a recommendation profile to a user; a solution to display the user
profile on a small device has been proposed [40].

The study of the application the recommender system will be part of brings a first
set of constraints on the design of the recommender, but on its own it is not enough
to build an appropriate system. This additionally requires knowledge about both the
user and the data.

10.3.2 User Model

Fully understanding the user is a fundamental component to the success of any rec-
ommender system. Insights into the end users which are to be built into the user
model must come early enough in the development lifecycle to influence major
design decisions surrounding the selection of technology. Applying a user-centred
approach to any project within the initial phases can greatly reduce the need for
extensive redesign, maintenance and customer support [9, 22].

In this section, we propose to characterize users by a number of properties that
may have an impact on the recommender system design and choices the designer
will have to face (Table 10.2).

At a fundamental level the aspects of the user which must be understood when de-
veloping a recommender revolve around best practices for understanding and speci-
fying the context of use for an interactive system in a human-centred way [26]: Who
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Table 10.2: User model.

Model’s features Possible values
Demographics information yes, no
Goal existence yes, no
Goal nature implicit, explicit
Level of expectation high, medium, low
Handling change of expectation over time yes, no
Limited capabilities of user device yes, no
Importance of user situation high, medium, low
Social environment alone, with others
Trust and privacy concerns high, medium, low

are the end users? What expectations and goals lie behind the users motivations to
use the system the recommender supports? What are the user centric contextual
factors surrounding use of the system? In fully answering each context of use ques-
tion, fundamental requirements for the system design and technology choices will
be uncovered.

10.3.2.1 Understanding who the users are

Understanding who the users of the recommender system will be should revolve
around three main concerns: understanding their key identifying characteristics,
their skill levels and their prior experience with similar systems. We concentrate
on the identification of user characteristics because it has special utility in terms of
recommender design.

Identifying User Characteristics: Gathering a picture of the different user
groups through both demographic information such as age, gender, job area, na-
tionalities, spoken languages, and deep qualitative insights from user research are
an important jumping off point in the development of recommender user models.
Understanding these factors allows the development team to start to build a rela-
tionship with the users and get an appreciation of their needs.

Development of user group clusters may allow (1) the building of simple rec-
ommenders based on demographics. This is commonly used in targeted advertising
solutions to cluster customers into segments [23]; (2) define stereotypes of users
[42]: stereotyping techniques allow the definition of a set of differentiating charac-
teristics for a group of users; when a new user is introduced into the system, they can
be assigned to a predefined stereotype, based on their personal data, which allows
the activation of a set of default preferences that may be further refined over time
thanks to user profile adaptation methods [17]. Personalisation solutions exploiting
user characteristics can be used in combination with more sophisticated techniques
to provide a first simple step in a hybrid filtering process, or to bootstrap a content
based filtering algorithm by using stereotype profiles.
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In addition, the type of user (e.g. professional users vs. end users) is an essen-
tial criterion to help determine the user’s level of expectations and so, to choose
algorithms accordingly.

10.3.2.2 Understanding users’ motivations, goals and expectations

Goals and motivations: The designer of the recommender system needs to identify
the user tasks [25] and understand if the application can support completion. For
example the Amazon web site’s offering to the user revolves around the possibility
to buy items and get recommendations for items to buy. From the user’s viewpoint,
their motivation for using the service is to complete one of the two goals of either
buying an item for themselves, or buying an item for someone else. The Amazon
recommender however, does not differentiate those two goals and therefore provides
inaccurate recommendation results in one of the use cases. As another example, a
search engine coupled with a content recommender can offer the opportunity for
the user to browse the Internet and find information according to a request. The
user in this context may be motivated by the need to complete a specific targeted
goal, or their motivation may be simply to relax and spend some time browsing
for fun. Identifying and understanding user motivation can result in fundamental
recommender and user experience improvements. User insights captured within the
user model (Table 10.2) allow designers to consider the possible range of tasks the
future application needs to support.

In most cases there will be many motivations for the use of a system, and a
designer must consider ways of finding the nature of the goal, either explicitly or
implicitly. An explicit goal may be either defined by the application (Amazon could
have added a button asking the user if they were buying the item for themselves or
someone else) or expressed by the user (for example through a set of queries). An
implicit goal may be either predefined by the application itself (such as in person-
alised news pushing systems where the system provides stories to the user in the
belief that the user goal is to feel more informed about particular world events), or
can be inferred from the user’s interactions. In contrast it is quite possible that a clear
task goal is not discernable (e.g. because the application is dedicated to enjoyment).
In such cases it can be difficult to build a good recommender as user satisfaction
may be more strongly related to external factors such as user mood outside of the
system’s control. In this case, spread, quantity or serendipity may be the most desir-
able qualities of the recommender.

The impact of the user’s goal on filtering algorithms and diversity heuristics
[55, 54] when displaying the results of a recommender is important and can gen-
erate user dissatisfaction if not addressed correctly at the design stage. For example
a content-based method may be more adapted for focused people (because of the
specialization of the results), whereas collaborative methods may be more adapted
to people with less focused goals (because of the broader diversity of the results).

Users’ expectations: The implicit or explicit goal of the user as described in the
previous section is the key to evaluating the level of user expectation:
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• High expectation levels would be seen in the context of goal-oriented users,
who are focused on completing the current task. It means that the recommender
must target an “all good items” [25] list of recommendations to achieve a high
level of satisfaction for the user. This level of expectation is also linked to de-
cisions made at the application level (see sec. 10.3.1), where the place of the
recommender in the overall application and the constraints of the targeted de-
vice are central to the user expectations. Returning to the news pushing system
as an example, that system needed to provide an “all good items” list. If the user
cannot find the right personalised news in the first ten recommendations, they
must at best start scrolling down to search through the content and at worst they
reject the application never using it again because of their initial dissatisfaction
at first use.

• Medium expectation levels can be seen as the recommender returning “some
good items” [25]. If the user has choice and flexibility in the use of the recom-
mender to complete their task, the user expectation is lowered. In this category
we also find people that use the recommender purely to evaluate if the sys-
tem corresponds to their expectation of what a recommender can bring to them.
Some are looking for recommendations that are exactly aligned to their pref-
erences; others would want to discover new suggestions that are different from
their current habits.

• Low expectation levels are mainly a target for personalised applications used in
an opportunistic context. As indicated by [46] on recommendation of web sites,
“research has shown that if the task is intrinsic, i.e. just browsing for fun, it is
very difficult to recommend sites”.

Each level of expectation leads to various attitudes from end users driven from the
level of dissatisfaction, from deleting the application, to using it only for fun.

Handling changes to expectations over time: When using a recommender sys-
tem, users’ expectations may change over time. This is important to consider with
respect to the need to develop an adaptive recommender or not. The performance of
most recommender systems evolves over time; with increases in user profile infor-
mation comes better accuracy. Users too have expectations of a system’s capabilities
at first use and these also change over time as both familiarity with the system in-
creases and their own needs change. It is not only important that recommendation
systems can adapt to the needs of users over time, but also that they can demon-
strate system performance early enough in the use lifecycle to match the user’s ex-
pectations, building trust in the recommender output and ensuring continued user
engagement.

10.3.2.3 Understanding users’ context

The final area to consider are contextual issues surrounding use of the recommender:
User’s device: The first consideration is what device will the user use to ac-

cess the recommender? Recommenders are now a prevalent feature on applications
and services accessible on devices as diverse as mobile handsets, desktop PCs, and
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set top boxes. The implications of this on the system design are studied in section
10.3.1.

Situation of interaction: Situational considerations include firstly location, as
the advent of ubiquitous mobile use has now made this a prime consideration. Loca-
tion considerations may cover absolute geography such as if you wished to recom-
mend attractions in the local area on a mobile device and also relate to understanding
user activities beyond absolute positioning, e.g. contexts such as is the user at work,
or are they shopping? Another important contextual consideration is temporal fac-
tors. It may be important for the recommender system to consider time information
within user profile data collection when modelling the user. As an example, a user
may watch news on mobile TV on the train into work, but prefers to watch comedy
on the same train on the way home. Some solutions have been proposed to take
into account these situations in the recommender model; for example with an ex-
plicit link between the interests and a given situation [12], or alternatively, the link
between preferences and context information can be done implicitly [29]. The com-
bination of location and temporal information in data collection can assist greatly in
building a more robust recommender system [4].

Social environment: An important consideration here is whether the use of the
system is usually carried out alone or with other people. This affects many design
decisions including algorithm choice, data collection methods and recommendation
presentation: e.g. this question helps decisions regarding strategies to provide group
recommendations (see also Chapter 21), for example merging of individual prefer-
ences to obtain a unique group profile to be used in the content retrieval process
[6, 10, 20], or the application of a consensus mechanism by users in order to coop-
eratively define a shared content retrieval policy [7, 32] or other methods described
in [15]. However even in a group, people may still require individual recommen-
dations, as explained for TV in [8]; for this example, some solutions have been
proposed in [11, 30].

Consideration of all these questions requires considerable effort and raises the
possibility for extensive user research. Though this may seem a very large activity,
understanding which of these areas is relevant to the recommender under develop-
ment can refine the amount of research needed.

10.3.3 Data Model

The last point the designer should study carefully are the characteristics of the items
the system will exploit and manipulate. Indeed, item descriptions generally pre-
exist before the personalised system, and the designer of the recommender system
has little possibility to influence or change them. We propose a data model, helping
to identify the main characteristics of data that may influence the design and the
results of the future recommender. The designer shall implement our data model,
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i.e. for each feature of the data model, they have to think about the possible values
presented in Table 10.3.

Table 10.3: Data model.

Model’s feature Possible values
Data type structured, semi-structured, unstructured
Metadata quality and quantity high, medium, low
Metadata expressiveness keyword-based, semantic-based
Description based on standards yes, no
Volume of items a lot, few
Diversity of items homogeneous, heterogeneous
Distribution of items long-tail, mainstream
Stability vs. persistence of items stable, changing, changing a lot
User ratings implicit, explicit, none
Type of rating binary, multi-level. . .

10.3.3.1 Understanding the type of available data to describe items

There exist several ways to describe items:
• unstructured data: an item can be represented only by unstructured data,

which refers to information that either does not have a data model or one that is
not easily usable by a computer program (e.g. audio, video, unstructured text).
In such cases, a pre-processing needs to be made to extract significant key-
words, or concepts helping to distinguish each item from each other. The fact of
having unstructured data is not blocking per se, because in many cases there are
a number of techniques to obtain a set of metadata describing the items. For text
analysis, tools such as GATE [19] or Lucene6 allows the extraction of keywords
from unstructured text. Techniques for extraction of metadata from other types
of data such as multimedia content (images, videos) are less reliable though,
and often require to combine them together.

• semi-structured data: an item is often described by several generic metadata,
corresponding to the main characteristics of the item and free text. A typical ex-
ample of semi-structured data is an Amazon7 product page, or a TV programme,
which is expressed with a number of properties such as programme genre, pro-
gramme schedule, etc. Each property takes values in a finite set of vocabulary
(that belong to a taxonomy or an ontology), or includes non-structured elements
(e.g. the synopsis of the programme). In this case, the evaluation of the quantity
and quality of data is required to know if the item metadata should be enhanced
by performing some processing and analysis on the unstructured part.

6 Lucene, An Open Source Information Retrieval Library, http://lucene.apache.org/
7 Amazon, http://www.amazon.com
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• structured data: items can also already be described by a well structured model
that could belong to a standard, or a de facto standard, such as TVAnytime8

for the description of TV programs in an electronic program guide (EPG) for
DVB-H. When having structured data, the designer must examine the quantity
and quality of data to anticipate the potential lack of information for their use
in the frame of a personalised system.

This first data feature has many impacts. First, on algorithms: if the data are unstruc-
tured and the cost to extract pertinent metadata is too high or too imprecise, a full
set of recommender algorithm families are excluded: content-based approaches to
recommendation [51] (cf. also Chapter 3), Bayesian model [21], rule-based system
and distance metrics. Only collaborative filtering methods (cf. Chapter 4) could be
used in such a configuration. Second, on user models: data representation should be
reflected in the user model: for example, if a piece of text is represented as a vector
of keywords, then content based method will lead to the use of a vector of keywords
representation of user profile. In the case of unstructured data, the user model can
be very simple, such as the history of the user’s content consumption.

10.3.3.2 Understanding the quality / quantity of metadata

Quality and quantity of structured data are important performance factors of a rec-
ommender system, especially when using a content-based recommender. Several
properties of metadata play a significant role in the choices that can be made with
respect to the design of the personalised system.

Quality: the designer has to have some clues about the quality of the metadata
available and has to understand the actions to take in the case where metadata are
of medium or low quality. In general, an item metadata description is considered
as of high quality if it enables one item to be distinguished from another. For ex-
ample in news RSS feeds, two items can share common keywords corresponding
to a category of news (e.g. sport news, football), but must have sufficient additional
keywords for distinguishing news related to a certain match, a global event like a
competition, a football player etc. In that example, the designer has to understand
the right level of details in the description to capture the differences between news
feeds. The quality feature of metadata in our model is a major point of decision
for the recommender designer. He has to balance the accuracy of recommendation
results and the recommender performance in terms of time to respond, storage ca-
pacity and processing cost. For example, if the designer prefers best performance of
recommendation, he would have to introduce some constraints on the architecture
and avoid implementing the recommender on a lightweight client. The designer can
also choose to perform recommendations using a two step algorithm, distributed be-
tween the server and the client device [37]. This quality feature is also linked to the
role of the recommender in the application and the expectation of users according
to this role (see sec. 10.3.1 and 10.3.2).

8 TV Anytime, http://www.tv-anytime.org/
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Expressiveness: the future users are also fundamental to the process of metadata
evaluation. Metadata must reflect the users’ points of view on items, and represent
what users consider as differentiating characteristics of items. So the expressive-
ness of metadata is crucial to the performance of the recommender. Items can be
expressed with a large variety of semantics: from no semantics using tags/keywords
such as images annotated on Flickr9 , to more advanced knowledge representations,
such as taxonomies or ontologies (e.g text annotations made by OpenCalais10). As
a classic example, comparing a keyword-based approach and a semantic approach,
an item referenced by specific keywords such as football, baseball, basketball, will
not be recommended to a user interested in something more high level such as team
sport. Through a semantic representation, the tacit knowledge that football, baseball
and basketball are team sports is represented and can be used to extract pertinent
user preferences and recommendations, and content about all type of sports teams
would have been recommended because of the semantic link between the concepts.
Metadata described with semantic concepts enable the use of more sophisticated
recommender algorithms, such as [47] that takes into account the existence of “re-
lated” items according to their position in the ontology hierarchy; or spreading of
semantic preferences (i.e. the extension of ontology-based user profiles through the
semantic relations of the domain ontologies) as described in [48]. For collabora-
tive filtering techniques, taking into account semantic similarities in the process has
proven to increase accuracy and help reduce the sparsity problem [35]. However,
there are some practical issues to be considered; for example, semantic reasoning
induces some processing cost, that may not be feasible on the smallest devices. In
addition, if the metadata are not sufficiently semantically richly described, some
techniques enable the enrichment of the level of expressiveness of metadata, e.g.
the matching of social tags with ontology concepts through Wikipedia11[18], or the
creation of folksonomies (cf. Chapter 19).

Quantity: The amount of metadata is an important factor to consider: too few
metadata may lead to inaccurate recommendations, whereas too much metadata
may lead to useless processing. In addition, metadata description may vary in terms
of depth (degree of precision) and breadth (variety of description). The risk with
superficial description is to propose items to users that do not correspond exactly
to what they expect. For example, if a user is interested in news related to natural
disasters: with an in-depth description of the content, the user will have recommen-
dations about different types of disasters; with a breadth-wise description of the
content, he will have different points of view about the disaster (political, sociologi-
cal, economical, etc.). Very in-depth descriptions may reinforce some drawbacks of
content-based filtering algorithms, in particular in terms of overspecialisation. The
level of depth or breadth the user wants may be learned by the system.

9 Flickr, http://www.flickr.com
10 OpenCalais, http://opencalais.com
11 Wikipedia, http://www.wikipedia.org
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Description based on standard: Regardless of their level of expressiveness, the
metadata can be described in different ways: using standards such as: Dublin Core12,
MPEG-713, IPTC14; or using proprietary formats. If the metadata representation is
not imposed on the designer of the personalisation application, the choice of meta-
data representation may be guided by several considerations such as the degree of
integration between the recommender and other parts of the application (e.g. use in
a retrieval engine).

10.3.3.3 Understanding the properties of the item set

Volume of items: in addition to the quantity of metadata per item, we should con-
sider the volume of items in the data set. It represents an important factor in deter-
mining the choice of a recommender system family. Indeed, collaborative filtering
algorithms require large datasets and /or large user sets in order to compute correla-
tions efficiently. This is typically appropriate for books, films, etc, whereas content-
based algorithms can cope with a smaller size of data set (e.g. TV programmes).

Distribution of items: It is also essential to consider how items are distributed
among the data set. For example, if in a movie data set, a very high proportion of
items is annotated with the concept “action”, this metadata may not be discrimina-
tive enough (too many content items selected if the user likes action films, too few
if he does not). In such cases, and if possible, the level of depth of the annotation of
data should be rethought in order to obtain better quality metadata.

Nature of items and stability of item set: News items, books, or TV pro-
grammes are intrinsically different, and therefore users do not behave the same way
depending on the nature of the items. For example, it is relatively easy to conceive
that interests related to TV programmes or books are more stable than the ones re-
lated to news, because news items change more frequently, and so there are more
diverse subjects that can emerge. So, this criterion impacts the use or not of an adap-
tive recommender system (i.e. where the user profile evolves with time), and high-
lights the need to understand different evolution patterns, such as stable interests,
progressive interests, fast changing interests, etc. [38, 39]. One should also consider
the stability of the item set, i.e. how often new items are introduced or items dis-
appear. In addition, a recommender can work with homogeneous data (e.g. movies
only as done in MovieLens) or can manipulate heterogeneous content (as done in
Amazon). In order to choose an appropriate strategy for item recommendations, it
is important to study the correlation between the items, for example how an interest
for a music type is reflected in book tastes. This analysis can help choose a strat-
egy for recommendations, such as considering all items globally, or instead apply
specific rules based on the specificity of each item family.

12 Dublin Core Metadata Initiative, http://dublincore.org/
13 MPEG-7 overview, http://www.chiariglione.org/mpeg/standards/mpeg-7
14 IPTC (International Press Telecommunications Council), http://iptc.org
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User items ratings: Another important consideration is that of taking into ac-
count user ratings or not. If there is no user rating related to items in the system,
this excludes the whole family of collaborative filtering methods. User ratings about
items can be either explicit (for example on Amazon, users can indicate how much
they enjoyed a book or a CD), and may be expressed on different scales (e.g. bi-
nary, multi-level). If this is not directly available, but thought to be useful in the
personalised application, it is possible to compute implicit feedback indicators [41]
(for example, the fact of purchasing an item can be considered as an implicit indica-
tor of user interest), which can be used either in some recommendation algorithms
(such as collaborative filtering), or as an input to a user profile adaptation module
that will update users’ interests based on likes and dislikes of specific items.

10.3.4 A Method for Using Environment Models

In Tables 10.1,10.2,10.3, we introduced three models to help understand the envi-
ronment of the future recommender system. For each model and each feature we
proposed some guidelines to define requirements and constraints on the future rec-
ommender system. To fully understand the importance of those features we propose
a method in two steps:
1. identify the dependencies between features: the designer must find which fea-

tures are influencing others by building a dependency graph across the three
models. This graph will help the designer understand how a change on one fea-
ture impacts the overall recommender environment. For example, changing the
integration of recommendations with navigation features (application model)
will change user expectations (user model).

2. identify key features of the models: key features are the ones that have the most
important impact on the choice of the recommendation and adaptation algo-
rithms, and recommender architecture. For example, the performance correct-
ness (application model) has a significant impact on the recommender choice.
The identification of these key features helps to prepare the evaluation frame-
work and understand how to interprete evaluation results.

As an illustration of this method, an example is given in section 10.5.

Thus, in this section, we have identified all the constraints that should be stud-
ied when designing a recommender system. Based on this first step, the designer
should be able to determine the appropriate algorithms for filtering the items, and
for adapting if necessary the user profile, and can choose the right architecture. The
next phase for the designer consists of implementing his recommender system (see
our references) and then in evaluating the algorithms, as explained in the next sec-
tion.
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10.4 Understanding the Recommender Validation Steps in an
Iterative Design Process

Even though the models presented above allow making informed decisions about the
crucial elements of a recommender system, many parameters have to be adjusted
before it can be deployed, making lab testing and iterative design necessary. Two
aspects must be studied: validation of the algorithms themselves and validation of
the recommendations, in which users must be kept in the loop.

10.4.1 Validation of the Algorithms

Many experimental papers have demonstrated the usefulness of testing a recommen-
dation method against existing datasets such as MovieLens, Netflix15, etc. From
experience, such datasets are useful to understand the behaviour of an algorithm;
they must sometimes be transformed and enriched in order to be usable (e.g. enrich
MovieLens with IMDB16 data). Experiments with datasets have been widely stud-
ied in the literature. For example, [25] gives a very exhaustive list of metrics that
can be computed. In addition, they enable the support of objective comparison with
other methods based on the characteristics and available information in the collec-
tions and may be particularly useful when large sets of users are needed. Such an
evaluation also allows tweaking a number of personalisation parameters of the al-
gorithm, e.g. distance metrics to compute the similarity between a user profile and a
piece of content. These methods are widely explained in the literature and therefore
are not further detailed here. Please refer to Chapter 8 for details.

In this particular step of testing the algorithm on available dataset, the feature
dependencies and impact graph as determined by the method described in section
10.3.4, must help the designer discover if the dataset is changing the recommender
environment (data, user, application) compared to the final targeted system. This
graph should help interpret the results of the algorithms and determine how far
tweaking of the algorithms and testing should go. Indeed, if the environment proper-
ties are really close to the ones of the targeted final system, it may be worth adjusting
the algorithms as much as possible. But if significant differences have been analysed
between the experimental environment and the targeted environment, this phase of
experiments with existing datasets should probably be kept as short as possible and
should mainly focus on debugging rather than improving the accuracy of the rec-
ommenders by small amounts. Many research papers have focused on improving
the accuracy of the algorithms [33], but even if a recommender algorithm provides
good accuracy results, this is still with respect to the instance of the data and user
models considered and associated with the dataset. Therefore, it is very important
to understand the importance of the features of the environmental models and their

15 Netflix dataset used for their competition, http://www.netflixprize.com/download
16 IMDB, the Internet Movie Database, http://www.imdb.com/
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interdependencies to interpret correctly the evaluation results against a standardized
dataset. For example, when we move from TV data to news data, the behaviour of
the user is not the same, and the data do not have the same dynamics (see section
10.5). In such a case, spending too much time tweaking the algorithm to improve
the accuracy on the TV dataset is certainly a waste of time.

10.4.2 Validation of the Recommendations

Whilst there are technical strategies for mathematically evaluating the accuracy of
promoted items offered by a recommender, the acid test of ensuring measures of
likely performance and satisfaction in the field are ultimately obtained through eval-
uating all areas of a recommender system with end users, with the focus upon mak-
ing improvements to performance and increasing end user satisfaction.

The key to evaluating any interactive system is to follow a user-centred approach.
This means evaluating early, iteratively and frequently based upon the changes and
improvements made. This poses some challenges. Indeed as discussed earlier, rec-
ommenders are rarely at the centre of a development activity but instead are an inte-
grated sub-feature of a much larger product or system. Common scenarios are that
the development of the larger host system runs at a different development timescale
to the recommendation engine. Such a situation poses problems for evaluation of the
underlying recommender technology, leaving no method to collect user preferences
upon which to build a user profile or a way to present recommendations to users.

These considerations often lead to the evaluation of the user-facing interaction
aspects of the recommender (the data collection processes and the recommendation
presentation) being split from the underlying engine, at least until both systems
reach a prototype integration. From an evaluation perspective, this can sometimes
make a lot of sense e.g. by preventing research findings from being confounded by
competing negative or positive responses to other areas of the design.

There are many possible techniques in the user evaluation toolkit which can be
deployed to investigate recommender developments. Some useful selective methods
are introduced below together with when and in which context they can best be
used. Each have been used in real life projects and are based upon our experiences
of conducting user research in the area of recommender systems.

10.4.2.1 Card Sorting

Card sorting is not strictly an evaluation method but in fact a useful formative design
research tool. It is used to create taxonomies of items based upon the naturalistic
mental models users hold for the relationships between content or concepts. The
method basically consists of asking users to sort a collection of cards, each which
depicts a content item or sub classification, into groups based on similarity [44].
The resulting sorted groupings from a number of users can be analysed using cluster
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analysis in order to find common shared patterns in user classification and to build
a dendrogram of the associations. The time and complexity of this analysis can be
reduced greatly by using one of the software tools such as IBM’s EZsort [20].

We used this method when investigating distance functions for television genre
classifications. Though many metadata structures exist in this area, it is very difficult
without testing with users to understand if any one genre is perceived as being more
similar to any single other genre more than others. As example, one result from the
study showed that users classified a number of diverse genres as being close together
due to a perception of them all as representing lighter viewing. This included genres
such as game shows, comedy and soap operas. This was in contrast to more factual
content genres classified as being less similar such as news and documentary. This
information was integrated into the algorithm development to improve the accuracy
of the recommendations.

The value of carrying out such an exercise is that the similarity measures for con-
tent items are based on a taxonomy created by real users, not artificial structures cre-
ated by programmers or engineers. This method also unearths the subjective relative
distances between disparate categories. These two factors increase the likelihood of
recommendations being perceived as relevant and accurate from the perspective of
the user. Due to its benefits in construction of the underlying algorithms, this tool is
best used during formative development.

10.4.2.2 Low fidelity prototyping

Low fidelity prototyping is the umbrella term for a range of methodologies which
cover exploration of an early interactive design idea with users. Traditionally this
methodology has used paper prototyping to evaluate design ideas for how recom-
mendations are to be presented, and also how user profile information may be cap-
tured and managed very early in the development of the recommender system. The
major benefit of the method is that an evaluation can be achieved early without the
need for costly and time consuming development. The method has no value how-
ever in evaluating the actual recommendation engine. It is executed in the form of
a semi-structured interview using the prototype as a visual prompt. See [50] for a
good introduction to the method and useful examples. When working with low fi-
delity prototypes it is important that they should not look like finished designs as
this constrains users when discussing design ideas. Simple sketches and outlines
allow users to openly postulate on highly valuable improvements and design ideas
precisely because the designs appear so unfinished. This method is qualitative in
nature as it attempts to gather rich data on the opinions of users. Evaluating a design
with three or four users from each identified user group will often provide enough
insight to significantly influence the design in a positive way.

We have used this type of investigation routinely to evaluate with users both
actual design concepts but also general design principles. As an example, we used
this methodology to introduce possible ideas for explicit rating scales in order to
collect feedback which could be used to build user profiles. Simple line drawings
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were enough to allow users to discern the differences between each concept and
provide insights on their own perceived benefits and drawbacks for each. It allowed
them to ponder more generally on the concept of providing explicit feedback to a
recommender system, and what this meant in terms of both effort and privacy.

10.4.2.3 Subjective qualitative evaluation

This method is aimed at evaluating the accuracy and satisfaction levels attained by
the recommendation engine from the perspective of end users. The major benefit of
this method is versatility: it is a qualitative method which can be used as soon as a
system is able to output recommendations even if the supporting data collection and
recommendation presentation components do not yet exist. It can equally be used to
evaluate fully implemented systems. The process is based on subjective assessment
and a useful way of applying the method is through either a facilitator adminis-
tered or participant completed standardised questionnaire17. Each recommendation
generated for the user is presented within the questionnaire and a number of ques-
tions posed regarding the user’s opinion towards it. The basic concept of the method
consists of three steps.

1. Collection of users’ data in order to build user profiles: the amount of data
which needs to be collected is a function of the performance of the recommender.
However it might equally be advisable to create participant samples within the study
from whom varying amounts of information are captured to represent various typical
usage patterns at given points in time, for example after two weeks. This allows the
effect of the recommender’s learning curve on user perceptions of accuracy and
satisfaction to be analysed. The ease with which data can be collected from users is
again a function of the maturity and design of the recommender. If the system is at
a design stage where the preference data collection functions are operational then
it may be possible to consider employing them within the study. This is especially
true in systems where implicit usage data needs to be collected as it can be very
difficult to elicit this type of data directly from users in other ways. Obviously,
it is critical that the development team can access the actual user. Therefore the
use of previously collected user data (for example in the form of web analytics)
is unusable from the perspective of direct evaluation. Collecting implicit data from
scratch requires the recruitment of participants for longer term monitored trials. This
requires the use of techniques such as video observation or remote usage tracking in
order to capture accurate preference data which can then be extracted and applied
to implicit learning rules. This can be a laborious research activity but does also
provide the added benefits of capturing real user insights and novel examples of
use, which in turn drive innovation. In contrast, explicit data collection is far easier
to simulate without a working system. Collecting feedback through an electronic
or paper based survey form is a good method. An example we used was a simple
spreadsheet. Users were asked to rate forty pieces of content on an explicit scale

17 Questionnaire development is a science so if the techniques of questionnaire design and attitude
assessment are new to you a good practical reference guide is [36].
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which was being proposed for the finished system. Fifty screened participants were
recruited remotely via the internet and the survey sent via Email. The users simply
filled in their responses and returned them to the design team.

2. Generation of recommendations: The preference data returned by partic-
ipants is extracted from the survey responses and coded for input into the rec-
ommender engine. An important consideration in providing individualised recom-
mendations is to keep track of the user ownership of data and feedback responses
throughout the study. Firstly, obtain permission from the users to retain their in-
formation for the duration of the study. Give each participant an ID, and use that
number on every document throughout the evaluation process. Securely retain the
participant details for the duration of the study against which the participant ID can
be resolved. Finally ensure that participants’ sensitive personal details are destroyed
after the study and the results of the study anonymised. This simple process main-
tains user privacy (and data protection).

3. Presentation of recommendations: once recommendations for each individ-
ual user have been generated then they need to be given back to participants for
evaluation. The questions to ask participants in the questionnaire really depend upon
the goals of the recommender. Three common user perspectives on the recommen-
dations that are likely to be of interest are:
• Does the recommendation match their preferences?
• Is the recommendation of interest?
• Would they be satisfied in a system that delivered such a recommendation?

Importantly questions should primarily be phrased around specific recommended
items, not the recommendation list as a whole, because they are less likely to pro-
vide insights that can be used to improve the recommender. Receiving information
on individual items allows weaknesses and bugs in the recommender design to be
identified. For a project related to TV recommendations that we worked on, it al-
lowed investigation as to why a successful recommender was receiving small num-
bers of extremely poor anomalous outlier satisfaction ratings. Investigation of the
outliers allowed the discovery of foreign language content recommendations not
identified by the metadata. The design team made a fix to more intelligently identify
and handle foreign language content of this type and solved the dissatisfaction issue.

Analysis of the data can allow in-depth pictures of likely user satisfaction. It can
also allow direct comparisons to be drawn between competing systems which can be
used either for benchmarking purposes or fed back into design direction decisions.

10.4.2.4 Diary studies

Once a recommender is out in the field, how can information be gathered as to
the success of the development over the medium to longer term? Collecting usage
metrics does not capture the subjective motivations, pleasure or frustration in using
a system. An important consideration for recommenders is that such systems can
have long learning curves with a changing user experience over extended periods
of use. In such cases analysis of the total experience of living with a system may
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be more interesting than snapshots of satisfaction. Diary studies typically can run
anything from a week to months, dependant upon the system under investigation
and the opportunities to access engaged users. Diary-based study as a method is
particularly well suited to mobile contexts, when direct observation or monitoring
becomes logistically difficult. We have recently used this method for a study related
to the evaluation of the impact of different usage contexts upon video content selec-
tion on heterogeneous mobile devices where no remote user logging was possible.
The method proved very useful at identifying particular pain points for users.

Diary is in fact a very well establish method in many areas of social research, (see
[10] for examples). The method relies upon a user to create a self-reported record
of their day-to-day interactions with the system of interest (it relates to real user
contexts described in their own words). The insight from such data can be integrated
to improve systems already in use to uncover user requirements and contextual use
issues for the next generation of development. However, in terms of logistics the
method does have possible pitfalls to be considered:
• recruitment and retention of users: it can often be difficult to recruit participants

for longer duration studies, and even more difficult to retain them;
• non-reporting or false reporting of information in the diary: completing diary

entries takes effort and engagement which can be difficult for users to sustain
over the whole duration of a study.

In order to run a diary study successfully it is very important to maintain contact with
participants. Regular face to face or telephone debriefs encourage users to maintain
their diaries by instilling the expectations of the researchers and allows the investi-
gator to monitor the data collected and query incidents or comments closer to the
times that events are reported. Such strategies can be used to identify critical inci-
dents in use which have led to episodes of user satisfaction or dissatisfaction.

Whilst by no means an exhaustive list, this range of methods has significant util-
ity in the development process from the early design stages, through prototype de-
velopment and finally to release and post release.

10.5 Use Case: a Semantic News Recommendation System

In the previous sections, we presented an approach to build a recommendation sys-
tem, through the instantiation of three models: application, user, and data, which
oblige one to think about possible choices for the recommender design. The pur-
pose of this section is to compare what can be obtained from these models with
what has been done in practice in the scope of a system - a News marketplace where
news professionals or end-users can build, share (buy, sell) and consume multimedia
content in a personalised way.
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10.5.1 Context: MESH Project

We illustrate the usefulness of the models that may help in driving the design a rec-
ommender system through the description of MESH18 (Multimedia sEmantic Syndi-
cation for enHanced news Services), a research project in which we participated that
created a framework for intelligent creation and delivery of semantically-enhanced
multimedia news information [52].

Fig. 10.2: Overview of the MESH platform

The main purpose of MESH was to provide news professionals and end-users
with powerful but intuitive means to organize, locate, access and present huge and
heterogeneous amounts of multimedia information. A MESH system is a news
content broker that guides the user through a multimedia content web (the “news
mesh”), finds automatically what he/she needs or wants, and presents it in the best
possible arrangement on any terminal. Core ideas in the system consisted of (see Fig.
10.2): (1) Content delivered (push model) to users based on semi-automatically ex-
tracted semantic metadata and users’ computed preferences; (2) Personalised mul-
timedia summaries allowing easy digest of huge chunks of information, offering
initial entry links to further access information through navigation aids that will
prevent the “lost in multimedia cyberspace” syndrome; (3) Advanced syndication
methods to allow rapid delivery of news from the end-sources (journalists) to the
end-users (public) through fixed and mobile channels, proposing new flexible busi-
ness and collaboration models.

In this context the role of the personalisation was to: (1) enable the system to
proactively push personalised news items or personalised multimedia news sum-
maries to user ; (2) provide support to users (both professional and end-users) to
provide a personalised search of news items.

18 MESH IST project (FP6-027685) (03/2006 - 02/2009), http://www.mesh-ip.eu
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10.5.2 Environmental Models in MESH

Based on the purpose of the application described above, we can illustrate how
to instantiate the environmental models we described in section 10.3, in order to
determine constraints on the recommender design.

10.5.2.1 Instantiation of the environmental models

Table 10.4: Application model instantiation.

Recommender purpose increase system efficiency, both for professional users (save time
when gathering news information for example to build a “dossier”
on a specific theme) and for end users (receive or browse relevant
news with respect to their profile, recent interests, current situation
or recent queries)

Recommender type multiple items, provides a list of recommended multimedia news
documents

Integration with naviga-
tion features

tight: e.g. through coupling with the information retrieval to deliver
a personalised search service

Performance criteria different criteria have a primordial importance depending of the
kind of users of the system: journalists and professional users are
much more interested in characteristics such as correctness, re-
sponse speed, reliability and robustness to attacks, whereas end
users are more interested in correctness, transparency, serendipity

Device to support the ap-
plication

mainly fixed devices (only a limited subset of the application is
available on a mobile terminal)

Number of users single user application
Application infrastruc-
ture

browser-based application, with two modes of content delivery:
pull mode (personalised search) and push mode (proactive delivery
of multimedia news summaries)

Screen real-estate not limited

10.5.2.2 Links between the different models and constraints on design

In the MESH project, the study of the recommender system environment shows the
important features of each model, how they influence each other, and which features
have a direct impact on the choices about filtering/recommendation algorithms, in-
frastructure of the recommender and adaptation recommender option (see Fig. 10.3).
This schema is essential in our method for analysing the key features of the system,
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Table 10.5: User model instantiation.

Demographic informa-
tion

only the job is considered as a discriminatory demographic factor:
we distinguish between professional users such as journalists, pho-
tographers, etc. and end-users

Goal’s existence and na-
ture

in pull mode, explicit goals are expressed through user queries in
the retrieval engine; in push mode : end users have no other goal
than being informed about their favourite subjects and headlines
news, Professionals still have the underlying goal of their current
task that must be detected and inferred from their reading of items
through the pull mode

Level of expectation medium: the users can still use the system if the recommender does
not work or perform poorly (though with a degraded efficiency); the
recommender is not considered central to the user’s activity

Change of expectation
over time

yes: expectations of users should increase when they progressively
discover the benefits of personalised search functions

Importance of user situa-
tion

high: for example, the users do not consume the same kind of news
at home, at work or during holidays

Social environment alone: by nature news consumption is rather an individual activity
Trust and privacy con-
cerns

Not considered (assumption of a necessary trade-off between user
benefits and divulgation of personal information and data)

Table 10.6: Data model instantiation.

Data type semi-structured: news items are described through a number of cat-
egories and concepts; methods to extract metadata from unstruc-
tured parts of the items (text, speech, video) are applied

Quality of metadata overall, medium: good expressiveness through semantic annotation
of content, but many metadata extracted by semi-automatic means
(less reliable)

Description based on
standards

yes: use of ontologies19 based on IPTC

Volume / diversity of
items

huge number of news items on a large variety of topics

Distribution of items long-tail and mainstream: wide distribution of concepts, from those
about mainstream events such as Obama’s election to those related
to the discovery of new species of frogs

Stability and persistence
of items

the news item set is not really persistent, as it constitutes a continu-
ous stream, therefore the items taken into account for recommenda-
tions are changing (in general news older than x days are ignored)

User ratings explicit ratings (such as star rating) as well as implicit ratings (by
monitoring clicks and time spent on news items) are considered



10 How to Get the Recommender Out of the Lab? 359

and helps in determining that when a change occurs in the instantiation of one of
the models, what the impact is on system constraints and requirements.

Fig. 10.3: Dependencies and impacts of model features in MESH

Impact on recommendation algorithms: In MESH, the primary purpose of the
recommender is to improve efficiency of the system; therefore the selected algo-
rithm should overcome limitations of content-based recommenders and of collab-
orative filtering [7, 14, 1]. The use of hybrid algorithms [14] can overcome these
limitations. In addition, several categories of users cohabit, who may have differ-
ent goals and interact with the system according to two different modes (push/pull).
In pull mode, because the recommendations are driven by user queries, it may be
preferable to use a content-based solution, whereas in push mode, for end-users, it
may be interesting to have more diversity brought by collaborative filtering methods.
Therefore, it appears that hybrid solutions, combining content-based approaches and
collaborative filtering may be more appropriate than one single approach. Another
argument is related to the metadata: although there are metadata (which makes pos-
sible the use of content-based methods), their quality is still medium, which can
lead to average quality recommendations, regardless of the intrinsic quality of the
recommendation algorithms. Therefore it is safer not to rely solely on content-based
methods.

Once it is decided that it may be worth combining different kinds of recom-
menders, the designer should analyze the environmental elements that help choose
more precise methods within these families. Thus:
• for the collaborative filtering (CF) method: the study of the data shows that it is

quite unlikely to apply a classical item-based CF [45], because due to the high
volume and the dynamic nature of the data (news items arrive every few min-
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utes), it is quite unlikely to have a lot of user ratings (either implicit or explicit)
on specific news items. This particularly big sparsity requires the designer to
imagine other ways of doing collaborative filtering, e.g. exploit user profile in-
formation when calculating user similarities in user-based CF [15].

• for the content-based algorithm: the highly structured metadata (expressed
through ontological concepts) allow the use of more sophisticated recom-
menders that can exploit this structure to enhance the accuracy of recommen-
dations [17].

Lastly, another important point is to determine how to combine these algorithms.
Based on the environmental study, several heuristics are possible: static or dynamic
combinations based on user type (end-user vs. professional) or based on the appli-
cation mode (pull vs. personalised push). The user’s context may also be used to
parameterize the different algorithms and their combinations.

Additionally, in the context of news, it is essential to consider that there is a lot
of similar content (such as news about Obama’s election but coming from different
sources); therefore some additional mechanisms to avoid recommending duplicated
or equivalent content may be needed - for example clustering methods. In that case,
it is important to identify and integrate into the overall recommendation process the
criteria that users usually apply to distinguish between two similar news items.

Decision of building an adaptive recommender: the study of news data shows
that news items change often (new news items are arriving fast) and also topics
change often. Because of these properties (high variation and high coverage), user
studies we have conducted have proven that users are not able to express exhaus-
tively their interests relating to news, and that therefore a user profile may vary a
lot. In addition, in the system, users have the opportunity to freely browse through
specific news they are interested in. This information about possible new topics of
interests for the users must be taken into account into their profile to maintain them
up-to-date, so that it can be used also to deliver truly relevant personalised news in
push mode. So, this makes it necessary to have an adaptive recommender, where
user profiles evolve automatically and rapidly over time[38].

Impact on architecture: from the beginning, as MESH was a new application,
we had two options for the recommender system: 1) a distributed solution or 2) a
completely centralised solution. A distributed solution had some advantages: better
management of privacy, and application independence, but some serious drawbacks:
in the case of use of the application from different devices, it required profile syn-
chronization between devices, data transfer between the devices and therefore back-
end costs could be high. Therefore, it was decided to favour a centralized system,
which eases the integration of the recommender with the other parts of the system
such as content retrieval or content syndication.
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10.5.3 In Practice: Iterative Instantiations of Models

As the recommender system was built in parallel to other modules of the system, it
was not possible to wait until we had the real data to start building the recommender.
So, it was decided to build algorithms and evaluate them with publicly available
datasets:
• for the recommender algorithms: all tests were done with MovieLens + IMDB;
• for the profile adaptation algorithms, BARB20 data. The choice of this dataset

was driven by the need to have temporal evolution of content consumption.

The results showed that the hybrid recommendation methods developed in MESH
provided more accurate results than state of the art methods (content-based or col-
laborative filtering). In this case, the quality of metadata was close to what we could
expect from MESH and the user context (situation and goal) was not taken into ac-
count. However, in the experiments we carried out with the BARB dataset, which
collects data related to TV programme consumption during a 6 month period, we
unconsciously created a new data model and a slightly different user model:
• Data model: items were TV programmes described by limited metadata, that

were high level categories of programmes and a set of keywords extracted from
the programme description text. The item distribution was mainstream with a
poor to medium quality of annotation (there is significantly less diversity in TV
programmes than in news). The stability of items was also different since TV
programmes were predefined for a long period and we can consider them as
quite stable (TV is fairly repetitive, and therefore new programmes do not ap-
pear every days). Two features influencing the performance of the recommender
were changed by this dataset: metadata quality and distribution of items and one
feature influencing the adaptation results was changed: stability of items.

• For the user model, professionals were not represented in the BARB dataset, so
no specific goal was linked to the recommendation. It had an impact mainly on
the correctness of the recommendation.

The BARB dataset was supposed to help us in evaluating our learning algorithm for
user preferences but the results showed that after one week of learning, the user pro-
files remain stable, meaning that the preference learning mechanism had no further
effect on the user preferences [38]. We had to interpret our results not only accord-
ing to the behaviour of the algorithm by itself, but to the behaviour of the algorithm
and the characteristics of the chosen dataset. The algorithm was supposed to deal
with a large volume of items, not persistent and with mainstream to long-tail dis-
tributions with a good quality of metadata. It was supposed to be very reactive and
built based on an average consumption of items that was largely superior to the TV
programmes consumption per day. We learnt through this experience that chang-
ing the recommender environment (data, user and application models) has a huge
implication on the expectation of the result and in the interpretation of the filtering
algorithm and other mechanisms linked to the recommender system.

20 BARB - Broadcasters’ Audience Research Board, http://www.barb.co.uk
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Therefore, we tried to use data as close as possible to the ones being used
within MESH. We launched new experiments with a tool called “News@Hand”[16].
News@Hand combines textual features and collaborative information to make news
suggestions to an end-user. News items are automatically and periodically retrieved
from several on-line news services via RSS feeds. The title, summary and category
of the retrieved news items are annotated with concepts from the system domain
ontologies. During a period of 3 weeks we performed subjective qualitative eval-
uations (see section 10.4.2.3) to analyse the evolution of the preference learning
algorithm with twenty users (they were divided into sub-groups in order to compare
the evolution in different configurations of the algorithm). As the data model for this
experiment was equivalent to the one in the MESH project and the user model just
slightly different (no goal), we obtained results that were closer to our expectations
(increase of recommendations quality over time).

By carefully studying the recommender environment through the instantiation of
the data, user and application models and by identifying dependencies and impacts
of model’s features, we think that critical issues must be addressed at design time in
order to avoid errors and avoid losing time in dead ends.

10.6 Conclusion

In this chapter, we showed that though the technologies available to those who want
to implement a recommender system are numerous, diverse and often hard to com-
pare, a systematic evaluation of the environment is a key to making appropriate
choices. We proposed for this to build three models describing the features of the
environment that are the most influential to the recommender system design: ap-
plication, user and data. Building these three models and studying their interaction
allows narrowing the choice of appropriate recommendation algorithms, system ar-
chitectures and user models.

In practice (as shown by the example we described), these three models by them-
selves will not allow to have a perfect design at the first go. But they are a very use-
ful support for an iterative design methodology, which is the best way to go beyond
technical excellence and reach the goal that matters in the end: user satisfaction.
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364 Jérome Picault, Myriam Ribière, David Bonnefoy and Kevin Mercer

24. Herlocker, J.L., Konstan, J.A., Riedl, J.: Explaining collaborative filtering recommendations.
In: CSCW’00: Proceedings of the 2000 ACM conference on Computer supported cooperative
work, pp. 241–250. ACM, New York, NY, USA (2000)

25. Herlocker, J.L., Terveen, L.G., Konstan, J.A., Riedl, J.T.: Evaluating collaborative filtering
recommender systems. ACM Transactions on information systems 22, 5–53 (2004)

26. International Organisation for Standardisation (ISO): ISO 13407: Human centred design pro-
cesses for interactive systems.

27. Jameson, A., Baldes, S., Kleinbauer, T.: Two methods for enhancing mutual awareness in a
group recommender system. In: AVI’04: Proceedings of the working conference on Advanced
visual interfaces, pp. 447–449. ACM, New York, NY, USA (2004)

28. Lhuillier, N., Bonnefoy, D., Bouzid, M., Millerat, J., Picault, J., Ribière, M.: A recommenda-
tion system and method of operation therefor. Patent application WO2008073595 (2006)

29. Lhuillier, N., Bouzid, M., Gadanho, S.: Context-sensitive user preference prediction. Patent
application GB2442024 (2006)

30. Lhuillier, N., Bouzid, M., Mercer, K., Picault, J.: System for content item recommendation.
Patent application GB2438645 (2006)

31. Masthoff, J.: Group modeling: Selecting a sequence of television items to suit a group of
viewers. User Modeling and User-Adapted Interaction 14(1), 37–85 (2004)
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Chapter 11
Matching Recommendation Technologies and
Domains

Robin Burke and Maryam Ramezani

Abstract Recommender systems form an extremely diverse body of technologies
and approaches. The chapter aims to assist researchers and developers to identify
the recommendation technologies that are most likely to be applicable to different
domains of recommendation. Unlike other taxonomies of recommender systems,
our approach is centered on the question of knowledge: what knowledge does a
recommender system need in order to function, and where does that knowledge
come from? Different recommendation domains (books vs condominiums, for ex-
ample) provide different opportunities for the gathering and application of knowl-
edge. These considerations give rise to a mapping between domain characteristics
and recommendation technologies.

11.1 Introduction

Unlike some other types of software systems, recommender systems are not de-
fined by a particular kind of computation, like for example, a statistical computation
package, or by the storage and use of a particular kind of data, as in a geographi-
cal information system. A recommender system is defined by a particular kind of
semantics of interaction with the user: “any system that produces individualized rec-
ommendations as output or has the effect of guiding the user in a personalized way
to interesting or useful objects in a large space of possible options” [11]. This ex-
pansive definition makes the scope of recommender systems research quite broad,
but it fails to give much guidance to the implementer. A crucial question is there-
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fore how recommendation techniques can be matched to recommendation problems.
That is the question that this chapter tries to address.

11.2 Related Work

There are several taxonomies for recommender systems. Burke [11] distinguishes
between five different recommendation techniques: collaborative, content-based,
utility-based, demographic, and knowledge-based. The article discusses the advan-
tages and disadvantages of each technique and proposes hybrid recommender sys-
tems to gain better performance with fewer of the drawbacks of any technique in iso-
lation. An early work in recommender systems [54], which focuses on collaborative
recommenders, identifies 5 dimensions to place the systems in a technical design
space. The dimensions characterize properties of the users’ interactions with the
recommender and the aggregation methods of users’ evaluations (ratings). Konstan
and Schafer [61] present a taxonomy of collaborative e-commerce recommender ap-
plications that separates their attributes into three categories: the functional I/O, the
recommendation method, and other design issues such as degree of personalization
and delivery methods. An eight-dimensional taxonomy of recommender systems
is presented in [46] using two main criteria: user profile generation and mainte-
nance, and user profile exploitation techniques. In this taxonomy, common patterns
in recommender systems are extracted by an analysis of the systems in the same
domain. A more recent survey on recommender systems [3] classifies recommenda-
tion methods (omitting knowledge-based) into three main categories: content-based,
collaborative, and hybrid recommendation approaches and classifies recommenders
in each category into either heuristic-based or model-based.

This work is distinguished from previous categorizations in that it is not aimed
at classifying existing recommender systems along particular dimensions of interest
as in the surveys above, but rather as an AI-centric approach, focused on the knowl-
edge sources required for recommendation and the constraints related to them. The
chapter discusses the applicability of different recommendation techniques to differ-
ent types of problems and aims to guide decision making in choosing among these
techniques. As such, it might be considered to serve as a sort of recommender for
recommender system implementers.

11.3 Knowledge Sources

A fundamental choice for an implementer of an AI system is the source and type
of knowledge that the system will employ. In the case of recommender systems,
there are two primary entities about which we might have knowledge: because rec-
ommendation is personalized, a recommender must have knowledge of its users;
the recommender may also have knowledge about the features of the items that it
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Fig. 11.1: Taxonomy of knowledge sources in recommendation

is recommending. It is considered one of the chief benefits of collaborative recom-
mendation that domain knowledge or item features are not required, but all other
recommendation techniques require them.

For an individual instance of recommendation, we are presented with a particu-
lar target user and seek to make personalized recommendations for him or her. In
this situation, we can divide the knowledge of users into what we know about the
target user, and what knowledge we have of the user community at large. There are
therefore three broad categories of knowledge that may come into play in recom-
mendation:

• Social: Knowledge about the larger community of users other than the target
user.

• Individual: Knowledge about the target user.
• Content: Knowledge about the items being recommended and, more generally,

about their uses.

Felfernig and Burke present a taxonomy of recommendation knowledge in [18].
Figure 11.1 shows this taxonomy, further expanding each category into subtypes of
knowledge, all of which have been used in some existing recommender systems.
These subtypes are explained below.

Social knowledge is the total sum of all of the user profiles stored in a system.
Collaborative recommendation is intensive in its application of social knowledge,
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usually with profiles of the simplest type: user opinions such as the liked-disliked
scales used in MovieLens and other well-known collaborative recommenders, or
interaction histories as seen in collaborative web personalization. Other types of
knowledge can come into play, however. In the I-SPY collaborative web search
application, user’s queries (requirements) are recorded as well as their preferences
(link selections) relative to those queries [63]. Demographic information about the
user base is also employed by some recommender systems.

Individual knowledge is what drives a given interaction with the recommender
system. It may be relatively implicit, in the sense of a user’s profile being recalled to
memory and used to initiate processing of recommendations, or it may be explicit
in that the user specifies his or her interest before or during the recommendation
process. In addition to the behavioral, opinion and demographic types of knowl-
edge described relative to the social category, individual requirements are much
more commonly found. For example, in the class of knowledge-based recommender
systems known as critiquing systems, a user examines recommended items and re-
sponds with multi-dimensional critiques that act as constraints and/or preferences
on the next round of retrieval [12]. Such systems often begin their interaction with
a query that the user formulates.

Content knowledge has a variety of forms. In its simplest incarnation, the system
might only have knowledge about the features of items that it is recommending,
enabling it to learn what features a user seems to prefer. Domain knowledge refers
to more complex notions of content knowledge such as means-ends knowledge,
that is what means/features are appropriate for which goals/ends that the user might
have in mind. A feature ontology relates features to each other so that similarity and
difference between items can be more adequately assessed. Domain constraints may
be necessary to prevent a system from recommending an item that is inconsistent
with what the domain permits.

Context is an important factor in many application domains. What makes for an
appropriate recommendation will often be the function of the context – a search
for a restaurant to conclude a high-powered business transaction will be different
from a search aimed at finding a place to celebrate a four-year-old’s birthday even
if the searcher’s profile, and her query, “Italian” are the same. The use of context in
different types of recommender algorithms including collaborative recommendation
is an area of active research [2, 53, 31, 5, 62, 70]. However, there is no consensus
on how best to profit from it or even how to define the term. Contextual issues in
recommendation will receive limited treatment in this chapter.

11.3.1 Recommendation types

Recommendation types are explained in detail elsewhere in this volume. However,
in conjunction with a discussion of knowledge sources, it is worth considering how
different recommendation types operate.
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• Collaborative recommendation matches an individual knowledge source with
a social knowledge source of the same type and extrapolates the target user’s
preferences from his or her peers. Usually, in collaborative recommendation,
individual requirements are not used, or applied very simply as filters.

• Content-based recommendation on the other hand is individually-focused, us-
ing item features and user opinions to train a classifier that can predict user
preferences on new items.

• Knowledge-based recommendation is more of a catch-all category in which
the recommender applies any kind of domain knowledge more substantive than
item features.

Figure 11.2 shows the connection between knowledge sources and the recom-
mendation types.

From a knowledge source perspective, hybrid recommendation is really a matter
of combining knowledge sources that have not traditionally been put together in the
three types discussed above. Often, a hybrid is created by adapting an algorithm for
one recommendation type to accept a knowledge source more typically associated
with another type.

Of course, a knowledge source alone does not make a recommender system.
An AI system also needs algorithms. It is difficult to generalize since new recom-
mendation algorithms are put forward with great regularity, but in general, col-
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laborative systems use multi-class classification algorithms for extremely sparse
and high-dimensional spaces; content-based systems use binary learning algorithms
for lower-dimensional spaces; and knowledge-based recommenders use inference
schemes of various types.

Still, an algorithm can only function with the right knowledge sources, and it is
the main topic of this chapter. Considerations about the domain of application and
the style of interaction with the user lead us to conclusions about the availability and
characteristics of different knowledge sources. These considerations in turn can be
used to guide the selection of feasible recommendation algorithms. We turn next to
the characteristics of domains.

11.4 Domain

A domain of recommendation is the set of items that the recommender will operate
over, but may also include the set of aims or purposes that the recommender is in-
tended to support. A specialized recommender, for example, a news recommender
that identifies stories for the attention of government intelligence analysts, may have
different implementation considerations than a generalized news recommender such
as Google News. In turn the characteristics of the domain affect the availability and
utility of different knowledge sources. In the online news case, there are a huge num-
ber of news sources and articles such that no user will never have time to experience
or rate more than a small fraction of them. In addition, the news itself is under-
going constant change. So, we can characterize the ”Social / Opinions / Ratings ”
knowledge source as one of great sparsity and great dynamism.

Another aspect of the domain has to do with the larger application in which the
recommender is embedded. If the recommender is a part of a larger system like
an e-commerce site, it may be necessary for the recommender to impose as little
as possible on the normal user interaction with the application. This may limit the
degree to which detailed requirements can be collected. On the other hand, if the
recommender is the primary application that users are accessing, it can gather data
explicitly from users.

We have identified six important characteristics of the domain that an imple-
menter should consider: heterogeneity, risk, churn, interaction style, preference sta-
bility, and scrutability.

11.4.1 Heterogeneity

A heterogeneous item space encompasses many items with different characteristics
and most importantly, different goals they can satisfy. For example, an e-commerce
recommender system as found at Amazon.com has a large number of heterogeneous
items that can be recommended. Even within a single category like books, such
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disparate categories as home repair, romance novels, cooking, and children’s fantasy
all coexist in the database.

A homogeneous recommendation space means that content knowledge relative
to the domain will be easier to acquire and maintain. Consider a site that only recom-
mends digital cameras versus one that has all kinds of electronics. The camera-only
site would be able to invest in content knowledge specific to photography, whereas
the general site would have a much more challenging task trying to do knowledge
engineering for all of consumer electronics. Even a simple catalog of item features
becomes difficult to design effectively if the items differ wildly from each other.

11.4.2 Risk

Recommendation domains can be distinguished by the degree of risk that a user
incurs in accepting a recommendation. A 99 c| music track is low risk; a $1.5 million
condominium or a medical diagnosis could be very high risk. Risk determines the
user’s tolerance for false positives among the recommendations. In some domains,
false negatives may also be important – if there is a cost or risk associated with not
considering some options.

Another way to think of a high-risk domain is that there are likely to be some
important constraints on a valid solution that the recommender system must obey.
For example, a condominium buyer is likely to have some very strong constraints
about location, price and amenities. As mentioned above, the tolerance for false
positives is going to be low for high-risk items.

11.4.3 Churn

Recommender systems are used in domains with long-lived items like books, but
they are also used in domains where the value or relevance of an item has a very
short time span, such as news stories. A high churn domain is one in which items
come and go rapidly.

In such a domain, a recommender system faces a continual stream of new items
to be integrated into its knowledge sources. This greatly increases the sparsity of
any kind of opinion data, as new items will necessarily have been seen by very few
users. Items that have been around for some time may accumulate ratings, but by
the time they do, they may no longer be relevant.
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11.4.4 Interaction Style

In systems in which the user makes no special effort to interact with the recom-
mender system, the system extracts the implicit expressed preferences from user
behaviour. For example, when visiting a web site, a user leaves behind behavioral
traces in web server logs that can be used to make recommendations. Implicit inputs
may include the specific items that the user is currently viewing, user transaction his-
tory, elapsed time, and shopping cart / purchasing behavior. Explicit inputs require
that the user make the effort to formulate an opinion or a query or to add personal
data to the system. There must be some perceived benefit for doing so that justifies
the effort.

Implicit inputs are naturally noisy because they are inferred from user behavior.
This type of interaction may be best suited for gathering simple rating knowledge,
although some researchers have explored the extraction of preferences and even
domain knowledge from implicit data [58, 72]. Explicit inputs may be more sparse
if the burden of generating them causes users to do so relatively rarely.

11.4.5 Preference stability

User preferences can also have varying degrees of duration. For example, a person
buying a digital camera would typically switch preferences after purchase, since
they would be no longer interested once the purchase was complete, while a person
interested in comedy movies may wish to continue getting comedy recommenda-
tions for a long period of time. Also, preferences for some items may increase and
wane naturally, for example, when one’s favorite basketball team is in a big tourna-
ment, stories about it become highly preferred, but if they are knocked out or when
the tournament is over, the user’s preferences will change.

Stable preferences mean that opinion data collected in the past is still likely to
be valid today. This makes it easier to maintain high-quality knowledge sources that
use this data. Unstable preferences mean that any data collected in the past may
have to be discounted or discarded. This increases the importance of gathering the
user’s specific requirements of the moment. If the user generates a large amount of
implicit data in a single session, then it may be possible to use individual sessions
as profile data.

The problem of preference instability can be ameliorated by collecting more data.
If a user generates enough opinion data during a single session to adequately repre-
sent his or her current preferences, then there is no need to extrapolate from histor-
ical data and the issue of preference stability does not arise. This situation is found
in web personalization applications. Users generate a large number of clicks while
browsing a web site, enough implicit data to allow for recommendation using only
the data from a single session.
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11.4.6 Scrutability

Certain applications (for example, high-risk ones) may require that the system be
able to explain its recommendations, to answer questions like “why was this item
recommended?” Such explanations enhance user confidence that a recommendation
is appropriate [42] and increase the likelihood of recommendations being accepted.

Explaining recommendations is most straightforward when content knowledge
sources are employed [41, 57]. Explaining a recommendation based on social
knowledge has proved more challenging. See Herlocker et al. [26] for an evalua-
tion of some alternatives.

11.5 Knowledge Sources

As we have shown above, the choice of domain and the characteristics of the ap-
plication place certain constraints on the kinds of knowledge sources that a rec-
ommender system may deploy. In turn, the availability and quality of knowledge
sources influences what recommendation technologies a recommender can prof-
itably use.

11.5.1 Social Knowledge

Social knowledge enables the use of collaborative algorithms in which predictions
about individuals are extrapolated from their peers opinions. Ratings are the most
straightforward type of data used to model this knowledge. Rating knowledge is
often conceptualized as a m×n matrix where m is number of users and n is the
number of items and each entry corresponds to a user’s rating of an item. Model-
based techniques use this matrix to create a model in advance, whereas memory-
based techniques use it at the time of recommendation generation to produce the
prediction.

The use of other types of opinion data is an area of active research. User tags are
a promising source of opinion knowledge for recommendation [49, 23, 69, 40, 68].
In this case the data will be a tripartite graph of user, item and tag. Textual data in the
form of reviews are also been studied, for example in [1]. Multi-dimensional knowl-
edge sources such as these present a challenge for existing collaborative algorithms
[2].

In heterogenous domains, social knowledge should be considered as a knowledge
source since it is gathered by user’s input and does not need extensive knowledge
engineering. However, social knowledge is not sufficiently accurate and reliable for
high risk domains or for domains which need explanation.

Social knowledge will tend to be sparse for high churn domains. When items
come and go quickly, the odds are reduced that any given user will have a chance
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to rate any given item. As with other sparsity effects, the problem of churn can
be ameliorated by having a large user population. Google News, for example, can
take advantage of the site’s large and active user base to implement collaborative
recommendation even for the high-churn news domain. [16]

Using social knowledge is appropriate for domains with implicit type of interac-
tion since it is possible to mine the users’ behavior using machine learning and sta-
tistical techniques which are the typical algorithms in collaborative filtering. In do-
mains with unstable user preference, the social knowledge can be misleading since
the historical data is unreliable.

11.5.2 Individual

Individual knowledge is essential requirement for a recommender system to produce
personalized recommendations.

In collaborative recommendation, individual knowledge regarding the target user
is matched against social knowledge drawn from the user population at large. The
most straightforward version of the process is that these sources are of the same
type, and all that is needed is a similarity metric by which individuals can be com-
pared. Ratings work well for this, but researchers have also used demographic data.
Krulwich [32] uses demographic groups from marketing research to suggest a range
of products and services. In other systems, machine learning is used to train a clas-
sifier based on demographic data [52].

In heterogenous domains, it might be difficult to transfer user’s input on certain
items for recommending other items. For example, it is not certain that two users
who have similar taste about movies, would also like similar music.

In the absence of social knowledge, individual knowledge especially in the form
of ratings can also be combined with content knowledge in the form of item features
to build a classic content-based recommender that uses supervised classification
learning [34, 47, 51].

A domain that requires knowledge of the user’s short-term requirements is most
likely suited to some kind of knowledge-based recommendation. The query is the
most fundamental form of input for requirements: the user states, in whatever form
the system accepts, what it is they are looking for. Constraints and preferences al-
low the user to limit and to rank options. For example, a dog owner might have
a strict constraint that any apartment he rents accept his pet. A parent with young
children might have a preference to be close to parks and playgrounds. In high risk
domains and domains which need explanation, it is usually necessary to have ex-
plicit requirements and constraints from the user. Similarly, user requirements are
more likely to be needed in domains with unstable preferences since the historical
data are unreliable.

In many recommender systems more than one type of user input is used. For ex-
ample, [43] uses users’ priorities and constraints in a CBR recommender. A survey
of preference elicitation methods can be found in [15].
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11.5.3 Content

The most basic kind of content knowledge is item features, the kind of data that
would typically be available in a product database, such as numeric values like price
or symbolic tokens (destination airport, for example). These features can typically
be used as is in a recommender system, although implementers will often want to
restrict the feature space. For example, the entire cast and crew list for a movie may
be available as feature data but will contain many sparse features of little utility.
Trimming this list to just the top billed actors, director, and screenwriter would
probably be sufficient.

If items are represented by unstructured documents such as news stories, the im-
plementer will need to draw from information extraction (IE) techniques to extract
and select features for use in recommendation. Standard techniques include elimi-
nating stop words, stemming to simplify the feature space. Features can be reduced
further by applying more sophisticated feature selection techniques such as infor-
mation gain, mutual information, cross entropy or odds ratio [44]. More structured
documents such as HTML pages offer additional opportunity for feature extraction.
Applications of IE techniques to extract content knowledge from semi-structured
and structured documents are discussed in [30]. Content knowledge in multimedia
format presents an additional challenge. Hauptmann [22] discusses techniques from
multimedia information retrieval. Osmar et al. survey multimedia data mining in
[71] with a number of techniques useful for recommendation.

The quality of recommendations produced by a content-based or knowledge-
based recommender will be entirely dependent on the quality of the content data
on which its decisions are based. Indeed, the lack of reliable item features is often
cited as a motivating factor for avoiding content-based recommendation. The cost
involved in creating and maintaining a database of useful item features should not
be underestimated, particularly for heterogeneous domains. In a domain like digital
cameras or cell phones, for example, new technical innovations arrive regularly, re-
quiring that the schema and the individual entries for each item be updated. If there
are a large number of not-entirely-independent features extracted in a variety of
ways, the system may be tolerant of noisy feature data. On the other hand, applica-
tions with high risk will need to pay special attention to having clean item features.
Typically, manual review of feature data or manual labeling will be required.

11.5.3.1 Domain Knowledge

A knowledge-based recommender will typically need to know more than just what
features are associated with what items. The most basic form of domain knowl-
edge that a recommender can employ is an ontology over the item features. Such an
ontology allows the system to reason about the relationship between features at a
level deeper than just raw equality or difference. For example, the restaurant recom-
mender Entree [12] has an ontology of different types of cuisine and can determine
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Characteristic Social Individual Content
Heterogeneous May transfer poorly

to unseen items
Difficult to engineer /
maintain

High risk Not sufficiently ac-
curate / reliable

Requirements and
constraints usually
needed

Domain constraints
needed

High churn Sparse data
Implicit Detailed require-

ments not available
Unstable preferences Historical data unre-

liable
Historical data unre-
liable
Need user require-
ments

Explanations needed Explanations weak Requirements can be
mapped to items

Domain knowledge
can be used

Table 11.1: Impact of recommendation domain on knowledge sources

that a Thai restaurant would be more similar to a Vietnamese restaurant than a Ger-
man one would be.

Many high risk choices have constraints imposed by the domain that a recom-
mender needs to obey. For example, a recommender for financial products [19] may
know that certain investment instruments are only suitable for customers with cer-
tain characteristics – a particular life insurance policy might not be available to
persons over the age of 55, for example. The recommendation problem can be in
some cases formulated entirely as constraint satisfaction with constraints being con-
tributed both by the user and by the system.

A final category of domain knowledge is means-ends knowledge, which is the
knowledge that enables a system to map between the user’s goals (ends) and the
products that might satisfy them (means). For example, a camera buyer might not
know much about digital cameras, but he might know that he wants to take photos
of his daughter’s basketball games. Part of the reason that users benefit from rec-
ommender systems is that they can make good choices without necessarily being
conversant with all of the complexities of the product space.

Table 11.1 summarizes these domain considerations and their impact on knowl-
edge sources.

11.6 Mapping Domains to Technologies

Some basic considerations come to the fore in considering the recommendation do-
main. First, there are some domain types for which social knowledge seems not very
useful, in particular, high risk domains and ones with high churn. In high churn do-
mains, there may not be enough time for an item to build up a reputation among a
large number of peer users before it is replaced with other items.
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Factor Collaborative Content-Based Knowledge-Based

Heterogeneous Low ! ! !
High + – –

Risk Low ! ! !
High – – +

Churn Low ! ! !
High – + +

Interaction style Implicit + + –
Explicit ! ! +

Preferences Stable ! ! !
Unstable – – +

Scrutability Required – – +
Not Required ! ! !

Table 11.2: Domain factors and recommendation techniques

When there is large risk associated with a domain, most users are going to need
a more convincing explanation of the appropriateness of a recommendation beyond
simply that others liked it. This is particularly important if we consider the prob-
lem of robustness in collaborative systems discussed in Chapter 25. Even a profile
learned from the user’s previous interactions might not be acceptable if adherence
to it overrode considerations crucial to the current context.

Similarly, if we look at the interaction, we can see that it is not always possible
to gather every kind of knowledge type from every type of interaction. In systems
with implicit inputs, we do not gather any kind of direct requirements from the
user (although it is sometimes possible to extract an implicit query from the user’s
activity with other applications, as done in the Watson system [8].)

Preference instability favors knowledge-based techniques. Learning over a user’s
prior interactions may turn out to be a hinderance rather than a help. However, in
certain cases, such as web personalization, users may provide enough implicit data
in a single session to form a useful profile that can be compared to others.

Table 11.2 shows the influence of the different domain factors on the choice of
recommendation approach.

In cases where the criteria do not help to reach a definitive conclusion, it is worth
noting that the different technologies do have different implementation and main-
tenance costs. Collaborative recommendation is likely to be the least expensive to
implement. It requires a database of user ratings, but it does not require clean, well-
engineered item features, which is the minimum requirement for the other recom-
mendation technologies. Knowledge-based technologies are going to be the most
expensive approach requiring knowledge engineering and continuing maintenance.
So, a developer might wish to start by implementing the least expensive solution
compatible with the domain.

Another factor to consider is that with hybrid recommendation it is possible to
combine techniques. For example, to deal with a heterogeneous environment with
unstable preferences, a hybrid between content-based and collaborative recommen-
dation may be desirable. See [11] for more details.
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11.6.1 Algorithms

If a domain can be clearly characterized as appropriate for one recommendation
technology or another, a natural next question is which algorithms are appropriate?
A thorough treatment of this question is beyond the scope of this chapter. Read-
ers should review the relevant chapters of this volume. In the case of collaborative
recommendation, it is possible to put forward some considerations.

In user-based collaborative recommendation, a subset of appropriate users are
chosen based on their similarity to the active user , and a weighted aggregate of
their ratings is used to generate predictions for the active user at run-time. Differ-
ent implementations of collaborative filtering apply variations of the neighborhood-
based prediction algorithms. Herlocker et al. [25] presents an empirical analysis of
design choices in such algorithms and analyzes the variations of similarity metrics,
weighting approaches, combination measures, and rating normalization.

Item-based collaborative filtering is a memory-based algorithm which explores
the relationship between items as a function of how users have rated them. The item-
based version of kNN algorithm has been shown to scale better and produce more
accurate recommendation than user-based for large item collections [59].

Memory-based nearest-neighbor algorithms have two important computational
limits: scale and sparsity. The need to compare each user against every other (n2

comparisons) makes these techniques impractical for large collections. Also, the
need to directly compare item ratings means that in very sparse collections, users
may have very few neighbors.

In some databases, overall sparsity may hide the fact that there are dense sub-
regions of the item space. Exponential popularity curves may make it possible to
employ memory-based techniques because it is possible to find agreement among
people or items in the dense sub-region and use that agreement to recommend in the
sparse space [27]. (Jester [20] does this directly by creating a highly dense region of
jokes rated by all users).

Dimensionality reduction (by way of singular value decomposition, latent se-
mantic analysis, or other techniques) is by now a standard approach for coping with
sparsity in ratings databases. [60, 74]. Various forms of compression and/or dimen-
sionality reduction usually require extensive off-line computation, but as a result
scale much better. The movie rating data released by Netflix prize which was also
used for KDD cup competition in 2007 is an example of large, sparse data which
motivated many research groups to develop new model-based algorithms [56, 33].

Other model-based collaborative algorithms include different machine learning
techniques such as Bayesian networks [7] , and clustering [7, 66]. Bayesian net-
works are more practical for domains with high user preferences stability so that the
user preference changes slowly with respect to the time needed to build the model.

Clustering techniques identify groups of users who appear to have similar pref-
erences. Once the clusters are created, predictions for an individual can be made
by averaging the opinions of the other users in that cluster[59]. Clustering tech-
niques usually produce less-personal recommendations than other methods, and in
some cases, the clusters have worse accuracy than nearest neighbor algorithms [7].
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Clustering techniques can also be applied as a first step for shrinking the candidate
set in a nearest neighbor algorithm or for distributing nearest neighbor computa-
tion across several recommender engines. While dividing the users into clusters
may reduce the accuracy of recommendations, pre-clustering may be a worthwhile
trade-off between accuracy and throughput [59].

11.6.2 Sample Recommendation Domains

Table 11.3 illustrates the application of these criteria in 10 different domains where
recommendation applications exist. Not all combinations of the six criteria are rep-
resented, but we can see that the considerations given above are fairly predictive.
High-risk domains generally lead to knowledge-based recommendation; scrutabil-
ity is also a good predictor of this. Heterogeneous domains are handled largely with
collaborative recommendation. Web page recommendation looks a bit contradic-
tory when we consider high churn and preference instability, which would seem to
militate against collaborative methods. However, as discussed above, database size
can compensate for preference instability and these recommenders do collect large
amounts of implicit preference data in each session. Also, heterogeneity is high,
which argues in favor of using social knowledge.

Domain Risk Churn Heterog-
eneous

Preferences Interaction
Style

Scrutabi-lity Examples Technology

News Low High Low Stable? Implicit Not required Yahoo news[6]
ACR news[45]
and [38] Google
news[16]

Content-based
Collaborative-Filtering

E-commerce Low High High Stable Implicit Not required Amazon.com eBay Collaborative-Filtering
Web Page Recom-
mender

Low High High Unstable Implicit Not required [9, 36, 4] Collaborative-Filtering
Hybrid

Movie Low Low Low Stable Implicit Not required Netflix[50, 64]
Movielens[21]

Collaborative-Filtering

Music Low Low Low Stable? Implicit Not required Pandora and [24,
28, 14]

Content-based Hybrid

Financial-services
Life-insurance

High Low Low Stable Explicit Required Koba4MS[17]
FSAdvisor[19] [65]

Knowledge-Based

Software Engineer-
ing

Low Low Low Stable Explicit /Im-
plicit

Required [13] and [29] Hybrid and Content-
based

Tourism High Low Low Unstable Explicit Required Travel Recom-
mender [55] [37]

Content-based
Knowledge-based

Job search Recruit-
ing

High Low Low Stable Explicit Required CASPER [35] and
[39]

Content-based

Real Estate High Low Low Stable Explicit Required RentMe [10]
FlatFinder[67] and
[73]

Knowledge-based

Table 11.3: Sample domains for recommendation



382 Robin Burke and Maryam Ramezani

11.7 Conclusion

This chapter considers recommender systems as intelligent systems, and as such, de-
pendent on knowledge. The differences between recommendation approaches can
be best understood through reference to the different knowledge sources that they
employ. By considering how domain characteristics impact the availability and qual-
ity of knowledge sources, we can connect recommendation technologies and domain
characteristics.

We have examined 6 different factors: heterogeneity, risk, churn, preference sta-
bility, interaction style, and scrutability. The factors allow us to characterize dif-
ferent recommendation domains and map those characteristics to appropriate rec-
ommendation technologies. Application of these criteria to some existing systems
shows that they are good predictors of the technologies that have been successfully
employed both in research and applications.
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46. Montaner, M., López, B., Rosa, J.L.D.L.: A taxonomy of recommender agents on the internet.
Artif. Intell. Rev. 19(4), 285–330 (2003).

47. Mooney, R.J., Roy, L.: Content-based book recommending using learning for text categoriza-
tion. In: DL ’00: Proceedings of the fifth ACM conference on Digital libraries, pp. 195–204.
ACM Press (2000).

48. Moskovitch, R., Elovici Y., Rokach L., Detection of unknown computer worms based on
behavioral classification of the host, Computational Statistics and Data Analysis, 52(9):4544–
4566 (2008)

49. Niwa, S., Doi, T., Honiden, S.: Web page recommender system based on folksonomy min-
ing for itng 06. In: Information Technology: New Generations, 2006. ITNG 2006. Third
International Conference on, pp. 388–393 (2006).

50. Paterek, A.: Improving regularized singular value decomposition for collaborative filtering.
In: Proc. of the of the KDD Cup and Workshop 2007 (KDD 2007) (2007)

51. Pazzani, M., Billsus, D.: Learning and revising user profiles: The identification ofinteresting
web sites. Machine Learning: Special issue on multistrategy learning 27(3), 313–331 (1997).

52. Pazzani, M.J.: A framework for collaborative, content-based and demographic filtering. Artif.
Intell. Rev. 13(5-6), 393–408 (1999)

53. Rack, C., Arbanowski, S., Steglich, S.: A Generic Multipurpose recommender System for
Contextual Recommendations, pp. 445–450. IEEE Computer Society, Washington, DC, USA
(2007).

54. Resnick, P., Varian, H.R.: Recommender systems. Commun. ACM 40(3), 56–58 (1997)
55. Ricci, F.: Travel recommender systems. In: IEEE Intelligent Systems, pp. 55–57 (2002)
56. Rosset, S., Perlich, C., Liu, Y.: Making the most of your data: Kdd cup 2007 ”how many

ratings” winner’s report. SIGKDD Explor. Newsl. 9(2), 66–69 (2007).
57. Roth-Berghofer, T.R.: Explanations and case-based reasoning: Foundational issues. In: AAd-

vances in Case-Based Reasoning, pp. 389–403. Springer Verlag (2004)
58. Salam, M., Reilly, J., McGinty, L., Smyth, B.: Knowledge discovery from user preferences

in conversational recommendation. In: Knowledge Discovery in Databases: PKDD 2005, pp.
228–239. Springer Berlin / Heidelberg (2005)

59. Sarwar, B., Karypis, G., Konstan, J., Reidl, J.: Item-based collaborative filtering recommen-
dation algorithms. In: WWW ’01: Proceedings of the 10th international conference on World
Wide Web, pp. 285–295. ACM (2001).

60. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Application of dimensionality reduction in
recommender systems-a case study. In: Proceedings of ACM WebKDD Workshop (2000)

61. Schafer, J.B., Konstan, J.A., Riedl, J.: E-commerce recommendation applications. Data Min-
ing and Knowledge Discovery 5(1-2), 115–153 (2001)

62. van Setten, M., Pokraev, S., Koolwaaij, J.: Context-aware recommendations in the mobile
tourist application compass. In: W. Nejdl, P. De Bra (eds.) Adaptive Hypermedia 2004, pp.
235–244. Springer Verlag (2004).

63. Smyth, B., Balfe, E., Freyne, J., Briggs, P., Coyle, M., Boydell, O.: Exploiting query repetition
and regularity in an adaptive community-based web search engine. User Modeling and User-
Adapted Interaction 14(5), 383–423 (2005).
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12.1 Introduction

Technology enhanced learning (TEL) aims to design, develop and test socio-technical
innovations that will support and enhance learning practices of both individuals and
organisations. It is therefore an application domain that generally covers technolo-
gies that support all forms of teaching and learning activities. Since information
retrieval (in terms of searching for relevant learning resources to support teachers or
learners) is a pivotal activity in TEL, the deployment of recommender systems has
attracted increased interest.

As in any other field where there is a massive increase in product variety, in
TEL there is also a need for better findability of (mainly digital) learning resources.
For instance, during the past few years, numerous repositories with digital learning
resources have been set up [96]. Prominent US examples are repositories such as
MERLOT (http:// www.merlot.org) that has more than 20,000 learning resources
(and about 70,000 registered users), and OER Commons (www.oercommons.org)
with about 18,000 resources. In Europe, a typical example is European Schoolnet’s
Learning Resource Exchange (http://lreforschools.eun.org) that federates more than
43,000 learning resources from 25 different content providers in Europe and beyond.
Apart from learning content, learning resources may also include learning paths
(that can help them navigate through appropriate learning resources) or relevant
peer-learners (with whom collaborative learning activities can take place).

In this plethora of online learning resources available, and considering the vari-
ous opportunities for interacting with such resources that often occur in both formal
and non-formal settings, all user groups of TEL systems can benefit from services
that help them identify suitable learning resources from a potentially overwhelm-
ing variety of choices. As a consequence, the concept of recommender systems has
already appeared in TEL. Latest efforts to identify relevant research in this field,
and to bring together researchers working on similar topics, have been the annual
workshop series of Social Information Retrieval for Technology Enhanced Learn-
ing (SIRTEL), and a Special Issue on Social Information Retrieval for TEL in the
Journal of Digital Information [31]. These efforts resulted in a number of interesting
conclusions, the main ones being that:

1. There is a large number of recommender systems that have been deployed (or
that are currently under deployment) in TEL settings;

2. The information retrieval goals that TEL recommenders try to achieve are often
different to the ones identified in other systems (e.g. product recommenders);

3. There is a need to identify the particularities of TEL recommender systems,
in order to elaborate on methods for their systematic design, development and
evaluation.

In this direction, the present chapter attempts to provide an introduction to issues
related to the deployment of recommender systems in TEL settings, keeping in mind
the particularities of this application domain. The main contributions of this chapter
are the following:
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• Discuss the background of recommender systems in TEL, especially in relation
to the particularities of the TEL context.

• Reflect on user tasks that are supported in TEL settings, and how they compare
to typical user tasks in other recommender systems.

• Review related work coming from adaptive educational hypermedia (AEH) sys-
tems and the learning networks (LN) concept.

• Assess the current status of development of TEL recommender systems.
• Provide an outline of particularities and requirements related to the evaluation of

TEL recommender systems that can provide a basis for their further application
and research in educational applications.

12.2 Background

TEL as context

TEL relates to data generated in different types of educational settings, which are
usually called macro-context [99]. This concept has significant influence on which
user actions are possible and how they can be interpreted. Examples of these dimen-
sions of macro-context include dimensions such as educational level, formal and
informal learning, delivery setting and different user roles. Examples of the educa-
tional level are K-12 education, Higher Education (HE), Vocational Education and
Training (VET) and workplace training.

A formal setting for learning includes learning offers from educational institu-
tions (e.g. universities, schools) within a curriculum or syllabus framework, and is
characterised as highly structured, leading to a specific accreditation and involving
domain experts to guarantee quality. This traditionally occurs in teacher-directed
environments with person-to-person interactions, in a live and synchronous manner.

An informal setting, on the other hand, is described in the literature as a learning
phase of so called lifelong learners who are not participating in any formal learn-
ing and are responsible for their own learning pace and path [17, 64]. The learning
process depends to a large extent on individual preferences or choices and is of-
ten self-directed [8]. The resources for informal learning might come from sources
such as expert communities, work context, training or even friends might offer an
opportunity for an informal competence development.

The TEL involvement can be characterised by the provision of blended learning
opportunities to purely distant educational ones [71]. Blended learning combines
traditional face-to-face learning with computer-supported learning [36]. Distance
education, on the other hand, can be delivered using TEL environments in either syn-
chronous or asynchronous ways. Traditionally, distance learning was more related
to self-paced learning and learning-materials interactions that typically occurred in
an asynchronous way [36]. However, live streaming and virtual, personal learning
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Table 12.1: User tasks supported by current recommender systems and require-
ments for TEL recommender systems

Tasks Description Generic
recommender

TEL recommenders New requirements

Existing User Tasks supported by Recommender Systems
1. ANNOTATION IN
CONTEXT

Recommendations
while user carries
out other tasks

E.g. predicting how
relevant the links are
within a web page

E.g. predicting
relevance/usefulness
of items in the
reading list of a
course

Explore attributes for
representing
relevance/usefulness
in a learning context

2. FIND GOOD
ITEMS

Recommendations of
suggested items

E.g. receiving list of
web pages to visit

E.g. receiving a
selected list of online
educational
resources around a
topic

None

3. FIND ALL GOOD
ITEMS

Recommendation of
all relevant items

E.g. receiving a
complete list of
references on a topic

E.g. suggesting a
complete list of
scientific literature or
blog postings around
a topic

None

4. RECOMMEND
SEQUENCE

Recommendation of
a sequence of items

E.g. receive a
proposed sequence
of songs

E.g. receiving a
proposed sequence
through resources to
achieve a particular
learning goal

Explore formal and
informal attributes
for representing
relevancy to a
particular learning
goal

5. JUST BROWSING Recommendations
out of the box while
user is browsing

E.g. people that
bought this, have
also bought that

E.g. receiving
recommendations for
new courses on the
university site

Explore formal and
informal attributes
for representing
relevance/usefulness
in a learning context

6. FIND CREDIBLE
RECOMMENDER

Recommendations
during initial
exploration/testing
phase of a system

E.g. movies that you
will definitely like

E.g. restricting
course
recommendations to
ones with high
confidence
/credibility

Explore criteria for
measuring
confidence and
credibility in formal
and informal
learning

TEL User Tasks that could be supported by Recommender Systems
1. FIND NOVEL
RESOURCES

Recommendations of
particularly new or
novel items

E.g. receiving
recommendations
about latest additions
or particularly
controversial items

E.g. receiving very
new and/or
controversial
resources on covered
topics

Explore
recommendation
techniques that select
items beyond their
similarity

2. FIND PEERS Recommendation of
other people with
relevant interests

E.g. being suggested
profiles of users with
similar interests

E.g. being suggested
peer students in the
same class

Explore attributes for
measuring the
similarity with other
people

3. FIND GOOD
PATHWAYS

Recommendation of
alternative learning
paths through
learning resources

E.g. receive
alternative sequences
of similar songs

E.g. receiving a list
of alternative
learning paths over
the same resources
to achieve a specific
learning goal

Explore criteria for
the construction and
suggestion of
alternative (but
similar) sequences
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environments (e.g. Web 2.0) have facilitated the development of synchronous dis-
tance learning services in formal educational settings.

Lastly, different actors and needs can be identified in TEL. A distinction can
be made between the teacher-directed interaction and learner-directed learning pro-
cesses. This has ramifications concerning the intended users of TEL environments.
While macro-context has large implications for interpretation and design, its aspects
are fairly agreed upon, and it is comparatively easy to measure. Micro-context is a
more contested notion and more difficult to measure. However, while macro-context
is domain-specific, concepts for micro-context range over more diverse fields.

TEL Recommendation goals

In the past, the development of recommender systems has been related to a number
of relevant user tasks that the recommender system supports within some particular
application context (see Chapter 7). More specifically, Herlocker et al. [38] have
related popular (or less popular) user tasks with a number of specific recommenda-
tion goals that are included in Table 1. Generally speaking, most of these already
identified recommendation goals and user tasks are valid in the case of TEL recom-
mender systems as well. For example, in a recommender system supporting learners
to achieve a specific learning goal, “providing annotation in context” or “recom-
mending a sequence” of learning resources are relevant tasks. In Table 1, examples
are given of how recommendation could support TEL-relevant activities for all the
tasks that Herlocker et al. [38] have identified. In addition, it includes a comment
about any additional requirements that this brings forward for the developers of TEL
recommender systems.

On the other hand, in comparison to the typical item recommendation scenario,
there are several particularities to be considered regarding what kind of learning is
desired, e.g. learning a new concept or reinforce existing knowledge may require dif-
ferent type of learning resources. This is reflected in the second part of Table 1, with
examples of user tasks that are particularly interesting for TEL. Again, a comment
on any additional requirements for developers of TEL recommenders is included.

Apart from this initial identification of tasks, recommendation in a TEL context
has many particularities that are based on the richness of the pedagogical theories
and models. For instance, for learners with no prior knowledge in a specific domain,
relevant pedagogical rules such as Vygotsky’s “zone of proximal development”
could be applied: e.g. ‘recommended learning objects should have a level slightly
above learners’ current competence level’ [102]. Different from buying products,
learning is an effort that often takes more time and interactions compared to a com-
mercial transaction. Learners rarely achieve a final end state after a fixed time. In-
stead of buying a product and then owning it, learners achieve different levels of
competences that have various levels in different domains. In such scenarios, it is
important to identify the relevant learning goals and support learners in achieving
them. On the other hand, depending on the context, some particular user task may
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be prioritised. This could call for recommendations whose time span is longer than
the one of product recommendations, or recommendations of similar learning re-
sources, since recapitulation and reiteration are central tasks of the learning process
[68].

As for teacher-centered learning context, different tasks need to be supported.
These tasks cover both the ones related to the preparation of lessons, the delivery of
a lesson (i.e. the actual teaching), and the ones related to the evaluation/assessment.
For instance, to prepare a lesson the teacher has certain educational goals to fulfil
and needs to match the delivery methods to the profile of the learners (e.g. their pre-
vious knowledge). Lesson preparation can include a variety of information seeking
tasks, such as finding content to motivate the learners, to recall existing knowledge,
to illustrate, visualise and represent new concepts and information. The delivery can
be supported in using different pedagogical methods (either supported with TEL or
not), whose effectiveness is evaluated according to the goals set. A TEL recom-
mender system could support one or more of these tasks, leading to a variety of
recommendation goals.

Thus, although the previously identified user tasks and recommendation goals
can be considered valid in a TEL context, there are several particularities and com-
plexities. This means that simply transferring a recommender system from an ex-
isting (e.g. commercial) content to TEL may not accurately meet the needs of the
targeted users. In TEL, careful analysis of the targeted users and their supported
tasks should be carried out, before a recommendation goal is defined and a recom-
mender system is deployed. This means that the TEL recommendation goals can
be rather complex: for example, a typical TEL recommender system could suggest
a number of alternative learning paths throughout a variety of learning resources,
either in the form of learning sequences or hierarchies of interacting learning re-
sources. This should take place in a pedagogically meaningful way that will reflect
the individual learning goals and targeted competence levels of the user, depend-
ing on proficiency levels, specific interests and the intended application context. A
number of context variables have to be considered, such as user attributes, domain
characteristics, and intelligent methods that can be engaged to provide personalised
recommendations. Extensive work on these topics has been carried out in the past,
in the area of adaptive educational hypermedia systems.

12.3 Related Work

Web systems generally suffer from the inability to satisfy the heterogeneous needs
of many users. To address this challenge, a particular strand of research that has been
called adaptive web systems (or adaptive hypermedia) tried to overcome the short-
comings of traditional ‘one-size-fits-all’ approaches by exploring ways in which
Web-based could adapt their behaviour to the goals, tasks, interests, and other char-
acteristics of interested users [12]. A particular category of adaptive systems has
been the one dealing with educational applications, called adaptive educational hy-
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permedia (AEH) systems. Since one can say that AEH systems address issues of
high relevance to TEL recommender systems, this section provides a brief overview
of related work, trying to identify commonalities and differences that could be of
relevance for TEL recommenders.

Adaptive Educational Hypermedia

Adaptive web systems belong to the class of user-adaptive software systems [87].
According to Oppermann [73] a system is called adaptive “if it is able to change
its own characteristics automatically according to the user’s needs”. Adaptive sys-
tems consider the way the user interacts with the system and modify the interface
presentation or the system behaviour accordingly [108]. Jameson [43] adds an im-
portant characteristic: “A user-adaptive system is an interactive system which adapts
its behaviour to each individual user on the basis of nontrivial inferences from in-
formation about that user”.

Adaptive systems help users find relevant items in a usually large information
space, by essentially engaging three main adaptation technologies [12]: adaptive
content selection, adaptive navigation support, and adaptive presentation. The first
of these three technologies comes from the field of adaptive information retrieval
(IR) [6] and is associated with a search-based access to information. When the user
searches for relevant information, the system can adaptively select and prioritise the

Fig. 12.1: Generic layers within a simplified example architecture of an educational
AEH (adapted from [47]
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most relevant items. The second technology was introduced by adaptive hypermedia
systems [9] and is associated with a browsing-based access to information. When
the user navigates from one item to another, the system can manipulate the links
(e.g., hide, sort, annotate) to guide the user adaptively to most relevant information
items. The third technology has its roots in the research on adaptive explanation
and adaptive presentation in intelligent systems [70, 76]. It deals with presentation,
not access to information. When the user gets to a particular page, the system can
present its content adaptively.

As Brusilovksy [10] describes, educational hypermedia was one of the first ap-
plication areas of adaptive systems. A simplified architecture of the layers within
an educational AEH system is presented in Figure 12.1. This architecture includes:
a layer including the representation and organisation of knowledge about educa-
tional content (learning resources), the domain (domain ontology), and the user
(user model); a layer that includes the adaptation mechanisms and rules; and a
layer that provides the run-time adaptation results to the user. A number of pio-
neer adaptive educational hypermedia systems were developed between 1990 and
1996, which he roughly divided into two research streams. The systems of one of
these streams were created by researchers in the area of intelligent tutoring systems
(ITS) who were trying to extend traditional student modelling and adaptation ap-
proaches developed in this field to ITS with hypermedia components [14, 34, 77].
The systems of the other stream were developed by researchers working on educa-
tional hypermedia in an attempt to make their systems adapt to individual students
[19, 21, 39, 48]. AEH research has often followed a top-down approach, greatly
depending on expert knowledge and involvement in order to identify and model
TEL context variables. For example, Cristea [18] describes a number of expertise-
demanding tasks when AEH content is authored: initially creating the resources,
labelling them, combining them into what is known as a domain model; then, con-
structing and maintaining the user model in a static or dynamic way, since it is
crucial for achieving successful adaptation in AEH. Generally speaking, in AEH a
large amount of user-related information (characterising needs and desires) has to
be encoded in the content creation phase. This can take place in formal educational
settings when the context variables are usually known, and there is a large amount of
AEH research (e.g. dealing with learner and domain models) that can be considered
and reused within TEL recommender research. On the other hand, in non-formal
settings less expert-demanding approaches need to be explored.

Learning Networks

Another strand of work includes research where the context variables are extracted
from the contributions of the users. A category of such systems includes learn-
ing networks, which connect distributed learners and providers in certain domains
[53, 54]. The design and development of learning networks is highly flexible,
learner-centric and evolving from the bottom upwards, going beyond formal course
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and programme-centric models that are imposed from the top downwards. A learn-
ing network is populated with many learners and learning activities provided by
different stakeholders. Each user is allowed to add, edit, delete or evaluate learning
resources at any time.

The concept of learning networks [54] provides methods and technical infras-
tructures for distributed lifelong learners to support their personal competence de-
velopment. It takes advantages of the possibilities of the Web 2.0 developments
and describes the new dynamics of learning in the networked knowledge society. A
learning network is learner-centered and its development emerges from the bottom-
up through the participation of the learners. Emergence is the central idea of the
learning network concept. Emergence appears when an interacting system of in-
dividual actors and resources self-organises to shape higher-level patterns of be-
haviour [35, 45, 103].

We can imagine users (e.g. learners) interacting with learning activities in a learn-
ing network while their progress is being recorded. Indirect measures like time or
learning outcomes, and direct measures like ratings and tags given by users allow
identify paths in a learning network which are faster to complete or more attractive
than others (e.g. [28, 100]). This information can be fed back to other learners in the
learning network, providing collective knowledge of the ‘swarm of learners’ in the
learning network. Most learning environments are designed only top-down as often
times their structure, learning activities and learning routes are predefined by an ed-
ucational institution. Learning networks, on the other hand, take advantage of the
user-generated content that is created, shared, rated and adjusted by using Web 2.0
technologies. In the field of TEL, several European projects address these bottom-up
approaches of creating and sharing knowledge. A large EU initiative that addresses
the creation of informal learning networks is the TENcompetence project [110].

(a) (b)

Fig. 12.2: Evolution of a learning network (left: starting phase with a first learner
moving through possible learning activities; right: advanced phase showing emerg-
ing learning paths from the collective behavior of all learners)

Another category of systems that formulate and define their context variables
following a bottom-up approach, are Mash-Up Personal Learning Environments
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(MUPPLE) [109]. First such approaches were created in [62, 63, 109]. The iCamp
EU-initiative explicitly addresses the integration of Web2.0 sources into MUPPLE,
by creating a flexible environment that allows learners to create their own environ-
ments for certain learning activities. MUPPLEs are a kind of instance of the learning
network concept and therefore share several characteristics with it. They also sup-
port informal learning as they require no institutional background and focus on the
learner instead of institutional needs like student management or assessments. The
learners do not participate in formal courses and neither receive any certification for
their competence development. A common problem for MUPPLEs is the amount
of data that is gathered already in a short time frame and the unstructured way it is
collected. This can make the process of user and domain modelling demanding and
unstructured. On the other hand, this is often the case in recommender systems as
well, when user and item interactions are explored, e.g. in order to identify user and
item similarities.

Similarities and differences

Many of the AEH systems address formal learning (e.g. [3, 20, 57]), have equally
fine granulated knowledge domains and can therefore offer personalised recommen-
dations to the learners. They take advantage of technologies like metadata and on-
tologies to define the relationships, conditions, and dependencies of learning re-
sources and learner models. These systems are mainly used in ‘closed-corpus’ ap-
plications [16] where the learning resources can be described by an educational
designer through semantic relationships and is therefore a formal learning offer.
As mentioned before, in formal educational settings (such as universities) there are
usually well- structured formal relationships like predefined learning plans (cur-
riculum) with locations, student/teacher profiles, and accreditation procedures. All
this metadata can be used to recommend courses or personalise learning through
the adaptation of the learning resources or the learning environment to the students
[5]. One interesting direction in this research is the work on adaptive sequencing
which takes into account individual characteristics and preferences for sequencing
learning resources [47]. In AEH there are many design activities needed before the
runtime and also during the maintenance of the learning environment. In addition,
the knowledge domains in the learning environment need to be described in detail.
These aspects make adaptive sequencing and other adaptive hypermedia techniques
rather demanding in TEL recommendation.

Informal learning networks emerge without some highly structured domain
model representation. Mining techniques need to be used in order to create some
representation of the user or domain model. For instance, prior knowledge in infor-
mal learning is a rather diffuse parameter because it relies on information given by
the learners without any standardisation. To handle the dynamic and diffuse charac-
teristic of prior knowledge, and to bridge the absence of a knowledge domain model,
probabilistic techniques like latent semantic analysis are promising [97]. The ab-
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sence of maintenance and structure in informal learning is also called the ‘open cor-
pus problem’. The open corpus problem applies when an unlimited set of documents
is given that cannot be manually structured and indexed with domain concepts and
metadata from a community [16] and applies to informal learning networks. There-
fore, bottom-up recommendation techniques like collaborative filtering are more
appropriate because they require nearly no maintenance and improve through the
emergent behaviour of the community. Drachsler et al. [25] analysed how various
types of collaborative filtering techniques can be used to support learners in infor-
mal learning networks. Following their conclusions we have to consider the different
environmental conditions of informal learning, such as the lack of maintenance and
less formal structured learning objects, in order to provide an appropriated navi-
gation support to recommender systems. Learning networks are mainly structured
based on user-generated information and interactions.

Besides the already mentioned differences for prior knowledge in informal learn-
ing, there are also differences in the data sets which are derived from environmental
conditions. Normally, the numbers of ratings obtained in recommender systems is
usually very small compared to the number of ratings that have to be predicted.
Effective prediction by ratings based on small amounts is very essential for recom-
mender systems and has an effect on the selection of a specific recommendation
technique. Formal learning can rely on regular evaluations of experts or students
upon multiple criteria (e.g., pedagogical quality, technical quality, ease of use) [67],
but in informal learning environments such evaluation procedures are unstructured
and few. Formal learning environments like universities often have integrated eval-
uation procedures for a regular quality evaluation to report to their funding body.
With these integrated evaluation procedures more dense data sets can be expected.
As a conclusion, the data sets in informal learning context are characterised by the
“Sparsity problem” caused by sparse ratings in the data set. Multi-criteria ratings
(see Chapter 24) could be beneficial for informal learning to overcome the “Spar-
sity problem” of the data sets. These multi-criteria ratings have to be reasonable for
the community of lifelong learners. The community could rate learning resources
on various levels, such as required prior knowledge level (novice to expert), the
presentation style of learning resources, and even the level of attractiveness, be-
cause keeping students satisfied and motivated is a vital criteria in informal learning.
These explicit rating procedures should be supported with several indirect measures
like ‘Amount of learners using the learning resource, ‘Amount of adjustments of a
learning resources”, in order to measure how up-to-date the learning resource is.

Informal learning is therefore different from well-structured domains like formal
learning. Recommender systems for informal learning could have no official main-
tenance by an institution, mostly rely on its community, and not contain well-defined
metadata structures. Moreover, where formal learning is characteristically top-down
designed and develop learning offers (closed-corpus), informal learning offers are
emerging from the bottom-up through the communities (open-corpus). Therefore,
it will be difficult to transfer and apply recommender systems even from formal to
non-formal settings (and vice-versa), since user tasks and recommendation goals are
often substantially different.
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Table 12.2: Recommendation techniques and their usefulness for TEL by Drachsler
et al. [24]

Name Short description Advantages Disadvantages Usefulness for TEL

Collaborative filtering (CF) techniques
1. User-based CF Users that rated the

same item similarly
probably have the
same taste. Based
on this assumption,
this technique
recommends unseen
items already rated
by similar users.

- No content analysis
- Domain-independent
- Quality improves over
time
- Bottom-up approach
- Serendipity

- New user problem
- New item problem
- Popular taste
- Scalability
- Sparsity
- Cold-start problem

- Benefits from
experience
- Allocates learners to
groups (based on
similar ratings)

2. Item-based CF Focus on items,
assuming that items
rated similarly are
probably similar. It
recommends items
with highest
correlation (based
on ratings to the
items).

- No content analysis
- Domain-independent
- Quality improves over
time
- Bottom-up approach
- Serendipity

- New item problem
- Popular taste
- Sparsity
- Cold-start problem

- Benefits from
experience

3. Stereotypes or
demographics CF

Users with similar
attributes are
matched, then
recommends items
that are preferred by
similar users (based
on user data instead
of ratings).

- No cold-start problem
- Domain-independent
- Serendipity

- Obtaining information
- Insufficient
information
- Only popular taste
- Obtaining metadata
information
- Maintenance ontology

- Allocates learners to
groups
- Benefits from
experience
- Recommendation
from the beginning of
the RS

Content-based (CB) techniques
4. Case-based
reasoning

Assumes that if a
user likes a certain
item, s/he will
probably also like
similar items.
Recommends new
but similar items.

- No content analysis
- Domain-independent
- Quality improves over
time

- New user problem
- Overspecialisation
- Sparsity
- Cold-start problem

- Keeps learner
informed about
learning goal
- Useful for hybrid RS

5. Attribute-based
techniques

Recommends items
based on the
matching of their
attributes to the user
profile. Attributes
could be weighted
for their importance
to the user.

- No cold-start problem
- No new user / new
item problem
- Sensitive to changes
of preferences
- Can include non-item
related features
- Can map from user
needs to items

- Does not learn
- Only works with
categories
- Ontology modeling
and maintenance is
required
- Overspecialisation

- Useful for hybrid RS
- Recommendation
from the beginning
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A critical assessment of recommender techniques regarding their applicability
and usefulness in TEL has taken place by Drachsler et al. [24], and is briefly pre-
sented in Table 2. This Table provides an initial overview of advantages and disad-
vantages of each technique, and reports the envisaged usefulness of each technique
for TEL recommenders. Nevertheless, it aims to serve as an initial basis for such a
discussion, since a more detailed and elaborate survey of all existing recommenda-
tion methods and techniques can take place in the future.

12.4 Survey of TEL Recommender Systems

In the TEL domain a number of recommender systems have been introduced in
order to propose learning resources to users. Such systems could potentially play
an important educational role, considering the variety of learning resources that are
published online and the benefits of collaboration between tutors and learners [81,
82, 59]. The following paragraphs review some recent approaches and provide an
assessment of their status of development and evaluation.

One of the first attempts to develop a collaborative filtering system for learning
resources has been the Altered Vista system [81, 82, 83]. The aim of this study was
to explore how to collect user-provided evaluations of learning resources, and then
to propagate them in the form of word-of-mouth recommendations about the qual-
ities of the resources. The team working on Altered Vista explored several relevant
issues, such as the design of its interface [82], the development of non-authoritative
metadata to store user-provided evaluations [81], the design of the system and the
review scheme it uses [83], as well as results from pilot and empirical studies from
using the system to recommend to the members of a community both interesting
resources and people with similar tastes and beliefs [83, 104].

Another system that has been proposed for the recommendation of learning re-
sources is the RACOFI (Rule-Applying Collaborative Filtering) Composer system
[2, 60, 61]. RACOFI combines two recommendation approaches by integrating a
collaborative filtering engine, that works with ratings that users provide for learning
resources, with an inference rule engine that is mining association rules between the
learning resources and using them for recommendation. RACOFI studies have not
yet assessed the pedagogical value of the recommender, nor do they report some
evaluation of the system by users. The RACOFI technology is supporting the com-
mercial site inDiscover (http://www.indiscover.net) for music tracks recommenda-
tion. In addition, other researchers have reported adopting RACOFI’s approach in
their own systems as well [32].

The QSIA (Questions Sharing and Interactive Assignments) for learning re-
sources sharing, assessing and recommendation has been developed by Rafaeli et
al. [78, 79]. This system is used in the context of online communities, in order
to harness the social perspective in learning and to promote collaboration, online
recommendation, and further formation of learner communities. Instead of devel-
oping a typical automated recommender system, Rafaeli et al. chose to base QSIA
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Table 12.3: Implemented TEL recommender systems reported in literature

System Status Evaluator focus Evaluation roles

Altered Vista
[80, 81, 82, 105]

Full system Interface,
Algorithm,
System usage

Human users

RACOFI
[2, 61]

Prototype Algorithm System designers

QSAI
[78, 79]

Full system — —

CYCLADES
[4]

Full system Algorithm System designers

CoFind
[29, 30]

Prototype System usage Human users

Learning object sequencing
[88]

Prototype System usage Human users

Evolving e-learning system
[90, 91, 92, 93]

Full system Algorithm,
System usage

Simulated users, Human users

ISIS - Hybrid Personalised
Recommender System
[28]

Prototype Algorithm,
System usage

Human users

Multi-Attribute
Recommendation Service
[67]

Prototype Algorithm System designers

Learning Object
Recommendation Model
[95]

Design — —

RecoSearch
[32]

Design — —

Simulation environment
[72]

Full system Algorithm Simulated users

ReMashed
[26, 27]

Full system Algorithm,
System usage

Human users

CourseRank
[55, 56]

Full system System usage Human users

CBR Recommender Interface
[33]

Prototype — —

APOSDLE Recommendation
Service
[1]

Prototype — —

A2M Recommending System
[86]

Prototype — —

Moodle Recommender System
[44]

Prototype Algorithm,
System usage

Human users

LRLS
[41]

Prototype System usage,
Learner
performance

Human users

RPL recommender
[49]

Prototype System usage System designers, Human users



12 Recommender Systems in Technology Enhanced Learning 401

on a mostly user-controlled recommendation process. That is, the user can decide
whether to assume control on who advises (friends) or to use a collaborative filter-
ing service. The system has been implemented and used in the context of several
learning situations, such as knowledge sharing among faculty and teaching assis-
tants, high school teachers and among students, but no evaluation results have been
reported so far [78, 79].

In this strand of systems for collaborative filtering of learning resources, the
CYCLADES system [4] has proposed an environment where users search, ac-
cess, and evaluate (rate) digital resources available in repositories found through
the Open Archives Initiative (OAI, http://www.openarchives.org). Informally, OAI
is an agreement between several digital archives providers in order to offer some
minimum level of interoperability between them. Thus, such a system can offer
recommendations over resources that are stored in different archives and accessed
through an open scheme. The recommendations offered by CYCLADES have been
evaluated through a pilot study with about 60 users, which focused on testing the
performance (predictive accuracy) of several collaborative filtering algorithms.

A related system is the CoFind prototype [29, 30]. It also used digital resources
that are freely available on the Web but it followed a new approach by applying
for the first time folksonomies (tags) for recommendations. The CoFind develop-
ers stated that predictions according to preferences were inadequate in a learning
context and therefore more user driven bottom-up categories like folksonomies are
important.

A typical, neighborhood-based set of collaborative filtering algorithms have been
tried in order to support learning object recommendation by Manouselis et al. [67].
The innovative aspect of this study is that the engaged algorithms have been multi-
attribute ones, allowing the recommendation service to consider multi-dimensional
ratings that users provide on learning resources. An interesting outcome from this
study in comparison to initial experiments using the same algorithms (e.g. [65]), is
that it seems that the performance of the same algorithms is changing, depending on
the context where testing takes place. For instance, the results from the comparative
study of the same algorithms in an e-commerce [65] and a TEL setting [67] has led
to the selection of different algorithms from the same set of candidate ones. This can
be an indicator that the performance of recommendation algorithms that have been
proved to be performing well in one context (e.g. movie recommendation) should
not be expected to do the same in another context (e.g. TEL), an area which requires
further experimentation (see Chapter 7).

A different approach to learning resources’ recommendation has been followed
by Shen and Shen [88]. They have developed a recommender system for learning
objects that is based on sequencing rules that help users be guided through the con-
cepts of an ontology of topics. The rules are fired when gaps in the competencies of
the learners are identified, and then appropriate resources are proposed to the learn-
ers. A pilot study with the students of a Network Education college has taken place,
providing feedback regarding the users’ opinion about the system.

A similar sequencing system has been introduced by Huang et al. [41]. It uses
a Markov chain model to calculate transition probabilities of possible learning ob-
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jects in a sequenced course of study. The model is supported by an entropy-based
approach for discovering one or more recommended learning paths. A pilot imple-
mentation has been deployed and tested in a Taiwanese university, involving about
150 users.

Tang and McCalla proposed an evolving e-learning system, open into new learn-
ing resources that may be found online, which includes a hybrid recommendation
service [89, 90, 91, 92, 93]. Their system is mainly used for storing and sharing
research papers and glossary terms among university students and industry prac-
titioners. Resources are described (tagged) according to their content and techni-
cal aspects, but learners also provide feedback about them in the form of ratings.
Recommendation takes place both by engaging a Clustering Module (using data
clustering techniques to group learners with similar interests) and a Collaborative
Filtering Module (using classic collaborative filtering techniques to identify learn-
ers with similar interests in each cluster). The authors studied several techniques to
enhance the performance of their system, such as the usage of artificial (simulated)
learners [93]. They have also performed an evaluation study of the system with real
learners [94].

A rather simple recommender system without taking into account any prefer-
ences or profile information of the learners was applied by Janssen et al. [44]. How-
ever, they conducted a large experiment with a control group and an experimental
group. They found positive effects on the effectiveness (completion rates of learning
objects) though not on efficiency (time taken to complete the learning resources) for
the experimental group as compared to the control group.

Nadolski et al. [72] created a simulation environment for different combination
of recommendation algorithms in hybrid recommender system in order to compare
them against each other regarding their impact on learners in informal learning
networks. They compared various cost intensive ontology based recommendation
strategies with light-weight collaborative filtering strategies. Therefore, they cre-
ated treatment groups for the simulation through combining the recommendation
techniques in various ways. Nadolski et al. [72] tested which combination of rec-
ommendation techniques in recommendation strategies had a higher effect on the
learning outcomes of the learners in a learning network. They concluded that the
light-weight collaborative filtering recommendation strategies are not as accurate as
the ontology-based strategies but worth-while for informal learning networks when
considering the environmental conditions like the lack of maintenance in learn-
ing networks. This study confirmed that providing recommendations leads towards
more effective, more satisfied, and faster goal achievement than no recommenda-
tion. Furthermore, their study reveals that a light-weight collaborative filtering rec-
ommendation technique including a rating mechanism is a good alternative to main-
tain intensive top-down ontology recommendation techniques.

Moreover, the ISIS system adopts a hybrid approach for recommending learning
resources is the one recently proposed by Hummel et al. [42]. The authors build
upon a previous simulation study by Koper [52] in order to propose a system that
combines social-based (using data from other learners) with information-based (us-
ing metadata from learner profiles and learning activities) in a hybrid recommender
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system. They also designed an experiment with real learners. Drachsler et al. [28]
recently reported the experimental results the ISIS experiment. They found a posi-
tive significant effect on efficiency (time taken to complete the learning objects) of
the learners after a runtime of four months. It is a very good example of a system
that is following the latest trends in learning specifications for representing learner
profiles and learning activities.

The same group recently developed a recommender system called ReMashed
[26, 27] that addresses learners in informal learning networks. They created a mash-
up environment that combines sources of users from different Web2.0 services like
Flickr, Delicious.com or Sildeshare.com. Again, they applied a hybrid recommender
system that takes advantage of the tag and rating data of the combined Web2.0
sources. The tags that are already given to the Web2.0 sources are used for the cold-
start of the recommender system (see Chapter 19). The users of ReMashed are able
to rate the emerging data of all users in the system. The ratings are used for classic
collaborative filtering recommendations based on the Duine prediction engine [98].

A similar approach is followed by the proposed Learning Object Recommen-
dation Model (LORM) that also follows a hybrid recommendation algorithmic ap-
proach and that describes resources upon multiple attributes, but has not yet reported
to be implemented in an actual system [95].

Another hybrid recommendation approach has been adopted in the CourseRank
system ( https://courserank.stanford.edu/CourseRank/main) that is used as an un-
official course guide for Stanford University students. In this system, the recom-
mendation process is viewed under the prism of querying a relational database with
course and student information [55]. To this end, a number of tuple ofperators have
been defined in order to allow the system to provide flexible recommendations to its
users. The system has been first deployed in September 2007, attracting lots of inter-
est from its users: it has been reported that more than 70% of the Stanford students
use it [56].

A hybrid approach is also adopted by the prototype system that has been im-
plemented in the course repository of the Virtual University of Tunis (RPL plat-
form, http://cours.uvt.rnu.tn/rpl/). This prototype includes a recommendation en-
gine that combines a collaborative filtering algorithm with a content-based filtering
algorithm, using data that has been logged and mined from user actions. The usage
logs of the RPL platform are used for this purpose, and a preliminary evaluation
experiment has already taken place [49].

Finally, there have been some recent proposals for systems or algorithms that
could be used to support recommendation of learning resources. These include
a variety of work-in-progress systems, such as a case-based reasoning recom-
mender that Gomez-Albarran and Jimenez-Diaz [33], the contextual recommen-
dations that the knowledge-sharing environment of the APOSDLE EU-project
(http://www.aposdle.tugraz.at) offers to the employees of large organisations [1],
and the A2M prototype [86]. Recommendation of multimedia learning resource
onto mobile devices such as cell phones and PDAs have been explored in [51].

Nevertheless, despite the increasing number of systems proposed for recom-
mending learning resources, a closer look to the current status of their development
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and evaluation reveals the lack of systematic evaluation studies in the context of
real-life applications. As Table 3 indicates:

• More than half of the proposed systems (12 out of 20) still remain at a design
or prototyping stage of development;

• Only 10 systems have been reported to be evaluated through trials that involved
human users.

Another interesting observation is that, very often, experimental investigation of
the recommendation algorithms does not take place. This is a common evaluation
practice in systems examined for other domains (e.g. [7, 22, 37, 74]), since careful
testing and parameterisation of the algorithms has to be carried out before a recom-
mender system is finally deployed in a real setting (see Chapters 8 and 10). One of
the main reasons is that the performance of recommendation algorithms seems to
be dependent on the particularities of the application context, therefore, it is advised
to experimentally analyse various design choices for a recommender system, before
its actual deployment.

12.5 Evaluation of TEL Recommenders

Worthen et al. [111] define evaluation as the “identification, clarification, and appli-
cation of defensible criteria to determine an evaluation object’s value, quality, utility,
effectiveness, or significance in relation to those criteria”. An evaluation of an inter-
active system ensures that it behaves as expected by the designer and that it meets
the requirements of the user [23]. As far as recommender systems in general, and
TEL recommenders in particular are concerned, evaluation becomes a critical point
at the systems lifecycle for its improvement and success. Until today, evaluation of
recommender systems gives emphasis to rather “technical” measures coming from
information retrieval research, although the importance of including user-related
evaluation methods has been highlighted (see [38, 69] and Chapter 8). In TEL rec-
ommender systems evaluation becomes an even more demanding task, considering
the particularities of the educational contexts. To this end, we try to provide a first
overview of relevant evaluation requirements, adopting the different perspectives
covered in this chapter.

Evaluating the different components

The evaluation of AEH systems has generally been considered to be challenging,
due to a number of issues that can generally categorised under two types [108]:

• First, adequately defining the reference variables against which the adaptivity
of the system will be evaluated is difficult for those systems that either cannot
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switch off the adaptivity, or where a non-adaptive version appears to be absurd
because adaptivity is an inherent feature of these systems [40]. In TEL recom-
menders, this concerns defining the variables that can successfully measure if
switching off the recommendation in a TEL system actually affects its perceived
usefulness.

• Second, adequately defined criteria for the success of adaptivity are not well de-
fined or there are rarely commonly accepted criteria: on the one hand, objective
standard criteria (e.g. duration, number of interaction steps, knowledge gain)
regularly failed to find a difference between adaptive and non-adaptive versions
of a system. On the other hand, subjective criteria that are standard in human-
computer interaction research (e.g. usability questionnaires) have been rarely
applied to measure the success of adaptive systems. In TEL, the issue is related
to the definition of appropriate evaluation methods (e.g. techniques, metrics and
instruments) to measure the success of a successful recommendation strategy in
comparison to a non-successful one.

A common problem arising in such evaluation efforts is when treating the adap-
tation process as a “monolithic” entity and trying to assess it as a whole [11]. This
cannot provide results at a level of granularity that can be of practical use and help
the system designer to decide which part of the system needs improvement (e.g.
the user modelling approach, the domain modelling approach, the recommendation
technique). An interesting approach has been proposed by Brusilovsky et al. [13]: to
decompose the adaptation process into two layers that are evaluated separately. The
main idea behind the approach was that the evaluation of adaptive systems should
not treat adaptation as a “monolithic”/singular process happening behind the scenes.
Rather, adaptation should be “broken down” into its constituents, and each of these
constituents should be evaluated separately where necessary and feasible [46]. The
seeds of this idea can be traced back to Totterdell and Boyle [94] who propose that
a number of adaptation metrics could be related to different components of a logical
model of adaptive user interfaces, to provide what amounts to adaptation-oriented
design feedback. Furthermore, Totterdell and Boyle present two types of assessment
performed to validate what is termed “success of the user model” (note that, in their
case, the “user model” is also responsible for adaptation decision making):

“Two types of assessment were made of the user model: an assessment of the accuracy of
the model’s inferences about user difficulties; and an assessment of the effectiveness of the
changes made at the interface.” [94]

Simultaneously with the idea of evaluating adaptation at two different layers
[13], two other layered (also referred to as modular) evaluation frameworks have
been proposed. The process-based framework presented by Weibelzahl [106] con-
sisted from four layers that referred to the information processing steps within the
adaptation process: evaluation of input data, evaluation of the inference mechanism,
evaluation of the adaptation decision, and evaluation of the total interaction. A sec-
ond framework has been presented by Paramythis et al. [75] and is more detailed in
terms of different components involved in the adaptation process. It also addressed
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the question of methods and tools appropriate for the evaluation of different adap-
tation “modules” to yield input for the development process. A merged version of
the two frameworks was finally proposed, identifying both criteria to be taken into
consideration in the evaluation of an adaptive system, and the methods and tools that
can be engaged to do so [109]. This modular evaluation approach has been explored
by several studies that evaluate adaptive systems (e.g. [15]), but has not been yet
formally developed and applied for recommender systems. It therefore still needs to
be validated before applying it into TEL recommender systems. Nevertheless, we
believe that this approach can be incorporated in the rich variety of perspectives and
measures to be considered when evaluating TEL recommenders. In the following,
an initial elaboration on relevant issues is carried out.

Issues to consider for evaluating TEL recommenders

In the world of consumer recommender systems, several data sets with specific char-
acteristics are available (e.g. the MovieLens data set, the Book-Crossing data sets,
or the Jester data set). These data sets are used as a common standard or benchmark
to evaluate new recommendation algorithms. Furthermore, consumer product rec-
ommendation algorithms are evaluated based on common technical measures like
accuracy, coverage, and performance in terms of execution time.

In the application domain of TEL, to evaluate pedagogy driven recommender
systems for formal or informal learning, no standardised data sets nor standardised
evaluation procedures are available. Moreover, focusing only on technical measures
for recommender systems in TEL, without considering the actual needs and char-
acteristics of the learners, is questionable. Thus, further evaluation procedures that
complement the technical evaluation approaches are needed (see Chapter 8). For
example, learners only benefit from TEL supported and enhanced systems when
they make the learning more effective, efficient, and/or more attractive. Common
measures to evaluate the success of such systems in educational settings thus in-
clude Effectiveness, Efficiency, Satisfaction and the Drop-out rate. Effectiveness is
a sign of the total amount of completed, visited or studied content objects during a
learning phase. Efficiency indicates the time that learners need to reach their learn-
ing goal. It is related to the effectiveness variable through counting the actual study
time. Satisfaction reflects the individual satisfaction of the learners with the given
recommendations. Satisfaction is close to the motivation of a learner and therefore
an important measure for learning. Finally, the Drop-out rate mirrors the numbers
of learners that drop out during the learning phase. In educational research the drop-
out rate is an important measure when the aim is to graduate as many learners as
possible during a learning phase. As far as learning networks are concerned, meth-
ods and metrics originating from Social Network Analysis (SNA) (e.g. [105]) could
also be engaged to measure the success of TEL recommenders. The SNA measures
can be used to estimate the benefits coming from the contributions of the learners
for the network as a whole. These are more specific measures that are mainly re-
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lated to informal learning networks. SNA gives various insights into the different
roles learners can have in a learning network. Typical SNA measures are Variety,
Centrality, Closeness and Cohesion. Variety measures the level of emergence in a
learning network through the combination of individual learning paths to the most
successful learning routes. Centrality is an indicator for the connectivity of a learner
in a learning network. It counts the number of ties to other learners in the network.
Closeness measures the degree a learner is close to all other learners in a network.
It represents the ability to access information direct or indirect through the connec-
tion to other network members. Cohesion, on the other hand, indicates how strongly
learners are directly connected to each other by cohesive bonds. Peer-groups of
learners can be identified if every learner is directly tied to every other learner in the
learning network. Drachsler et al. [24] followed this approach by using simulations
to evaluate the impacts of a recommender system for learners in informal learning
networks (see Chapter 18).

Synthesising all the various components into an overall evaluation framework has
several methodological and practical difficulties. As a general guideline, however,
classical evaluation frameworks from educational research could be adopted and
adapted to the recommender systems’ context. As an example, we illustrate how
the Kirckpatrick’s model [50], which measures the success of training using four
different layers, could be used to evaluate the success of a recommender system in
a TEL context:

1. Reaction of user - what they thought and felt (“Did I enjoy the recommenda-
tions I receive?”);

2. Learning - the resulting increase in gaining new knowledge or capabilities
(“Did I learn what I needed to and get some new ideas, with the help of the
recommender?”);

3. Behaviour - extent of how acquired knowledge and capability can be imple-
mented/applied in real life (“Will I use the new information and ideas I was
recommended?”);

4. Results - the effects on the user’s performance in the learning or working en-
vironment (“Do the ideas and information I was recommended improve my
effectiveness and results?”).

Therefore, the definition of an overall evaluation framework of TEL recom-
menders could include:

• A detailed analysis of the evaluation methods and tools that can be employed for
evaluating TEL recommendation techniques against a set of criteria that will be
proposed for each of the selected components (e.g. user model, domain model,
recommendation strategy and algorithm). For the presented example of the Kir-
ckpatrick’s dimensions, this would include an identification of the evaluation
methods that could be engaged to measure the effect of the recommender in a
particular TEL context, upon each one of the four dimensions.

• The specification of evaluation metrics/indicators to measure the success of
each component (e.g. evaluating accuracy of the recommendation algorithm,
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evaluating coverage of the domain model). For the presented example, this
would include a specification of the particular metrics that can measure the
effect of introducing the recommender in this TEL context.

• The elaboration of a number of methods and instruments that can be engaged
in TEL settings, in order to collect evaluation data from engaged stakehold-
ers, explicitly or implicitly, e.g. measuring user satisfaction, assessing impact
of engaging the TEL recommender from improvements in working tasks. For
the presented example, this would include the proposal of specific instruments
that can be used to measure each one of the metrics that measure the effect of
introducing the recommender in this TEL context.

12.6 Conclusions and further work

This chapter provides an introduction to the issues related to the deployment of
recommender systems in the Technology Enhanced Learning (TEL) settings em-
phasising the particularities of this application domain. It first discussed the context
in which TEL recommenders are deployed, and reflected on related user tasks and
recommendation goals. A review of related work coming from the research strands
of Adaptive Educational Hypermedia and Learning Networks has been provided,
with a particular emphasis on how it applies to TEL recommenders for formal and
informal settings. Then, a survey of TEL recommenders proposed in the literature
was presented with a critical view on the actual implementation of systems. Par-
ticular emphasis was given to the evaluation leading to a discussion on evaluation
requirements and issues for TEL recommender systems. To our knowledge, this is
the first study attempting to systematically cover the design and deployment of rec-
ommender systems in the TEL settings (see Chapter 11). Nevertheless, it can only
provide a brief overview of related issues, leaving several aspects to be further ex-
plored and researched.

As indicated in the previous section, one of the main research challenges related
to the introduction of recommender systems in TEL is how to perform a system-
atic development and evaluation of such systems and their effect. To this end, a
systematic analysis of TEL-related tasks that can be supported by recommender
systems took place, in order to identify the particular requirements that need to be
considered. Furthermore, the development of concrete evaluation frameworks that
will follow a layered approach is an open issue. These frameworks can focus on in-
corporating as many evaluation dimensions as possible, also addressing pedagogical
dimensions, by combining a variety of evaluation methods, metric, and instruments.

In addition, for the various groups of researchers involved in TEL, a number of
topics are of high research interest. For example, the recommendation support for
learners in formal and informal learning that takes advantage of contextualised rec-
ommender systems has become an important one. These recommender systems, also
called context-aware recommender systems (see [61] and Chapter 7), use for exam-
ple geographical location of a user to recommend relevant resources. Such contextu-
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alisation becomes important, for example, when multilingual educational resources
are recommended from a number of repositories residing in different countries and
complying with various curricula requirements [101]. Additionally, context aware-
ness could include pedagogical aspects like prior knowledge, learning goals or study
time to embed pedagogical reasoning into collaborative filtering driven recommen-
dations.

Another promising approach is the use of multi-criteria input for recommender
system in TEL (see Chapter 24). Users (learners and teachers) can not only rate
learning resource based on the level of complexity, curriculum alignment or how
much time is required to cover the learning material, but input could also be inferred
from different implicit sources. Such multidimensional input can potentially have a
high impact on the suitability of recommendations. A related problem is the lack
of TEL specific rated data sets for informal and formal learning. Different to the
recommender system world, where many data sets are available (e.g. MovieLens,
BookCrossing, Jester Collaborative Filtering Dataset), the TEL community is still
working with rather small home-made data sets, which are rarely public available
[66].
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40. Höök, K.: Steps to take before intelligent user interfaces become real. Interacting With Com-
puters 12(4), 409–426 (2000).



412 Nikos Manouselis, Hendrik Drachsler, Riina Vuorikari, Hans Hummel and Rob Koper

41. Huang, Y.-M., Huang, T.-C., Wang, K.-T., Hwang, W.-Y.: A Markov-based Recommenda-
tion Model for Exploring the Transfer of Learning on the Web. Educational Technology &
Society 12(2), 144–162 (2009).

42. Hummel, H.G.K., Van den Berg, B., Berlanga, A.J., Drachsler, H., Janssen, J., Nadolski,
R.J., Koper, E.J.R.: Combining Social- and Information-based Approaches for Personalised
Recommendation on Sequencing Learning Activities. International Journal of Learning
Technology 3(2), 152–168 (2007).

43. Jameson, A.: Systems That Adapt to Their Users: An Integrative Perspective. Saar-brücken:
Saarland University (2001).

44. Janssen, J., Tattersall, C., Waterink, W., Van den Berg, B., Van Es, R., Bolman, C., et al.:
Self-organising navigational support in lifelong learning: how predecessors can lead the way.
Computers & Education 49, 781–793 (2005).

45. Johnson, S.: Emergence. Scribner, New York (2001).
46. Karagiannidis, C., Sampson, D. G.: Layered evaluation of adaptive applications and ser-

vices. In: Brusilovsky, P. and Stock, C. S. O. (Eds.), Proc. of International Conference on
Adaptive Hypermedia and Adaptive Web-Based Systems, AH2000, Trento, Italy, pp. 343-
346. Berlin: Springer (2000).

47. Karampiperis, P., Sampson, D.: Adaptive Learning Resources Sequencing in Educational
Hypermedia Systems. Educational Technology & Society 8(4), 128–147 (2005).

48. Kay, J., Kummerfeld, R. J.: An individualised course for the C programming language. In:
Proceedings of Second International WWW Conference. Chicago, USA (1994).

49. Khribi, M.K., Jemni, M., Nasraoui, O.: Automatic Recommendations for E-Learning Per-
sonalization Based on Web Usage Mining Techniques and Information Retrieval. Educa-
tional Technology & Society 12(4), 30–42 (2009).

50. Kirkpatrick, D.L.: Evaluating Training Programs (2nd ed.). Berrett Koehler, San Francisco
(1959).

51. Klamma, R., Spaniol, M., Cao, Y.: Community Aware Content Adaptation for Mobile Tech-
nology Enhanced Learning. In: Innovative Approaches for Learning and Knowledge Shar-
ing, pp. 227-241 (2006).

52. Koper, R.: Increasing Learner Retention in a Simulated learning network using Indirect So-
cial Interaction. Journal of Artificial Societies and Social Simulation, 8(2) (2005).

53. Koper, E.J.R., Tattersall, C.: New directions for lifelong learning using network technolo-
gies. British Journal of Educational Technology 35(6), 689–700 (2004).

54. Koper, R., Rusman, E., & Sloep, P.: Effective Learning Networks. Lifelong Learning in
Europe 1, 18–27 (2005).

55. Koutrika, G., Ikeda, R., Bercovitz, B., Garcia-Molina, H.: Flexible Recommendations over
Rich Data. In: Proc. of the 2nd ACM International Conference on Recommender Systems
(Rec-Sys’08). Lausanne, Switzerland, (2008).

56. Koutrika, G., Bercovitz, B., Kaliszan, F., Liou, H., Garcia-Molina, H.: CourseRank: A
Closed-Community Social System Through the Magnifying Glass. In: Proc. of the 3rd Inter-
national AAAI Conference on Weblogs and Social Media (ICWSM’09). San Jose, California
(2009).

57. Kravcik, M., Specht, M., Oppermann, R.: Evaluation of WINDS Authoring Environment.
In: P. De Bra & W. Nejdl (Eds.), Adaptive Hypermedia and Adaptive Web-Based Systems,
LNCS 3137, 166–175). Berlin: Springer (2004).

58. Krulwich, B.: Lifestyle Finder: Intelligent User Profiling Using Large-Scale Demographic
Data. Artificial Intelligence Magazine 18(2), 37–45 (1997).

59. Kumar, V., Nesbit, J., Han, K.: Rating Learning Object Quality with Distributed Bayesian
Belief Networks: The Why and the How. In: Proc. of the Fifth IEEE International Confer-
ence on Advanced Learning Technologies, ICALT’05 (2005).

60. Lemire, D.: Scale and Translation Invariant Collaborative Filtering Systems. Journal of In-
formation Retrieval 8(1), 129–150 (2005).



12 Recommender Systems in Technology Enhanced Learning 413

61. Lemire, D., Boley, H., McGrath, S., Ball, M. (2005). Collaborative Filtering and Inference
Rules for Context-Aware Learning Object Recommendation. International Journal of Inter-
active Technology and Smart Education 2(3) (2005).

62. Liber, O.: Colloquia - a conversation manager. Campus-Wide Information Systems 17, 56–
61 (2000).

63. Liber, O., Johnson, M. (2008). Personal Learning Environments. Interactive Learning Envi-
ronments 16, 1–2 (2008).

64. Longworth, N.: Lifelong learning in action - Transforming education in the 21st century.
Kogan Page, London (2003).

65. Manouselis, N., Costopoulou, C.: Experimental Analysis of Design Choices in Multi-
Attribute Utility Collaborative Filtering. International Journal of Pattern Recognition and
Artificial Intelligence, Special Issue on Personalization Techniques for Recommender Sys-
tems and Intelligent User Interfaces 21(2), 311–331 (2007).

66. Manouselis, N., Vuorikari, R.: What if annotations were reusable: a preliminary discussion.
In: Proc. of the 8th International Conference on Web-based Learning (ICWL 2009). Aachen,
Germany (2009).

67. Manouselis, N., Vuorikari, R., Van Assche, F.: Simulated Analysis of MAUT Collaborative
Filtering for Learning Object Recommendation. In: Proc. of the Workshop on Social Infor-
mation Retrieval in Technology Enhanced Learning (SIRTEL 2007). Crete, Greece (2007).

68. McCalla, G.: The Ecological Approach to the Design of E-Learning Environments: Purpose-
based Capture and Use of Information About Learners. Journal of Interactive Media in Ed-
ucation, Special Issue on the Educational Semantic Web, 7, ISSN:1365-893X (2004).

69. McNee, S.: Meeting User Information Needs in Recommender Systems. Doctoral disserta-
tion, University of Minnesota-Twin Cities, Minneapolis, MN, USA (2006).

70. Moore, J.D., Swartout, W.R.: Pointing: A way toward explanation dialogue. In: Proceedings
of the Eighth National Conference on Artificial Intelligence, pp. 457-464. AAAI (1990).

71. Moore, M.G., Anderson, W.G.: Handbook of distance education. Lawrence Erlbaum, Mah-
wah N.J. (2004).

72. Nadolski, R.J., Van den Berg, B., Berlanga, A., Drachsler, H., Hummel, H., Koper, R., Sloep,
P.: Simulating Light-Weight Personalised Recommender Systems in Learning Networks: A
Case for Pedagogy-Oriented and Rating-Based Hybrid Recommendation Strategies. Journal
of Artificial Societies and Social Simulation (JASSS), 12(14) (2009).

73. Oppermann, R.: Adaptively supported adaptability. Int. J. Hum.-Comput. Stud. 40(3), 455–
472 (1994).

74. Papagelis, M., Plexousakis, D., Kutsuras, T.: Alleviating the Sparsity Problem of Collabo-
rative Filtering Using Trust Inferences. In: Proceedings of the 3rd International Conference
on Trust Management, pp. 224-239. Springer (2005).

75. Paramythis, A., Totter, A., Stephanidis, C.: A modular approach to the evaluation of adap-
tive user interfaces. In Weibelzahl, S., Chin, D., Weber, G. (eds.) Empirical Evaluation of
Adaptive Systems. Proceedings of workshop at the Eighth International Conference on User
Modeling, UM2001, pp. 9-24. Freiburg (2001).

76. Paris, C.: Tailoring object description to a user’s level of expertise. Computational Linguis-
tics 14(3), 64–78 (1988).
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Chapter 13
On the Evolution of Critiquing Recommenders

Lorraine McGinty and James Reilly

Abstract Over the past decade a significant amount of recommender systems re-
search has demonstrated the benefits of conversational architectures that employ
critique-based interfacing (e.g., Show me more like item A, but cheaper). The cri-
tiquing phenomenon has attracted great interest in line with the growing need for
more sophisticated decision/recommendation support systems to assist online users
who are overwhelmed by multiple product alternatives. Originally proposed as a
powerful yet practical solution to the preference elicitation problem central to many
conversational recommenders, critiquing has proved to be a popular topic in a vari-
ety of related areas (e.g., group recommendation, mixed-initiative recommendation,
adaptive user interfacing, recommendation explanation). This chapter aims to pro-
vide a comprehensive, yet concise, source of reference for researchers and practi-
tioners starting out in this area. Specifically, we present a deliberately non-technical
overview of the critiquing research which has been covered in recent years.

13.1 Introduction

The evolution of the critiquing research landscape has largely been influenced by the
changing needs of online users and the increasingly complex product domains that
they have turned to explore. Over the past decade, a variety of critique-based recom-
mendation methodologies have been proposed along with demonstrated evidence of
their potential to improve recommendation performance. It could be argued that the
significance of a piece of research can be often measured not just in terms of the
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number of questions answered (e.g., methodology proposed to solve a given prob-
lem), but also in terms of the number of new issues raised; whose answers present
as goals for future research.

This chapter is directed towards early-stage researchers starting out in this area.
It aims to provide a useful and deliberately non-technical overview of the promises
and pitfalls of critiquing that have been brought into focus in recent years. In Sec-
tion 2 we start off by describing the benefits of the approach as recognised by early
critiquing systems. Next, in Section 3, we outline some of the key issues and chal-
lenges that have been identified as well as the approaches that have been taken to
improve: (1) critique presentation in view of optimising preference acquisition, and
(2) the retrieval performance of critique-based recommenders. Section 4 provides an
overview of the various design considerations that have influenced the integration of
the critiquing mode of feedback across alternate platforms and user environments
(e.g., mobile space, individual and collaborative platforms, etc.). Section 5 sum-
marises the resources, methodologies and evaluation criteria that have been typi-
cally adopted by practitioners in the area to date. Finally, by way of conclusion we
outline some of the open challenges and opportunities that exist for critique-based
recommenders.

13.2 The Early Days: Critiquing Systems/Recognised Benefits

Interactive recommender systems typically engage users in a conversational dia-
logue to learn their preferences and use this feedback to improve the system’s rec-
ommendation accuracy. Many conversational recommenders drive the preference
elicitation task through the use of examples (for further details see Chapter 21).
For instance, a user may be presented with one or more examples/recommendations
(e.g., a movie, book, camera) and asked to provide feedback (e.g., provide ratings,
indicate a preference). The critiquing mode of feedback has become a popular topic
amongst those conducting recommender systems research and those developing
example-based conversational architectures. The primary reason why it has become
so popular is that it strikes an acceptable balance between the effort that a user must
expend when providing feedback and the information value it provides. In compari-
son to the standard value elicitation approach it is a very low-cost form of feedback
(i.e., in terms of user effort) that provides a relatively unambiguous indication of the
user’s current requirement (e.g., “Show me more like item A, but different in terms
of feature X”) . Critiquing is also well-suited to even the most basic interfaces and
to users with only a rudimentary understanding of certain recommendation domains
[7, 8, 65].

In many domains, it cannot be assumed that users are able to completely articu-
late their preferences from the outset [48], and/or have a clear understanding of the
feature trade-offs/compromises that exist (for related discussion see Chapter 11).
For example, a user hoping to buy a new laptop may not initially think about the
trade-off that often exists between the products weight and it having an integrated
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CD-ROM. If they were to formulate a query for a laptop that was less than 2kg
in weight with a CD-rom facility they may not find any products that satisfy both
of these preferences. Instead, as users become more familiar with the domain and
the product options available, their preferences often change, becoming more rigid
[48]. Users often tend to lack the motivation to completely specify their preferences
up front without any perceived benefits [67]. In fact, this may be unnecessary, as
sometimes only a partial set of preferences may be required to make good recom-
mendations [17].

Critique-based conversational recommenders offer flexible support to users as
they navigate product catalogues and help them to better understand their prefer-
ence requirements. Instead of requiring users to specify their preferences from the
outset, user preferences are built up over a series of recommendation cycles. In each
cycle of a recommendation session the system makes one or more recommendations
to the user and invites them to critique one of the examples. Feature critiques typi-
cally take the form of directional or replacement (a term that was initially defined
by [37]). Directional critiques effect an increase or decrease over numerical feature
values (e.g., cheaper implies [< price]). Replacement critiques allow for the substi-
tution of any value (i.e., aside from critiqued value) for a non-numeric feature (e.g.,
different manufacturer implies [!= manfacturer]). A recommendation satisfying the
applied critique is returned and the user is invited to critique this in line with their
requirements. This process continues until the user: (1) accepts a recommendation,
(2) exhausts all potential possibilities, or (3) terminates the session prematurely.

Early work in this area dates back to the early 1980’s when the RABBIT sys-
tems [70, 71] introduced the critiquing as a new interface paradigm for formulating
database queries. Users could critique fields of example records with options like
prohibit or specialise. Based on user feedback the system would reformulate the
query and present another example record. The FindMe Systems [7, 8, 19] devel-
oped by Burke et al., were the first to employ critiquing in web-based recommenders
recognising the need to focus on educating the user about the options space1. Orig-
inally, FindMe recommenders were developed as browsing assistants, that helped
users browse through large information-spaces by providing critiques on presented
examples, such as restaurants (Entrée), automobiles (Car Navigator), apartments
(RentMe), and movie rentals (Video Navigator)2. Other examples of early example-
based critiquing systems include: Apt Decision [64], SmartClient [53, 54, 55], and
the Automated Travel Assistant (ATA) [22]. In the next section we outline key chal-
lenges in critique-based recommendation that have been addressed by these systems
and other subsequent research.

1 More recent research has highlighted that there is a tension between the need for a user to explore
the space of items to understand the options and desire for short recommendation dialog.
2 The Wasabi Personal Shopper [4] was developed as a general-purpose domain-independent ver-
sion of the FindMe systems
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13.3 Representation & Retrieval Challenges for Critiquing
Systems

Early systems and more recent critiquing research can be reviewed along a number
of dimensions. In this section we focus our review on two: critique representation
and recommendation retrieval. In the first instance, we distinguish between the al-
ternate critique representation/formulation approaches that have been developed to
optimise preference acquisition. We describe how the nature of the critiques that
are presented to the user as feedback options dictate very different limitations and
benefits. In the second instance, we outline some of the key issues that have pre-
sented retrieval challenges in critiquing systems, and discuss (where appropriate)
how these have influenced the development of more sophisticated approaches to
preference modeling and revision.

13.3.1 Approaches to Critique Representation

Over the past decade a variety of alternate approaches to critique representation have
been proposed. The Entrée [8] restaurant recommender, is one of the earliest and
most well-known member of the FindMe family of critique-based recommenders.
Entrée offers two ways for users to specify their initial preferences. One is to spec-
ify a known restaurant that is similar to what the user is looking for. The alterna-
tive requires that users start the recommendation session by specifying their dining
interests according to a number of high-level features. Along with the returned rec-
ommendation are seven pre-defined unit critique options which can be applied over
features; cheaper critiques the price feature, and more formal critiques the style fea-
ture, for example. The critiques serve as temporary filters over the product space,
eliminating incompatible restaurants from consideration for the next recommenda-
tion cycle. In this section we discuss a number of challenges that motivated further
research and advancement in this area.

13.3.1.1 Over-critiquing & protracted recommendation dialogues

Unit critiques only allow users to express preferences over a single feature in each
recommendation cycle. This ultimately limits the ability of the recommender to
narrow its focus, which can result in slow unnecessarily long recommendation di-
alogues. Furthermore, a user may not understand the feature trade-offs that exist
within a particular domain and hence might be inclined to continue to critique a
specific feature (e.g., price) until a recommendation with an acceptable value has
been reached. However, they may later realise that the value of another important
feature has since changed and is no longer acceptable [39]. An alternative strategy
is to consider the use of compound critiques (the term itself was first introduced by
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[26]). These are critiques that operate over multiple features and have the potential
to improve recommendation efficiency because they allow the recommender sys-
tem to gather more preference information in a single recommendation cycle. The
promise is that the application of compound critiques enables users to take larger
steps though the recommendation space towards preferred options, thus reducing
session lengths/interaction times.

The idea of compound critiques is not new. In fact, the early FindMe Systems
[7] introduced the Car Navigator System (see Fig. 13.1) which uses compound cri-
tiquing. Automobiles are described in terms of features such as horsepower, price,
sportier, or gas mileage that can be directly manipulated by users. Compound cri-
tiques are also presented alongside individual feature-level unit critiques providing
the user with two alternate ways to refine recommendations. When a user applies the
sportier compound critique, for example, this has the effect of filtering the remain-
ing options in terms of a number of features; that is, engine size, acceleration and
price are all increased. Similarly, in the context of a PC recommender a high per-
formance compound critique might simultaneously increase processor speed, RAM,
hard-disk capacity and price features.

Fig. 13.1: Illustrating how Car Navigator presents both static unit and compound
critiques.
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13.3.1.2 Critique redundancy & hidden feature-dependency

The notion of automated critique generation was first proposed by McCarthy et. al.
[26], motivated by the observation that certain static critiques may not always be rel-
evant. They identified that session dead-ends could result whereby a user may apply
a critique filter (i.e., unit or compound) and find that there are no subsequent match-
ing recommendations (related work refers to these as retrieval failures [18, 37, 39]).
For instance, in the Car Navigator system the sportier critique would continue to be
presented as an option even when there are no recommendation candidates remain-
ing that match that criteria. Static critiques (both unit and compound) do not afford
the user any understanding of what recommendation options are available beyond
the current example. In fact, they could lead to unnecessary user confusion and in-
terface redundancy. For instance, users may not all share the same understanding
of what these static labels actually mean (i.e., they are uncertain about what hidden
feature filters might be applied). Inevitably, this means that some users may find
these static compound critiques to be of little use.

McCarthy et. al. [26] argue the need for a more flexible dynamic approach to
critique generation whereby compound critiques are composed on-the-fly, on each
recommendation cycle, in view of presenting applicable critiques that (1) better fo-
cus the recommender, (2) eliminate interface redundancy, and (3) remove user ap-
prehension. They make the point that only compound critiques that actually cover
available recommendation candidates should be presented to the user. Of course, it
is reasonable to apply the same rationale to the generation of unit critiques, as is im-
plemented by the Tweak system [39] to ensure that the user is only presented with
unit critique options that lead to at least one product option. Three approaches to
the dynamic generation of compound critiques have been proposed by (see [26] and
[73], & [12]). All of the approaches provide the user with multi-feature critique op-
tions that expose the user to the feature changes that will result from an application
of that critique (i.e., the recommendation consequence). For example, a user could
apply the critique (more memory, less price, different manufacturer) if they want to
see an alternate PC from that is similar to the current recommendation but cheaper,
with more memory, and from a different manufacturer. All approaches have been
demonstrated to be effective in terms of the benefits they offer to varying degrees
with respect to recommendation efficiency, accuracy, applicability, and usability.
However, the key distinguishing factor between the approaches is the knowledge
they use to influence critique generation (i.e., domain vs user preference knowl-
edge). Further differences and the motivations for each methodology are described
in the next subsections.

13.3.1.3 Limited product-space vision

Reilly et. al. [59] demonstrate how to use only domain-knowledge about available
recommendation candidates to automatically generate compound critiques before
every recommendation cycle in their QwikShop system (see Fig. 13.2). They con-



13 On the Evolution of Critiquing Recommenders 425

centrate on increasing the users depth of understanding about characteristics govern-
ing the remaining recommendation candidates, through raising awareness about the
feature trade-offs and dependencies that exist beyond the current recommendation.
Their so-called dynamic compound critiquing algorithm uses the Apriori associa-
tion data-mining algorithm [1] in order to uncover any frequently occurring feature
relationships amongst the remaining recommendation candidates. Typically, large
numbers of compound critiques of the form (e.g., more resolution, more memory,
and different manufacturer [than the current PC recommendation]) are generated by
this methodology. It is not practical to present the large lists of compound critiquing
options from a user interfacing perspective. Various strategies could be employed
for ranking compound critique options (e.g., support, confidence, leverage, lift, and
conviction3) in order to present the user with k compound critiques alongside the
standard unit critique options. McCarthy et. al. [26] and Reilly et. al. [56] investi-
gate how best to rank compound critiques by their support values (where the support
refers to the proportion of the products that satisfy the critique). They demonstrate
that presenting users with low-support compound critique options provides the best
balance with respect to their likely applicability and their ability to focus the search.

Fig. 13.2: Screen-shot of the QwikShop critiquing system.

It is possible that the compound critique options that are ultimately selected show
limited feature diversity (i.e., their constituent individual features can overlap to a
high degree) due to the high number of remaining options that exhibit the same fea-
ture differences to the current recommendation. The related issue of selecting rec-

3 These are commonly used interest measures for association rules [1].
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ommendation candidates for a user, that are relevant to their preferences but different
from each other, is a familiar problem to those working in the recommender systems
area. In response, a number of diversity-enhancing solutions have been proposed
(see Section 13.3.2). Approaches for dynamically presenting diverse compound cri-
tiques have been investigated [28] and shown to generate feedback options that are
up to 32% more applicable to users. A further potential limitation of this approach is
that it does not take into account a users’ preferences. In the QwikShop system user
preferences influence only how recommendations are selected, and not the feedback
options presented to the user. However, being less tightly bound to the users pref-
erence model, this approach has more potential for the discovery of serendipitous
recommendations.

13.3.1.4 Weak relevance of presented feedback options

As mentioned above there is no guarantee that the compound critiques generated
by Reilly et. al.’s methodology will be relevant to the user as it is influenced only
by product domain knowledge. Zhang and Pu [73] propose an alternative methodol-
ogy that relies on user preference knowledge. Their Multi-Attribute Utility Theory
(MAUT), approach that is similar to that implemented by the SmartClient system
[53, 54, 55], as the means for dynamically generating compound critiques. Their
EasyShop recommender, shown in Fig. 13.3, maintains user preference models
based on their critiquing feedback and these are used to calculate product utility
values for each recommendation candidates.

The product with the highest utility is selected as the next recommendation and
the k products with the next highest utility values are represented by compound
critiques and presented as feedback options. Comparative off-line evaluations [60]
show how these preference oriented compound critiques tend to be more more
aligned with the user’s intended critiquing criteria than the approach described Mc-
Carthy et. al. [26]. In addition, they tend to result in shorter sessions with higher rec-
ommendation accuracy. However, the MAUT approach does suffer from some draw-
backs. First, each MAUT-generated compound critique describes only one product,
and so these critiques offer users limited exposure to the remaining recommendation
opportunities. Secondly, this approach assumes an accurate user preference model.
However, user preferences can be very inconsistent and are often subject to rapid
change (see Section 13.3.2). Finally, it does not promote diversity across the cri-
tiques, and the compound critiques tend to contain a high number of features.

13.3.1.5 Limitations of domain & preference driven approaches

Chen & Pu [12] propose a methodology for dynamically generating compound cri-
tiques that aims to preserve the advantages (while minimising the limitations) of
the previously described alternatives. Their preference-based organisation approach
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Fig. 13.3: Screen-shot of the EasyShop critiquing system (from [73]).

aims to dynamically generate diverse critique options that are adaptive to user pref-
erences and representative of the remaining recommendation candidates.

User preferences are represented using a multi-attribute utility model. A data-
mining algorithm generates the set of compound critiques. These compound cri-
tiques are categories of available recommendation candidates that best match the
user’s preference model. From each compound critique, a selection of products are
extracted for presentation such that they exhibit high trade-off utilities against the
current recommendation and are diverse from each other. The trade-off utility for a
category indicates how well it adapts to the user model. The intuition is that a higher
tradeoff utility category covers products that potentially offer more pros than cons
over the current best candidate (see Fig. 13.4).

13.3.1.6 Restricted user control

In more recent work, Chen and Pu [9], make the distinction between system-
proposed and user-motivated critiquing approaches (see Fig. 13.5). Up to this point
we have concentrated our discussion on what they refer to as system-proposed com-
pound critiques whereby the presented critiques are not defined by the user. Chen
and Pu present the example of a user looking for a digital camera with higher res-
olution and more optical zoom relative to the current recommendation. Suppose
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Fig. 13.4: Illustrating the preference-based organisation approach to critique pre-
sentation (from [12]).

there is no suggested compound critique matching the user’s current requirements,
even though the proposed critiques can give them some information about subse-
quent recommendation options (e.g. greater screen size & more memory). At this
point, they can only apply unit critiques to one feature at a time; at the risk of being
involved in longer interaction cycles and lower levels of decision accuracy. They
suggest that this limitation could be addressed by allowing users the flexibility to
define their own compound critiques. The assumption is that only unit critique op-
tions that cover subsequent recommendation options are presented to the user (i.e.,
dynamic unit critiques). The user-motivated critiquing approach invites the user to
make one or more critique selections over any combination of these category (i.e.,
compound critique) options.

Apt Decision, proposed by Shearin & Lieberman [64] is an example of an early
critiquing system that also implements a user-motivated approach. Users in the
apartment rental market are free to critique multiple features (from a set of 21 pos-
sibilities) relating to recommended apartment descriptions. Chen and Pu take a dif-
ferent approach, affording the user greater control over what preference constraints
influence recommendation. They describe how users have the freedom to specify
their tradeoff criteria in terms of improvement and compromise regarding the rec-
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Fig. 13.5: Illustration of user-motivated critiquing interface taken from [9].

ommendation features. For example, users can indicate that they would prefer to see
a recommendation that is (e.g., X amount cheaper [than the current recommenda-
tion]) as shown in Fig. 13.5.

Fig. 13.6 shows how Apt Decision, by contrast, provides direct access to the pref-
erence profile where the user can easily indicate preference revisions (both positive
and negative). Aside from allowing users to indicate the importance of their fea-
ture preferences, Apt Decision does not support users to define any more-specific
boundary constraints in terms of the extent of the compromises they are willing to
accept. Chen & Pu show that users achieved higher confidence in choice and deci-
sion accuracy through user-motivated critiquing. However, some users still preferred
the system-proposed critiques, reporting that they found them intuitive to use and
quickly led to suitable products when relevant options were presented. SmartClient
[53, 54, 55] also affords greater user-control over preference elicitation. Designed to
help users find airline flights, it has also been used to recommend vacation packages,
insurance policies and apartment rentals. Again, product selection is represented as
a decision theory problem where the user is trying to select a product that optimally
satisfies their preferences. Choosing the best product is often a trade-off problem,
where the user must decide how and if he should compromise on some product fea-
tures in order to optimise others. SmartClient employs critiques as soft constraints.
The interface allows the user to directly construct a value function (by specifying
weights) for each attribute and the recommender combines this with the constraints
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Fig. 13.6: Screen-shot of the Apt Decision user-motivated critiquing interface
adapted from [64].

to compute a utility for each attribute and product. The system presents a ranked
list of the best products with the highest utility. When the user revises his prefer-
ences, either through the addition of another critique or by changing its weight, the
products are re-ranked to reflect the updated utilities.

13.3.2 Retrieval Challenges in Critique-Based Recommenders

Irrespective of the type of critiques that are used (e.g., unit/compound), or the man-
ner in which the critiques have been generated (e.g., static versus dynamic, system-
proposed vs user-motivated), recommendation success is heavily influenced by user
critiquing behaviour. As an example, we mentioned earlier that users may over-
critique a feature (e.g., price), and find that they are presented with recommenda-
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tions where none of their other feature preferences are satisfied [39]. While little can
be done to control how the user chooses to apply critiques, there are some retrieval
challenges that can be avoided in view of improved recommendation performance.
In this section we outline a number of these and briefly discuss how some of them
have already been addressed.

13.3.2.1 Preference inconsistency and longevity

The preference model behind the FindMe system is a feature vector obtained from
the entry example along with the user’s initial high-level feature constraints. The
application of a critique will update the model with the most recent feature cri-
tique and temporarily remove those restaurants that are incompatible with it from
the recommendation candidates. The remaining restaurants are then sorted using a
hierarchical sort on their similarities to the preference model.

As mentioned earlier in Section 13.2, users cannot be relied upon to provide con-
sistent feedback throughout the course of a recommendation session. Traditional
critique-based recommenders (e.g., RentMe, Entrée) focus on the current critique
and the current recommendation, without considering the critiques that have been
applied in the past. This can also lead to retrieval failures. Many users are unlikely
to have a clear understanding of their requirements at the beginning of a recommen-
dation session. As a result users may select apparently incompatible critiques during
a session as they explore different areas of the product space in order to build up a
clearer picture of what is available. For example, a given cycle may find a prospec-
tive digital camera owner looking for a camera that is cheaper than the current e500
recommendation, but later may ask for a camera that is more expensive than another
e500 recommendation.

Apt Decision [64] maintains more flexible user preference models of user cri-
tiques. A key differentiator between it and others is that it has separate positive
and negative preference models which are visible and accessible to users. It also
supports preference-based comparisons of apartments from which further implicit
preference information is gathered and added to the model. Shearin & Lieberman
argue that learning an accurate profile is more beneficial than trying to constrain the
search-space based on user preferences [64]. If the search-space is over-constrained,
users will be unaware of the other potential options that exist containing features that
they might be willing to compromise on. Instead, relaxing constraints allows users
to explore the product space more, giving the recommender the opportunity to learn
more preferences and make better recommendations.

The SmartClient system also treats applied critiques as explicit representations
of user preferences. Both employ constraint solvers to obtain optimal solutions.
User preferences in the form of critiques are modelled as constraints in the CSP
formalism. An agent constantly observes the users modifications to the expressed
preferences and refines the elicited model to improve solution accuracy. Zhang &
Pu [73] describe a MAUT-preference model that adjusts the utility of feature pref-
erences based on a user ’s critiquing feedback. Recommendations that maximize
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overall preference utilities are subsequently retrieved. In similar work, Chen & Pu
[12] describe a MAUT-preference modeling approach whereby a user can specify
their tradeoffs by directly manipulating criteria.

Reilly et. al.’s incremental critiquing [58] approach maintains a user preference
model which is made up the actual critiques that have been applied by the user so
far. The intuition is that the critiques applied so far provides a representation of the
user’s evolving requirements. To maintain accuracy of the user model inconsistent
critiques are eliminated, as are all existing critiques for which the most recent cri-
tique is a refinement. When retrieving recommendations priority is given to those
candidates that: (1) satisfy the current critique; (2) are similar to the previous rec-
ommendation; and (3) satisfy a large proportion of previous critiques. 4 Given two
candidates that are equally similar to the previously recommended case, their algo-
rithm will prefer the one that satisfies the greater number of recently applied cri-
tiques (i.e., that which returns the higher compatibility score). Consequentially, they
report session-length reductions of up to 70% [58].

Finally, Nguyen & Ricci have more recently motivated the need to maintain al-
ternate preference models that distinguish between long-term and session-specific
user preferences. They propose a methodology for integrating both kinds of prefer-
ence information in order to generate personalised recommendations [41]. Session-
specific preferences include both contextual preferences (e.g., a restaurant open at
the time in question or within proximity of the user) and product feature prefer-
ences (e.g., a cheap chinese restaurant). Long-term user preferences [44] refer to
information (about the user) which persists along a relatively long timespan (i.e.,
through many consecutive recommendation sessions). These preferences are typi-
cally elicited at registration time, and revised later through continued system use.

13.3.2.2 Diminishing choices & unreachability

As described earlier, early critique-based recommenders applied critiques act as
temporary filters over the remaining available product options and all critiqued rec-
ommendations are eliminated from further consideration. McSherry & Aha uncover
a potential drawback - a problem they refer to as the diminishing choices problem
[40]. They argue that by preventing users from navigating back to products they cri-
tiqued earlier can result in retrieval failures when the only acceptable product option
has been eliminated. They present the example shown by Fig. 13.7 where a user is
presented with Case 1 (i.e., a 3 bedroom detached property in location A). Suppose
that the user would prefer a 4 bedroom detached property in that same location. As-
suming that features are equally weighted and the similarity between two cases is
the number of matching features, a critique over the bedroom feature (i.e., > Beds)
would see the user presented with Case 2. Realising that there is no case that will
satisfy all of their requirements the user may then which to re-evaluate Case 1 how-

4 In so doing they are implicitly treating the past critiques in the user model as soft constraints for
future recommendation cycles; it is not essential for recommendations to satisfy all of the previous
critiques, but the more they satisfy, the better they are regarded as recommendation candidates.
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ever this has been removed they have no choice but to consider Case 3 instead (or
re-start their recommendation session).

Fig. 13.7: Illustrating the diminishing choices problem that can result as a conse-
quence of eliminating critiqued recommendations [from [40]].

On the contrary, the unreachability problem [40, 18] refers to the consequence of
not eliminating previous recommendations. In [40] McSherry & Aha also demon-
strate that this can potentially lead to the situation whereby acceptable products
that satisfy the user’s requirements, if any, will never be retrieved. This problem is
well illustrated by Fig. 13.8 where a user is sequentially presented a recommenda-
tion from the catalogue of options shown, and on the fourth critique application is
brought back to the initial recommendation without ever being presented with Case
5. An important point here is that recommendation retrieval in this instance is influ-
enced only by the most recently applied critique; that is, the initial query and any
previous critiques are not considered.

Fig. 13.8: Illustrating the unreachability problem that can result as a consequence
of not eliminating critiqued recommendations [from [40]].

The Tweak system described by McSherry & Aha [39] implements the progres-
sive critiquing approach, which like incremental critiquing [58] involves maintain-
ing a history of a user’s previous critiques. The recommendation retrieved in re-
sponse to a user’s critique must also satisfy any previous critiques and constraints
specified by the initial query. Fig. 13.9 shows how a recommendation option sat-
isfies a users set of current constraints which consists of their initial query (i.e.,
make=Dell and price <= 1000) and their previous critiques (i.e., type=laptop and
< screen size). Note that type=laptop is the only constraint provided by the user at
this point that is not satisfied by the current recommendation. The progressive cri-
tiquing approach retrieves the most similar product to the current recommendation
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and critique, prioritising those preferences contained in the preferences model. This
model records explicit (E), assumed (A), and predicted (P) preferences for feature
values. Here explicit preferences refer to those set out by the initial query and/or
as the result of subsequent replacement critique applications on nominal features
(e.g., type=laptop). Assumed preferences refer to preferences decisions that are im-
plicitly made in relation to features such as price (i.e., where is may be reasonable
to assume that less-is-better (LIB)) and memory (i.e., more-is-better (MIB)). And,
predicted preferences refer to those features where users tend to have an ideal value
and would prefer values that are close to this (i.e., nearer-is-better (NIB))[37, 35].

Fig. 13.9: Illustrating the knowledge available in a typical progressive critiquing
session; current recommendation, current query, and user preferences [from [39]].

Unlike incremental critiquing, revisions to the preference model within the
Tweak system are made on the basis of the most recent critiquing event without
reference to the history of critique applications on that feature. That is, the applica-
tion of a make=Sony critique replaces the value Dell within the preference model
with Sony. For the NIB features, the preferred value is predicted to be that nearest to
the critiqued recommendation (e.g., a < screen critique would result in setting the
screen value to 14). Incremental critiquing, by contrast, accounts for the fact that a
user may have been presented with a number of Dell options over a series of prior
recommendation cycles but was content to accept it at that point (i.e, they prioritise
other critique changes). The compatibility measure used by incremental critiquing
takes into account each candidate product’s similarity to the current and the number
of previous critiques it satisfies. However, a potential problem here is that the ex-
istence of a highly similar product may play more influence and be retrieved over
alternatives that satisfy more critiques. Similar to Nguyen & Ricci [41], Salamo et.
al. [63] addresses the issue by using similarity to the critiqued recommendation as
a secondary retrieval criterion.

In agreement with Shearin & Lieberman [64], McSherry suggests the system’s
current understanding of user preferences should be accessible to the user. He feels
this is especially important in the interest of avoiding what he terms progression
failures (i.e., the non-existence of a product that satisfies all of the user’s require-
ments). In Shearin & Lieberman’s Apt Decision system, the user has constant and
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direct access to their preference model. While this provides the user with some depth
of understanding as to why certain recommendations are retrieved, it is still open
to progression failures. McSherry takes an interesting explanation-based approach
where in the event that all of the preference constraints are not met by any recom-
mendation candidate the user is provided with an explanation of what compromises
might be appropriate. A more recent version of the progressive critiquing algorithm
[40] concentrates on addressing the unreachability problem. The key difference in
this implementation of progressive critiquing is that previously recommended (i.e.,
critiqued) items are not eliminated, as is the case with the incremental approach.

13.3.2.3 Refining recommendation retrievals

Although the majority of critique recommenders, such as QwikShop, EasyShop,
CritiqueShop5, Entrée, and RentMe concentrate on retrieving only one candidate
in each recommendation cycle, others like Apt Decision and MobyRek present the
user with a set of recommendations to choose from. Refining recommendation can-
didates can be challenging. Early work in this area introduced the EntréeC hybrid
recommender system [5, 6] which adds a collaborative filtering (see Chapter 5) com-
ponent to Entrée [7], creating a knowledge-based/collaborative cascade hybrid. Like
Entrée, it uses its knowledge of restaurants to make recommendations based on the
user’s stated preferences. The collaborative recommender is called upon to refine
the competing recommendations returned by the knowledge-based recommender.
Key benefits for using the cascading approach here are that it is more efficient than,
for example, a weighted hybrid that applies all of its techniques to all items, since
the cascade’s second step focuses only on those items for which additional discrim-
ination is needed. Furthermore, the cascade is, by nature, tolerant of noise in the
operation of a lesser-priority technique, since results returned by the high-priority
recommender can only be refined, not overturned. Experiments with EntréeC indi-
cate that collaborative filtering does improve the performance over the knowledge-
based Entrée system acting alone. In [6] Burke discusses the trade-offs that exist be-
tween alternate recommendation techniques and reviews some of the combination
methods that have been used in other conventional hybrid recommender systems,
that also would be relevant to critique-based recommenders (see also Chapters 22,
2, and 24).

Faltings et. al.[15] argue that a key design question in critiquing systems is what
recommendations to present users in order to best help them locate their most pre-
ferred solution. They propose two key requirements: (1) that the recommendations
must stimulate the user to express further preferences (i.e., by showing the range
of alternatives available), (2) that presented recommendations must contain the so-
lution that the user would consider optimal (if the currently expressed preference
model was complete) so that they could select it as a final solution. The dynamic
critiquing approach attempts to address these requirements through the provision of

5 http://www.critiqueshop.com/
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compound critiques that describe where the user can navigate to. However, systems
that rely on unit critiques may find the low feature-level feedback it provides can
be insufficiently detailed to sharply focus the next recommendation cycle [33]. For
example, by specifying that they are interested in a digital camera with a greater
resolution than one of the presented recommendations the user is helping the rec-
ommender to narrow its search but this may still lead to a large number of available
candidates to chose from. Instead a combination of critiquing and value elicitation
feedback modes (e.g., Show me a 5 megapixel camera) is likely to reduce the num-
ber of product options much more effectively in this instance.

McGinty & Smyth [32, 33] demonstrate how critique-based recommenders can
suffer from protracted recommendation sessions, when compared to value elicita-
tion approaches. As a potential solution they describe a novel switching strategy
whereby the mode of retrieval is adapted in accordance with user critiquing be-
haviour. They demonstrate how their Adaptive Selection strategy, offers potential
dialogue reductions of 60% over standard similarity-based and diversity-enhanced
retrieval approaches.

In more recent work, Chen and Pu [9] describe their example critiquing approach,
recognising that user preferences are often context dependent. Here, multiple rec-
ommendations are presented and the user chooses one to critique. They take a
preference-based organisation [12] approach to recommending the highest utility
products and also allow users to freely compose compound critiques over multi-
ple features which indicate the simple and complex trade-offs they are prepared to
make.

13.3.2.4 Multi-user preference handing

The task of recommending items/products to a group of users presents a number of
challenges (see for example, Chapters 22, 18, 21 and 16 in addition to the works
of [3], [47], and [24]). Early work in this area by Jameson [20] highlights a num-
ber of these (summarised by Fig. 13.10) and considers how they could be dealt
with within the context of a prototype group recommender: The Travel Decision Fo-
rum. While these systems are susceptible to the same problems as single-user rec-
ommenders (e.g., preference inconsistency and volatility) other key distinguishing
characteristics include the need to promote mutual awareness of individual pref-
erences amongst group members, and consensus negotiation (see Section 13.4 for
an overview of how the interface plays a critical role here). While the notion of
generating a set of recommendations to satisfy a group of distributed users with
potentially competing interests is challenging in itself, a further challenge is how
to record and combine the preferences (and resolve conflicts) for multiple users as
they engage in live synchronous recommendation dialogs [29]. Key objective ques-
tions here include: (1) how can multi-user interaction be managed to facilitate the
harvesting of feedback and preferences from multiple simultaneous users?, and (2)
how to dynamically maintain models of individual and group preferences with a
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view to influencing recommendation such that the resulting suggestions are likely
to satisfy both the individual and the group?

Recent work by McCarthy et al. [29, 31] has concentrated on preference aggre-
gation and consensus negotiation within a critique-based, group recommendation
architecture. They introduce the Collaborative Advisory Travel System (CATS) de-
signed to provide assistance to a group of friends trying to arrive at a consensus
in relation to planning a skiing vacation together. The system supports both indi-
vidual and multi-user feedback modes through the use of both dynamic unit and
compound critiques, and individual and group preference models. It is reasonable
to assume that an individual user may need to revisit a previously seen recommen-
dation in this kind of a system in the light of subsequent feedback from other group
members. For example, a user may later be willing to compromise on the price
of a holiday in the knowledge that other members are also willing to do so. CATS
supports this by facilitating the generation of both proactive as well as reactive rec-
ommendations. Reactive recommendations refer to those suggestions presented to
the individual user, in response to their own critiques based on their personal user
model. Proactive recommendations, by contrast, are automatically generated by the
system to the group when a recommendation candidate satisfies an unusually high
proportion of group preferences; irrespective that a member may have previously
rejected this candidate. In addition, individual group members can also identify to
the system what they feel are potential recommendation candidates that may be of
interest to the whole group. Preference inconsistencies within individual user pref-
erence models are managed through incremental critiquing. The group model may
contain conflicting preferences and the objective when generating recommendations
is that these inconsistencies are minimized by preferring candidates that are maxi-
mally compatible multi-user preferences.

Fig. 13.10: Challenges facing group recommendation architectures as summarised
by Jameson [20].

To the best of our knowledge (at the time of writing) there is no other work in the
area of critique-based recommendation that has concentrated on modeling multi-
user preferences. As such, in the interest of completeness, we draw some compar-
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isons with typical (non-critique-based) group recommenders. Existing multi-user
negotiation/collaborative applications range from virtual environments [50] to sales
by action [16]. For the most part of these systems assume an automated negotiation
that is based on existing static individual preference models in the system. The live
interactive nature of the CATS system renders the use of static preference models
inappropriate. In CATS individual preference models tend to be especially volatile
as a consequence of the influence of multi-user feedback. Other research in the gen-
eral area of group recommendation includes the MusicFX System [25]. MusicFX
is a group preference arbitration system automatically adjusts the selection of mu-
sic playing in a fitness center to best satisfy the musical tastes of a group in the
same environment. PolyLens [46] is a generalization of the MovieLens system that
recommends movies to groups of users though preference modelling. In contrast, it
uses collaborative filtering which draws on the historical music preferences of other
users in similar contexts. Like CATS, the Travel Decision Forum [20] helps a group
of users to agree on a vacation that they are planning to take together. However,
it concentrates on supporting users who are not co-located. In other related work,
Plua & Jameson [49] propose a group recommendation approach where users can
get help from others in their group about preferences when their domain knowledge
may be incomplete. Unlike CATS, this system was intended for use by a group that
interact asynchronously rather than simultaneously.

13.4 Interfacing Considerations Across Critiquing Platforms

Different domain and platform characteristics present recommender interface de-
signers with very different technical and usability challenges. In this section we con-
centrate on design decisions that have been implemented within existing critique-
based recommenders (see also Chapter 16). Unsurprisingly, a common theme is how
best to manage transparency and control, while also ensuring the level of cognitive
and interaction effort required of the user is kept to a minimum.

13.4.1 Scaling to Alternate Critiquing Platforms

While the majority of critique-based recommenders assume desktop web-based
platforms (e.g., The FindMe Systems, QuickShop, EasyShop, CritiqueShop, AptDe-
cision, SmartClient), critiquing has also been demonstrated to be an effective in-
terfacing methodology across other platform settings. For instance, Ricci & Nguyen
[61, 43, 62] concentrate on interface design and evaluation for critique-based recom-
menders targeted at mobile devices. They point out that very few web-based systems
are designed for mobile users; none of them being conversational. Persistent direct
manipulation of the interface is not practical here. Key challenges include: that these
devices have much smaller screen-sizes, less keypad functionality than traditional
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PDA’s (e.g., Palm or Pocket PC), and limited computing power. Their MobyRek mo-
bile portal interfaces with a web-based recommender that helps users make travel
plans in advance. Essentially, MobyRek offers the on-tour support required when a
user is traveling to or has arrived at their destination.

Staying in the mobile space, Fig. 13.11 illustrates how the CritiqueShop interface
has been scaled to the iPhone. The key considerations influencing design were the
limited screen area and increased opportunity for direct user manipulation (bearing
in mind that the iPhone has a touch-sensitive interface). Another design decision
made here was to move away from text-based compound critique representation,
preferring instead to present more visual alternatives (this is discussed later).

Fig. 13.11: Screen-shot of the CritqueShop visual interface for the iPhone
[www.critiqueshop.com] .
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In other work, McCarthy et. al. [30] describe how the CATS group recommender
operates on the interactive, multi-user MERL DiamondTouch6 table-top device. The
DiamondTouch table is a multi-user, touch-and-gesture-activated screen for support-
ing small group collaboration. Users interact with the display simultaneously (i.e.,
without having to take turns), browsing through the potential ski holiday options and
critiquing recommendations returned to them (i.e., recommendations that are influ-
enced by the evolving individual and group member critiquing patterns, as discussed
earlier). Users can also copy and paste potential options of interest to other users, as
well as confer on a face-to-face basis about their preferences as they interact in this
unusual manner.

Fig. 13.12: Illustrating the illustrating the CATS interaction with the Diamond
Touch.

13.4.2 Direct Manipulation Interfaces vs Restricted User Control

A fundamental consideration that has influenced the design of critiquing interfaces
is the importance of finding the right balance between eliciting precise preference
information and the cost associated with acquiring it. Early critique-based recom-
menders offered very restricted user control (i.e., static critiques were presented
by the system and the user could only select one to apply). Later systems, such
as QwikShop, EasyShop and CritiqueShop, offer the user a little more interfacing
control through the provision of alternate (i.e., unit/compound) critiquing modes to
choose from, but do not allow the user to directly revise their preference model (e.g.,
Apt Decision), or set explicit constraint boundaries on certain features (e.g., as is the
case in SmartClient).

Chen and Pu [11] demonstrate how their hybrid interface supports both user-
motivated and system-proposed critiquing and enables users to achieve a higher

6 The DiamondTouch product line has moved operations from the MERL research lab and into a
separate company called Circle Twelve Inc.
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level of decision accuracy and interfacing satisfaction, while consuming less cog-
nitive effort, than that of a standalone system-proposed critiquing interface. Instead
of suggesting pre-computed critiques for users to choose, the self-motivated cri-
tiquing approach focuses on showing examples and stimulating users to make unit
or compound critique selections over any combination of features as they wish. Im-
portantly, users also have the freedom to specify their tradeoff criteria in terms of
improvement and compromise regarding the individual features, and see a new set
of products better approaching their ideal choice (see previous Fig. 13.5). McSherry
[38] seeks a middle-ground by introducing the notion of direct, user-motivated re-
laxation critiques in addition to system-generated relaxation mechanisms in a pro-
gressive critiquing recommender. This mixed-initiative approach implemented by
the Tweak 2 system allows the user to request an item like the current recommenda-
tion but with no restriction on the value of a particular (previously critiqued) feature
of their choosing.

Mobile platforms present the user with a very limited control and interfacing li-
cense [42]. In addition, telecommunication service costs tend to discourage users
from engaging in lengthy interaction sessions. In this space it is usual to measure
efficiency by the number of clicks, scrolls, and keypad actions, the user needs to
perform. User-control is often sacrificed in view of keeping costs low (i.e, time
and money). Two key goal requirements that influenced the adoption of critiquing
within MobyRek as a suitable direct feedback mechanism were: (1) useful prefer-
ence information needed to be captured within a very small screen area, and (2) the
user-system interaction had to be low-cost; that is, requiring minimal time to obtain
a useful recommendation. Evaluations demonstrate that users are typically recom-
mended acceptable recommendation options7 within 2-3 cycles/clicks [42, 61].

13.4.3 Supporting Explanation, Confidence & Trust

There are a number of Chapters in this handbook that are relevant to this heading
(see for example, Chapters 20, 14, 15, 16, and 25). A recommender system’s abil-
ity to establish trust with users and convince them of its recommendations, such as
which camera or PC to purchase, is highlighted as a crucial design factor [51, 52]. If
users perceive it to be capable and efficient at assisting them to make decisions, they
are more likely to return to the interface. A number of researchers have developed
design principles and strategies for building trust in critique-based recommenders
through the explanation of recommendations to users (e.g., see [52, 57, 66]). Gen-
erally a product recommender may use explanations to explain: (1) the reasons why
a particular product was (or was not) recommended [36], and/or (2) what oppor-
tunities remain: that is, “where can I get to from here”, when presented with an
unsuitable recommendation [57]. In the first instance, explaining why a product was
recommended can be simply managed by showing the user the information con-

7 For the purpose of the evaluation a mobile restaurant application is presented whereby location
information is collected using the GPS receiver connected via Bluetooth



442 Lorraine McGinty and James Reilly

Fig. 13.13: The MobyRek Mobile Restaurant Recommender [61].

tained in the user model, as is the case in with Apt Decision (see Fig.13.6) by way of
justification [66]. McSherry [36, 37] highlights the greater importance of explaining
the cause of any retrieval failure when a recommendation does not satisfy a user’s
requests. He describes a mixed-initiative approach to recovery from retrieval failure
by highlighting subsets of query features that cannot be satisfied such that the user
might revise their constraint boundaries (e.g. “there are no cameras with price less
than e300 and resolution greater than 4 mega-pixels”).

Reilly et. al. [57] argue that dynamic compound critiques help the user to better
understand the recommendation opportunities that exist beyond the current cycle
by helping them to appreciate common interactions between features (i.e., explana-
tion through increased system transparency [66]). In many recommender domains,
where the user is likely to have incomplete knowledge about the finer details of the
feature-space, compound critiques will help to effectively map out this space and
minimise decision error. For instance, with standard critiquing in the digital cam-
era domain a user might naively select the [Price,<] unit critique in the mistaken
belief that this may deliver a cheaper camera that satisfies all of their other require-
ments. However, reducing price in this way may lead to a reduction in resolution
that the user might not find acceptable and, as a result, they will have to backtrack.
Hadzic & O’Sullivan [18] highlight a further potential problem here - that is, cri-
tiques suffer from a lack of symmetry that may prove to be counter-intuitive to a
user. So, attempting to undo a critique by applying its opposite may not work like
using the back button on a web-browser. This problem is less likely to occur if the
compound critique {[Price,<], [Resolution,<]} is presented because the user will
come to understand the implications of a price-drop prior to selecting any critique.
In addition, QwikShop reserves an area of the interface which provides further ex-
planation support. The user is given information about the number of products that
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relate to each presented critique option and the feature value ranges for each that it
covers as illustrated by Fig. 13.2.

Providing system transparency through explanation allows users to more confi-
dently assess the reliability of a system (i.e. increased user-confidence). Comple-
mentary to the concept of explanation is the concept of system confidence in a rec-
ommendation. In order to fully maximise user confidence in a recommendation, the
system itself should be capable of assessing its own confidence, or lack thereof, in
the recommendation. Reilly et. al [59] propose a methodology for modeling confi-
dence at the system-level designed to work with critique-based recommenders. By
informing the user of how confident the system itself is in a recommendation, the
user can better judge how much trust to place in the recommendation. They propose
a feedback influenced model that calculates measures of system confidence at both
the feature and product-levels. A low system confidence score for the price feature,
for example, would translate that the system is uncertain if the recommendation
focus is concentrating on the correct price range for that user. Once users have a
clearer understanding of those features needing clarification, they might be more in-
clined to refocus their feedback (i.e, refine and improve their preference model). The
authors also demonstrate how product-level confidence scores supplement existing
similarity knowledge, in order to guide the recommender towards more confident
suggestions.

13.4.4 Visualisation, Adaptivity, and Partitioned Dynamicity

While Chapter 17 highlights the benefits of using visual interfaces in product rec-
ommenders here we concentrate on critique-based product recommenders. Zhang
et. al. [72] introduce a visual interface where compound critiques are represented
by meaningful icons as opposed to through plain text. Fig. 13.14 shows an example
of how a single compound critique is represented by both approaches. Their studies
demonstrate that users are more likely to apply visual compound critiques over the
textual form (i.e., recording application frequency improvements of nearly 50%),
and subsequently benefit from reduced interaction times (e.g., reductions in session
length of up to 53%)8. Fig. 13.11 illustrates how the visual interface proposed by
Zhang et. al operates on the iPhone.

Other research has demonstrated the power of highly adaptive visual interfaces
that support the dynamic change of interface icons in response to user critiquing
feedback. Specifically, Averjanova et. al. [2] demonstrate how recommendation ef-
fectiveness (e.g., average session length reductions of 17%) and user satisfaction can
be improved in the MobyRek system [61] through the integration of a map-based vi-
sualisation interface. Similarly, the usability studies of CATS group recommender
[30] show that the dynamic adaptive interface promotes the mutual awareness of
changing multi-user preferences. A key design consideration common to both sys-

8 Results refer to data gathered using a version of the system that operated over a laptop dataset.
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Fig. 13.14: Illustrating textual and visual representations of a single compound cri-
tique (from [72]).

tems was how best to address the problem of limited critique influence on recom-
mendations whereby it was hard for the user to see the effect of a critique. This
problem was identified in both cases through real-user usability evaluations. Both
systems address this in a very similar way though the the use of dynamic interfacing
components (i.e., icon resizing and colour coding recommendations). For example,
in CATS if the level of interest in a particular holiday resort is high amongst the
group then this resort is resized to be larger than those that are of lesser interest.
Another concern reported by users of the early MobyRek interface was limited dis-
tance perception whereby it was difficult for users to compare distances to restau-
rants from their current position as they were on the move. A further extension in the
revised MapMobyRek System included a map-based interface to address this prob-
lem. Other extensions included colour-coding to represent the degree of suitability
of recommendation and the functionality to support side-by-side item comparisons.

Fig. 13.15: Illustrating the visualisation interface of the MapMobyRek Mobile Rec-
ommender [2].

Like MobyRek, CATS implements a map-based interface, however an additional
design consideration was how best to communicate progress towards consensus
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agreement to all group members. This is effectively achieved through the use of
highly visual color-coded consensus barometers that summarize evolving user opin-
ions on competing candidate vacation options. A further concern when designing
adaptive interfaces that change rapidly in-session is the risk of user confusion. Qwik-
Shop, EasyShop, CritiqueShop partition the dynamic and static elements of their in-
terfaces [69]. This was also a key design consideration in the CATS recommender
where it was necessary to keep members aware of each other’s preferences and mo-
tivational orientations, without confusion. This is managed through the use of in-
tuitive and distinct, shared and individual spaces and careful design of visual cues.
In addition, a range of dynamic interfacing components are introduced to commu-
nicate information about evolving group preferences and monitor progress towards
reaching a group consensus.

13.4.5 Respecting Multi-cultural Usability Differences

It is well documented that aspects of a user interface that are appropriate for one cul-
ture may not be suitable for another (see for example, [21], [23], [45]). In recent re-
lated work, Chen and Pu present a comprehensive cross-cultural evaluation of web-
based critiquing interfaces [13]. Specifically, they compare user responses to two
strategies for displaying e-commerce (i.e, laptop) recommendations: (1) as a ranked
ordered list of items where each item has an explanation as to why it was retrieved,
and (2) as a preference-based organization, whereby groups of recommendations
are categorised and summarized in terms of their collective differences/trade-offs
relative to the top ranked product. Very briefly, subjective evaluations over 120
participants (60 western culture/60 oriental culture) have shown that organisational
view had the most impact on all users, in terms of how they perceived recommen-
dation quality and their overall satisfaction. For a more comprehensive breakdown
of comparisons regarding subjective perceptions please refer to [13].

13.5 Evaluating Critiquing: Resources, Methodologies and
Criteria

In this section we first point to some of the resources that have been commonly
used for evaluation purposes in this area, and provide details of where they can be
accessed. Next, we summarise the typical evaluation methodology and outline some
of the key evaluation criteria that are commonly used.
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13.5.1 Resources & Methodologies

Those starting out in this area should be aware that a large number of the datasets
that have been used for evaluation purposes in the published research are freely
available for download9. Examples include the Travel (e.g., as used by [26, 58, 34]),
PC (e.g., as used by [58, 39, 40, 34]), Whiskey (e.g. as used by [34]), and Digital
Camera (used by [27]) datasets. The Entrée data is also freely accessible10. In other
work, apartment [55, 73] and ski-holiday [29] datasets have also been used but these
are not publicly available.

In general, most evaluation methodologies that are common to recommender sys-
tems evaluation can be applied here (see Chapters 8 and 15). In the ideal case, live
usability studies and performance evaluations should be ultimately carried with real
users when evaluating the performance (both subjective and objective) of critique-
base recommenders. However, it can be difficult to recruit sufficient numbers of
volunteers to participate in multiple trials. As a solution here, it is common for sim-
ulated studies to be conducted (the results of which are expected to be later validated
in a real-user setting) across a range of different datasets (such as those mentioned
earlier), and artificial user profiles. If sufficiently well designed, these off-line simu-
lations can be reliable indicators of real-world performance. A common methodol-
ogy that has been widely adopted in the literature on critique-based research when
conducting performance evaluations is the leave-one-out methodology [33]. Very
briefly, by this methodology, each product of a dataset is set as a recommendation
target and is temporary removed from the dataset. A subset of its features is cho-
sen as the initial query. In each recommendation cycle the critique applications are
applied such that they concur with the features of the target. The simulated rec-
ommendation session ends when the most similar product to the ideal product is
recommended. Importantly, experimental setups should always have a correspond-
ing control setup (e.g., using an alternate retrieval strategy, or feedback approach)
to allow for the appropriate assessment of the significance of results. Unfortunately,
the only acceptable way to evaluate usability is through real-user interaction trials.

13.5.2 Evaluation Criteria

Common objective performance measures that have been used by evaluations of
critiquing research include:

Efficiency: Positively demonstrated by reductions in session length (i.e., the num-
ber of critiquing cycles/interactions) that a user engages in before they find their
target product (see [39, 40, 73, 38, 72, 13, 61, 58, 60, 2, 27]) , the amount of time
taken to reach a target recommendation [10, 13, 2, 68].

9 URL - http://cbrwiki.fdi.ucm.es/wiki/index.php/CaseBases
10 URL - http://kdd.ics.uci.edu/databases/entree.data.html
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Accuracy: There are many ways to measure correctness. Some of these include:
Critique Prediction Accuracy: Refers to the number of times a presented critique
matches that which was selected by a real user [12, 60, 6].
Critique Application Frequency: Refers to the proportion of the time critiques
are applied by the user (i.e., their relevance to the preference model) [73, 72, 60,
11, 27].
Recommendation Accuracy: Measured by Chen & Pu in [12] as the % of cy-
cles where following the application of an applied critique the target recom-
mendation was reachable (i.e., located in the recommended products), and by
[61, 40, 37, 68] as the % of successful sessions.
Decision Accuracy: Refers to the proportion of the time where the recommen-
dation that was ultimately accepted by the user was actually the best solution.
Measured in [9, 11] as % of cycles where the user changed their mind once they
were shown all the alternatives. Measured by [44] as the degree of position dis-
placement.

Interaction Effort: Usually refers to average session click-distance or the number
of interactions (i.e., critiques) to arrive at a given target. Assuming one critique
is applied in each cycle will be equivalent to measuring session length [12, 10,
13, 11].

Real-user usability performance evaluations of critiquing research has commonly
surveyed participants and sought their subjective feedback on a Likert scale over
criteria such as: (see for example, [9, 10, 62, 61, 13, 60, 26, 11, 2]).

System Design:
System Transparency: Does the user understand why recommendations were made?
User Control: Did the user feel that they had control over the specification over their

preferences throughout the interaction?

Competence
Perceived Ease of Use: Did the user find the system easy to use?
Perceived Usefulness: Did the user feel that the system was useful (e.g., relevant

recommendations, good explanations, etc.).
Decision Confidence: How confident was the user that they found the best product for them?
Perceived Effort: How easily did they find the information they were looking for?
Perceived Accuracy: Where the suggestions accurate?

Trust
Satisfaction: How satisfied was the user with the interaction?
Recommendation trust: Did the user feel that the recommender consistently provided

suggestions that were suited to their preferences?

User Intention
Purchase Intention: Would the user purchase this product if given the opportunity?
Return Intention: Would the user return to use the system (over another)?
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13.6 Conclusion / Open Challenges & Opportunities

In this chapter we have presented, a non-technical overview of the evolution of cri-
tiquing research over the past decade. We believe that this could serve as a useful
reference for researchers starting out in this area. We have described the benefits of
the approach as they apply to a number of existing critiquing systems. Key issues
and challenges brought into focus by the community have been discussed in terms
of how advances have been made towards: (1) automated critique presentation in
view of optimising preference acquisition, and (2) the improved retrieval perfor-
mance of critique-based recommenders. In addition, we have presented an overview
of the various design considerations that have influenced the integration of the cri-
tiquing mode of feedback across alternate platforms and user environments. Finally,
we summarised some of the popular evaluation criteria that tend to be used when
evaluating critique-based systems.

Although there has been a considerable level of research activity in the area of
critiquing there are still many open challenges and opportunities. There are far too
many to cover here but by way of concluding the chapter we will highlight a few ex-
amples. First, the majority of existing systems have assumed that users will execute
only positive critiques that in the direction of preferred recommendation items (e.g.,
Show me more like item A, but cheaper). Sometimes it may make sense for a user
to apply negative critiques, such as Do not show me any more like X that are in lo-
cation Y as these are arguably just as important for the system when understanding
the user’s needs and preferences.

There has not been a lot of work on the topic of entry-point decision making,
whereby the focus is on what recommendations to present first (see [15, 41]). Recent
work by Hadzic & O’Sullivan introduced the notion of a critique graph as a formal
basis for reasoning about the set of products that can be reached using critiquing
from a given recommendation. They propose that a useful basis for calculating the
best entry recommendations to select is to use the concept of minimum catalogue
cover (i.e., identify the set of recommendation candidates from which every other
recommendation can be reached if critiqued optimally). It is important to note that
not all recommendations are reachable from a given recommendation candidate. In
a similar vein, the authors describe how certain recommendations can exist that are
not covered by any other product (i.e., that are not reachable through any series
of critique applications). In this situation a useful principle might be to prioritise
inclusion of these in the entry set. This idea has not been implemented or explored
further by existing research as yet, although it has very good promise.

The challenge of modeling user preferences gathered from critiquing feedback
is still a topic that a lot of current research continues to explore. Other approaches
to modeling user preferences and comparative evaluations of existing approaches
would be very interesting. Also, while recent work has looked at the idea of main-
taining separate long-term and short-term preference models [44], there has been no
work that has concentrated on how information might be transferred and maintained
between them, and what the benefits/consequences of doing this might be. The in-
vestigation of further approaches for the aggregation of multi-user preferences is
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another open challenge, as very little work has been carried out in this area to date.
While early work in group critique-based recommenders [29] has demonstrated the
benefits of one such approach in the context of a collaborative environment, assum-
ing synchronous feedback, other opportunities remain. Examples include, the ex-
tension of critiquing to other asynchronous, and/or non-collaborative environments
(perhaps where multiple users may interact in a non co-operative fashion). Such re-
search could lead to the adoption of critiquing as an interaction mode in application
areas currently unexplored by critiquing research such as game-play, for example.
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Chapter 14
Creating More Credible and Persuasive
Recommender Systems: The Influence of Source
Characteristics on Recommender System
Evaluations

Kyung-Hyan Yoo and Ulrike Gretzel

Abstract Whether users are likely to accept the recommendations provided by a rec-
ommender system is of utmost importance to system designers and the marketers
who implement them. By conceptualizing the advice seeking and giving relation-
ship as a fundamentally social process, important avenues for understanding the
persuasiveness of recommender systems open up. Specifically, research regarding
the influence of source characteristics, which is abundant in the context of human-
human relationships, can provide an important framework for identifying potential
influence factors. This chapter reviews the existing literature on source character-
istics in the context of human-human, human-computer, and human-recommender
system interactions. It concludes that many social cues that have been identified as
influential in other contexts have yet to be implemented and tested with respect to
recommender systems. Implications for recommender system research and design
are discussed.

14.1 Introduction

Recommender systems are taking on an important role in supporting online users
during complex decision-making processes by providing personalized advice [7].
Yet, although recommender systems make recommendations based on often sophis-
ticated data mining and analysis techniques, it cannot be automatically implied that
the advice provided by a system will always be accepted by its users. Whether
a recommendation is seen as credible advice and actually taken into account not
only depends on users’ perceptions of the recommendation but also of the sys-
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tem as the advice-giver. The traditional persuasion literature suggests that people
are more likely to accept recommendations from credible sources [99]. Accord-
ingly, it has recently been argued that considering the credibility of recommender
systems is important in increasing the likelihood of recommendation acceptance
[139, 36, 28, 56, 94]. The question is how the credibility of recommender systems
can be enhanced.

Recent research regarding the persuasiveness of technology suggests that tech-
nologies can be more credible and persuasive when leveraging social aspects that
elicit social responses from their human users [88, 36]. This notion emphasizes the
role of recommender systems as quasi-social actors, and thus, persuasive sources of
advice whose characteristics influence the perceptions of their users. Various influ-
ential source characteristics have been investigated in the traditional persuasion lit-
erature based on human-human communication. Most importantly, recent research
in the context of human-computer interaction found that these source characteristics
are also important when humans interact with technologies [36, 37, 91, 108]. With
regards to recommender systems, some studies exist that have investigated the vari-
ous influences of system characteristics when users evaluate systems as well as rec-
ommendations [106, 76, 94, 24, 105]. While these findings provide good examples
of source characteristics that help to develop more credible recommender systems,
still many possibly influential source characteristics have not been examined.

Consequently, this chapter seeks to provide a synopsis of credibility-related re-
search to draw attention to source characteristics which likely play a role in rec-
ommender system credibility evaluations. For that purpose, this chapter will first
give an overview of the source characteristics found influential in traditional in-
terpersonal advice seeking relationships. Then, source characteristics which have
been studied in the context of human and computer interaction and, in particular,
in the recommender systems realm will be discussed. Finally, the chapter identi-
fies research gaps in terms of source characteristics that have yet to be examined
in the context of recommender systems. Overall, by exploring existing findings and
identifying important knowledge gaps, this chapter seeks to provide insights for rec-
ommender system researchers as far as future research needs are concerned. It also
aims at providing practical implications for recommender system designers who
seek to enhance the credibility of the recommender systems they build. Note that
this chapter focuses on perceptions of the recommender system as a whole. The is-
sue of trust in those who provide the ratings used to derive recommendations is dealt
with in Chapter 20 Trust and Recommendations.

14.2 Recommender Systems as Social Actors

Most existing recommender system studies have viewed recommender systems as
software tools and have largely neglected their social role in the interaction with
users. More recent studies, however, argue that computer applications like recom-
mender systems need to be understood as “social actors” [108]. Nass and Moon [91]
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urged that people construct social relationships with machines including computers,
and apply social rules in their interactions with technology. Indeed, a good number
of past empirical studies have shown that individuals form social relationships with
technology and that these social relationships form the basis for interactions with
the technology [38, 81, 89, 92, 100, 107].

Recent recommender system studies also support this “Computers as Social Ac-
tors” paradigm. Wang and Benbasat [134], for instance, found that users not only
perceive recommender systems as having human characteristics and, consequently,
treat systems as social actors, but that such social perceptions influence system eval-
uations. Specifically, their experiment demonstrated that recommender system users
perceived human characteristics such as benevolence and integrity when they inter-
acted with online recommendation agents. Benevolence and integrity are important
dimensions of trust and the users’ trust in agents was found to significantly affect
perceived usefulness of agents as well as intentions to adopt the agents. Al-Natour,
Benbasat and Cenfetelli [3] also argued that online shopping assistants are perceived
as social actors, and that users attribute personality and behavioral traits to them.
Similarly, Bonhard and Sasse [12] insisted that understanding the social embedding
of a recommendation can be a key to generating more useful, trustworthy and un-
derstandable recommendations. In addition, the findings by Aksoy et al. [2] suggest
that the similarity rule is also applied when humans interact with recommender sys-
tems. The study found that a user is more likely to use a recommender agent when it
generates recommendations in a way similar to the user’s decision-making process.
These studies all support the need for a social focus in recommender system re-
search. Recommender systems need to be understood as communication sources to
which theories developed for human-human communication apply. One set of such
theories relates to the impact of source characteristics on persuasion likelihood and
outcomes. The fundamental assumption of these theories is that credible sources are
more effective persuaders.

14.3 Source Credibility

Credibility is not an intrinsic characteristic of a source; rather, the decision regard-
ing a communicator’s credibility depends on how the message recipient perceives
the source [99, 77, 117]. Thus, source credibility can be defined as judgments made
by a message receiver concerning the believability of a communicator [37]. Reviews
of source credibility studies by McGuire [75] concluded that a more credible source
is preferred and also more persuasive. A good number of past studies confirm that
source credibility is positively correlated with influence on message recipients’ atti-
tudes and behavioral intentions as well as behaviors [42, 46, 64, 118, 119].

Credibility is generally described as comprising multiple dimensions [13, 39,
102, 117]. Although the literature suggests various dimensions of credibility, most
researchers agree that it is comprised of two key elements: trustworthiness and
expertise [99, 37, 36, 109]. Both trustworthiness and expertise have been studied
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extensively and have also been addressed in the context of recommender systems
[140].

14.3.1 Trustworthiness

Trustworthiness of a source refers to aspects such as character or personal integrity
[99]. Intentions are also seen as instrumental in determining the trustworthiness
of a source. A source whose intent it is to persuade is perceived as less trustwor-
thy than one without persuasive intent [102]. Consequently, trustworthiness is of-
ten described by terms such as well-intentioned, truthful, and unbiased [37]. Mayer,
Davis, and Schoorman [70] conceptualized benevolence and integrity as dimensions
of trustworthiness. Delgado-Ballester [26] identified reliability and intentions as im-
portant trustworthiness dimensions. Fogg [36] identified key points that affect the
perceptions of trustworthiness: 1) a source is fair and unbiased; 2) a source would
argue against their own interest; and 3) a source has perceived similarity. In the
context of recommender systems, Xiao and Benbasat [138] propose to test benev-
olence and integrity of recommender systems, with benevolence being defined as
the recommender system’s caring about the user and acting in the user’s interest,
and integrity being described as the recommender system’s adherence to a set of
principles (e.g. honesty) that the user finds acceptable.

14.3.2 Expertise

Mayer et al. [70] describe expertise as the ability of a source to have influence in a
certain domain. Fogg et al. [37] conceptualize it using terms such as knowledgeable,
experienced, and competent; thus, this dimension seems to capture the perceived
knowledge and skill of the source. Similarly, O’Keefe [99] referred to expertise as
competence, expertness, or qualification. Fogg [36] provides many examples for
cues that lead to perceptions of expertise such as labels that proclaim one as an ex-
pert, appearance cues, and documentation of accomplishments. Xiao and Benbasat
[138] describe the competence of a recommender system as the system’s ability,
skills, and expertise to perform effectively.

14.3.3 Influences on Source Credibility

Whether a source is perceived as having expertise and being trustworthy depends to
a great extent on its characteristics. Thus, source characteristics serve as important
cues in human judgment. Humans are often not aware of the influence of such cues,
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as they are typically processed through the peripheral rather than the central route
of cognitive processing and are, therefore, not elaborated on [103].

14.4 Source Characteristics Studied in Human-Human
Interactions

Hovland and his colleagues [55] argued that one of the main classes of stimuli that
determine the success of persuasive attempts can be summarized as the observable
characteristics of the perceived message source. They specifically identified percep-
tions of source credibility as a direct result of the observations of particular source
cues. Not surprisingly, many researchers have since investigated various communi-
cator characteristics which influence source credibility judgments in human-human
interactions.

14.4.1 Similarity

It is unquestionably the case that perceived similarities or dissimilarities between
source and audience can influence the audience’s judgment of source credibility
[99]. In general, homophily theory [65] states that humans like similar others. How-
ever, the relation between similarity and the dimensions of credibility appears to be
complex.

14.4.1.1 Expertise Judgments

Past empirical studies show contradicting results with respect to similarity and
source expertise judgments. For example, Mills and Kimble [78] found that similar
others are seen as having greater expertise than dissimilar others. However, Delia
[27] observed that similarity between the source and the message receiver makes
the receiver see the source less as an expert. In contrast, some studies found that
similarity does not make any difference in source expertise judgments [126, 6].

14.4.1.2 Trustworthiness Judgments

The perceived similarity of the message source also has varying effects on perceived
trustworthiness of the communicator. O’Keefe [99] suggested that perceived attitu-
dinal similarities can influence the receiver’s liking for the source, and enhanced
liking for the source is commonly accompanied by enhanced judgments of the com-
municator’s trustworthiness. However, Atkinson et al. [6] found that ethnic similar-
ity and dissimilarity did not influence the perceived trustworthiness of the source,
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while Delia [27] observed that similarity sometimes diminished trustworthiness per-
ceptions.

Reflecting on the complex nature of the relationship between similarity and judg-
ments of the communicator’s credibility, O’Keefe [99] noted that the effects of per-
ceived similarities on judgments of communicator credibility depend on whether,
and how, the receiver perceives these as relevant to the issue at hand. Thus, different
types of similarity likely have different effects in different communication contexts.

14.4.2 Likeability

People mindlessly tend to agree with those who are seen as likable [15]. Liking
refers to the affective bond that an individual may feel toward another person [122].
Research generally supports the assumption that liked communicators are more ef-
fective influence agents than are disliked communicators [30, 40, 111] and lika-
bility has been labeled a persuasion tactic and a scheme of self-presentation [21].
O’Keefe [99] stressed enhanced liking for the source is commonly accompanied by
enhanced judgments of the communicator’s trustworthiness. Further, a number of
studies found that similarity increases likeability [18, 19, 52].

There is also some evidence indicating that the receiver’s liking of the communi-
cator can influence judgments of the communicator’s trustworthiness, although not
judgments of the communicator’s expertise [99, 66].

14.4.3 Symbols of Authority

Evidence presented in the persuasion literature indicates that we often embrace the
mental shortcut of assuming that people who simply display symbols of authority
such as titles, tailors and tone should be listened to [109, 11, 51, 41, 104]. Hofling
et al. [51] found that something simple as the title “Dr.” made subjects perceive a
source as credible and was surprisingly effective as a compliance-gaining device.
Similarly, a number of studies reported that cues like the communicator’s educa-
tion, occupation, training, and amount of experience influence a message receiver’s
perceptions of source credibility. For example, Hewgill & Miller [50] manipulated
the occupations of the communicator (Professor vs. High school sophomore) for
the same message and found that those subjects who were informed that the mes-
sage had been written by a professor evaluated both the source and the message as
significantly more credible.

Uniforms and well-tailored business suits are another recognized symbol of au-
thority that can influence credibility judgment and bring about mindless compliance
[109, 21]. The findings of Bickman [11] indicate that a person wearing a security
guard’s uniform who asks strangers to do things could produce significantly more
compliance than a person wearing street clothes. Sebastian and Bristow [116] re-
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vealed that formally dressed individuals achieved greater credibility ratings than
individuals who dressed informally.

14.4.4 Styles of Speech

A number of studies exist which suggest that the style of speech can influence
speaker credibility judgments. For instance, several studies have demonstrated that
communicators can enhance their trustworthiness when they provide both sides of
the argument - the pros and the cons - rather than arguing only in their own fa-
vor [31, 121]. Cooper, Bennett and Sukel [23] suggest that people evaluate the
speaker’s expertise higher when he/she spoke in complex, difficult-to-understand
terms. This indicates that experts may be most persuasive when nonexperts can-
not understand the details of what they are saying [109]. Several investigators have
found that with increasing numbers of nonfluencies in a speech, speakers are rated
significantly lower on expertise judgments [73, 14, 32, 115] and the speaking rate
can also influence credibility judgments, although the evidence for this effect is not
as clear as for others [98, 1, 45, 68, 63]. Also, citing sources of evidence appears to
enhance perceptions of the communicator’s expertise and trustworthiness [35, 72].

14.4.5 Physical Attractiveness

A number of studies have found that physically attractive communicators are more
persuasive [54, 123]. Eagly et al. [29] explained that there appears to be a positive
reaction to good physical appearance that generalizes to favorable trait perceptions
such as a talent, kindness, honesty and intelligence. The effects of physical attrac-
tiveness are seen as influencing indirectly, especially by means of influence on the
receiver’s liking for the communicator [99].

14.4.6 Humor

Previous studies found effects of humor when message receivers evaluate the com-
municator’s credibility. However, the specific effects varied across different studies.
A number of studies found positive effects of humor on communicator trustworthi-
ness judgments but rarely on judgments of expertise [20, 44, 129]. When positive
effects of humor were found, the effects tended to enhance the audience’s liking of
the communicator and this liking helped increase perceptions of trustworthiness. In
contrast, some researchers found that the use of humor can decrease the audience’s
liking for the communicator, the perceived trustworthiness, and even the perceived
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expertise of the source when the use of humor is perceived as excessive or inappro-
priate for the context [17, 86, 130].

14.5 Source Characteristics in Human-Computer Interactions

It seems obvious that a computer is a tool or medium and not an actor in social life.
However, media equation theory suggests that individuals’ interactions with com-
puters, television sets, and new media are fundamentally social and natural, just like
interactions in real life [108]. This theory thus argues that the technologies should
be understood as social actors not just tools or media. Based on this new paradigm,
a growing number of studies have investigated how certain social characteristics of
the technologies influence their users’ perceptions and behaviors.

Similarity between a computer and its users was found to be important when
computer users evaluated the computer and its contents [91, 36]. For example, Nass
and Moon [91] report that computers that convey similar personality types are more
persuasive. In their study, dominant participants were more attracted to, assigned
greater intelligence to, and conformed more with a dominant computer compared to
a submissive computer. Submissive participants reacted the same way to the submis-
sive computer as opposed to the dominant computer, despite the essentially identical
content. Nass, Isbister and Lee [90] also revealed the effects of demographic sim-
ilarity. Their study found that computer users perceived computer agents as more
attractive, trustworthy, persuasive and intelligent when same-ethnicity agents were
presented.

Presenting authority symbols has also been identified as an influential factor
when people interact with technology. Nass and Moon [91] found that a television
set labeled as a specialist was perceived as providing better content than a television
set labeled as a generalist. Fogg [36] also posited that computing technology that
assumes roles of authority is more persuasive. He argued that websites displaying
awards or third-party endorsements such as seals of approval will be perceived as
more credible.

A number of studies [90, 93] argue that the demographic characteristics of com-
puter agents influence users’ perceptions. Nass et al. [93] illustrated that people
apply gender and ethnicity stereotypes to computers. Specifically, their study found
that people evaluated the tutor computer as significantly more competent and like-
able when it was equipped with a male voice than a female voice. They also found
that the female-voiced computer was perceived as a better teacher of love and re-
lationships and a worse teacher of computing than a male-voiced computer, even
though they performed identically.

In addition, the use of language such as flattery [38], apology [132] and politeness
[71] has been identified as factors which make a difference in computer users’ per-
ceptions and behaviors. Further, the physical attractiveness of computer agents was
found to matter. The findings by Nass, Isbister and Lee [90] indicate that computer
users prefer to look at and interact with computer agents that are more attractive.
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Finally, humor has also been tested in the human-computer interaction context.
Morkes, Kernal and Nass [83] found that computers which display humor are rated
as more likeable. Yet, findings related to greater perceptions of similarity based on
humor and greater length of interaction that were found for human-human interac-
tions could not be replicated in the human-computer context.

14.6 Source Characteristics in Human-Recommender System
Interactions

If computers are seen as social actors, interactions with recommender systems
should also be conceptualized as interactions that are fundamentally social. Espe-
cially systems that provide direct feedback based on explicit user inputs exhibit
qualities that are generally associated with social exchanges.

In the existing recommender system literature, a number of previous studies has
investigated how specific characteristics of recommender systems influence users’
system evaluations. Xiao and Benbasat [138] classified the various characteristics
that have been studied as being associated with either recommender system type,
input, process or output design. See Chapters 8, 15 and 16.

Also with the increasing interest in and use of embodied agents in recommender
systems, a growing number of studies have investigated the effects of embodied
agents’ characteristics. Thus, in the following subsections, these previously identi-
fied influential source characteristics will be reviewed.

14.6.1 Recommender system type

Recommender systems come in different shapes and forms and can be classified
based on filtering methods, decision strategies or amount of support provided by
the recommender systems [138]. A number of previous studies have discussed the
advantages and disadvantages of these different types of recommender systems
[5, 69, 16]. Different filtering methods were compared and it was found that hy-
brid recommender systems that combine collaborative filtering and content filtering
are evaluated as more helpful than traditional systems that use a pure collaborative
filtering technique [113, 114]. Burke [16] also confirmed that hybrid recommender
systems provide more accurate predictions of users’ preferences. Regarding the
different decision strategies used in recommender systems, compensatory recom-
mender systems have been suggested to lead to greater trust, perceived usefulness
and satisfaction than non-compensatory recommender systems [138]. They have
also been found to increase users’ confidence in their product choices [33]. As far
as the amount of support provided by recommender systems is concerned, Xiao and
Benbasat [138] argued that needs-based systems rather than feature-based systems
help users better recognize their needs and more accurately answer the preference-
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elicitation questions, thus resulting in better decision quality. Needs-based systems
are therefore recommended for novice users [34].

14.6.2 Input characteristics

Input characteristics of recommender systems include those cues that are related
with the preference elicitation method, ease of generating new/additional recom-
mendations and the amount of control users have when interacting with the recom-
mender systems’ preference elicitation interface [138]. A number of previous find-
ings suggest that characteristics associated with recommender system input design
influence system users’ evaluations. Xiao and Benbasat [138] specifically argued
that the preference elicitation method (implicit vs. explicit) influences users’ eval-
uation of the system. They proposed that an implicit preference elicitation method
leads to greater perceived ease of use of and satisfaction with the recommender sys-
tem while explicit elicitation is considered to be more transparent by users and leads
to better decision quality.

Allowing users more control was also found to be an influential factor when eval-
uating systems. West et al. [137] posited that giving more control to system users
will increase their trust and satisfaction with the system. Indeed, a recent study [76]
found that users who used user-controlled interfaces reported higher user satisfac-
tion than users who interacted with system-controlled and mixed-initiative recom-
mender systems. In addition, users of user-controlled interfaces felt that the rec-
ommender systems more accurately represented their tastes and showed the greatest
loyalty to the systems. Similarly, Pereira [101] demonstrated that users showed more
positive affective reactions to recommender systems when they had increased con-
trol over the interaction with the recommender system. Komiak et al. [62] also found
that control over the process was one of the top contributors to users’ trust in a vir-
tual agent. Supporting the importance of user control, Wang [133] noted that more
restrictive recommender systems were considered as less trustworthy and useful by
their users.

In addition to control, the structural characteristics of the preference elicitation
process (relevance, transparency and effort) have also been found to influence users’
perceptions of the recommender system [43]. The specific study by Gretzel and
Fesenmaier found that topic relevance, transparency in the elicitation process and
the effort required by users to provide inputs positively influence users’ perceptions
of the value of the elicitation process. The findings suggest that by asking questions,
the system takes on a social role and communicates interest in the user’s preferences,
which is seen as valuable. The more questions it asks, the greater its potential to
provide valuable feedback. Also, making intentions explicit in this interaction is
important. Although trust was not specifically measured, benevolence and intentions
are important drivers of trust and can be implied from the importance based on
transparency. Further, McGinty and Smyth [74] suggested that the conversation style
of recommender systems during the input process matters. In contrast to [43], they



14 Creating More Credible and Persuasive Recommender Systems 465

argued that the comparison-based recommendation approach which asks users to
choose a preferred item from a list of recommended items instead of a current deep
dialogue approach that asks users a series of direct questions about the importance of
product features would minimize the cost to the user and maintain recommendation
quality.

14.6.3 Process characteristics

Characteristics of recommender systems displayed during the recommendation cal-
culation process appear to influence users’ perceptions of the systems [138]. Such
process factors include information about the search process and about the system
response time. Mohr and Bitner [79] noted that system users use various cues or in-
dicators to assess the amount of effort saved by decision aids. Indicators that inform
users about the search progress help users become aware of the efforts saved by the
system. The higher users’ perceptions of the effort saved by decision aids the greater
their satisfaction with the decision process [9]. Sutcliffe et al. [125] found that users
reported usability/comprehension problems with information retrieval systems that
did not provide a search progress indicator.

Influences of system response time, i.e. the time between the user’s input and the
system’s response, have also been identified as important in a number of studies.
Basartan [8] varied the response time from a simulated shopbot and found that users
prefer those shopbots less that make them wait a long time before receiving recom-
mendations. In contrast, Swearingen and Sinha [128] found that the time taken by
users to register and to receive recommendations from recommender systems did
not have a significant effect on users’ perceptions of the system. The lengthier sign
up process increased users’ satisfaction with and loyalty toward the system [76].
Xiao and Benbasat [138] explained that the contradicting findings of previous stud-
ies regarding response time may depend on users cost-benefit assessments. They
suggest that users do not form negative evaluations of the recommender systems
when they perceive the benefits of waiting as leading to high quality recommenda-
tions. The findings of [43] regarding the relationship between elicitation effort and
the perceived value of the elicitation process support this assumption.

14.6.4 Output characteristics

Recommender system characteristics portrayed in the output stage of the recom-
mendation process are related to the content and the format of the recommendations
presented to users. Previous findings indicate that the content and the format of rec-
ommendations can have significant impact on users’ evaluations of recommender
systems [135, 138, 120, 24]. Xiao and Benbasat [138] noted that three aspects of
recommendation contents - the familiarity of the recommended option, the amount
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of information on recommended products, and the explanation on how the recom-
mendation was generated - are especially relevant when users evaluate recommender
systems.

Some studies found that more familiar recommendations increase users’ trust in
the recommender system. Sinha and Swearingen [120] found that recommended
products that were familiar to users were helpful in establishing users’ trust in rec-
ommender systems. A study by Cooke et al. [22] also observed that unfamiliar rec-
ommendations lowered users’ evaluations of recommender systems. Further, the
availability of product information appeared to positively influence users’ percep-
tions of recommender systems. Sinha and Swearingen [120] suggest that detailed
product information available on the recommendation page enhances users’ trust in
the recommender system. Cooke et al. [22] also explained that the attractiveness
of unfamiliar recommendations can be increased if recommender systems provide
detailed information about the new product.

The impacts of explanations on users’ evaluations of recommender systems have
been investigated in a considerable number of studies. Wang and Benbasat [135]
found that explanations of the recommender system’s reasoning logic strengthened
users’ beliefs in the recommender system’s competence and benevolence. Herlocker
et al. [48] also reported that explanations were important in establishing trust in sys-
tems since users were less likely to trust recommendations when they did not under-
stand why certain items were recommended to them. Recommender systems must
establish a connection between the advice seeker and the system through explana-
tion interfaces in order to enhance the user’s level of trust in the system. Similarly,
other studies [105, 131] showed that system users exhibited more trust in the case
of explanation interfaces.

The format in which recommendations are presented to the user also appears to
influence users’ evaluation of recommender systems. Sinha and Swearingen [120]
found that navigation and layout of recommendation presentation interfaces signif-
icantly influence users’ satisfaction with the systems. Swearingen and Sinha [128]
further found that interface navigation and layout influenced users’ overall rating
of the systems. Consistent with these findings, Yoon and Lee [142] showed that
interface design and display format influenced system users’ behaviors. However, a
study conducted by Bharti and Chaudhury [10] did not find any significant influence
of navigational efficiency on users’ satisfaction.

In addition, Schafer [112] suggested that merging the preferences interface and
the recommendation elicitation interface within a single interface can make the rec-
ommender system be seen as more helpful since this new “dynamic query” interface
can provide immediate feedback regarding the effect caused by individual’s prefer-
ence changes. Since this merges the input with the output interface, this suggestion
touches upon cues such as transparency already discussed in the context of input
characteristics.
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14.6.5 Characteristics of embodied agents

Recommender systems often include virtual personas guiding the user through the
process. It can be assumed that social responses are even more prevalent if the sys-
tem is personified. Indeed, the important role and impacts of embodied interface
agents in the context of recommender systems have recently been emphasized in
a number of studies. For example, the presence of a humanoid virtual agent in the
system interface was found to increase system credibility [85], to augment social
interactions [106], to enhance the online shopping experience [53], as well as to
induce trust [136]. With growing interests in such interface agents, a number of
studies has started investigating if and how certain characteristics of the interface
agent influence recommender system users’ perceptions and evaluations.

One of the important identified characteristics of agents is anthropomorphism.
Anthropomorphism is defined as the extent to which a character has either the
appearance or behavioral attributes of a human being [96, 97, 60, 95]. Many re-
searchers have found that anthropomorphism of embodied agents influences peo-
ple’s interactions with computers (e.g. [96, 60, 95]) and specifically with recom-
mender systems [106]. Yet, the benefits and costs of anthropomorphic agents are
debatable. For example, more anthropomorphic interface agents were rated as being
more credible, engaging, attractive and likeable than less anthropomorphic agents in
some studies [97, 60] while other studies found contrasting results [96, 95, 87]. The
social cues communicated by the inclusion of such agents might create expectations
in the users that cannot be met by the actual system functionalities.

Human voice is a very strong social cue that has been found to profoundly shape
human-technology interactions [88]. However, findings in the context of embodied
interface agents are not widely available and are currently inconclusive. The voice
output of interface agents was found to be helpful in inducing social and affective
responses from users in some studies [106, 82] but other studies found that socia-
bility is higher when the system avatar only communicated with text [124]. The
demographic characteristics of interface agents have also been found to influence
system users’ perceptions and behaviors. Qiu [106] reports that system users eval-
uated the system as more sociable, competent, and enjoyable when the agents were
matched with them in terms of ethnicity and gender, thus supporting the homophily
hypothesis. Cowell and Stanny [25] also observed that system users prefer to inter-
act with interface characters that matched their ethnicity and were young looking.
A study by Nowak and Rauh [97] indicated that people showed a clear preference
for characters that matched their gender.

In addition to similarity cues, other source characteristics have also been inves-
tigated in the context of embodied interface agents. The effects of attractiveness
and expertise of interface agents were tested by Holzwarth et al. [53]. They found
that an attractive avatar is a more effective sales agent at moderate levels of prod-
uct involvement while an expert agent is a more effective persuader at high levels
of product involvement. Further, the potential impacts of non verbal behavior cues
including facial expression, eye contact, gestures, para-language and posture of in-
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terface agents were emphasized by Cowell and Stanney [25]. However, research in
this area is currently very limited.

14.7 Discussion

Swearingen and Sinha [128] noted that the ultimate effectiveness of a recommender
system depends on factors that go beyond the quality of the algorithm. Neverthe-
less, recommender system features are oftentimes implemented because they can
be implemented. They might be tested in the course of overall system evaluations
or usability studies but are rarely assessed in terms of their persuasiveness. Häubl
and Murray [47] demonstrated that recommender systems can indeed have profound
impacts on consumer preferences and choice beyond the immediate recommenda-
tion. Thus, conceptualizing recommender systems not only as social but also as
persuasive actors is crucial in understanding their potential impacts. The above re-
view of the literature suggests a wide array of recommender system characteristics
which could be influential. Following the paradigm of “Computers as Social Ac-
tors” [108, 36], recent recommender system studies have started emphasizing the
social aspects of recommender systems and stress the importance of integrating so-
cial cues to create more credible and persuasive systems [134, 106, 3]. This recog-
nition of recommender systems as social actors has important implications for rec-
ommender systems research and design. Most importantly, conceptualizing human-
recommender system interactions as social exchanges means that important source
characteristics identified as influential in traditional advice seeking relationships can
also be seen as potentially influential in human-recommender system interactions.

14.8 Implications

Understanding the influence of source characteristics when evaluating recommender
systems has many implications of theoretical and practical importance. From a the-
oretical perspective, the classic interpersonal communication theories need to be
expanded in scope and applied to understand human-recommender system relation-
ships. By applying classic theories, researchers can test and examine various as-
pects of human-recommender system interactions. However, the unique qualities of
human-recommender interactions should be considered when applying these the-
ories and when developing methodologies to test them. Further, while some rec-
ommender system-related research exists with respect to source characteristics, the
efforts are currently not very systematic and sometimes inconclusive. Clearly, more
research is needed in this area so that a strong theoretical framework can be built.

From the practical perspective, understanding recommender systems as social
actors whose characteristics influence user perceptions helps system developers and
designers to better understand user interactions with systems. Social interactions



14 Creating More Credible and Persuasive Recommender Systems 469

thrive on trust and are also subject to persuasion. The way in which preferences are
elicited, the way recommendations are derived, and the more insight users have in
these processes, the greater perceptions of credibility and the greater the likelihood
for a recommendation to be accepted [43]. Hybrid systems, explicit elicitation and
generally giving users control over the process seem to be highly effective strategies
[113, 114, 138, 16, 137, 101]. The dynamic query interface suggested by Schafer
[112], which merges the preferences interface and the recommendation elicitation
interface within a single interface, may be one way to help users feel that they have
control over the system since the interface can provide immediate feedback regard-
ing the effect caused by individuals’ preference changes. During interaction with
recommender systems, response times needs to be kept short [8] and the specifics
of the search process should be communicated to users [79, 9, 125] to demonstrate
the system’s efforts as this will influence credibility perceptions. When generating
recommendations, more familiar recommendations with detailed product descrip-
tions [22] and explanations regarding the underlying logic of how the recommen-
dation was generated [133, 48] would increase users’ perceived credibility of the
system. A good understanding of users’ system use history and patterns using a so-
phisticated data mining technique would help the systems generate more familiar
recommendations to users. Along with the text descriptions of recommended prod-
ucts, recommender system designers may consider providing virtual product expe-
riences. Jiang and Benbasat [56] noted that a virtual product experience enhances
consumers’ product understanding, brand attitude, purchase intention as well as de-
creases the perceived risks. Adding virtual experiences of products enables the users
not only to have a better understanding of the recommended products but also to
inspire greater attention, interest and enjoyment. Recommender system designers
should also pay attention to the display format of the recommendations [128, 142].
Navigational efficacy and design familiarity and attractiveness need to be considered
when the recommendations are presented to users.

Most importantly, research regarding source characteristics in the context of rec-
ommender systems provides implications regarding the design of credible and per-
suasive recommender systems. The challenge for design is to find ways in which
source characteristics such as similarity, likeability and authority can be manipu-
lated and translated into concrete design features that fit within the context of rec-
ommender systems. For instance, presenting third party seals signaling the authority
of the system can increase the overall credibility of systems. Similarity between rec-
ommender systems and users can be implemented by the use of needs-based ques-
tions that elicit users’ product preferences and their choices of the decision strategies
the users prefer [138]. Manipulating personalities (e.g. extraversion or introversion)
of recommender systems to match with users’ by varying communication style and
voice characteristics was also suggested in [49, 80]. One way in which some char-
acteristics can be more easily implemented is by adding an embodied agent to the
system interface. The embodied agent serves as the representative of the system and,
thus, emphasizes the social role of the system as the advice giver [141]. Voice inter-
faces can be another way to translate source characteristics into credibility-evoking
recommender system design.
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From the marketing point of view, creating credible and persuasive recommender
systems is important since the recommender systems play similar roles as human
salespersons in physical stores who interact with consumers and advise consumers
in terms of what to buy [134, 62]. Thus creating more sociable and credible recom-
mender systems will help marketers to enhance their e-services.

14.9 Directions for future research

While existing studies have identified and tested a number of influential source
characteristics in human-recommender system advice seeking relationships, many
potential characteristics suggested by general communication theories such as au-
thority, caring, non verbal behaviors like facial expression and gestures, and humor
have not been examined. Those unexamined characteristics need to be successfully
implemented and also empirically tested in future recommender system studies.

The identified and tested source characteristics also need to be more precisely
examined. The effects of source characteristics on judgments of source credibil-
ity are often found to be complex rather than linear in previous studies conducted
in human-human advice seeking contexts [99]. Since situational factors, individual
differences and product type can also play a significant role in determining the rec-
ommender system credibility, relationships will have to be specifically tested for
specific recommender systems to provide accurate input for design considerations.

In addition, there can be additional source characteristics that might not be promi-
nent in influencing advice seeking relationships among human actors but are impor-
tant aspects to be considered in the realm of recommender systems. For instance,
anthropomorphism of the technology has been identified as an important character-
istic that influences interactions with technologies [60, 96] while it is of course not a
critical characteristic in interactions among human actors. The realness of interface
agents can also be considered as a potentially influential source cue. There is some
evidence that users are less likely to respond socially to a poor implementation of
a human-like software character than to a good implementation of a dog-like char-
acter [59]. In future research, such additional source cues need to be identified and
tested.

Some of the source characteristics have been tested in isolation from another.
In order to investigate interaction effects, different source cues should be tested
simultaneously if it is possible. This will help with understanding the relationships
among various source factors.

Overall, the literature presented in this chapter suggests that there is a great need
for research in this area. It also suggests that new methodologies might have to be
developed to investigate influences that happen at a subconscious level. Especially
a greater emphasis on behavioral measures of recommendation acceptance seems to
be warranted if the persuasiveness of recommender systems is to be evaluated.
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Chapter 15
Designing and Evaluating Explanations for
Recommender Systems

Nava Tintarev and Judith Masthoff

Abstract This chapter gives an overview of the area of explanations in recommender
systems. We approach the literature from the angle of evaluation: that is, we are in-
terested in what makes an explanation “good”, and suggest guidelines as how to
best evaluate this. We identify seven benefits that explanations may contribute to a
recommender system, and relate them to criteria used in evaluations of explanations
in existing systems, and how these relate to evaluations with live recommender sys-
tems. We also discuss how explanations can be affected by how recommendations
are presented, and the role the interaction with the recommender system plays w.r.t.
explanations. Finally, we describe a number of explanation styles, and how they
may be related to the underlying algorithms. Examples of explanations in existing
systems are mentioned throughout.

15.1 Introduction

In recent years, there has been an increased interest in more user-centered evaluation
metrics for recommender systems such as those mentioned in [42]. It has also been
recognized that many recommender systems functioned as black boxes, providing
no transparency into the working of the recommendation process, nor offering any
additional information to accompany the recommendations beyond the recommen-
dations themselves [29].

Explanations can provide that transparency, exposing the reasoning and data be-
hind a recommendation. This is the case with some of the explanations hosted on
Amazon, such as: “Customers Who Bought This Item Also Bought . . . ”. Expla-
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nations can also serve other aims such as helping to inspire user trust and loyalty,
increase satisfaction, make it quicker and easier for users to find what they want, and
persuade them to try or purchase a recommended item. In this way, we distinguish
between different explanation such as e.g. explaining the way the recommendation
engine works (transparency), and explaining why the user may or may not want to
try an item (effectiveness). An effective explanation may be formulated along the
lines of “You might (not) like Item A because...”. In contrast to the Amazon example
above, this explanation does not necessarily describe how the recommendation was
selected - in which case it is not transparent.

This chapter offers guidelines for designing and evaluating explanations in rec-
ommender systems as summarized in Section 15.2. Expert systems can be said to be
the predecessors of recommender systems. In Section 15.3 we therefore briefly re-
late research on evaluating explanations in expert systems to evaluations of explana-
tions in recommender systems. We also identify the developments in recommender
systems which may have caused a revived interest in explanation research since the
days of expert systems.

Up until now there has been little consensus as to how to evaluate explanations,
or why to explain at all. In Section 15.4, we list seven explanatory criteria, and de-
scribe how these have been measured in previous systems. These criteria can also
be understood as advantages that explanations may offer to recommender systems,
answering the question of why to explain. In the examples for effective and trans-
parent explanations above, we saw that the two evaluation criteria could be mutually
exclusive.

In Section 15.5, we consider that the underlying recommender system affects the
evaluation of explanations, and discuss this in terms of the evaluation metrics nor-
mally used for recommender systems (e.g. accuracy and coverage). We mention and
illustrate examples of explanations throughout the chapter, and offer an aggregated
list of examples in commercial and academic recommender systems in Table 15.6.
We will see that explanations have been presented in various forms, using both text
and graphics.

Additionally, explanations are not decoupled from recommendations themselves
or the way in which users can interact with the recommender system: both factors
influence each other and the explanations that can be generated, which in turn affects
the degree to which explanatory goals are achieved. We discuss these types of design
choices in Section 15.6 – in Section 15.6.1 we mention different ways of presenting
recommendations, and Section 15.6.2 how users can interact and give input to a
recommender system.

Moreover, the underlying algorithm of a recommender engine may influence
the types of explanations that can be generated, although it is also possible that
the explanations selected by the system developer do not reflect the underlying al-
gorithm. This is particularly the case for computationally complex algorithms for
which explanations may be more difficult to generate, such as collaborative filtering
[29, 31]. In this case, the developer must consider the trade-offs between different
explanatory goals such as satisfaction (as an extension of understandability) and
transparency. In Section 15.7, we relate the most common explanation styles and
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how they may relate to the underlying algorithms. Finally, we conclude with a sum-
mary and future directions in Section 15.8.

15.2 Guidelines

The content of this chapter is divided into sections which each elaborate on the
following design guidelines for explanations in recommender systems.

• Consider the benefit(s) you would like to obtain from the explanations, and
the best metric to evaluate on the associated criteria (Section 15.4).

• Be aware that the evaluation of explanations is related to, and may be con-
founded with, the functioning of the underlying recommendation engine,
as measured by criteria commonly used for evaluating recommender sys-
tems (Section 15.5).

• Think about how the way that you present the recommendations them-
selves, and the the interaction model, affect each other and the explanations
(Section 15.6). These factors in turn affect the degree to which different ex-
planatory goals can be achieved.

• Last, but certainly not least, consider the relationship between the underly-
ing algorithm and the type of explanations you choose to generate (Section
15.7). Do the explanations that you generate help you achieve your ex-
planatory goals?

15.3 Explanations in Expert Systems

Explanations in intelligent systems are not a new idea: explanations have often been
considered as part of the research in the area of expert systems [8, 32, 38, 27, 66].
This research has largely been focused on what kind of explanations can be gener-
ated and how these have been implemented in real world systems [8, 32, 38, 66].
Overall, there are few evaluations of the explanations in these systems. When they
did occur evaluations of explanations have largely focused on user acceptance of the
system such as [15] or acceptance of the systems’ conclusions [67]. An exception
is an evaluation in MYCIN which considered the decision support of the system as
a whole [27]. In contrast, the commercial intent behind recommender systems tar-
geting a wide user base was previously unseen in expert systems, has extended the
evaluation goals for explanations beyond acceptance.

Also, developments in recommender systems have revived explanation research,
after a decline of studies in expert systems in the 90’s. One such development is the
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increase in data: due to the growth of the Web, there are now more users using the
average (recommender) system. Systems are also no longer developed in isolation
of each other, making the best possible reuse of code (open source projects) and
datasets such as the MovieLens [2] and Netflix dataset [3]. In addition, new algo-
rithms, in particular in the domain of collaborative filtering, have been adapted and
developed (see also Chapter 4 on neighborhood based approaches, and Chapter 5
on advances in collaborative filtering). These approaches mitigate domain depen-
dence, and allow for greater generalizability, and are more suitable for large and
often sparse datasets. One sign of the revived interest in explanation research is the
success of a recent series of workshops on explanation aware computing (see e.g.
[53, 54]).

For further reading, see the following reviews on expert systems with explana-
tory capabilities for three of the most common inference methods: heuristic-based
methods [36], Bayesian networks [35], and case-based reasoning [22].

15.4 Defining Goals

Guideline 1: Consider the benefit(s) you would like to obtain from the expla-
nations, and the best metric to evaluate on the associated criteria.

Surveying the literature on explanations in recommender systems, we see that rec-
ommender systems with explanatory capabilities have been evaluated according to
different criteria, and identify seven different goals for explanations. Here we men-
tion goals that are applicable to single item recommendations, i.e. when a single
recommendation is being offered. When recommendations are made for multiple
items, such as in a list, the criteria may be different and consider other factors such
as diversity (e.g. are the items in the list sufficiently varied).

Table 15.1 states these goals, which are similar to those desired (but not evaluated
on) in expert systems, c.f. MYCIN [10]. In Table 15.2, we summarize previous
evaluations of explanations in recommender systems, and the criteria by which they
have been evaluated. Works that have no clear criteria stated, or have not evaluated
the system on the explanation criteria which they state, are omitted from this table.

For example, in Section 15.3 we mentioned that expert systems were commonly
evaluated in terms of user acceptance and the decision support of the system as a
whole. User acceptance can be defined in terms of our goals of satisfaction or per-
suasion. If the evaluation measures acceptance with the system as whole, such as
[15] who asked questions such as “Did you like the program?”, then this reflects
user satisfaction. If rather the evaluation measures user acceptance of advice or ex-
planations, as in [67], the criterion can be said to be persuasion.

It is important to identify these goals as distinct, even if they may interact, or re-
quire certain trade-offs. Indeed, it would be hard to create explanations that do well
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on all criteria, in reality it is a trade-off. For instance, in our work we have found
that while personalized explanations may lead to greater user satisfaction, they do
not necessarily increase effectiveness [61]. Other times, goals that seem to be inher-
ently related are not necessarily so, for example it has been found that transparency
does not necessarily aid trust [20]. For these reasons, while an explanation in Table
15.2 may have been evaluated for several criteria, it may not have achieved them all.

The type of explanation that is given to a user is likely to depend on the criteria
of the designer of a recommender system. For instance, when building a system that
sells books one might decide that user trust is the most important aspect, as it leads
to user loyalty and increases sales. For selecting tv-shows, user satisfaction could
be more important than effectiveness. That is, it is more important that a user enjoys
the service, than that they are presented the best available shows.

In addition, some attributes of explanations may contribute toward achieving
multiple goals. For instance, one can measure how understandable an explanation
is, which can contribute to e.g. user trust, as well as satisfaction.

In this section we describe seven criteria for explanations, and suggest evaluation
metrics based on previous evaluations of explanation facilities, or offer suggestions
of how existing measures could be adapted to evaluate the explanation facility in a
recommender system.

Table 15.1: Explanatory criteria and their definitions

Aim Definition
Transparency (Tra.) Explain how the system works
Scrutability (Scr.) Allow users to tell the system it is wrong
Trust Increase users’ confidence in the system
Effectiveness (Efk.) Help users make good decisions
Persuasiveness (Pers.) Convince users to try or buy
Efficiency (Efc.) Help users make decisions faster
Satisfaction (Sat.) Increase the ease of use or enjoyment

15.4.1 Explain How the System Works: Transparency

An anecdotal article in the Wall Street Journal titled “If TiVo Thinks You Are Gay,
Here’s How to Set It Straight” describes users’ frustration with irrelevant choices
made by a video recorder that records programs it assumes its owner will like,
based on shows the viewer has recorded in the past[69]. For example, one user,
Mr. Iwanyk, suspected that his TiVo thought he was gay since it inexplicably kept
recording programs with gay themes. This user clearly deserved an explanation.

An explanation may clarify how a recommendation was chosen. In expert sys-
tems, such as in the domain of medical decision making, the importance of trans-
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Table 15.2: The criteria by which explanations in recommender systems have been
evaluated. System names are mentioned if given, otherwise we only note the type of
recommended items. Works that have no clear criteria stated, or have not evaluated
the system on the explanation criteria which they state, are omitted from this table.
Note that while a system may have been evaluated for several criteria, it may not
have achieved all of them. Also, for the sake of completeness we have distinguished
between multiple studies using the same system.

Tra. Scr. Trust Efk. Per. Efc. Sat.
System (type of items)
(Internet providers) [23] X X X
(Digital cameras, notebooks computers) [49] X
(Digital cameras, notebooks computers) [50] X X
(Music) [55] X
(Movies) [61] X X X
Adaptive Place Advisor (restaurants) [59] X X
ACORN (movies) [65] X
CHIP (cultural heritage artifacts) [19] X X X
CHIP (cultural heritage artifacts) [20] X X X
iSuggest-Usability (music) [30] X X
LIBRA (books) [11] X
MovieLens (movies) [29] X X
Moviexplain (movies) [58] X X
myCameraAdvisor [63] X
Qwikshop (digital cameras) [39] X X
SASY (e.g. holidays) [21] X X X
Tagsplanations (movies) [62] X X

parency has also been recognized [10]. Transparency or the heuristic of “Visibility
of System Status” is also an established usability principle [44], and its importance
has also been highlighted in user studies of recommender systems [55].

Vig et al. differentiate between transparency and justification [62]. While trans-
parency should give an honest account of how the recommendations are selected and
how the system works, justification can be descriptive and decoupled from the rec-
ommendation algorithm. The authors cite several reasons for opting for justification
rather than genuine transparency. For example some algorithms that are difficult to
explain (e.g. latent semantic analysis where the distinguishing factors are latent and
may not have a clear interpretation), protection of trade secrets by system designers,
and the desire for greater freedom in designing the explanations.

Cramer et al. have investigated the effects of transparency on other evaluation
criteria such as trust, persuasion (acceptance of items) and satisfaction (acceptance)
in an art recommender [19, 20]. Transparency itself was evaluated in terms of its
effect on actual and perceived understanding of how the system works [20]. While
actual understanding was based on user answers to interview questions, perceived
understanding was extracted from self-reports in questionnaires and interviews.
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The evaluation of transparency has also been coupled with scrutability (Section
15.4.2) and trust (Section 15.4.3), but we will see in these sections that these criteria
can be distinct from each other.

15.4.2 Allow Users to Tell the System it is Wrong: Scrutability

Explanations may help isolate and correct misguided assumptions or steps. When
the system collects and interprets information in the background, as is the case with
TiVo, it becomes all the more important to make the reasoning available to the user.
Following transparency, a second step is to allow a user to correct reasoning, or
make the system scrutable [21]. Explanations should be part of a cycle, where the
user understands what is going on in the system and exerts control over the type
of recommendations made, by correcting system assumptions where needed [56].
Scrutability is related to the established usability principle of User Control [44]. See
Figure 15.1 for an example of a scrutable holiday recommender.

While scrutability is very closely tied to the criteria of transparency, it deserves to
be uniquely identified. The explanations in Table 15.4 are scrutable, but not (fully)
transparent even if they offer some form of justification. For example, there is noth-
ing in this Table that suggests that the underlying recommendations are based on a
Bayesian classifier. In such a case, we can imagine that a user attempts to scrutinize
a recommender system, and manages to change their recommendations by modi-
fying their ratings, but still does not understand exactly what happens within the
system.

Czarkowski found that users were not likely to scrutinize on their own, and that
extra effort was needed to make the scrutability tool more visible [21]. In addition,
it was easier to get users perform a given scrutinization task such as changing the
personalization (e.g. “Change the personalisation so that only Current Affairs pro-
grams are included in your 4:30-5:30 schedule.”) Their evaluation included metrics
such as task correctness, and if users could express an understanding of what infor-
mation was used to make recommendations for them. They understood that adapta-
tion in the system was based on their personal attributes stored in their profile, that
their profile contained information they volunteered about themselves, and that they
could change their profile to control the personalization [21].

15.4.3 Increase Users’ Confidence in the System: Trust

Trust is sometimes linked with transparency: previous studies indicate that trans-
parency and the possibility of interaction with recommender systems increases user
trust [23, 55]. A user may also be more forgiving, and more confident in recommen-
dations, if they understand why a bad recommendation has been made. Trust in the
recommender system could also be dependent on the accuracy of the recommen-
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Fig. 15.1: Scrutable holiday recommender [21]. The explanation is in the circled
area, and the user profile can be accessed via the “why” links.

dation algorithm [41]. A study of users’ trust (defined as perceived confidence in a
recommender system’s competence) suggests that users intend to return to recom-
mender systems which they find trustworthy [16]. We note however, that there is a
case where transparency and trust were not found to be related [20].

We do not claim that explanations can fully compensate for poor recommen-
dations, but good explanations may help users make better decisions (see Section
15.4.5 on effectiveness). A user may also appreciate when a system is “frank” and
admits that it is not confident about a particular recommendation.

In addition, the interface design of a recommender system may affect its credi-
bility. In a study of factors determining web page credibility, the largest proportion
of users’ comments (46.1%) referred to the appeal of the overall visual design of a
site, including layout, typography, font size and color schemes [25]. Likewise the
perceived credibility of a Web article was significantly affected by the presence of a
photograph of the author [24]. So, while recommendation accuracy, and the criteria
of transparency are often linked to the evaluation of trust, design is also a factor that
needs to be considered as part of the evaluation.

Questionnaires can be used to determine the degree of trust a user places in a
system. An overview of trust questionnaires can be found in [45] which also sug-
gests and validates a five dimensional scale of trust. Note that this validation was
done with the aim of using celebrities to endorse products, but was not conducted
for a particular domain. Additional validation may be required to adapt this scale to
a particular recommendation domain.

A model of trust in recommender systems is proposed in [16, 50], and the ques-
tionnaires in these studies consider factors such as intent to return to the system,
and intent to save effort. Also [63] query users about trust, but focus on trust related
beliefs such as the perceived competence, benevolence and integrity of a virtual ad-
viser. Although questionnaires can be very focused, they suffer from the fact that
self-reports may not be consistent with user behavior. In these cases, implicit mea-
sures (although less focused) may reveal factors that explicit measures do not.

One such implicit measure could be loyalty, a desirable bi-product of trust. One
study compared different interfaces for eliciting user preferences in terms of how
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they affected factors such as loyalty [41]. Loyalty was measured in terms of the
number of logins and interactions with the system. Among other things, the study
found that allowing users to independently choose which items to rate affected user
loyalty. It has also been thought that Amazon’s conservative use of recommenda-
tions, mainly recommending familiar items, enhances user trust and has led to in-
creased sales [57]. We encourage readers who would like to learn more about trust
in recommender systems to read Chapter 20 which is dedicated to this topic.

15.4.4 Convince Users to Try or Buy: Persuasiveness

Explanations may increase user acceptance of the system or the given recommenda-
tions [29]. Both definitions qualify as persuasion, as they are attempts to gain benefit
for the system rather than for the user.

[20] evaluated the acceptance of recommended items in terms of how many rec-
ommended items were present in a final selection of six favorites. In a study of a
collaborative filtering- and rating-based recommender system for movies, partici-
pants were given different explanation interfaces (e.g. Figure 15.2)[29]. This study
directly inquired how likely users were to see a movie (with identifying features
such as title omitted) for 21 different explanation interfaces. Persuasion was thus a
numerical rating on a 7-point Likert scale.

In addition, it is possible to measure if the evaluation of an item has changed,
i.e. if the user rates an item differently after receiving an explanation. Indeed, it has
been shown that users can be manipulated to give a rating closer to the system’s
prediction [18]. This study was in the low investment domain of movie rental, and it
is possible that users may be less influenced by incorrect predictions in high(er) cost
domains such as cameras1. It is also important to consider that too much persuasion
may backfire once users realize that they have tried or bought items that they do not
really want.

Persuasiveness can be measured in a number of ways. For example, it can be
measured as the difference between two ratings: the first being a previous rating,
and the second a re-rating for the same item but with an explanation interface [18].
Another possibility would be to measure how much users actually try or buy items
compared to users in a system without an explanation facility. These metrics can
also be understood in terms of the concept of “conversion rate” commonly used in
e-Commerce, operationally defined as the percentage of visitors who take a desired
action. For a more in-depth discussion of persuasion in recommender systems the
reader may consult Chapter 14.

1 In [60] participants reported that they found incorrect overestimation less useful in high cost
domains compared to low cost domains.
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Fig. 15.2: One out of twenty-one interfaces evaluated for persuasiveness - a his-
togram summarizing the ratings of similar users (neighbors) for the recommended
item grouped by good (5’s and 4’s), neutral (3’s), and bad (2’s and 1’s), on a scale
from 1 to 5 [29].

15.4.5 Help Users Make Good Decisions: Effectiveness

Rather than simply persuading users to try or buy an item, an explanation may also
assist users to make better decisions. Effectiveness is by definition highly dependent
on the accuracy of the recommendation algorithm. An effective explanation would
help the user evaluate the quality of suggested items according to their own pref-
erences. This would increase the likelihood that the user discards irrelevant options
while helping them to recognize useful ones. For example, a book recommender
system with effective explanations would help a user to buy books they actually end
up liking. Bilgic and Mooney emphasize the importance of measuring the ability
of a system to assist the user in making accurate decisions about recommendations
based on explanations such as those in Figure 15.3 and Tables 15.3, 15.4 and 15.5
[11]. Effective explanations could also serve the purpose of introducing a new do-
main, or the range of products, to a novice user, thereby helping them to understand
the full range of options [23, 49].

Vig et al. measure perceived effectiveness: “This explanation helps me determine
how well I will like this movie.” [62]. Effectiveness of explanations can also be
calculated as the absence of a difference between the liking of the recommended
item prior to, and after, consumption. For example, in a previous study, users rated
a book twice, once after receiving an explanation, and a second time after reading
the book [11]. If their opinion on the book did not change much, the system was
considered effective. This study explored the effect of the whole recommendation
process, explanation inclusive, on effectiveness. The same metric was also used to
evaluate whether personalization of explanations (in isolation of a recommender
system) increased their effectiveness in the movie domain [61].
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Fig. 15.3: The Neighbor Style Explanation - a histogram summarizing the ratings of
similar users (neighbors) for the recommended item grouped by good (5’s and 4’s),
neutral (3’s), and bad (2’s and 1’s), on a scale from 1 to 5. The similarity to Figure
15.2 in this study was intentional, and was used to highlight the difference between
persuasive and effective explanations [11].

Table 15.3: The keyword style explanation by [11]. This recommendation is ex-
plained in terms of keywords that were used in the description of the item, and that
have previously been associated with highly rated items. “Count” identifies the num-
ber of times the keyword occurs in the item’s description, and “strength” identifies
how influential this keyword is for predicting liking of an item.

Word Count Strength Explain
HEART 2 96.14 Explain
BEAUTIFUL 1 17.07 Explain
MOTHER 3 11.55 Explain
READ 14 10.63 Explain
STORY 16 9.12 Explain

While this metric considers the difference between the before and after ratings,
it does not discuss the effects of over- contra underestimation. If a user’s evaluation
of an item decreases after exposure to an item, their initial rating was an overesti-
mation. Likewise, if their evaluation increases after exposure to the item, the initial
rating was an underestimation. In our work we found that users considered over-
estimation to be less effective than underestimation, and that this varied between
domains. Specifically, overestimation was considered more severely in high invest-
ment domains compared to low investment domains. In addition, the strength of
the effect on perceived effectiveness varied depending on where on the scale the
prediction error occurred [60].

Another way of measuring the effectiveness of explanations has been to test the
same system with and without an explanation facility, and evaluate if subjects who
receive explanations end up with items more suited to their personal tastes [19].

Other work evaluated explanation effectiveness using a metric from marketing
[28], with the aim of finding the single best possible item (rather than “good enough
items” as above) [17]. Participants interacted with the system until they found the
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Table 15.4: A more detailed explanation for the “strength” of a keyword which
shows after clicking on “Explain” in Table 15.3. In practice “strength” probabilis-
tically measures how much more likely a keyword is to appear in a positively rated
item than a negatively rated one. It is based on the user’s previous positive ratings
of items (“rating”), and the number of times the keyword occurs in the description
of these items (“count”) [11].

Title Author Rating Count
Hunchback of Notre Dame Victor Hugo, Walter J. Cobb 10 11
Till We Have Faces: A Myth Retold C.S. Lewis, Fritz Eichenberg 10 10
The Picture of Dorian Gray Oscar Wilde, Isobel Murray 8 5

item they would buy. They were then given the opportunity to survey the entire cat-
alog and to change their choice of item. Effectiveness was then measured by the
fraction of participants who found a better item when comparing with the complete
selection of alternatives in the database. So, using this metric, a low fraction repre-
sents high effectiveness.

Effectiveness is the criterion that is most closely related to accuracy measures
such as precision and recall [19, 58, 59]. In systems where items are easily con-
sumed, e.g. internet news, these can be translated into recognizing relevant items
and discarding irrelevant options respectively. For example, there have been sug-
gestions for an alternative metric of “precision” based on the number of profile
concepts matching with user interests, divided by the number of concepts in their
profile [19].

15.4.6 Help Users Make Decisions Faster: Efficiency

Explanations may make it faster for users to decide which recommended item is
best for them. Efficiency is another established usability principle, i.e. how quickly
a task can be performed [44]. This criterion is one of the most commonly addressed
in the recommender systems literature given that the task of recommender systems
is to find needles in haystacks of information.

Efficiency may be improved by allowing the user to understand the relation
between competing options. [39, 43, 49] use so called critiquing, a sub-class of
knowledge-based algorithms based on trade-offs between item properties, which
lends itself well to the generation of explanations. In the domain of digital cameras,
competing options may for example be viewed by selecting ”Less Memory and
Lower Resolution and Cheaper” [39]. This way users are quickly able to use this
query revision to find a cheaper camera if they are willing to settle for less memory
and lower resolution. More details on critiquing-based recommender systems can
also be found in Chapter 13 of this handbook.
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Efficiency is often used in the evaluation of so-called conversational recom-
mender systems, where users continually interact with a recommender system, re-
fining their preferences (see also Section 15.6.2). In these systems, the explanations
can be seen to be implicit in the dialog. Efficiency in these systems can be measured
by the total amount of interaction time, and number of interactions needed to find a
satisfactory item [59]. Evaluations of explanations based on improvements in effi-
ciency are not limited to conversational systems however. Pu and Chen for example,
compared completion time for two explanatory interfaces, and measured comple-
tion time as the amount of time it took a participant to locate a desired product in
the interface [49].

Other metrics for efficiency also include the number of inspected explanations,
and number of activations of repair actions when no satisfactory items are found
[23, 52]. Normally, it is not sensible to expose users to all possible recommendations
and their explanations, and so users can choose to inspect (or scrutinize) a given
recommendation by asking for an explanation. In a more efficient system, the users
would need to inspect fewer explanations. Repair actions consist of feedback from
the user which changes the type of recommendation they receive, as outlined in the
sections on scrutability (Section 15.4.2). Examples of user feedback/repair actions
can be found in Section 15.6.2.

15.4.7 Make the use of the system enjoyable: Satisfaction

Explanations have been found to increase user satisfaction with, or acceptance of,
the overall recommender system [23, 29, 55]. The presence of longer descriptions of
individual items has been found to be positively correlated with both the perceived
usefulness [60], and ease of use of the recommender system [55]. Also, many com-
mercial recommender systems such as those seen in Table 15.6 are primarily sources
of entertainment. In these cases, any extra facility should take notice of the effect on
user satisfaction. Figure 15.4 gives an example of an explanation evaluated on the
criterion of satisfaction.

When measuring satisfaction, one can directly ask users whether the system is
enjoyable to use [15], or if users like the explanations themselves [60]. Satisfaction
can also be measured indirectly by measuring user loyalty [41, 23] (see also Section
15.4.3), and likelihood of using the system for a search task [20].

In measuring explanation satisfaction, it is important to differentiate between sat-
isfaction with the recommendation process2, and the recommended products (per-
suasion) [20, 23]. One (qualitative) way to measure satisfaction with the process
would be to conduct usability testing methods such as record a think-aloud protocol
for a user conducting a task [37].

2 Here we mean the entire recommendation process, inclusive of the explanations. However, in
Section 15.5 we highlight that evaluation of explanations in recommender systems are seldom
fully independent of the underlying recommendation process.
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In this case, the participants describe their entire experience using the system:
what they are looking at, thinking, doing and feeling, as they go about a task such
as finding a satisfactory item. Objective notes of everything that users say are taken,
without interpretation or influencing the users in any way. Video and voice record-
ings can also be used to revisit the session and to serve as a memory aid. In such
a case, it is possible to identify usability issues and even apply quantitative metrics
such as the ratio of positive to negative comments; the number of times the evalua-
tor was frustrated; the number of times the evaluator was delighted; the number of
times and where the evaluator worked around a usability problem etc.

It is also arguable that users would be satisfied with a system that offers effec-
tive explanations, confounding the two criteria. However, a system that aids users in
making good decisions, may have other disadvantages that decrease the overall sat-
isfaction (e.g. requiring a large cognitive effort on the part of the user). Fortunately,
these two criteria can be measured by distinct metrics.

Fig. 15.4: An explanations for an internet provider, describing the provider in terms
of user requirements: “This solution has been selected for the following reasons . . . ”
[23].

15.5 Evaluating the Impact of Explanations on the
Recommender System

Guideline 2: Be aware that the evaluation of explanations is related to, and
may be confounded with, the functioning of the underlying recommendation
engine, as measured by criteria commonly used for evaluating recommender
systems.

We have now identified seven criteria by which explanations in recommender sys-
tems can be evaluated, and given suggestions of how such evaluations can be per-
formed. To some extent, these criteria assume that we are evaluating only the ex-
planation component. It also seems reasonable to evaluate the system as a whole. In
that case we might measure the general system usability and accuracy, which will
depend on both the recommendation algorithm as well as the impact of the explana-
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Fig. 15.5: Confidence display for a recommendation, [29] - the movie is strongly
recommended (5/5), and there is a large amount of information to support the rec-
ommendation (4.5/5).

tion component. Therefore, in this section, we describe the interaction between the
recommender engine and our explanation criteria, organized by the evaluation met-
rics commonly used in recommender system evaluations: accuracy, learning rate,
coverage, novelty/serendipity and acceptance.

15.5.1 Accuracy Metrics

Accuracy metrics regard the ability of the recommendation engine to predict cor-
rectly, but accuracy is likely to interact with explanations too. For example, with
respect to the relationship between transparency and accuracy: Cramer et al. found
that transparency led to changes in user behavior that ultimately decreased recom-
mendation accuracy [19].

The system’s own confidence in its recommendations is also related to accuracy
and can be reflected in explanations. An example of an explanation aimed to help
users understand (lack of) accuracy, can be found in confidence displays such as
Figure 15.5. These can be used to explain e.g. poor recommendations in terms of
insufficient information used for forming the recommendation. For further work on
confidence displays see also [40].

Explanations can also help users understand how they would relate to a partic-
ular item, possibly supplying additional information that helps the user make more
informed decisions (effectiveness). In the case of poor accuracy, the risk of missing
good items, or trying bad ones increases while explanations can help decrease this
risk. By helping users to correctly identify items as good or bad, the accuracy of the
recommender system as a whole may also increase.

15.5.2 Learning Rate

The learning rate represents how quickly a recommender system learns a user’s pref-
erences, and how sensitive it is to changes in preferences. Learning rate is likely to
affect user satisfaction as users would like a recommender system to quickly learn



494 Nava Tintarev and Judith Masthoff

their preferences, and be sensitive to short term as well as long term interests. Expla-
nations can increase satisfaction by clarifying or hinting that the system considers
changes in the user’s preferences. For example, the system can flag that the value for
a given variable is getting close to its threshold for incurring a change, but that it has
not reached it yet. A system can also go a step further, and allow the user to see just
how it is learning and changing preferences (transparency), or make it possible for
a user to delete old preferences (scrutability). For example, the explanation facility
can request information that would help it learn/change quicker, such as asking if a
user’s favorite movie genre has changed from action to comedy.

15.5.3 Coverage

Coverage regards the range of items which the recommender system is able to
recommend. Explanations can help users understand where they are in the search
space. By directing the user to rate informative items in under-explored parts of
the search space, explanations may increase the overlap between certain items or
features (compared to sparsity). Ultimately, this may increase the overall coverage
for potential recommendations. Understanding the remaining search options is re-
lated to the criterion of transparency: a recommender system can explain why cer-
tain items are not recommended. It may be impossible or difficult to retrieve an
item (e.g. for items that have a very particular set of properties in a knowledge-
based system, or the item does not have many ratings in a collaborative-filtering
system). Alternatively, the recommender system may function under the assump-
tion that the user is not interested in the item (e.g. if their requirements are too
narrow in a knowledge-based system, or if they belong to a very small niche in a
collaborative-based system). An explanation can explain why an item is not avail-
able for recommendation, and even how to remedy this and allow the user to change
their preferences (scrutability).

Coverage may also affect evaluations of the explanatory criteria of effectiveness.
For example, if a user’s task is not only to find a “good enough” item, but the best
item for them, then the coverage needs to be sufficient to ensure that “best” items
are included in the recommendations. Depending on how much time retrieving these
items takes, coverage may also affect efficiency.

15.5.4 Acceptance

It is possible to confound acceptance, or satisfaction with a system with other types
of satisfaction. If users are satisfied with a system with an explanation component, it
remains unclear whether this is due to: satisfaction with the explanation component,
satisfaction with recommendations, or general design and visual appeal. Satisfac-
tion with the system due to the recommendations is connected to accuracy metrics,
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or even novelty and diversity, in the sense that sufficiently good recommendations
need to be given to a user in order to keep them satisfied. Although explanations
may help increase satisfaction, or tolerance toward the system, they cannot func-
tion as a substitute for e.g. good accuracy. Indeed, this is true for all the mentioned
explanatory criteria. An example of an explanation striving toward the criterion of
satisfaction may be: “Please bare with me, I still need to learn more about your
preferences before I can make an accurate recommendation.”

15.6 Designing the Presentation and Interaction with
Recommendations

Guideline 3: Think about how the way that you present the recommendations
themselves, and the the interaction model, affect each other and the explana-
tions. These factors affect the degree to which explanatory goals are achieved.

The way recommendations are presented are likely to affect the interaction model
that can be used for eliciting users preferences. Likewise, both factors can affect the
types of explanations that can be generated. In turn, some of the explanations that
can be generated may be more suitable for particular explanatory criteria. Chap-
ter 16 of this handbook, also discusses a complementary evaluation framework
for preference-based (such as critiquing which is described in Chapter 13) recom-
mender systems and focuses on the design of both presentation of recommendations
and interaction model. For example one guideline states: “Showing one search re-
sult or recommending one item at a time allows for a simple display strategy which
can be easily adapted to small display devices; however, it is likely to engage users
in longer interaction sessions or only allow them to achieve relatively low decision
accuracy.” (Guideline 9).

15.6.1 Presenting Recommendations

We summarize the ways of presenting recommendations that we have seen for the
systems summarized in this paper. While there are a number of possibilities for the
appearance of the graphical user interface, the actual structure of offering recom-
mendations can also vary. We identify the following categories for structuring the
presentation of recommendations:

• Top item. Perhaps the simplest way to present a recommendation is by offering
the user the best item for them. E.g. “You have been watching a lot of sports,
and football in particular. This is the most popular and recent item from the
world cup.”
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• Top N-items. The system may also present several items at once.“You have
watched a lot of football and technology items. You might like to see the local
football results and the gadget of the day.” Note that while this system could
be able to explain the relation between chosen items, it could also explain the
rational behind each single item.

• Similar to top item(s). Once a user shows a preference for one or more
items, the recommender system can offer similar items. E.g. “You might also
like...Oliver Twist by Charles Dickens”.

• Predicted ratings for all items. Rather than forcing selections on the user, a
system may allow its users to browse all the available options. Recommenda-
tions are then presented as predicted ratings on a scale (say from 0 to 5) for each
item. A user might query why a certain item, for example local hockey results,
is predicted to have a low rating. The recommender system might then generate
an explanation like: “While this is a sports it is about hockey, which you do not
seem to like!”.

• Structured overview. The recommender system can give a structure which dis-
plays trade-offs between items [49, 68]. The advantage of a structured overview
is that the user can see how items compare, and what other items are still avail-
able if the current recommendation should not meet their requirements.

15.6.2 Interacting with the Recommender System

There are different ways in which a user can give input to the recommender sys-
tem. This interaction is what distinguishes conversational systems from “single-
shot” recommendations. They allow users to elaborate their requirements over the
course of an extended dialog [51] rather than each user interaction being treated
independently of previous history.

We expand on the four ways suggested by [26], supplying examples of current
applications3. Note that although there are more unobtrusive ways to elicit user
preferences, e.g. via usage data [46] or demographics [6], this section focuses on
explicit feedback from users.

• The user specifies their requirements. The user can specify their requirements
through a dialog about their preferences in plain English [43, 64]. Such a dialog
does not make use of the user’s previous interests, nor does it explain directly.
That is, there is no sentence that claims to be a justification of the recommenda-
tion. It does however do so indirectly, by reiterating (and satisfying) the user’s
requirements.

• The user asks for an alternation. A more direct approach is to allow users
to explicitly critique recommended items (see also Chapter 13 on the evolution
of critiquing), for instance using a structured overview (see Section 15.6.1).

3 A fifth section on mixed interaction interfaces is appended to the end of this original list.
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One such system explains the difference between a selected item and remaining
items [39].

• The user rates items. To change the type of recommendations they receive,
the user may want to correct predicted ratings, or modify a rating they made in
the past. The influence based explanation in Table 15.5 shows which rated titles
influenced the recommended book the most [11].

• The user gives their opinion. A common usability principle is that it is easier
for humans to recognize items, than to draw them from memory. For example, a
user could specify whether they think an item is interesting or not, if they would
like to see more similar items, or if they have already seen the item previously
[12, 57].

• Mixed interaction interfaces. Recommender systems can also combine differ-
ent types of interactions [17, 41].

Table 15.5: The influence based explanation showed which rated titles influenced
the recommended book the most. Although this particular system did not allow the
user to modify previous ratings, or degree of influence, in the explanation interface,
it can be imagined that users could directly change their rating here. Note however,
that it would be much harder to modify the degree of influence, as it is computed:
any modification is likely to interfere with the regular functioning of the recommen-
dation algorithm [11].

BOOK YOUR RATING Out of 5 INFLUENCE Out of 100
Of Mice and Men 4 54
1984 4 50
Till We Have Faces: A Myth Retold 5 50
Crime and Punishment 4 46
The Gambler 5 11

15.7 Explanation Styles

Guideline 4: Consider the relationship between the underlying algorithm and
the type of explanations you choose to generate. Do the explanations that you
generate help you achieve your explanatory goals?

In this section we describe explanations inspired by a particular underlying algo-
rithm, or different “explanation styles”. We caution that explanations may follow
the “style” of a particular algorithm irrespective of whether or not this is how the
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recommendations have been retrieved or computed. In other words, the explanation
style for a given explanation may, or may not, reflect the underlying algorithm by
which the recommendations are computed. There often is a divergence between how
the recommendations are retrieved and the style of the given explanations. Conse-
quently, this type of explanation would not be consistent with the goal of trans-
parency, but may support other explanatory goals.

Table 15.6: Examples of explanations in commercial and academic systems, or-
dered by explanation style (case, collaborative, content, conversational, demo-
graphic and knowledge/utility-based).

System Example explanation Explanation style
iSuggest-Usability
[30]

See e.g. Figure 15.8 Case-based

LoveFilm.com “Because you have selected or
highly rated: Movie A”

Case-based

LibraryThing.com “Recommended By User X for
Book A”

Case-based

Netflix.com A list of similar movies the user has
rated highly in the past

Case-based

Amazon.com “Customers Who Bought This Item
Also Bought . . . ”

Collaborative

LIBRA [11] Keyword style (Tables 15.3 and
15.4); Neighbor style (Figure 15.3);
Influence style (Figure 15.5)

Collaborative

MovieLens [29] Histogram of neighbors (Figure
15.2) and Confidence display (Fig-
ure 15.5)

Collaborative

Amazon.com “Recommended because you said
you owned Book A”

Content-based

CHIP [20] “Why is ‘The Tailor’s Workshop
recommended to you’? Because it
has the following themes in com-
mon with artworks that you like: *
Everyday Life * Clothes . . . ”

Content-based

Moviexplain [58] See Table 15.7 Content-based
MovieLens: “Tags-
planations” [62]

Tags ordered by relevance or pref-
erence (see Figure 15.7)

Content-based

News Dude [12] “This story received a [high/low]
relevance score, because it contains
the words f1, f2, and f3.”

Content-based

Continued on next page
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Table 15.6 – continued from previous page
System Example explanation Explanation style
OkCupid.com Graphs comparing two users ac-

cording to dimensions such as
“more introverted”; comparison of
how users have answered different
questions

Content-based

Pandora.com “Based on what you’ve told us so
far, we’re playing this track because
it features a leisurely tempo . . . ”

Content-based

Adaptive place Ad-
visor [59]

Dialog e.g. “Where would you like
to eat?” “Oh, maybe a cheap Indian
place.”

Conversational

ACORN [65] Dialog e.g. “What kind of movie do
you feel like?” “I feel like watching
a thriller.”

Conversational

INTRIGUE [6] “For children it is much eye-
catching, it requires low back-
ground knowledge, it requires a few
seriousness and the visit is quite
short. For yourself it is much eye-
catching and it has high historical
value. For impaired it is much eye-
catching and it has high historical
value.”

Demographic

Qwikshop [39] “Less Memory and Lower Resolu-
tion and Cheaper”

Knowledge/utility-
based

SASY [21] “. . . because your profile has: *You
are single; *You have a high bud-
get” (Figure 15.1)

Knowledge/utility-
based

Top Case [43] “Case 574 differs from your query
only in price and is the best case no
matter what transport, duration, or
accommodation you prefer”

Knowledge/utility-
based

(Internet Provider)
[23]

“This solution has been selected for
the following reasons: *Webspace
is available for this type of connec-
tion . . . ” (Figure 15.4)

Knowledge/utility-
based

”Organizational
Structure” [49]

Structured overview: “We also rec-
ommend the following products
because: *they are cheaper and
lighter, but have lower processor
speed.” (Figure ??)

Knowledge/utility-
based

Continued on next page
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Table 15.6 – continued from previous page
System Example explanation Explanation style
myCameraAdvisor
[63]

e.g “. . . cameras capable of taking
pictures from very far away will be
more expensive . . . ”

Knowledge/utility-
based

Transparency is not the only explanatory goal to consider when deciding upon
explanation style. For example, for a given system one might find that users are more
satisfied with content-based style explanations even though critique-based style ex-
planations are more efficient. As of yet, there is little comparison between expla-
nation styles with regard to their performance on explanatory goals. Only Hingston
[30] has compared the understandability and scrutability of different explanation
styles inspired by algorithm, although in these cases, the explanations were directly
influenced by different underlying algorithms as well. Other studies have however
considered the effects of different explanation interfaces on different explanatory
goals [20, 29, 61].

Notwithstanding, the underlying algorithm of a recommender engine will to a
certain degree influence the types of explanations that can be generated. Table 15.6
summarizes the most commonly used explanation styles (case-based, content-based,
collaborative-based, demographic-based, knowledge and utility-based) with exam-
ples of each. In this section we describe each style: their assumed inputs, processes
and generated explanations. For commercial systems where this information is not
public, we offer educated guesses. While conversational systems are included in the
Table, we consider conversational systems as more of an interaction style than a
specific algorithm.

In the following sections we will give further examples of how explanation styles
can be inspired by common algorithms as classified by Burke [13]. For each example
we also mention how the recommendations are presented, and the interaction model
that was chosen.

For describing the interface between the recommender system and explanation
component we use the notation used in [13]: U is the set of users whose preferences
are known, and u ∈U is the user for whom recommendations need to be generated.
I is the set of items that can be recommended, and i ∈ I is an item for which we
would like to predict u’s preferences.

15.7.1 Collaborative-Based Style Explanations

For collaborative-based style explanations the assumed input to the recommender
engine are user u’s ratings of items in I. These ratings are used to identify users
that are similar in ratings to u. These similar users are often called “neighbors” as
nearest-neighbors approaches are commonly used to compute similarity. Then, a
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prediction for the recommended item is extrapolated from the neighbors’ ratings of
i.

Commercially, the most well known usage of collaborative-style explanations
are the ones used by Amazon.com: “Customers Who Bought This Item Also Bought
. . . ”. This explanation assumes that the user is viewing an item which they are
already interested in. It implies that the system finds similar users (who bought
this item), and retrieves and recommends items that these similar users bought. The
recommendations are presented in the format of similar to top item. In addition, this
explanation assumes an interaction model, whereby ratings are implicitly inferred
through purchase behavior.

Herlocker et al. suggested 21 explanation interfaces using text as well as graph-
ics [29]. These interfaces varied with regard to content and style, but a number of
these explanations directly referred to the concept of neighbors. Figure 15.2 for ex-
ample, shows how neighbors rated a given (recommended) movie, a bar chart with
“good”, “ok” and “bad” ratings clustered into distinct columns. Again, we see that
this explanation is given for a specific way of recommending items, and a particu-
lar interaction model: this is a single recommendation (either top item or one item
out of a top-N list), and assumes that the users are supplying rating information for
items.

15.7.2 Content-Based Style Explanation

For content-based style explanations the assumed input to the recommender engine
are user u’s ratings (for a sub-set) of items in I. These ratings are then used to
generate a classifier that fits u’s rating behavior and use it on i. A prediction for the
recommended item is based on how well it fits into this classifier. E.g. if it is similar
to other highly rated items.

If we simplify this further, we could say that content-based algorithms consider
similarity between items, based on user ratings but considering item properties. In
the same spirit, content-based style explanations are based on the items’ properties.
For example, [58] justifies a movie recommendation according to what they infer is
the user’s favorite actor (see Table 15.7). While the underlying approach is in fact
a hybrid of collaborative and content-based approaches, the explanation style sug-
gests that they compute the similarity between movies according to the presence of
features in highly rated movies. They elected to present users with several recom-
mendations and explanations (top-N) which may be more suitable if the user would
like to make a selection between movies depending on the information given in the
explanations (e.g. feeling more like watching a movie with Harrison Ford over one
starring Bruce Willis). The interaction model is based on ratings of items.

A more domain independent approach is suggested by [62] who suggest a sim-
ilarity measure based on user specified keywords, or tags. The explanations used
in this study use the relationship between keywords and items (tag relevance), and
the relationship between tags and users (tag preference) to make recommendations
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(see Figure 15.7). Tag preference, or how relevant a tag is for a given user, can be
seen as a form of content-based explanation, as it is a weighted average of a given
user’s ratings of movies with that tag. Tag relevance, or how relevant a keyword is
for recommending an item, on the other hand is the correlation between (aggregate)
users’ preference for the tag, and their preference for a movie with which the tag is
associated. In this example, showing recommendations as a single top item allows
the user to view many of the tags that are related to the item. The interaction model
is again based on numerical ratings.

The commercial system Pandora, explains its recommendations of songs accord-
ing to musical properties such as tempo and tonality. These features are inferred
from users ratings of songs. Figure 15.6 shows an example of this [1]. Here, the
user is offered one song at a time (top item) and gives their opinion as “thumbs-up”
or “thumbs-down” which also can be considered as numerical ratings.

Fig. 15.6: Pandora explanation: “Based on what you’ve told us so far, we’re playing
this track because it features a leisurely tempo . . . ”

Table 15.7: Example of an explanation in Moviexplain, using features such as ac-
tors, which occur for movies previously rated highly by this user, to justify a recom-
mendation [58].

Recommended movie title The reason is the par-
ticipant

who appears in

Indiana Jones and the Last Crusade (1989) Ford, Harrison 5 movies you have rated
Die Hard 2 (1990) Willis, Bruce 2 movies you have rated
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Fig. 15.7: Tagsplanation with both tag preference and relevance, but sorted by tag
relevance

15.7.3 Case-Based Reasoning (CBR) Style Explanations

Explanations can also omit mention of significant properties and focus primarily
on the similar items used to make the recommendation. The items used are thus
considered cases for comparison, resulting in case-based style explanations. We note
that CBR systems greatly vary with regard to the recommendation algorithm. For
example, the FINDME recommender [14] is based on critiquing, and the ranking of
items in [5] is based on their presence in travel plans of users who expressed similar
interests. While these CBR systems have also used different methods to present
their explanations, we recall that this section, and the sections describing the other
explanation styles, are focused on the style of the explanation rather than the actual
underlying algorithm. As such, each of these systems could in theory have had a
case-based style explanation.

In fact, in this chapter we have already seen a type of case-based style explana-
tion, the “influence based style explanation” of [11] in Figure 15.5. Here, the influ-
ence of an item on the recommendation is computed by looking at the difference
in the score of the recommendation with and without that item. In this case, recom-
mendations were presented as top item, assuming a rating based interaction. Another
study computed the similarity between recommended items4, and used these simi-
lar items as justification for a top item recommendation in the “learn by example”
explanations (see Figure 15.8) [30].

4 The author does not specify which similarity metric was used, though it is likely to be a form of
rating based similarity measure such as cosine similarity.
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15.7.4 Knowledge and Utility-Based Style Explanations

For knowledge and utility-based style explanations the assumed input to the rec-
ommender engine are description of user u’s needs or interests. The recommender
engine then infers a match between the item i and u’s needs. One knowledge-based
recommender system takes into consideration how camera properties such as mem-
ory, resolution and price reflect the available options as well as a user’s preferences
[39]. Their system may explain a camera recommendation in the following manner:
“Less Memory and Lower Resolution and Cheaper”. Here recommendations are
presented as a form of structured overview describing the competing options, and
the interaction model assumes that users ask for alterations in the recommended
items.

Similarly, in the system described in [43] users gradually specify (and modify)
their preferences until a top recommendation is reached. This system can generate
explanations such as the following for a recommended holiday titled “Case 574”:
“Top Case: Case 574 differs from your query only in price and is the best case no
matter what transport, duration, or accommodation you prefer”.

It is arguable that there is a certain degree of overlap between knowledge-based,
content-based style (Section 15.7.2) and case-based style explanations (Section
15.7.3) which can be derived from either type of algorithm depending on the de-
tails of the implementation.

Fig. 15.8: Learn by example, or case based reasoning [30].
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15.7.5 Demographic Style Explanations

For demographic-based style explanations, the assumed input to the recommender
engine is demographic information about user u. From this, the recommendation
algorithm identifies users that are demographically similar to u. A prediction for the
recommended item i is extrapolated from how the similar users rated this item, and
how similar they are to u.

Surveying a number of systems which use a demographic-based filter e.g. [6, 34,
48], we could only find one which offers an explanation facility: “For children it
is much eye-catching, it requires low background knowledge, it requires a few seri-
ousness and the visit is quite short. For yourself it is much eye-catching and it has
high historical value. For impaired it is much eye-catching and it has high historical
value.”[6]. In this system recommendations were offered as a structured overview,
categorizing places to visit according to their suitability to different types of trav-
elers (e.g. children, impaired). Users can then add these items to their itinerary, but
there is no interaction model that modifies subsequent recommendations

To our knowledge, there are no other systems that make use of demographic
style explanations. It is possible that this is due to the sensitivity of demographic
information; anecdotally we can imagine that many users would not want to be
recommended an item based on their gender, age or ethnicity (e.g. “We recommend
you the movie Sex in the City because you are a female aged 20-40.”).

15.8 Summary and future directions

In this chapter, we offer guidelines for the designers of explanations in recommender
systems. Firstly, the designer should consider what benefit the explanations offer,
and thus which criteria they are evaluating the explanations for (e.g. transparency,
scrutability, trust, efficiency, effectiveness, persuasion or satisfaction). The devel-
oper may select several criteria which may be related to each other, but may also
be conflicting. In the latter case, it is particularly important to distinguish between
these evaluation criteria. It is only in more recent work that these trade-offs are being
shown and becoming more apparent [20, 61].

In addition, the system designer should consider the metrics they are going to use
when evaluating the explanations, and the dependencies the explanations may have
with different parts of the system, such as the way recommendations are presented
(e.g. top item, top N-items, similar to top item(s), predicted ratings for all items,
structured overview), the way users interact with the explanations (e.g. the user
specifies their requirements, asks for an alteration, rates items, gives their opinion,
or uses a hybrid interaction interface) and the underlying recommender engine.

To offer a single example of the relation between explanations and other recom-
mender system factors, we can imagine a recommender engine with low recommen-
dation accuracy. This may affect all measurements of effectiveness in the system, as
users do not really like the items they end up being recommend. These measure-
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ments do not however reflect the effectiveness of the explanations themselves. In
this case, a layered approach to evaluation [47], where explanations are considered
in isolation from the recommendation algorithm as seen in [61], may be warranted.
Similarly, thought should be given to how the method of presenting recommenda-
tions, and the method of interaction may affect the (evaluation of) explanations.

We offered examples of explanation styles influenced by the most common algo-
rithms (e.g. content-based, collaborative, demographic, or knowledge/utility-based),
and how they have been used in existing systems. To a certain extent these types of
explanations can be reused (likely at the cost of transparency) for hybrid recommen-
dations, and other complex recommendation methods such as latent semantic anal-
ysis, but these areas of research remain largely open. Preliminary works for some
of these areas can be found in e.g. [33] (explaining Markov decision processes) and
[31] (explaining latent semantic analysis models).

Fig. 15.9: Newsmap - a treemap visualization of news. Different colors represent
topic areas, square and font size to represent importance to the current user, and
shades of each topic color to represent recency.

As of yet, there has been little comparison between explanation styles with regard
to their performance on explanatory goals. This is an avenue of research in which
we hope to see further progress in the near future. Also, future work will likely in-
volve more advanced interfaces for explanations. For example, the “treemap” struc-
ture (see Figure 15.9 [4]) offers an overview of the search space [9]. This type of
overview may also be used for explanation. Assume for example, that a user is being
recommended the piece “The Votes Obama Truly Needs”, and that this rectangle is
highlighted. This interface “explains” that this item is being recommended because
the user is interested in current US news (orange color), it is popular (big square),
and that it is recent (bright color).

Last, but certainly not least, researchers are starting to find that explanations are
part of a cyclical process. The explanations affect a user’s mental model of the rec-
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ommender system, and in turn the way they interact with the explanations. In fact
this may also impact the recommendation accuracy negatively [7, 20]. For example
[7] saw that recommendation accuracy decreased as users removed keywords from
their profile for a news recommender system. Understanding this cycle will likely
be one of the future strands of research.
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Chapter 16
Usability Guidelines for Product Recommenders
Based on Example Critiquing Research

Pearl Pu, Boi Faltings, Li Chen, Jiyong Zhang and Paolo Viappiani

Abstract Over the past decade, our group has developed a suite of decision tools
based on example critiquing to help users find their preferred products in e-commerce
environments. In this chapter, we survey important usability research work relative
to example critiquing and summarize the major results by deriving a set of usabil-
ity guidelines. Our survey is focused on three key interaction activities between the
user and the system: the initial preference elicitation process, the preference revision
process, and the presentation of the systems recommendation results. To provide a
basis for the derivation of the guidelines, we developed a multi-objective frame-
work of three interacting criteria: accuracy, confidence, and effort (ACE). We use
this framework to analyze our past work and provide a specific context for each
guideline: when the system should maximize its ability to increase users’ decision
accuracy, when to increase user confidence, and when to minimize the interaction
effort for the users. Due to the general nature of this multi-criteria model, the set
of guidelines that we propose can be used to ease the usability engineering process
of other recommender systems, especially those used in e-commerce environments.
The ACE framework presented here is also the first in the field to evaluate the per-
formance of preference-based recommenders from a user-centric point of view.

Designers can use these guidelines for the implementation of an effective and
successful product recommender.
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16.1 Introduction

According to Jacob Nielsen, a well known usability researcher, the first law of e-
commerce is that if users cannot find the product, they cannot buy it either.1 The
word “find” indeed defines a challenging task that e-commerce systems must sup-
port. It refers to the online retailer’s ability to help users identify an ideal product
that satisfies the user’s needs (sometimes even unknown to him/herself) and inspire
users to select the items recommended to them. This implies that the system must
assist users to carry out not only a search but also a decision making task.

How do users actually face such tasks in the online environments? With increased
competition, online retailers are offering a progressively large collection of available
products. New items are added to their catalogs regularly, often to ensure that all of
their direct competitors’ products are included in their inventory as well. The task
of locating a desired choice is directly dependent on the number of available op-
tions. Indeed with this “infinite” shelf space the user task is becoming daunting, if
not impossible, for the average user. Under such circumstances, users are likely to
employ one of two decision approaches. In the first case, they try to achieve high
decision accuracy, but face the time-consuming task of sifting through all options
and trading off the pros and cons between the various aspects of the products. Alter-
natively, they can adopt heuristic decision strategies and process information more
selectively. Although they expend less effort in this case, these heuristic strategies
can lead to decision errors and are likely to cause decision regret. Clearly, neither
approach is ideal, since adopting one or the other implies a compromise on either
decision accuracy or effort. According to [40], the tradeoff between accuracy and
effort is an inherent dilemma in decision-making that cannot be easily reconciled.

Significant research has been performed to develop highly interactive and intelli-
gent tools to assist users. As a result, preference-based recommenders have emerged
and are broadly recognized as effective search and navigation mechanisms guiding
users to find their preferred products in e-commerce and other demanding deci-
sion environments. In the past decade, we have developed the example critiquing
method and a suite of decision tools based on this method to provide personaliza-
tion and recommendation to the product search problem [43, 45, 51, 52]. More than
a dozen user studies were carried out and published, which validated the method
in various data domains: travel planning, apartment search, and product search for
laptops, Tablet PCs, and digital cameras. However, the wide adoption of example
critiquing in electronic commerce remains limited.

Our goal is to analyze and survey our past work related to example critiquing and
synthesize the major results by deriving a set of usability guidelines. More specif-
ically, we focus on three key interaction activities: the initial preference elicitation
process, the preference revision process, and the presentation of the system’s rec-
ommendation results. To provide a basis for the derivation of the guidelines, we in-
vestigate the objectives a product recommender must achieve in order to maximize

1 Nielsen stated this law in his Alertbox in 2003. For details, please visit
http://www.useit.com/alertbox/20030825.html.
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user satisfaction and their willingness to use the system. A recommender’s accu-
racy, i.e., how the system finds items that users truly want, has traditionally been
an important and central aspect of recommenders. However, accuracy alone does
not entirely capture user benefit without the consideration of ease of use (usability)
[35]. People are known to have very limited cognitive resources and are not likely
to achieve a high level of accuracy if the required effort is excessive. Finally, since
product search is a decision process, the recommender must also help users achieve
confidence that the products recommended to them are what they truly want. Instead
of accuracy alone, we therefore propose a multi-objective framework, called ACE,
for the derivation of our guidelines: 1) the system’s ability to help users find their
most preferred item (accuracy), 2) its ability to inspire users’ confidence in selecting
the items that were recommended to them (confidence), and 3) the amount of user
effort it requires for achieving the relative accuracy (effort).

Notice that some users may be ready to spend a lot of effort to obtain a very
accurate recommendation, while others may be ready to accept a lower accuracy
to obtain a result quickly. While the design of a recommender clearly involves a
tradeoff between accuracy and effort, what actually matters to the user is the tradeoff
between confidence and effort: I am willing to put in more interaction effort only
if I am increasingly convinced of the products that are recommended to me. The
main challenge for recommender system design is to ensure that user confidence is
sufficiently high to make them spend enough effort to reach an acceptable decision
outcome.

This set of three requirements for deriving the guidelines can also be used as
an evaluation framework to measure the usability of a product recommender. This
chapter therefore contributes to the field in two main areas. From an academic point
of view, the article establishes a novel set of user-centric criteria to evaluate the
performance of preference-based recommenders. From a practical point of view,
the chapter surveys the state of the art of example critiquing on three key interaction
activities and derives a set of 11 usability guidelines that can be applied in a wider
and more scalable way. Since these guidelines are derived from methods that have
been validated in usability studies, practitioners can use them with confidence to
enhance the usability engineering process, including design and testing, of a product
recommender.

16.2 Preliminaries

16.2.1 Interaction Model

Preference-based recommenders suggest items to users based on their explicitly
stated preferences over the attributes of the items. The various systems described
in this chapter were designed using different architectures and evaluated using dif-
ferent data domains. However, they share some overall characteristics, especially
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Preference Model 

Step 1: user specifies 
initial preferences  

Step 2:  
the product search tool 
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stated preferences  
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recommended set 
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the final 
choice 

space of all 
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preferences to receive more  
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Fig. 16.1: The generic system-user interaction model of a preference-based recom-
mender system.

concerning the interaction model. To form a nomenclature throughout the survey
and the guideline derivation process, we present a generic model of interaction sum-
marizing the steps of a recommender in Figure 16.1. A user starts his/her interaction
process by stating a set of initial preferences via, for example, a graphical user in-
terface. After obtaining that information, the system filters the space of options and
selects the items to be recommended to users based on their stated preferences. This
set is called the recommendation set. At that point, either the user finds her most
preferred item in the recommendation set and thus terminates her interaction with
the system, or she revises the preference model, using critiques such as “I would
like a cheaper item”, in order to obtain more accurate recommendations. This last
user feedback step is called preference revision. As a result of the process, the user
can either pick a single item, or construct a list of items known as the consideration
set that might then be compared in further detail.

The recommender can fail if the user is not sufficiently confident that the pro-
cess is indeed finding a suitable product, and therefore does not undertake sufficient
preference revision cycles to give the system an accurate preference model. Our
guidelines are designed to avoid this situation, and at the end of this chapter we pro-
vide a model that shows their rationale with respect to the user’s decision process.

Once a recommendation set has been determined, a system may use various dis-
play strategies to show the results. A typical tool presents the user with a set of k
items (1 ≤ k ≤ n, where n is the total number of products) in each of a total of m
interactions. In each display of these k items, a user is identifying her target choice
to be included in the consideration set. The more options are displayed, the more
effort the user must expend to examine them. On the other hand, in a small display
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set users could easily overlook their target choice and engage in more interaction cy-
cles. This tradeoff of effort versus accuracy will be discussed in further detail when
individual systems are presented.

The presented interactive components may not be simultaneously included in
the same system by other tools. For example, the initial preference elicitation is an
optional step when users are presented with a set of recommendations (e.g., best
sellers in different categories) as soon as they visit a site. Other systems, on the
other hand, may elicit users’ initial preferences but do not provide the option to
allow users to revise them.

16.2.2 Utility-Based Recommenders

Since example critiquing tools are based on multi-attribute utility theory, we provide
an overview of the underlying recommendation algorithm.

The fundamental assumption underlying these recommenders is that people pre-
fer items because of their attributes. Different values of an attribute correspond to
different degrees of preference depending on the situation: for example, a large
apartment is useful when there are guests, but not useful when it has to be cleaned.
A user will determine preferences for an item by weighing the advantages and dis-
advantages of each feature according to how often it is beneficial and how often it
is not. Thus, preference is a weighted function of attributes.

Formally, the preference-based recommendation problem can be formulated
as a Multi-Attribute Decision Problem (MADP) Ψ = 〈X,D,O,P〉, where X =
{X1, · · · ,Xn} is a finite set of attributes that the product catalog has, D = D1× · · ·×
Dn indicates the product domain space (each Di(1≤i≤n) is a set of domain values
for attribute Xi), O = {O1, · · · ,Om} is a finite set of available products that the sys-
tem may provide, and P = {P1, · · · ,Pt} denotes a set of preferences that the user
may have. The objective of a MADP is to find a product (or products) that is (or are)
most preferred by the user. A MADP can be solved by constraint-based approaches
or utility-based approaches. Below we introduce the approach based on the multi-
attribute utility theory (MAUT) to solve a given MADP. Please see [45] for the
constraint-based approach.

Multi-Attribute Utility Theory (MAUT)
The origin of utility theory dates back to 1738 when Bernoulli proposed his expla-

nation to the St. Petersburg paradox in terms of the utility of monetary value [4].
Two centuries later it was von Neumann and Morgenstern (1944) who revived this
method to solve problems they encountered in economics [71]. Later, in the early
1950s, in the hands of Marschak [29] and of Herstein and Milnor [21], the Ex-
pected Utility Theory was established on the basis of a set of axioms that form the
basis of the von Neumann Morgenstern theorem (VNM Theorem) [39, 59].
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In the 1970s Keeney and Raiffa [24] extended utility theory to the case of mul-
tiple attributes. The main idea of multi-attribute utility theory is to represent user
preferences as utility functions of the attribute values.

Let the symbol % denote the user’s preference order, e.g. A % B means “A is
preferred or indifferent to B”. According to Utility Theory, for a given MADP, there
exists a utility function U : O→ ℜ, such that for any two possible products O and
Ō ∈ O,

O% Ō⇐⇒U(O)≥U(Ō) (16.1)

More specifically, a product O can be represented by a set of attribute values
〈X1 = x1, · · · ,Xn = xn〉 (in short as 〈x1, · · · ,xn〉), thus the above formula can be
rewritten as

〈x1, · · · ,xn〉 % 〈x̄1, · · · , x̄n〉 ⇐⇒U(〈x1, · · · ,xn〉)≥U(〈x̄1, · · · , x̄n) (16.2)

If the utility function is given, the degree of preference for each product is char-
acterized as a numerical utility and the preference order of all products is given by
these utility values.

Finding the proper utility function U to represent users’ preferences precisely is
a challenging task. While in theory the utility function can be used in any style to
represent user preferences, a special case is commonly used to reduce computation
effort. If the attributes are mutually preferentially independent2 based on the utility
theory, the utility function has the additive form as follows:

U(〈x1, · · · ,xn〉) =
n

∑
i=1

wivi(xi) (16.3)

where vi is a value function of attribute Xi with range [0,1], and wi is the weight
value of Xi satisfying ∑n

i=1 wi = 1. In other words, the utility function for a product
O is the weighted sum of the utility functions for each of its attributes. The weight
value for each attribute can be given as default value 1/n, and we can allow the
user to specify the weight values of some attributes. The value function vi can be
determined to satisfy the user’s preferences related to the attribute Xi . Usually a
linear function with the form vi = axi+b is enough to represent the user’s preference
on each attribute.

Once the utility function for each product is determined, we are able to rank all
the products based on their overall utilities and select the top K products with highest
utilities as the recommendation set. In practice, we assume that the attributes of any
product are mutually preferentially independent, so the additive form of the utility
function can always be applied.

2 An attribute X is said to be preferentially independent of another attribute Y if preferences for
levels of attribute X do not depend on the level of attribute Y. If Y is also preferentially inde-
pendent of X, then the two attributes are said to be mutually preferentially independent. See more
details in [22].
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16.2.3 The Accuracy, Confidence, Effort Framework

As mentioned in the introduction, our search for a multi-objective requirement
framework is to find a basis for the derivation of the design guidelines. We look
for criteria that a product recommender must satisfy in order to achieve maximum
user satisfaction and their willingness to use the system. We give a more precise
definition of the ACE (Accuracy, Confidence, Effort) framework as well as ways of
measuring these variables.

Accuracy refers to the objective accuracy of a recommender. For rating-based
systems, the most often used measure is the mean absolute error (or MAE) [1]. It is
measured by an offline procedure known as leave-one-out on a previously acquired
dataset. Leave-one-out involves leaving one rating out and then trying to predict
it with the recommender algorithm being evaluated. The predicted rating is then
compared with the real rating and the difference in absolute value is computed. The
procedure is repeated for all the ratings and an average of all the errors is called the
Mean Absolute Error.

Recommendations generated by utility-based systems are based on users’ pref-
erence profiles. Since such profiles cannot be simulated, offline methods to measure
accuracy are not possible. One method commonly used in this field is the switch-
ing task as defined in [48]. It measures how often users’ truly preferred items are
selected from the ones recommended to them. For example, if 70 out of 100 users
found their preferred items during the recommendation process without changing
their decisions after the experiment administrator presented all of the available op-
tions to them, then we say the accuracy of the system is 70%. This implies an ex-
perimental procedure where each user first interacts with a recommender to pick
items for her consideration set. In a second phase of this procedure, the experiment
administrator will show all of the available items and then ask her whether she finds
the items in the consideration set still attractive. If she switches to other items, the
system has failed to help her make an accurate decision. Such procedures were al-
ready employed in consumer decision research to measure decision quality, known
as the switching task [20]. The fraction of users that switch to other items, called
the switching rate, gives the only precise account of decision accuracy for a per-
sonalized recommender tool. However, as they are very time consuming, switching
tasks are only performed in carefully defined empirical studies.

User confidence, the second evaluation criterion in our ACE framework, is the
system’s ability to inspire users to select the items recommended to them. It is a
subjective variable and can only be assessed using a post-study questionnaire that
asks users to indicate their agreement with statements such as: I am confident that
the items recommended to me are the ones I look for. When the objective accuracy
cannot be feasibly obtained, user confidence can be used to assess the perceived
accuracy of a system. Perceived accuracy is strongly correlated to actual accuracy,
but also influenced by other aspects of the recommender: whether the user is given
enough possibilities and sufficiently involved in preference eliciation and revision,
and whether the display of results convinces the user that the best results are being
found.
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By user effort, we refer to the actual task time users take to finish an instructed
action, such as the preference elicitation and preference revision procedures and the
time they take to construct the consideration set. As an alternative to elapsed time,
we can also measure the number of interaction cycles for any of the interaction
activities since this measure is independent of the working habits of individual users.

Throughout this chapter, we will analyze the 3 major components of example-
based recommender systems: preference elicitation, revision and result display. We
use accuracy, confidence and effort to evaluate different techniques and derive a set
of 11 guidelines for the design of successful example-based recommender systems,
and compare them against a model of user behavior that provides a unified motiva-
tion.

We believe that confidence is a major factor for the success of any recommender
system, and therefore suggest that the ACE framework could be useful to evaluate
other types of recommender systems as well.

16.2.4 Organization of this Chapter

We structure the guidelines according to the generic components of the model pre-
sented in Figure 16.1: initial preference elicitation (step 1), preference revision (step
4), and display strategy (step 2). The rest of this article is organized as follows:
section 16.3 (Related Work) reviews design guidelines for preference elicitation
and personalized product recommender tools in other fields; Section 16.4 (Initial
Preference Elicitation) presents guidelines for motivating users to state their ini-
tial preferences as accurately as possible using principles from behavioral decision
research; Section 16.5 (Stimulating Preference Elicitation with Examples) contin-
ues the discussion on preference elicitation and identifies concrete methods to help
users state complete and sound preferences; Section 16.6 (Preference Revision) de-
scribes strategies to help users resolve conflicting preferences and perform tradeoff
decisions; Section 16.7 (Display Strategies) presents guidelines for device display
strategies that achieve a good balance between minimizing user’s information pro-
cessing effort and maximizing decision accuracy and user confidence; Section 16.8
presents a model of user behavior that provides a rationale for the guidelines; Sec-
tion 16.9 concludes this article.

16.3 Related Work

16.3.1 Types of Recommenders

Two types of recommender systems have been broadly recognized in the field rela-
tive to the way systems gather and build user preference profiles: those based on
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users’ explicitly stated preferences (called preference-based recommenders) and
those based on users navigation or purchase behaviors (called behavior-based rec-
ommenders). For the treatment of behavior-based recommenders, which generate
recommendations based on users’ accumulated interaction behaviors such as the
items users have examined and purchased, please refer to [75], and to [26, 55] for
demographic-based recommenders. Four types of preference-based recommenders
exist: rating-based, case-based, utility-based and critiquing-based. Please see other
ways to classify recommender systems ([1, 7]).

16.3.2 Rating-based Systems

Users explicitly express their preferences (even though they may not know it) by
giving either binary or multi-scale scores to items that they experienced. Either the
system proposes a user to rate a set of items or users will select on their own a
set of items to rate. These initial ratings constitute the user profile. Systems that
fall into this category are most commonly known as collaborative recommenders
due to the fact that the user is recommended items that people with similar tastes
and preferences liked in the past. For this reason, this type of system is also called
social recommender. The details of how the collaborative algorithms work can be
found in [1]. Lately some websites, such as tripadvisor.com, started collecting users’
ratings on multiple attributes of an item to obtain a more refined preference profile.

16.3.3 Case-based Systems

This type of system recommends items that are similar to what users have indicated
as interesting. A product is treated as a case having multiple attributes. Content-
based [1] and case-based technologies [7] are used to analyze the attribute values
of available products and the stated preferences of a user, and then identify one or
several best-ranked options according to a ranking scheme.

16.3.4 Utility-based Systems

Utility-based recommenders, such as example critiquing recommenders, propose
items based on users’ stated preferences on multi-attribute products. Multi-attribute
products refer to the encoding scheme used to represent all available data with the
same set of attributes {a1, · · · ,ak} where each attribute ai can take any value v, from
a domain of values d(ai). For example, a data set comprising all digital cameras
in an e-store can be represented by the same set of attributes: manufacturer, price,
resolution, optical zoom, memory, screen size, thickness, weight, etc. The list of at-
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tributes as well as the domain range varies among product domains. We assume that
users’ preferences depend entirely on the values of these attributes so that two items
that are identical in all attributes would be equally preferred. Furthermore, prod-
ucts considered here, such as digital cameras, portable PCs, or apartments, demand
a significant financial commitment. They are called high involvement products be-
cause users are expected to possess a reasonable amount of willingness to interact
with the system, participate in the selection process and expend a certain amount of
effort to process information [62]. Users are also expected to exhibit slightly more
complex decision behaviors in such environments than they would in selecting a
simpler item, such as a book, a DVD, or a news article.

Tools using these technologies have also been referred to as knowledge-based
recommenders [7] and utility-based decision support interface systems (DSIS)
[62]. Utility refers to multi-attribute utility theory that such technologies use to cal-
culate a product’s suitability to a user’s stated preferences. A related technology,
specializing in searching configurable products, uses constraint satisfaction tech-
nology [45]. The difference between utility- and case-based systems lies in the
notion of utility. While the weight of user preference is important for UBR, it is
ignored in CBR. Further, the notion of value tradeoff is an essential part of decision
making for UBRs. Essentially UBRs recommend decisions, rather than just similar
products. See more details about this topic in the section on tradeoff reasoning.

16.3.5 Critiquing-based Systems

Both case- and utility-based recommenders can be improved by adding the addi-
tional interaction step of critiquing. A critiquing-based product recommender simu-
lates an artificial salesperson that recommends options based on users’ current pref-
erences and then elicits their feedback in the form of critiques such as “I would like
something cheaper” or “with faster processor speed.” These critiques help the agent
improve its accuracy in predicting users’ needs in the next recommendation cycle.
For a user to finally identify her ideal product, a number of such cycles are often
required. Since users are unlikely to state all of their preferences up front, especially
for products that are unfamiliar to them, the preference critiquing agent is an effec-
tive way to help them incrementally construct their preference model and refine it
as they see more options.

16.3.6 Other Design Guidelines

This chapter derives a set of usability design guidelines based on our recent and
related works in the domain of interaction technologies for preference-based search
and recommender tools. Therefore, we will not review the related works that con-
tribute to the accumulated list of guidelines in this section. Rather, discussions of
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these works will be provided throughout the chapter in areas that correspond to
the established guidelines. We will, however, describe two papers which share our
goal of deriving good design guidelines for decision support systems. The first cited
work proposes a set of recommendations derived from marketing research in order
to increase users’ motivation to interact with the recommender agent of an online
store and its website. The second cited work describes a list of “building code”
guidelines for an effective preference construction procedure in decision problems
involving higher-stake outcomes.

Based on a critical but well-justified view of preference-based product search and
recommender tools available at the time, Spiekermann and Paraschiv proposed a set
of nine design recommendations to augment and stimulate the interaction readiness
between a user and such systems [62], but there is no overlap between these rec-
ommendations and our guidelines.

Much of the basis for these recommendations are insights from marketing liter-
ature relative to information search, and perceived risk theory that defines a user’s
readiness to interact with a product recommender as her motivation to reduce the
functional, financial, and emotional risks associated with the purchase decision. The
design recommendations were therefore derived from methods concerned with re-
ducing user risk in all of these dimensions. Compared to our work, this is a “hori-
zontal” approach that covers the general design of an entire e-commerce website, in
which the recommender agent is the principal technical component. We perform an
in-depth examination of the recommender engine’s interaction technologies using a
more “vertical” approach, ensuring that consumers are offered the optimal usabil-
ity support for preference elicitation and decision making when interacting with the
product recommender tools.

Although the subject matter is more concerned with making high-stake decisions,
the valuation process described by Payne et al. [41] is similar to our goal of ad-
dressing the needs and preferences of a consumer facing a purchase decision. Their
work challenged many of the traditional assumptions about well-defined and pre-
conceived preferences and strongly promoted a theory of preference construction.
Under that new framework, the authors proposed a set of “building codes” (similar
to guidelines) to help professional decision makers establish value functions and
make high quality decisions. Their discussions on the nature of human preferences,
the way people construct and measure preferences, and how to face tradeoffs to
obtain rational decisions are especially influential to our work. References to the
specific details of this and other works in behavior decision research will be given
at relevant areas in this chapter.

16.4 Initial Preference Elicitation

Example critiquing systems are decision tools to help people find multi-attribute
products such as flights, digital cameras, tablet PCs, etc. We use P = {(ai,wi)}
where 1 ≤ i ≤ n to specify a user’s preferences over a total of n attributes of her
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desired product for utility-based recommenders. Furthermore, ai represents the de-
sired characteristics on the ith attribute and wi the degree to which such character-
istics should be satisfied. This model is also known as the value function in [24].
It is called the preference model in most systems discussed here. Some methods
assume the same weights for all attributes and therefore do not elicit such informa-
tion [9, 53]. Preference elicitation (also known as query specification) is the initial
acquisition of this model for a given user.

It would seem apparent that a user’s preferences could be elicited by simply ask-
ing her to state them. Many online search tools use a form-filling type of graphical
user interface or a natural language dialog system to collect such information. Users
are asked to state their preferences on every aspect, such as departure and arrival
date and time, airlines, intermediate airports, etc., and are given the impression that
all fields must be filled. We call such approaches non-incremental since all prefer-
ences must be obtained up-front.

To understand why this simple-minded approach does not work, we turn to be-
havior decision theory literature to understand the nature of user preference expres-
sion. According to the adaptive decision theory [40], user preferences are inherently
adaptive and constructive depending on the current decision task and environment.
Due to this nature, users may lack the motivation to answer demanding initial elic-
itation questions prior to any perceived benefits [62], and they may not have the
domain knowledge to answer the questions correctly. In another words, if a system
imposes a heavy elicitation process in the beginning, the preferences obtained in
this way are likely to be uncertain and erroneous.

Similar literature reveals that users’ preferences are context-dependent and are
constructed gradually as a user is exposed to more domain information regarding
his/her desired product [40, 41]. For example, Tversky et al. reported a user study
about asking subjects to buy a microwave oven [66]. Participants were divided
into 2 groups with 60 users each. In the first group, each user was asked to choose
between an Emerson priced at $110 and a Panasonic priced at $180. Both items
were on sale, and these prices represented a discount of one third off the regular
price. In this case only 43% of the users chose the more expensive Panasonic at
$180. A second group was presented with the same choices except with an even
more expensive item: a $200 Panasonic, which represented a 10% discount from its
original $220 price. In this context, 60% of the users chose the Panasonic priced at
$180. In other words, more subjects prefer the same item just because the context
has changed. This finding demonstrates that people are not likely to reveal their
preferences as if they were innate to them, but construct them in an incremental and
adaptive way based on contextual information.

To verify if these classical behavioral theories shed light on user preference ex-
pression in online environments, we conducted some empirical studies. 22 subjects
were asked to interact with a preference elicitation interface [67]. The average user
stated only preferences on 2.1 attributes out of a total of 10 when they had the
possibility to freely state all preferences. Their preferences only increased to 4.19
attributes at the time of selecting the final choice.
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Another study was conducted soon afterwards to further confirm the finding that
users were unlikely to state all of their preferences in the beginning. It compared
how users perform product search tasks in terms of decision accuracy and effort
while interacting with a non-incremental procedure versus the incremental one [68].
With the former procedure, users were required to specify all of their preferences
in a single graphical user interface (called form filling), whereas with the latter ap-
proach, each preference was constructed by a user. All 40 users were randomly and
evenly divided into two groups, and each group was assigned to one system (either
non-incremental or incremental approach) to evaluate. In the non-incremental ap-
proach, users stated on average 7.5 preferences on the 10 attributes, while the results
for the incremental approach remained the same. However, the non-incremental ap-
proach had an accuracy of only 25%, while the incremental method achieved 70%
accuracy with comparable user effort. That is, only 25% of users found the tar-
get products when they had to state preferences in the non-incremental form-filling
style. Thus, while the non-incremental approach may produce the required data,
the quality of what has been elicited may be questionable. There is no guarantee
that users will provide correct and consistent answers on attributes for which their
preferences are still uncertain.

Similar findings were reported in preference elicitation for collaborative filter-
ing based recommender systems. McNee et al. compared three interface strategies
for eliciting movie ratings from new users [34]. In the first strategy, the system
asked the user to rate movies that were chosen based on entropy comparisons to ob-
tain a maximally informative preference model. That is, the system decided which
movies users should initially rate. In another strategy, users were allowed to freely
propose movies they wanted to rate. In a mixed strategy, the user had both possi-
bilities. A total of 225 new users participated in the experiment which found that
the user-controlled strategy obtained the best recommendation accuracy compared
to the other two strategies in spite of a lower number of ratings completed by each
user (14 vs. 36 for the system-controlled interface). Furthermore, the user-controlled
interface was more likely to motivate users to return to the system to assign more
ratings. This demonstrates that a higher level of user control over the amount of
interaction effort gives rise to more accurate preference models.

Incremental elicitation methods, as described in [1] and [5], can be used to re-
vise users’ stated preferences (or value functions) in general cases. Other incremen-
tal methods improve decision quality in specific areas. In [6, 36, 42], researchers
addressed preference uncertainty by emphasizing the importance of displaying a
diverse set of options in the early stage of user-system interaction. Faltings et al.
[13, 69, 70] described ways to stimulate users to express more preferences in order
to help them increase decision accuracy. Pu and Faltings showed how additional
preference information can be acquired via preference revision, especially as users
perform tradeoff tasks [45]. More detail on these topics will be given in Sections
16.5.2 and 16.6.

Based on both classical and recent empirical findings, we have derived several
design guidelines concerning the initial preference elicitation process:
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Guideline 1 (any effort): Consider novice users’ preference fluency. Allow
them to reveal preferences incrementally. It is best to elicit initial preferences
that concern them the most and choose an effort level that is compatible with
their knowledge and experience of available options.

A rigid elicitation procedure obtains users’ preferences using a system pre-
designed order of elicitation. When users are forced to formulate preferences in a
particular order or using attributes that do not correspond to their actual objectives,
they can fall prey to incorrectly formulating means objectives that prevent them from
achieving their fundamental objectives [23]. For example, when planning a trip by
airplanes a user may be prompted by the system to first enter her preferred airline
company before being allowed to state her preferences on the flight. Thus, a user
with the fundamental objective of flying at a certain hour has to formulate a differ-
ent objective, the airline company to use, as a means of achieving the fundamental
objective. This new objective is therefore called a means objective. To correctly
translate the true objective into means objectives, the user needs to have detailed
knowledge of the product offering, in this case the flight time tables offered by the
different airlines. Since her knowledge in this area can be poor in the beginning, the
system may fail to find the most optimal results.

Thus we propose

Guideline 2 (any order): Consider allowing users to state their preferences
in any order they choose.

An elicitation procedure can also be too rigid by not allowing users to state pref-
erences on a sufficiently rich set of attributes. Consider this example [70]: in a travel
planning system, suppose that the user’s objective is to be at his destination at 15:00,
but that the tool only allows search by the desired departure time. The user might
erroneously believe that the trip requires a plane change and takes about 5 hours,
thus forming a means objective of a 10:00 departure in order to answer the question.
However, the best option might be a new direct flight that leaves at 12:30 and arrives
at 14:30.

Means objectives are intermediary goals formulated to achieve fundamental de-
cision objectives. Assume that a user has a preference on attribute ai (e.g., the arrival
time), but the tool requires expressing preferences on attribute a j (e.g., the departure
time). Using beliefs about the available products, the user will estimate a transfer
function ti(a j) that maps values of attribute ai to values of attribute a j (e.g., arrival
time = departure time + 5 hours) The true objective p(ai) is then translated into
the means objective q(a j) = p(t(a j)). When the transfer function is inaccurate, the
means objective often leads to very inaccurate results.

Note also that unless there is a strong correlation between attributes ai and a j,
an accurate transfer function may not even exist. A recent visit to a comparison
shopping website (www.pricegrabber.com) showed that the site does not include
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the weight attribute of Tablet PCs in the search field, even though such information
is encoded in their catalog. For many portability conscious users, the weight of a
Tablet PC is one of the most important decision parameters. When unable to exam-
ine those products directly based on the weight attribute, the consumer might infer
that weight is correlated to the screen size and perhaps the amount of storage in
the hard drive. Consequently, she may consider searching for a Tablet PC with less
disk space and a smaller screen size than she actually desires. These users could po-
tentially make unnecessary sacrifices because many manufacturers are now able to
offer light-weight Tablet PCs with considerable disk space and comfortable screen
sizes.

Thus we propose

Guideline 3 (any preference): Consider allowing users to state preferences
on any attributes they choose.

When designing interfaces based on these three guidelines, a good balance be-
tween giving the user the maximum amount of control, yet not overwhelming her
with interface complexity is necessary. We recommend the use of adaptive inter-
faces, where users can click on attributes for which they want to state preferences
or leave them unclicked or on default values if they do not have strong preferences
at that point. Alternatively, designers can use a “ramp-up” approach for the ini-
tial query specification, where users specify preferences over a small number of at-
tributes initially and are prompted to specify more once some results are displayed.

16.5 Stimulating Preference Expression with Examples

An effective elicitation tool should collect users’ preferences in an incremental and
flexible way. In practice, we are also interested in mechanisms that stimulate users
to state preferences.

Undesirable means objectives arise mainly due to users’ unfamiliarity with avail-
able options. At the same time, it has been observed in behavior theory that people
find it easier to construct a model of their preferences when considering examples
of actual options [41]. According to Tversky [65], people do not maximize a pre-
computed preference order, but construct their choices in light of the available op-
tions. These classical theories seem to justify why example critiquing is an effective
method for building preference elicitation tools [43, 47].

This method is called example critiquing since users build their preferences by
critiquing the example products that are shown to them. Users initially state pref-
erences on any number of attribute values that they determine to be relevant. From
that point on, the system engages the user in successive cycles of ”examples and cri-
tiques”: it displays a set of example products and elicits user feedback in the form
of critiques such as ”I like this laptop computer, but with more disk space”. The
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critiques determine the set of examples to display next. This interaction terminates
when users are able to identify their preferred products.

Users can quickly build their preferences by critiquing the example products
shown to them. As users only have to state critiques rather than preferences, the
model requires little effort from users. Most importantly, the example critiquing
paradigm appears to satisfy both the goal of educating users with available options
and the goal of stimulating them to construct their preferences in the context of
given examples.

We will review a suite of critiquing systems and derive guidelines that illustrate
the most effective components of this method. For additional information of this
subject, please refer to the chapter by Lorraine McGinty and James Reilly entitled
”On the Evolution of Critiquing Recommenders” (in this book).

Example critiquing was first mentioned in [72] as a new interface paradigm for
database access, especially for novice users to specify queries. Recently, example
critiquing has been used in two principal forms by several researchers: those sup-
porting product catalog navigation and those supporting product search based on an
explicit preference model.

In the first type of system, for example the FindMe systems [8, 9], search is de-
scribed as a combination of search and browsing called assisted browsing. The sys-
tem first retrieves and displays the best matching product from the database based
on a user’s initial query. It then retrieves other products based on the user’s cri-
tiques of the current best item. The interface implementing the critiquing model is
called tweaking, a technique that allows users to express preferences with respect
to a current example, such as “look for an apartment similar to this, but with a bet-
ter ambiance.” According to this concept, a user navigates in the space of available
products by tweaking the current best option to find her target choice. The prefer-
ence model is implicitly represented by the current best product, i.e., what a user
chooses reflects her preference of the attribute values. Reilly et al. have recently
proposed dynamic critiquing [53] based on some improvements of the tweaking
model. In addition to the unit-value tweaking operators, compound critiques allow
users to choose products which differ from the current best item in two or more
attribute values. For example, the system would suggest a digital camera based on
the initial query. It also recommends cameras produced by different manufacturers,
with less optical zoom, but with more storage. Compound critiques are generated by
the Apriori algorithm [2] and allow users to navigate to their target choice in bigger
steps. In fact, users who more frequently used the compound critiques were able to
reduce their interaction cycles from 29 to 6 in a study involving real users [32].

In the second type of example-critiquing systems, an explicit preference model is
maintained. Each user feedback in the form of a critique is added to the model to re-
fine the original preference model. An example of a system with explicit preference
models is the SmartClient system used for travel planning [43, 63]. It shows up to
30 examples of travel itineraries as soon as a set of initial preferences have been
established. By critiquing the examples, users state additional preferences. These
preferences are accumulated in a model that is visible to the user through the in-
terface (see the bottom panel under “Preferences” of Figure 6 in [64]) and can be
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revised at any time. ATA [28], ExpertClerk [60], the Adaptive Place Advisor [16],
and the incremental dynamic critiquing systems function similarly [30]. The ad-
vantage of maintaining an explicit model is to avoid recommending products which
have already been ruled out by the users. Another advantage is that a system can
suggest products whose preferences are still missing in the stated model, as is fur-
ther discussed in section 16.5.2.

Therefore, to educate users about the domain knowledge and stimulate them to
construct complete and sound preferences, we propose the following guideline:

Guideline 4: Consider showing example options to help users gain preference
fluency.

16.5.1 How Many Examples to Show

Two issues are critical in designing effective example-based interfaces: how many
examples and which examples to show in the display. Faltings el al. investigated the
minimum number of items to display so that the target choice is included even when
the preference model is inaccurate [14]. Various preference models were analyzed.
If preferences are expressed by numerical utility functions that differ from the true
preferences by a factor of at most ε and they are combined using either the weighted
sum or the min-max rule, then

t =
(1+ ε

1− ε )
d (16.4)

where d is the maximum number of stated preferences, and t is the number of dis-
played items so that the target solution is guaranteed to be included. Since this
number is independent of the total number of available items, this technique of
compensating inaccurate preferences by showing a sufficient number of solutions
scales to very large collections. For a moderate number (up to 5) of preferences, the
correct amount of display items typically falls between 5 and 20. When the prefer-
ence model becomes more complex, inaccuracies have much larger effects. A much
larger number of examples is required to cover the model inaccuracy.

16.5.2 What Examples to Show

The most obvious examples to include in the display are those that best match the
users’ current preferences. However, this strategy proves to be insufficient to guar-
antee optimality. Since most users are often uncertain about their preferences and
are more likely to construct them as options are shown to them, it becomes important
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for a recommender system to guide the user to develop a preference model that is
as complete and accurate as possible. However, it is important to keep the initiative
to state more preferences on the user’s side. Therefore we call examples chosen to
stimulate users to state preferences suggestions. We present two suggestion strate-
gies: diversity- and model-based techniques.

The ATA system was the first to show suggestions [28], which were extreme-
valued examples where some attributes, for example departure time or price, took
extreme values such as earliest or cheapest. However, a problem with this technique
is that extreme options are not likely to appeal to many users. For example, a user
looking for a digital camera with good resolution might not want to consider a cam-
era that offers 4 times the usual resolution but also has 4 times the usual weight
and price. In fact, a tool that suggests this option will discourage the user from even
asking for such a feature, since it implies that high resolution can only exist at the
expense of many other advantages.

Thus, it is better to select the suggestions among examples that are already good
given the currently known preferences, and focus on showing diverse rather than
extreme examples. Bradley and Smyth were the first to recognize the need to rec-
ommend diverse examples, especially in the early stage of using a recommender tool
[6]. They proposed the bounded greedy algorithm for retrieving the set of cases most
similar to a user’s query, but at the same time most diverse among themselves. Thus,
instead of picking the k best examples according to the preference ranking r(x), a
measure d(x,Y ) is used to calculate the relative diversity of an example x from the
already selected set Y according to a weighted sum

s(x,Y ) = αr(x)+(1−α)d(x,Y ) (16.5)

where α can be varied to account for varying importance of optimality and di-
versity. For example, as a user approaches the final target, α can be set to a higher
value (e.g. 0.75 in the experiment setup) so that the system emphasizes the display
set’s similarity rather than diversity. In their implementations, the ranking r(x) is the
similarity sim(x, t) of x to an ideal example t on a scale of 0 to 1, and the relative
diversity is derived as

d(x,Y ) = 1− 1
|Y | ∑

y∈Y
sim(x,y) (16.6)

The performance of diversity generation was evaluated in simulations in terms of
its relative benefit, i.e. the maximum gain in diversity achieved by giving up simi-
larity [61]. Subsequently, McSherry has shown that diversity can often be increased
without sacrificing similarity [36]. A threshold t was fixed on the ranking function,
and then a maximally diverse subset among all products x for which r(x) > t was
selected. When k options are shown, the threshold might be chosen as the value of
the k-th best option, thus allowing no decrease in similarity, or at some value that
does allow a certain decrease.

We thus propose the following guideline:
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Guideline 5: Consider showing diverse examples to stimulate preference ex-
pression, especially when users are still uncertain about their final prefer-
ences.

The adaptive search algorithm used in [33] alternates between a strategy that
emphasizes similarity and one that emphasizes diversity to implement the interac-
tion “show me more like this” by varying the α in the ranking measure. At each
point, a set of example products is displayed and the user is instructed to choose
her most preferred option among them. Whenever the user chooses the same option
twice consecutively, the system considers diversity when proposing the next exam-
ples in order to refocus the search. Otherwise, the system assumes that the user is
making progress and it continues to suggest new options based on optimality. Eval-
uations with simulated users show that this technique is likely to reduce the length
of the recommendation cycles by up to 76% compared to the pure similarity-based
recommender.

More recent work on diversity was motivated by the desire to compensate for
users’ preference uncertainty [42] and to cover different topic interests in collabo-
rative filtering recommenders [74]. For general preference models, it is less clear
how to define a diversity measure. Viappiani et al. considered the user’s motiva-
tion to state additional preferences when a suggestion is displayed [69, 70, 50]. A
suggestion is a choice that may not be optimal under the current preference model,
but should provide a high likelihood of optimality when an additional preference
is added. For example, a user may add “an apartment with a balcony” preference
after seeing examples of such apartments. 40 (9 females) subjects from 9 different
nationalities took part in a user study to search for an apartment. The experiment’s
results show that the use of suggestions almost doubled decision accuracy and al-
lowed the user to find the most preferred option 80% of the time. A user is likely to
be opportunistic and will only bother to formulate new preferences if she believes
that this might lead to a better choice. Thus, they propose the following look-ahead
principle [69, 70, 50]:

Guideline 6: Consider suggesting options that may not be optimal under the
current preference model, but have a high likelihood of optimality when addi-
tional preferences are added.

The look-ahead principle can be applied to constructing model-based suggestions
by explicitly computing, for each attribute ai, a difference measure di f f (ai,x) that
corresponds to the probability that a preference on this attribute would make option x
most preferred. Items are then ranked according to the expected difference measure
over all possible attributes:

Fa(x) = ∑
ai∈A

Pai di f f (ai,x) (16.7)
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where Pai is the probability that the user is motivated to state a preference on
attribute ai. Such probabilities are summed over all attributes for which the user
has not yet expressed a preference. The best suggestions to display are therefore
those items possessing the highest probability of becoming optimal after consider-
ing hidden preferences. It is possible to adapt these techniques to generate a set of
suggestions that jointly maximize the probability of an optimal item. More details
are given in [13, 50]. To investigate the importance of suggestions in producing
accurate decisions, several empirical user studies were carried out [50, 69, 67]. One
was conducted in an unsupervised setting, where users’ behavior was monitored on
a publicly accessible online system. The scientists conducting the experiment col-
lected logs from 63 active users who went through several cycles of preference revi-
sion. Another study was carried out in a supervised setting. The scientists recruited
40 volunteers and divided them into two groups. One group evaluated the interface
with model-based suggestions, and another group evaluated the one without. Both
user studies showed the significant effects of using these model-based suggestions:
users who used the suggestion interfaces stated significantly more preferences than
those who did not (an increase of 2.09 preferences vs. only 0.62 without sugges-
tions, p < 0.01, in supervised studies [69, 67], and an increase of 1.46 vs. 0.64
without suggestions, p < 0.002, for online users [69, 50]) and users who used the
suggestion interfaces also reached significantly higher decision accuracy (80 vs. 45
percent without suggestions, p < 0.01, in supervised user studies [50]).

16.6 Preference Revision

Preference revision is the process of changing one or more desired characteristics of
a product that a user has stated previously, the degree to which such characteristics
should be satisfied, or any combination of the two. In [48] 28 subjects (10 females)
were recruited to participate in a user study in which the user was asked to find
his or her most preferred apartment from a list of available candidates. The user’s
preferences could be specified on a total of six attributes: type, price, area, bath-
room, kitchen and distance to work place. Each participant was first asked to make
a choice, and then used the decision aid tool to perform tradeoffs among his/her
preferences until the desired item was chosen. In this user study, every user changed
at least one initial preference during the entire search process for finding a product.
Many users change preferences because there is rarely an outcome that satisfies all
of the initial preferences. Two frequently encountered cases often require preference
revision: 1) when a user cannot find an outcome that satisfies all of her stated pref-
erences and must choose a partially satisfied one, or 2) when a user has too many
possibilities and must further narrow down the space of solutions. Even though both
activities can be treated as the process of query refinement, the real challenge is to
help users specify the correct query in order to find the target item. Here we present
a unified framework of treating both cases as a tradeoff process because finding an
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acceptable solution requires choosing an outcome that is desirable in some respects
but perhaps not so attractive in others.

16.6.1 Preference Conflicts and Partial Satisfaction

A user who inputs a query for a spacious apartment with a low price range and
obtains “nothing found” as a reply, learns very little about how to state more suitable
preferences.

The current industry practice manages preference conflicts by browsing-based
interaction techniques. A user is only allowed to enter her preferences one at a time
starting from the point where all of the product space is available. As she specifies
more preferences, she essentially drills down to a sub product space until either she
selects her target in the displayed options or no product space remains. For example,
if someone desires a notebook with minimal weight (less than 2 kilos), then after
specifying the weight requirement, she is only allowed to choose those notebooks
weighing less than 2 kilos. If the price of these lightweight notebooks is very high,
she is likely to miss a tradeoff alternative that may weigh 2.5 kilos and cost much
less. This interaction style has become very popular in comparison shopping web-
sites (see www.shopping.com, www.pricegrabber.com, www.yahoo.shopping.com).
As the system designers have prevented users from specifying conflicting prefer-
ences, this interaction style is very limited. Users are unable to specify contextual
preferences and especially tradeoffs among several attributes. If a user enters the set
of preferences successively for each attribute, the space of matching products could
suddenly become null with the message “no matching products can been found.” At
this point, the user may not know which attribute value to revise among the set of
values that she has specified so far, requiring her to backtrack several steps and try
different combinations of preference values on the concerned attributes.

A more sensible method, such as the one used in SmartClient [43, 64], man-
ages a user’s preference conflicts by first allowing her to state all of her preferences
and then showing her options that maximally satisfy subsets of the stated prefer-
ences based on partial constraint satisfaction techniques [15]. These maximally sat-
isfied products educate users about available options and facilitate them in speci-
fying more reasonable preferences. In the same spirit, McCarthy et al. propose to
educate users about product knowledge by explaining the products that do exist in-
stead of justifying why the system failed to produce a satisfactory outcome [31].
FindMe systems rely on background information from the product catalog and ex-
plain preference conflicts on a higher level [8, 9]. In the case of a user wanting both
a fuel-efficient and high-powered car, FindMe attempts to illustrate the tradeoff be-
tween horsepower and fuel efficiency. This method of showing partially satisfied
solutions is also called soft navigation by Stolze [63].

To convince users of the partially satisfied results, we can also adopt the ap-
proach used by activedecision.com. It not only shows the partial solutions, but also
explains in detail how the system satisfies some of users’ preferences and not oth-
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Fig. 16.2: Partially Satisfied Products in an Organization Interface.

ers. A qualitative user survey about such explanation mechanisms was conducted in
the form of a carefully constructed questionnaire, based on a series of hypotheses
and corresponding applicable questions. 53 participants completed the survey, and
most of them strongly agreed that the explanation components are more likely to
inspire their trust in the recommended solutions [10]. In addition, an alternative ex-
planation technique, the organization interface where partially satisfied products are
grouped into a set of categories (Figure 16.2), was preferred by most subjects, com-
pared to the traditional method where each item is shown along with an explanation
construct [10]. A follow-up comparative user study (with 72 participants) further
proved that this interface method can significantly inspire competence-induced user
trust in terms of the user’s perceived competence, intention to return and intention
to save effort (see some details of the experiment in section 7.3) [49].

Guideline 7: Consider resolving preference conflicts by showing partially
satisfied results with compromises clearly explained to the user.

16.6.2 Tradeoff Assistance

As catalogs grow in size, it becomes increasingly difficult to find the target item.
Users may achieve relatively low decision accuracy unless a tool helps them ef-
ficiently view and compare many potentially interesting products. Even though a
recommender agent is able to improve decision quality by providing filtering and
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comparison matrix components [20], a user can still face the bewildering task of
selecting the right items to include in the consideration set.

Researchers in our group found that online tools could increase the level of de-
cision accuracy by up to 57% by helping users select and compare options which
share tradeoff properties [48]. 28 subjects (10 females) took part in the experiment;
each of the participants was first asked to make a choice, and then use the decision
aid tool to perform a set of tradeoff navigation tasks. The results showed that after
a user has considered an item as the final candidate, the tool can help her/him reach
higher decision accuracy by prompting them to see a set of tradeoff alternatives.
The same example critiquing interfaces as discussed in Section 5 can be used to
assist users to view tradeoff alternatives, for example, “I like this portable PC, but
can I find something lighter?” This style of interaction is called tradeoff navigation
and is enabled by the “modify” widget together with the “tweaking panel” (see Fig-
ure 4 in [47]). Tweaking (used in FindMe [8, 8]) was the first tool to implement
this tradeoff assistance. It was originally designed to help users navigate to their
targets by modifying stated preferences, one at a time. Example critiquing (used in
SmartClient [48, 47]) is more intentional about its tradeoff support, especially for
tradeoffs involving more than two participating attributes. In a single interaction, a
user can state her desire to improve the values of certain attributes, compromise on
others, or any combination of the two.

Reilly et al. introduced another style of tradeoff support with dynamic critiquing
methods [53]. Critiques are directional feedback at the attribute level that users can
select in order to improve a system’s recommendation accuracy. For example, af-
ter recommending a Canon digital camera, the system may display “we have more
matching cameras with the following: 1) less optimal zoom and thinner and lighter
weight; 2) different manufacturer and lower resolution and cheaper; 3) larger screen
size and more memory and heavier.” Dynamic critiquing is an approach of automat-
ically generating useful compound critiques so that users can indicate their prefer-
ence on multiple attributes simultaneously. The experiment in [53] shows that the
dynamic critiquing approach has the ability to reduce the interaction session length
by up to 40% compared to the approach with only unit critiques.

Although originally designed to support navigation in recommender systems,
the unit and compound critiques described in [53] correspond to the simple and
complex tradeoffs defined in [47]. They are both mechanisms to help users compare
and evaluate the recommended item with a set of tradeoff alternatives. However, the
dynamic critiquing method provides system-proposed tradeoff support because it is
the system which produces and suggests the tradeoff categories, whereas example
critiquing provides a mechanism for users to initiate their own tradeoff navigation
(called user motivated critiques in [11]).

A recent study from our group compared the performance of user-motivated vs.
system-proposed approaches [11]. A total of 36 (5 females) volunteers participated
in the experiment. It was performed in a within-subjects design, and each partici-
pant was asked to evaluate two interfaces with the respective two approaches one
after the other. All three evaluation criteria stated in section 2.2 were used: deci-
sion accuracy, user interaction effort and user confidence. The results indicate that
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the user-motivated tradeoff method enables users to achieve a higher level of de-
cision accuracy with less cognitive effort, mainly due to its flexibility in allowing
users to freely combine unit and compound critiques. In addition, the confidence in
a choice made with the user-motivated critique method is higher, resulting in users’
increased intention to purchase the product they have found and return to the agent
in the future. We thus propose:

Guideline 8: In addition to providing the search function, consider providing
users with tradeoff assistance in the interface using either system-proposed
or user motivated approaches. The latter is likely to provide users with more
flexibility in choosing their tradeoff desires and thus enable them to achieve
higher decision accuracy and confidence.

16.7 Display Strategies

At least three display strategies are currently employed in preference-based search
and recommender tools: recommending items one at a time, showing top k matching
results (where k is a small number between 3 and 30), or displaying products with
explanations on how ranking scores are computed. We discuss these various strate-
gies using the accuracy, confidence, and effort evaluation framework discussed in
Section 2.

16.7.1 Recommending One Item at a Time

The advantage of such recommender systems is that it is relatively easy to design
the display, users are not likely to be overwhelmed by excessive information, and
the interface can be easily adapted to small display devices such as mobile phones.
The obvious disadvantage is that a user may not be able to find her target choice
quickly. As mentioned in Section 5, a novice user’s initial preferences are likely
to be uncertain. Thus the initially recommended results may not include her target
choice. Either a user has to interact with the system much longer due to the small
result set, or if a user exhausts her interaction effort before reaching the final target,
she is likely to achieve very low decision accuracy. Thus we propose:

Guideline 9: Showing one search result or recommending one item at a time
allows for a simple display strategy which can be easily adapted to small-
display devices; however, it is likely to engage users in longer interaction
sessions or only allow them to achieve relatively low decision accuracy.
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16.7.2 Recommending K best Items

Some product search tools present a set of top-k alternatives to the users. We call
this style of display the k-best interface. Commercial tools employing this strategy
can be found at ActiveDecision.com (k > 10). Academic prototypes include those
used by SmartClient (7≤ k ≤ 30) [14, 47], ATA (k = 3) [28], ExpertClerk (k = 3)
[60], FirstCase (k = 3) [37] and TopCase (k = 3) [38].

When k approaches 10, the issue of ordering the alternatives becomes important.
The most commonly used method is to select the best k items based on how well they
match users’ stated preferences using utility scores (see multi-attribute utility theory
[24]). We can also use the “k nearest neighbor” retrieval algorithm (or simply k-NN)
[12] to rank the k items, such as those used in the case-based reasoning field [25].
The k items are displayed in descending order from the highest utility score or rank
to the lowest (activedecision.com, SmartClient). This method has the advantages of
displaying a relatively high number of options without overwhelming the users, pre-
selecting the items based on how well they match the stated preferences of a user,
and achieving relatively high decision accuracy [48, 47].

Pu and Kumar compared an example critiquing based system (k = 7 rank or-
dered by utility scores) with a system using the ranked list display method (k = n
rank ordered on user selected attribute values such as price) [47, 51]. 22 volun-
teers participated in the user study. Each of them was asked to test two interfaces
(example critiquing and ranked list) in random order by performing a list of given
tasks. The results showed that while users performed the instructed search tasks
more easily using example critiquing (less task time and smaller error rate, with sta-
tistical significance) and achieved higher decision accuracy [48, 51], more of them
expressed a higher level of confidence that the answers they found were correct for
the ranked list interface. Further analysis of users’ comments recorded during the
user study revealed that the confidence issue depends largely on the way items were
ordered and how many of them were displayed. Many users felt that the EC sys-
tem (displaying only 7 items) was hiding something from them and that the results
returned by the EC interface did not correspond to their ranking of products. With
the help of a pilot study, it was observed that users generally did not scroll down to
view the additional products displayed, but their confidence level increased and the
interaction time was not affected. Therefore we suggest the following guideline for
the top-k display strategy:

Guideline 10: Displaying more products and ranking them in a natural order
is likely to increase users’ sense of control and confidence.
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16.7.3 Explanation Interfaces

When it comes to suggesting decisions, such as which camera to buy, the recom-
mender system’s ability to establish trust with users and convince them of its rec-
ommendations is a crucial factor for success. Researchers from our group started
investigating the user confidence issue and other subjective factors in a more formal
framework involving trust relationships between the system and the user. It is widely
accepted that trust in a technological artifact (like the recommender agent) can also
be conceptualized as competence, benevolence, and integrity, similar to trust in a
person. Trust is further seen as a long term relationship between the user and the
organization that the recommender system represents [10]. When a user trusts a
recommender system, she is more likely to purchase items and return to the system
in the future. A carefully designed qualitative survey with 53 users revealed that an
important construct of trust formation is an interface’s ability to explain its results
[10], as mentioned in section 6.1.

The explanation interface can be implemented in various ways. For example,
ActiveDecision.com uses the tool tip with a “why” label to explain how each of the
recommended products matches a user’s stated preferences, similar to the interface
shown in Figure 16.3. Alternatively, it is possible to design an organization-based
explanation interface where the best matching item is displayed at the top of the
interface along with several categories of tradeoff alternatives [49]. Each category is
labeled with a title explaining the characteristics of the items the respective category
contains (Figure 16.4).

In order to understand whether the organization interface is a more effective way
to explain recommendations, a significant-scale empirical study was conducted to
compare the organization interface with the traditional “why” interface in a within-
subjects design. A total of 72 volunteers (19 females) were recruited as participants
in the user study. The results showed that the organization interface significantly
increases user perception of its competence, which more effectively inspires uses’
trust and enhances their intention to save cognitive effort and use the interface again
in the future [49]. Moreover, the study found that the actual time spent looking for a
product did not have a significant impact on users’ subjective perceptions. This indi-
cates that less time spent on the interface, while very important in reducing decision
effort, cannot be used alone in predicting what users may subjectively experience.
Five principles for the effective design of organization interfaces were developed
and an algorithm was presented for generating the content of such interfaces [49].
Here we propose:

Guideline 11: Consider designing interfaces that explain how ranking scores
are computed because they are likely to inspire user trust.
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Fig. 16.3: A generic recommendation interface with simple “why” labels.

16.8 A Model for Rationalizing the Guidelines

We have developed a set of guidelines to ensure the design of usable product search
tools relying on a general framework of three evaluation criteria: (i) decision accu-
racy, (ii) user interaction effort, and (iii) user decision confidence. We now develop a
model of user behavior that allows us to rationalize the guidelines as a means of op-
timizing recommender system performance. We first consider the fact that product
search tools must serve the needs of a significant and heterogeneous user population.
They must adapt to the characteristics of individual users, in particular to their will-
ingness to put in continuous interaction effort in order to obtain their desired results.
In our theoretical model, we let e be the user’s interaction effort, measured in inter-
action steps. With this effort, users hope to obtain an increasingly high confidence
that they are finding the best option. We characterize this user confidence numeri-
cally as the accuracy that the user believes the system to have achieved, called the
perceived accuracy a.

As each individual user has different aspirations for effort and perceived accu-
racy, we characterize each user by the three following parameters:
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Fig. 16.4: The more trust-inspiring organization interface.

• Confidence threshold θ : the amount of perceived accuracy that is required for
the user to be satisfied with the current result of the search process and buy the
product;

• Effort threshold ε: the amount of effort the user is willing to spend to obtain a
recommendation;

• Effort increment threshold δ : the amount of additional perceived accuracy that
is required to motivate the user to spend an additional interaction cycle.

A poorly designed tool can lose users due to an insufficient level of confidence
for the confidence threshold, or an increase in confidence that is too small to justify
the interaction effort. Figure 16.5 shows the perceived accuracy achieved by a hy-
pothetical recommender tool as a function of effort, measured in interaction cycles.
The confidence threshold is indicated by a horizontal dashed line, and the user will
not buy the product unless the perceived accuracy exceeds it. The effort threshold ε
and effort increment threshold δ characterize the amount of effort a user is willing
to spend. It is characterized by another dashed line labelled as the effort limit in Fig-
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Fig. 16.5: Perceived accuracy as a function of interaction effort for an interview-
based tool.

ure 16.5. The user will leave the process as soon as the accuracy/effort curve falls
below the effort limit.

Figure 16.5 assumes a tool where users are asked to specify their preferences
in a dialogue interface consisting of a list of questions. Such an interface requires
a significant amount of effort of preference elicitation before any result is shown,
and thus the perceived accuracy remains low until the first results are obtained. The
process then proceeds by stages of revising preferences and obtaining successively
better perceived accuracy in a stepwise manner. Note that in this example, the user
will leave the process before reaching the confidence threshold and the interaction
has thus not been a success. With slightly more patience, the user could have ob-
tained a result above the confidence threshold and with acceptable effort, namely
at the third intersection of the effort limit line with the curve. However, since this
was not apparent to the user, this point will not be reached. Similar problems can
occur with other interface designs that do not pay attention to ensuring a significant
increase in perceived accuracy per effort invested.

To avoid this pitfall, the tool should ensure that the perceived accuracy is a con-
cave function of effort, as shown in Figure 16.6. Such a function exploits a user’s
effort threshold to the best possible degree: if the increase in perceived accuracy be-
comes insufficient to keep the user interested in using the tool, she will not interact
with the tool at a later stage either.

A concave function could only be achieved by ensuring instant feedback to the
user’s effort, and by placing the steps that result in the greatest increase in perceived
accuracy at the beginning of the interaction. An early increase in perceived accu-
racy also serves to convince the user to stay with the system longer, as indicated
by the dashed line in Figure 16.6. Instant feedback is ensured by example-based
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Guidelines for (a) Guidelines for (b) Guidelines for (c)
1. Any effort; 4. Showing example op-

tions;
7. Preference conflict
management;

2. Any order; 5. Showing diverse ex-
amples;

8. Tradeoff assistance.

3. Any preferences. 6. Suggesting options
with look-ahead princi-
ple.

Guidelines for (a) – (c)
9. Showing one search result at a time is good for small-display devices, but
it is likely to achieve relatively low decision accuracy;
10. Displaying more products and ranking them in a natural order is likely to
increase users’ sense of control and confidence;
11. Designing interfaces which are capable of explaining how ranking scores
are computed can inspire user trust.

Fig. 16.6: Perceived accuracy as a function of interaction effort for an example-
based tool, and guidelines that apply to achieving the desired concave shape in the
different stages.

interaction and the general guidelines 9-11 of showing multiple solutions in a struc-
tured and confidence-inspiring way. In general, it can be assumed that users will
themselves choose to add the information that they believe to maximize their deci-
sion accuracy, and so user initiative is key to achieving a concave curve. In the first
phase (a), the system can achieve the biggest accuracy gains by exploiting users’
initial preferences. However, it is important at this stage to avoid asking them ques-
tions that they cannot accurately answer (guideline 1). Furthermore, the curve can
be made steeper by letting the user formulate these initial preferences with as little
effort as possible. We therefore derived guidelines (2 and 3) to make this possible.

Once these initial preferences have been obtained, the biggest increase in per-
ceived accuracy during phase (b) can be obtained by completing the initial prefer-
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ences with others of which the user was not initially aware. This can be stimulated
by showing examples (guideline 4), and by choosing them to specifically educate the
user about available options (guidelines 5 and 6). This provides the main cost-effect
tradeoff for the second phase of a typical interaction. Finally, in the third phase (c)
the set of preferences can be fine-tuned by adjusting their relative weights and mak-
ing tradeoffs. This can be supported by tools that show partial solutions (guideline
7) and actively support decision tradeoffs among preferences (guideline 8).

As the tool cannot verify when the user transitions between the phases, and in
fact the transition may be gradual, it should provide continuous support for each of
them, but always encourage actions that are likely to increase perceived accuracy
as much as possible. Thus, adjustment of tradeoff weights should be shown less
prominently than the possibility to add new preferences.

These requirements are best addressed by the example-based recommender tools
as described in Section 5. More precisely, the incremental establishment and refine-
ment of the user’s preference model increases the true decision accuracy. To keep
the user engaged in the interaction process and convinced to accept the result of the
search, this true accuracy must also be perceived by the user. This is supported by
showing several results at the same time (guideline 9), which tends to correct in-
accuracies, by providing structure to their display (guideline 10), and by providing
explanations (guideline 11). These are necessary elements to motivate users to put
in enough effort in achieving an accurate decision as much as possible.

16.9 Conclusion

This chapter presents eleven essential guidelines that should be observed when de-
signing interactive preference-based recommender systems. In presenting and jus-
tifying the guidelines, we provided a broad and in-depth review of our prior work
related to example critiquing regarding user interaction issues in recommender sys-
tems. Most importantly, a framework of three evaluation criteria was proposed to
determine the usability of such systems: decision accuracy, user confidence, and
user interaction effort (ACE). Within this framework, we have selected techniques,
which have been validated through empirical studies, to demonstrate how to imple-
ment the guidelines. Emphasis was given to those techniques that achieve a good
balance on all of the criteria. Adopting these guidelines, therefore, should signifi-
cantly enhance the usability of product recommender systems and consequently the
wide adoption of such systems in e-commerce environments.
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Chapter 17
Map Based Visualization of Product Catalogs

Martijn Kagie, Michiel van Wezel and Patrick J.F. Groenen

17.1 Introduction

Traditionally, recommender systems present recommendations in ranked lists to the
user. In content- and knowledge-based recommender systems, these lists are often
sorted on some notion of similarity with a query, ideal product specification, or sam-
ple product. However, a lot of information is lost in this way, since two products with
the same similarity to a query can differ from this query on a completely different
set of product characteristics. When using a two dimensional map based visualiza-
tion of the recommendations, it is possible to retain part of this information. In the
map, we can then position recommendations that are similar to each other in the
same area of the map.

A domain in which this map based approach can be very useful is electronic
commerce, since electronic commerce stores sell a large number of products, of-
ten described by a large number of characteristics, but that are, in certain product
categories, easily recognizable by an image of the product at hand. E-commerce do-
mains for which this holds are, for example, consumer electronics and real estate. In
the industry, one tries nowadays to improve usability of this kind of websites, using
a trend called visual shopping. An example is CrispyShop.com1, which compares
products on one characteristic and price using a chart. Another approach taken in
visual shopping is selecting items based on visual similarity (like color and shape),
such as is done by Like.com2 and Modista3 which is especially useful in fashion
related fields. An approach more closely related to the map based approach, is taken

Martijn Kagie · Michiel van Wezel · Patrick J.F. Groenen
Econometric Institute, Erasmus University Rotterdam, The Netherlands, e-mail: martijn@
kagie.net,mvanwezel@acm.org,groenen@ese.eur.nl

1 http://www.crispyshop.com
2 http://www.like.com
3 http://www.modista.com

F. Ricci et al. (eds.), Recommender Systems Handbook,  
DOI 10.1007/978-0-387-85820-3_17, © Springer Science+Business Media, LLC 2011 

547



548 Martijn Kagie, Michiel van Wezel and Patrick J.F. Groenen

at BrowseGoods.com4, where the products are shown in a map ordered as a depart-
ment store. Both Musicovery5 and LivePlasma6 show a map of songs, where the
latter also created a similar map for movies. Finally, YouTube7 has an option called
Warp!, which recommends movies similar to a movie you watched and shows them
in a map.

Despite this wide list of commercial map based interfaces, these interfaces lack a,
publicly available, scientific foundation. In this chapter, we discuss several issues in
product catalog map interfaces which we have published earlier in [21, 22, 23, 24].
This chapter combines these issues and shows applications on a real e-commerce
product catalog.

In the next section, we first review some scientific methods that can be used
to create such maps that are used in the e-commerce domain or in related fields.
Two of these methods, namely multidimensional scaling (MDS) [3] and nonlinear
principal components analysis (NL-PCA) [13, 31, 34], are discussed in more detail
in Section 17.3, where they are used in two different approaches to create a product
catalog map interface. The first which is based on MDS uses a flexible dissimilarity
measure between products to create the map. This approach has been published
earlier in [21]. The second approach based on NL-PCA and published earlier in
[24] has the advantage that it also shows points representing category values (i.e.
the possible values of a categorical (nominal) attribute) of attributes that can be
used for navigation over the map.

One problem in both map based visualization and content-based recommenda-
tion is that different characteristics of products are not considered to be equally im-
portant by users. In Section 17.4, we introduce a way to determine attribute weights
using clickstream data. We counted how often products were sold. Based on the as-
sumption that attributes that have a high influence on sales of products are attributes
that are considered to be important by users, we estimate a Poisson regression model
[32, 35] and derive weights from that. This approach has earlier been described in
[22].

In Section 17.5, we describe one way in which map based visualization can be
combined with a recommender system. The system we propose, the graphical shop-
ping interface, does this by combining MDS based maps with the idea of recom-
mending by proposing [45]. In an iterative process, each time a map containing a
limited set of products is shown to the user in which she can select the product she
likes most. Then, in the next map, the products that are more similar to this product
are shown . This recommender system approach was introduced in [23].

All these methods are applied to a new real commercial product catalog of
MP3 players in Section 17.6. Prototypes of these methods are available at http:
//www.browsingmap.com/mapvis.html. This product catalog was pro-
vided by Compare Group, owner of the Dutch price comparison site http://

4 http://www.browsegoods.com
5 http://www.musicovery.com
6 http://www.liveplasma.com
7 http://www.youtube.com
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www.vergelijk.nl. Finally, we draw conclusions and give directions for fu-
ture research in Section 17.7.

17.2 Methods for Map Based Visualization

The use of maps displaying areas with similar items has become increasingly popu-
lar in fields where users need to browse through relatively large collections of data,
such as, web searching, image browsing, and managing music playlists. Also, map
based visualization fits in the trend of visual shopping interfaces introduced in indus-
try. In this section, we discuss four scientific methods for map based visualizations
in the fields mentioned above, where we focus on the visualization methods used
and their advantages and disadvantages when used to browse through product cat-
alogs. In this discussion, we specifically pay attention to the type of data normally
contained in (commercial) product catalogs. These catalogs often contain numer-
ical, categorical, and multi-valued categorical attributes. Also, there can be a lot
of missing values, due to, for instance, different product specifications by different
manufacturers. Note that, some of the visualization methods could also be used for
visualizations in three dimensions. However, we think these 3D visualizations will
be too complex for users and, therefore, we only discuss 2D visualizations.

To give somewhat more insight in the differences between the four visualization
methods we discuss next, we apply them to a small product catalog. This product
catalog, shown in Table 17.1, consists of ten popular MP3 players derived from
the larger MP3 player product catalog we use later to show our applications on.
Furthermore, we limited the number of attributes to four, which where all chosen to
be numerical or binary, such that all four methods could handle them easily. Also,
we selected products that did not have any missing values on these four attributes.

Table 17.1: Example data set

Name Price HDD Memory Size (GB) Weight
1. Apple iPod Nano 180.55 0 8 40.0
2. Apple iPod Video (30GB) 248.41 1 30 130.0
3. Apple iPod Video (60GB) 73.50 1 60 156.0
4. Apple iPod Video (80GB) 324.00 1 80 156.0
5. Apple iPod Shuffle 76.00 0 1 15.5
6. Creative Zen Nano Plus 76.00 0 1 22.0
7. Creative Zen Vision M (30GB) 199.50 1 30 163.0
8. Creative Zen Vision M (60GB) 250.50 1 60 178.0
9. Sandisk Sansa e280 129.99 0 8 75.2

10. Sony NW-A1200 143.90 1 8 109.0
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17.2.1 Self-Organizing Maps

In the field of web (search) visualization, Kohonen’s Self-Organizing Map (SOM)
[27, 28, 29] is among the most popular methods to create maps. Following the early
work of Chen et al. [5], SOMs have, for example, been used in applications by
Chung et al. [6, 7] and Yang et al. [50]. Ong et al. [36] use a SOM to create a map
for online news and Van Gulik et al. [49] for a music collection on an MP3 player.

Self-organizing maps use an unsupervised neural network to cluster and reduce
dimensionality at the same time. First, a grid needs to be chosen that represents the
structure of the map. Often, this is a rectangular or a hexagonal grid. Informally,
the SOM training process works in the following way. All grid points (often called
models, weights, or prototype vectors in SOM literature) are initialized with their
location on the grid and a vector in the original attribute space.

Then, following an incremental-learning approach items are randomly shown to
the SOM. For an item, we first compute which model represents the item best. This
model is called the winner or best matching unit (BMU) and is often determined
using Euclidean distance. Then, the model and neighbors of the model, to a lesser
extent, are adapted to better fit the item at hand. This is done for all items and after
that the next iteration is started. During each iteration, a seen item gets less influence
on both the model (grid point) and its neighbors, such that the SOM converges to a
solution. There also exists a batch-learning algorithm [29] for SOM which is faster.

The main advantage of SOM is that it generally provides nice clustered maps, in
which clusters are formed by a set of neighboring grid points to which items are con-
nected and relative many empty grid points. Also, neighboring models are similar
to each other providing a similarity interpretation of the map. However, this similar-
ity interpretation is not always valid for the complete map. Although a neighboring
model is generally similar to another model, it can be that there exists a model even
more similar in another part of the map.

Another disadvantage is that items have the same position in the map, when
they are assigned to the same grid point (model), although this can be overcome by
specifying a larger grid or making a hierarchical SOM, in which a SOM is created
for each model in the original SOM. Also, the original SOM is not able to handle
missing values or (multi-valued) categorical attributes, but with an adaptation of the
comparison metric used to determine the BMU this is possible [28].

A SOM based on the example product catalog of Table 17.1 and shown in Figure
17.1 was created using the SOM Toolbox for Matlab [1] with a 10×10 rectangular
grid. This grid is also shown in the map. As can be seen, each of the products is
assigned to one of the squares (grid points). The complete map is used, that is, all
corners have a product assigned to them, but there seem not to be real clusters of
products. Looking at the ordering of the products on the map, the vertical dimension
clearly corresponds to memory size and whether the MP3 player has a hard disk
drive (HDD). The horizontal dimension captures the other two attributes, but these
effects are not consistent over the map, due to the nonlinear character of SOMs.



17 Map Based Visualization of Product Catalogs 551

Fig. 17.1: Example of a self-organizing map on the product catalog shown in Table
17.1

17.2.2 Treemaps

Another popular visualization method which was also used to visualize web search
results [48], but also to visualize the news in the commercial application NewsMap8

of which a screenshot is shown in Chapter 15, is the treemap algorithm [44].
A treemap uses a tree, for example, resulting from a hierarchical clustering as its

input. Each leaf node represents a single item. All nodes in the tree are labeled by
a weight value. For non-leaf nodes, this weight value is the sum of weights of its
children. When all leaf nodes are given a weight of 1, the weight value of all nodes
represents the cluster size. Alternatively, items can be labeled by some measure of
popularity to make these items more important in the visualization.

Starting at the root node, we divide the map vertically into as many parts as
the root has children. The size of the resulting rectangles is relative to the weight
values of the nodes. Then, we divide each of the rectangles horizontally using the
children of the corresponding node. Alternating vertical and horizontal division, we
can continue in this way until the bottom of the tree is reached and each item has a
rectangle with an area relative to its weight on the map.

A main advantage of treemaps is that the complete map is filled, there are no
spaces without any items and there is no overlap between items in the map. Also, its
hierarchical structure is very useful for implementing zooming functionality. Since
treemaps can be used in combination with hierarchical clustering algorithms, which
are based on a similarity measure, they are also very flexible. A similarity measure
can be chosen that is very suitable to the data at hand. For instance, when visualizing

8 http://marumushi.com/apps/newsmap/index.cfm.
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a product catalog, one could use the dissimilarity measure we introduce in the next
section, that is able to handle missing values and mixed attribute types.

The treemap approach has two drawbacks. First of all, the original treemap al-
gorithm often produces tall rectangles as results for small clusters or single items,
which makes visualization of single products quite hard. This problem can be partly
overcome by using squarified treemaps [4] or, even better, quantum treemaps [2],
which guarantee a certain aspect ratio for the rectangles representing the items. The
second drawback is that, although similar products are clustered together, there is
no clear distance interpretation and ordering between clusters might be lost, that is,
two quite similar products that are assigned to two different clusters might not be
close to each other in the map.

A treemap based on the example product catalog of Table 17.1 is depicted in
Figure 17.2. To create this map we first used Matlab’s average linkage hierarchical
clustering algorithm based on normalized Euclidean distances and visualized the
resulting tree using a treemap algorithm for Matlab written by Hicklin [18]. In the
map, wider lines correspond to higher level divisions of the data. Each rectangle,
which all have the same area, represents a product. Compared to the SOM, the
products that were at the top are on the right in the treemap. These products are the
MP3 players without HDD. On the left side, we see now that the Apple iPod Video
60GB is closer to the Apple iPod Video 30GB, the Creative Zen Vision M 30GB,
and the Sony NW-A1200 (since the line dividing the Apple iPod Video 80GB and
the Creative Zen Vision M 60GB from the Apple iPod Video 60GB is wider than
the line under it) than to the Apple iPod Video 80GB and the Creative Zen Vision
M 60GB.

Fig. 17.2: Example of a treemap on the product catalog shown in Table 17.1
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17.2.3 Multidimensional Scaling

A third class of applications uses multidimensional scaling (MDS) [3] algorithms to
visualize relative large data collections. There exists a wide variety of MDS algo-
rithms, such as classical scaling [47] (e.g. used to visualize music playlists by Don-
aldson [11]), nonmetric MDS [30], Sammon Mapping [42] (e.g. used to visualize a
image collection by Pec̆enović et al. [37]), and SMACOF [10] (e.g. used to visual-
ize a roller skates catalog by Stappers et al. [46]). However, they are all based on
mapping a (symmetric) dissimilarity matrix into low dimensional Euclidean space,
such that distances between pairs of points represent the dissimilarities as closely as
possible. MDS is one of the methods we use to create product catalog maps and is
better described in the next section.

The main advantage of MDS is that the distances in the map really correspond to
the similarity between items. Secondly, when using a flexible dissimilarity measure
MDS can handle missing values and mixed attribute types. Disadvantages of MDS
compared to SOMs and TreeMap are that there may be a lot of empty space in
and/or around the map and very similar items may (partially) overlap each other
in the map. Empty spaces are a disadvantage, since more zooming is necessary on
specific parts of the map to be able to use the map in a satisfying way.

In Figure 17.3, a map based on the example product catalog made using MDS is
shown. We created this map using PROXSCAL, available under SPSS Categories
[33], which uses the SMACOF algorithm. The dissimilarity matrix used was com-
puted based on normalized Euclidean distances. As was expected, the corners of the
map are more empty compared to the SOM. However, the positions of the products
on the map (after rotation) do not differ much. Nevertheless, the MDS configuration
maps the dissimilarities better, but on the other hand this makes the map less orga-
nized. Note that in most of the situations it is impossible to map all dissimilarities
perfectly in two dimensions. Therefore, the solution is a compromise in which some
dissimilarities are mapped better than others.

17.2.4 Nonlinear Principal Components Analysis

Probably the most well-known method to perform dimension reduction and, thus,
for creating maps is principal components analysis (PCA). PCA has a numerical
data matrix as input and linearly transforms the data, such that the first dimension,
normally plotted in horizontal direction, explains the variance in the data as much as
possible. The next dimensions (in case of a map only the second) try to do the same
for the remaining variance. Also, all dimensions are uncorrelated with each other.
Nonlinear principal components analysis (NL-PCA) [13, 31, 34] is a method that
does the same as PCA, but is also able to handle categorical attributes and missing
values. Also, using ordinal transformation, numerical attributes can be transformed
nonlinearly. Additionally, the categories of the attributes also have a location in the
map, that is in the center of the items belonging to that category. These category
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Fig. 17.3: Example of a map made with multidimensional scaling on the product
catalog shown in Table 17.1

points can be used to give an interpretation to the map, but also as a navigation tool
in the map based interface as is done in our product catalog map using NL-PCA,
which is introduced in the next section.

Figure 17.4 shows the NL-PCA configuration of the example product catalog
which was made using CATPCA also available under SPSS Categories [33]. All
numerical attributes where treated as ordinal variables, such that nonlinear trans-
formation was possible. However, due to the large flexibility of NL-PCA and the
small data set, the resulting map has a lot of overlapping products. In fact, NL-PCA
created clearly three clusters. Although the products in the clusters were also close
together in the maps of the other three methods, they did not really form clusters.
This example shows, in extreme, the ability of NL-PCA to cluster products having
the same category value together.

17.3 Product Catalog Maps

In this section, we introduce two ways to create a product catalog map. We start by
describing a product catalog map based on multidimensional scaling (MDS), which
is combined with a k-means clustering algorithm to highlight some prototypical
products. Thereafter, a product catalog map based on nonlinear principal compo-
nents analysis (NL-PCA) is introduced which uses the category points to provide a
navigation mechanism. These two methodologies were published earlier in [21] and
[24].
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Fig. 17.4: Example of a map made with nonlinear principal components analysis on
the product catalog shown in Table 17.1

In the description of these methods (and in the remainder of this paper), we use
the following mathematical notation. A product catalog D contains I products xi
having K attributes xi = (xi1,xi2, . . . ,xiK). The final two-dimensional map can be
described by an I× 2 matrix Z containing the coordinates of the products in the
map.

17.3.1 Multidimensional Scaling

The first approach to create a product catalog map that we describe is based on MDS.
As was mentioned in Section 17.2.3, the basis of an MDS map is a dissimilarity
matrix. To compute a dissimilarity matrix ∆∆∆ from the product catalog, we need a
dissimilarity measure. This measure should be able to cope with the specific data
contained in a product catalog, that is, it should be able to handle missing values
and numerical, categorical, and multi-valued categorical attributes.

Many popular (dis)similarity measures such as the Euclidean distance, Pearson’s
correlation coefficient, and the Jaccard similarity measure are not able to handle
all of these attribute types. Moreover, they can not handle missing values naturally.
Therefore, we use a dissimilarity measure which is an adaptation of the general
coefficient of similarity proposed by Gower [14] and was introduced in [23]. Note
that the MDS based product catalog map approach can also be used with other
dissimilarity measures, such as co-purchases or item-item correlations.
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The dissimilarity δi j between products i and j is defined as the square root of the
average of nonmissing dissimilarity scores δi jk on the K attributes

δi j =

√
∑K

k=1 wkmikm jkδi jk

∑K
k=1 wkmikm jk

, (17.1)

where wk is the weight of attribute k and mik and m jk are binary indicators having
a value of 0 when attribute k is missing for product i or j respectively and 1 oth-
erwise. The weights wk can be used to make some attributes more important than
others. In Section 17.4, we show how these weights could be assigned automati-
cally to match users’ general preferences. The definition of the dissimilarity score
δi jk depends on the type of attribute k. For all attribute types we use the same kind of
normalization that ensures that the average nonmissing dissimilarity score for each
attribute is equal to 1 in the product catalog. This normalization is used, to make the
dissimilarity scores equally important and independent of the number of missing
values.

The numerical dissimilarity score is based on the absolute distance

δ N
i jk =

|xik− x jk|(
∑i< j mikm jk

)−1 ∑i< j mikm jk|xik− x jk|
. (17.2)

The dissimilarity score for categorical attributes is computed as

δC
i jk =

1(xik #= x jk)(
∑i< j mikm jk

)−1 ∑i< j mikm jk1(xik #= x jk)
, (17.3)

where 1() is the indicator function returning a value of 1 when the condition is true
and 0 otherwise.

To handle categorical attributes for which a product can belong to multiple cat-
egories (multi-valued categorical attributes), this dissimilarity framework was ex-
tended in [22]. There, the dissimilarity score for multi-valued categorical attributes
was defined as

δ M
i jk =

|xik∆x jk|(
∑i< j mikm jk

)−1 ∑i< j mikm jk(|xik∆x jk|)
, (17.4)

where both xik and x jk are sets of values and ∆ is the symmetric difference set opera-
tor. This measure counts how many categories there are to which one of the products
at hand belongs and the other not.

As mentioned in Section 17.2.3, the aim of MDS is to map a dissimilarity matrix
∆∆∆ (having elements δi j and in our approach computed using (17.1)) as good as
possible to distances between points in a low dimensional Euclidean space. This
objective can be formalized by minimizing the raw Stress function [30]

σr(Z) = ∑
i< j

wi j(δi j−di j(Z))2 . (17.5)
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In this equation, Z is an I× 2 coordinate matrix which forms the basis for the
map, δi j is the dissimilarity between items i and j and di j(Z) is the Euclidean dis-
tance between the coordinates of i and j, that is

di j(Z) =

√
2

∑
s=1

(zis− z js)2 . (17.6)

Also, weights wi j can be specified to force some dissimilarities to be fit better than
others.

The dissimilarity measure we use is able to handle missing values. However, dis-
similarities based on only a couple of nonmissing (and maybe even unimportant)
attributes are more unreliable than dissimilarities for which no dissimilarity scores
were missing. Therefore, the latter should receive higher weights. This can be done
by defining the weights to be used in (17.5) as the weighted proportion of nonmiss-
ing attributes used for pair i j

wi j =
∑K

k=1 wkmikm jk

∑K
k=1 wk

. (17.7)

We minimize σr(Z) using the SMACOF algorithm [10] which is based on ma-
jorization. One of the advantages of this method is that it is reasonable fast and
that the iterations yield monotonically improved Stress values and the difference
between subsequent coordinate matrices Z converges to zero [10]. This property
has an important and vital consequence for dynamic visualizations: the algorithm
produces smooth changes to the points in the display leading to a (local) minimum
solution of (17.5). In effect, the objects follow a smooth trajectory on the screen.

The resulting maps may look overwhelming to the user when the number of
products is large. To make the map more appealing to the user, a small number of
products is highlighted by showing larger sized and full color images, while other
products are represented by a smaller monochrome image. These highlighted prod-
ucts are helpful to the user to get a quick overview of the map. Therefore, it is nice
when these products represent different groups of products in this map. This was
done, by first clustering the products in the map using k-means clustering [17]. We
decided to perform a k-means clustering on the map Z instead of a hierarchical clus-
tering procedure on the original dissimilarities for two reasons. First, this procedure
is faster and, second, it is consistent with the visualization, that is, there is no overlap
between the clusters in the map. In each cluster, one product is chosen to be high-
lighted, that is, the product closest to the cluster center based on Euclidean distance.
In Section 17.6, we show a prototype of this approach using a product catalog of
MP3-players.
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17.3.2 Nonlinear Principal Components Analysis

The second approach for creating a product catalog map discussed here is based
on NL-PCA. In this approach, a map is created in which not only the products are
plotted, but also the category values of the attributes. These can then be used for
navigation and selection. NL-PCA is a generalization of ordinary principal com-
ponents analysis to ordinal (nonlinearly ordered) and categorical attributes. When
only having numerical attributes, NL-PCA simplifies to ordinary PCA and when all
attributes are categorical and a so-called multiple nominal transformation is chosen,
then NL-PCA is identical to homogeneity or multiple correspondence analysis.

In homogeneity analysis, the I ×K data matrix X is modeled by an indicator
matrix Gk for every attribute. Let Lk denote the number of categories of attribute k.
Every category !,!= 1, . . . ,Lk has its own column in the I×Lk matrix Gk, in which
a 1 denotes that the object belongs to this category and a 0 that it does not. Multi-
valued categorical attributes are modeled using an I× 2 indicator matrix for every
category. Missing values are incorporated using an I × I binary diagonal matrix
Mk for all attributes having a value of 1 on the diagonal for nonmissing values
for attribute k and 0 otherwise. Using this data representation, we can define the
following loss function for homogeneity analysis [13, 34] by

σ(Z;Y1, . . . ,YK) = K−1
K

∑
k=1

tr(Z−GkYk)
′Mk(Z−GkYk) , (17.8)

where Z is a I× 2 matrix representing the objects in 2D Euclidean space and the
matrix Yk is the 2 dimensional representations of the category values of the at-
tribute k. Both Z, the coordinates of objects, and all Yk’s, the coordinates of the
attribute category values, can be plotted in a joint space which is called a biplot
[15]. Essentially, Z−GkYk gives the differences (or error) between the position of
the individual products and the positions of the category centroids they belong to
for variable k. Ideally, no error would exist and all products in the same category
would be fully homogeneous and coincide with the position of their category. As
there are more attributes and the products fill in different categories on the different
attributes, (17.8) simply measures the squared distances of the products relative to
their category centroids, hence how homogeneous the products are. The matrix Mk
removes the contribution to the error for any product having a missing value for at-
tribute k. Equation (17.8) can be minimized using an alternating least squares (ALS)
procedure called Homals [13, 34].

From Homals, it is an easy change to NL-PCA by imposing extra restrictions
on the category points. Numerical and ordinal attributes can be incorporated in the
Homals framework when we impose a rank-1 restriction of the form

Yk = qka′k (17.9)

for the numerical and ordinal attributes, where qk is a Lk dimensional column vec-
tor of category quantifications and ak is a 2 dimensional column vector of weights.
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Using this restriction the category points are forced to be on a line. However, this
restriction is not sufficient to preserve the order for ordinal attributes or even the
relative distance for numerical attributes. Therefore, qk is constrained every ALS
iteration to satisfy such restrictions. In the case of ordinal attributes this transfor-
mation is done by a weighted monotone regression [9] and in the case of numerical
attributes this results in replacing qk by the attribute’s original values xk. A detailed
description of the ALS algorithm for NL-PCA can be found in [13, 31, 34].

NL-PCA solutions have a number of advantageous properties that make it very
suitable to create maps that contain both products and attribute category values.

• NL-PCA provides a joint space of object and attribute category points, called
a biplot [15], while other visualization methods only provide the object points.
The category points can be used to provide an easier interpretation of the map
and to navigate through the map by selecting subsets of products.

• For categorical attributes, the category points are located in the centroids of
the object points belonging to that category. This implies that when a certain
attribute is well represented in the map, the object points are clustered around
their corresponding category value of that attribute and a selection of all points
belonging to this category will lead to a selection of a subspace of the map. For
ordinal attributes, the category point will be the point on the line closest to the
centroid of the object points.

• The third advantage is shared by NL-PCA and most other visualization meth-
ods. That is, the distance between object points in the map is, in general, related
to dissimilarity between objects.

In Section 17.6, we also show an application of this approach to the MP3 player
data set.

17.4 Determining Attribute Weights using Clickstream Analysis

Both product catalog map approaches introduced in the previous section consider
all attributes of a product as equally important to the user. However, we showed that
attribute weights can be incorporated in the dissimilarity measure used for MDS and
also NL-PCA can be adapted to incorporate different weights for attributes. This
holds for most visualization methods, including self-organizing maps and treemaps
which were described in Section 17.2.

In this section, we will introduce an approach to determine these weights auto-
matically using clickstream data. For every product, we count how often it was sold
during some period. In our application, shown in Section 17.6, we actually counted
outclicks, which are clicks out of the site (we used data of a price comparison site)
to a shop where the product can be bought. For ease of readability, we use the term
sales instead of outclicks during the remainder of this paper. Using these counts and
the product attributes, we estimate a Poisson regression model, which is a model
belonging to the class of generalized linear models. Using the coefficients of this
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model and their corresponding standard errors, we compute t-values which form
the basis of our attribute weights. This approach was described earlier in [22].

17.4.1 Poisson Regression Model

A collection of models frequently used in the field of statistics are the generalized
linear models (GLM) [32, 35]. To model a dependent count variable being discrete
and nonnegative, such as sales in our domain, we use an appropriate member of
the GLM family, that is, the Poisson regression model. In Poisson regression, we
cannot use (multi-valued) categorical attributes directly, so we have to create dummy
attributes instead. Therefore, every categorical attribute is represented by Lk − 1
dummies xik!, which are 1 for the category where the item belongs to and 0 for
all other attributes, where Lk is the number of different categories for attribute k.
When an item belongs to the last category Lk all dummies for this attribute will be 0.
This representation is chosen to avoid multicollinearity. For multi-valued categorical
attributes the same approach is used, only now all categories are represented by,
in total, Lk dummies. For numerical attributes, we can just use the attribute itself.
Hence, xik = xik1 and Lk = 1. We collect all xik! for item i in vector xi. Also, an
intercept term xi0 is incorporated in this vector, which equals 1 for all items. Hence,
xi = (xi0,xi11, . . . ,xiKLK Furthermore, we have the dependent count variable value yi
for all I items. Now, we can express the Poisson regression model as

yi ≈ exp(x′ib) , (17.10)

where b is a vector of regression parameters to be estimated. Furthermore, it is
assumed that yi is Poisson distributed having expectation E(exp(x′ib)). The Poisson
regression model can be fitted by maximizing its loglikelihood function, which is
often done by an iteratively reweighted least squares algorithm. Besides the model
parameters bk!, also standard errors σkl can be derived by this algorithm.

17.4.2 Handling Missing Values

Unfortunately, the Poisson regression model cannot cope with missing values in
an integrated way. Missings are in general a problem in GLMs and Imbrahim et
al. [20] recently compared different techniques that can be used to handle missing
values in combination with GLMs. One of the best methods (leading to unbiased
estimates and reliable standard errors) in their comparison was multiple imputation
(MI) [41]. MI methods create a number of ‘complete’ data sets in which values for
originally missing values are drawn from a distribution conditionally on the non-
missing values. These imputed data sets can be created using two different meth-
ods: data augmentation [43] and sampling importance/resampling [26]. Although
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both methods lead to results having the same quality, the second method computes
these results much faster. Therefore, an algorithm based on the second approach,
namely the Amelia algorithm [26] which is available as a package [19] for the sta-
tistical software environment R, is used in our approach. For a discussion about how
the regression coefficients and standard errors of these imputed datasets can be used
to estimate the parameters and standard errors of the Poisson regression model, we
refer to [22].

17.4.3 Choosing Weights Using Poisson Regression

There are three reasons why we cannot use the coefficients bk! resulting from the
Poisson regression model as weights directly. The first reason is that dissimilar-
ity scores and attributes do not have the same scale. Second, uncertainty about the
correctness of the coefficient is not taken into account when using bk! directly. Al-
though the value of a coefficient can be relatively high, it can still be unimportant.
Consider, for example, a dummy attribute having very few 1’s and a high coefficient
value. Then, this high impact of the coefficient is only applicable to a limited num-
ber of items and its total importance is limited. By taking the uncertainty we have
into account, we can correct for this. Third, weights should always be equal to or
larger than 0, while bk! can also be negative.

The first two problems can be overcome by using the t-value

tk! =
bk!

σkl
(17.11)

of coefficient bk! as a basis to compute weights. Due to standardization, all tk!’s are
on the same scale and, since these are standardized by division by the corresponding
standard error σk!, uncertainty is taken into account. When we use |tk!| instead of tk!
we guarantee the weights to be larger than or equal to 0.

For numerical attributes, we can map |tk1| directly to a ‘pseudo’ absolute t-value
vk for attribute k, that is, vk = |tk1|. Then, including a normalization of the weights
(for ease of interpretability), we can compute wk using

wk =
vk

∑K
k′=1 vk′

. (17.12)

For (multi-valued) categorical attributes, we first have to compute vk using the Lk
values of tk!. This is done by taking the average of the absolute tk! values

vk =
1
Lk

Lk

∑
!=1

|tk!| . (17.13)

These vk’s can then be used to compute the weights for (multi-valued) categorical
attributes using (17.12).
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17.4.4 Stepwise Poisson Regression Model

The t-values tk! can be compared to a t-distribution to determine whether these val-
ues are significantly different from 0. In a so-called stepwise model, this significance
testing is used for attribute selection, finally resulting in a model only having sig-
nificant attributes. The stepwise model approach starts off with a model containing
all attributes. Then, each time the most insignificant attribute is deleted from the
model, until the model only contains significant attributes. Note that this stepwise
approach leads to a different model when all insignificant attributes are deleted at
once. In fact, due to collinearity, significance of an attribute may change when an-
other attribute is deleted. When using the stepwise model to determine weights wk,
we consider Lk to be the number of dummies incorporated in the final model. This
stepwise model is used in the application shown in Section 17.6.

17.5 Graphical Shopping Interface

The idea of map based visualization can be combined with recommender systems
[39]. The most direct way for doing this is by just representing recommendations
of the system in a map instead of a list. This approach is taken in the graphical rec-
ommender system introduced in [23]. Another system introduced in that paper, the
graphical shopping interface (GSI), implements a more interactive recommendation
process for users who do not have a clear idea about what they are looking for and
need to shape their preferences. The GSI implements an approach which in recom-
mender system literature is called recommendation by proposing [45] or inspiration
seeking [40]. The idea is to let the user navigate through the complete product cat-
alog in steps, where at each step a set of products is represented in a map. In this
map, the user can select a product and then a new set of products, generally more
similar to the selected product, is produced and visualized by MDS in a similar way
as is done by the MDS based product catalog map introduced in Section 17.3.1.

In [23], three different types of the GSI were proposed, the random system, the
clustering system, and the hierarchical system. Since the random system performed
best in a simulation study in that paper, we only consider the random system here.

In this system, each time a small set of products is randomly selected to be shown
to the user out of a larger set. This larger set contains products that are similar to a
product selected by the user. First, the GSI needs to be initialized. We refer to this
initialization as iteration t = 0. In this initialization, the larger set of products Dt is
set to be the complete product catalog, that is, D0 = D. Out of set D0, p products
are selected at random (without replacement). These products form together the
smaller set D∗0. Then, dissimilarity matrix ∆∆∆ ∗0 is computed using the adapted Gower
coefficient introduced in Section 17.3.1 and D∗0. Finally, a map Z0 in which these
randomly selected products are mapped is created using MDS and shown to the user.

The iterative process starts when the user selects one of the shown products we
denote by x∗t . Then, the dissimilarities between x∗t and all other products in D are
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computed. To create Dt , we select the max(p− 1,α t I− 1) products that are most
similar to x∗t . The parameter α , where 0 < α ≤ 1, determines how much the size
of Dt is decreased each iteration. Thereafter, the process is almost identical to the
steps taken in the initialization. We create a small set D∗t consisting of x∗t and p−1
products randomly selected from Dt and compute a dissimilarity matrix ∆∆∆ ∗t based
on these products. This matrix is the input for the MDS algorithm returning the new
map Zt .

The parameter α determines how large the influence of the selections of the user
are on the complete process. When α = 1, this influence is very small, since each
time a completely random selection is shown to the user except for the product
selected by the user in the last iteration. When α is lower, this influence is higher, but
the variance in Dt also decreases more quickly. The random system is summarized
in Figure 17.5.

procedure RANDOMgSI(D, p,α)
D0 = D.
Generate random D∗0 ⊂ D0 with size p.
Compute ∆∆∆ ∗0 given D∗0 using (17.1).
Compute Z0 given ∆∆∆ ∗0 using MDS.
t = 0.
repeat

t = t +1.
Select a product x∗t ∈ D∗t−1.
Get Dt ⊂ D containing max(p−1,α t I−1) products most similar to x∗t using (17.1).
Generate random D∗t ⊂ Dt with size p−1.
D∗t = D∗t ∪x∗t .
Compute ∆∆∆ ∗t given D∗t using (17.1).
Compute Zt given ∆∆∆ ∗t using MDS.

until D∗t = D∗t−1.
end procedure

Fig. 17.5: Pseudocode of the graphical shopping interface.

In Section 17.6, we also show an application of the GSI.

17.6 E-Commerce Applications

In this section, we describe three working prototypes that are available online. Two
of them implement the product catalog maps based on MDS and NL-PCA and the
third prototype is a graphical shopping interface (GSI). Both the MDS based product
catalog map and the GSI also have an option to use weights determined by the
method described in Section 17.4. All prototypes are using a product catalog of
MP3 players that is described next.

The product catalog of MP3 players was made available to us by Compare Group.
Compare Group hosts, among other European price comparison sites, the Dutch
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price comparison site http://www.vergelijk.nl. The product catalog used
is based on a database dump of this site from October 2007. At that moment, there
were 225 MP3 players listed on the site. In total, these products were described using
45 attributes of which there were 16 numerical, 20 categorical, and 45 multi-valued
categorical. Of these 45 attributes, 26 attributes were missing for more than half of
the MP3 players. The other attributes are listed in Table 17.2. Note that although it
also concerns MP3 players, it is different from that used in [21, 23, 24]. To be able
to determine the weights automatically as described in Section 17.4, we matched
the product catalog to a clickstream log of the same website logged during a period
of two months from July 15 until September 15, 2007.

Table 17.2: Attribute characteristics of the MP3 player data. Only the attributes hav-
ing less than 50% missing values are listed. For (multi-valued) categorical attributes
only the three most occurring values are shown.

Attribute % Missing Values Mean
Numerical Attributes

Price 0.0% 134.54
Height 40.9% 63.65
Width 40.9% 48.87
Weight 44.0% 71.21
Depth 40.9% 16.54
Memory Size 3.1% 8635.30
Battery Life 44.4% 17.26

Categorical Attributes
Brand 0.0% Samsung (12.0%), Creative (9.8%),Philips (8.4%)
Radio 32.0% yes (68.6%), no (31.4%)
Extendable Memory 44.9% yes (17.7%), no (82.3%)
Equalizer 39.6% yes (85.3%), no (14.7%)
Screen 30.2% yes (99.4%), no (0.6%)
Battery Type 44.4% li-ion (44.8%), 1×AAA (33.6%), li-polymer (20.8%)
Voice Memo 24.4% yes (81.2%), no (18.8%)

Multi-Valued Categorical Attributes
Storage Type 42.7% flash memory (69.0%), hdd (21.7%), sd card (10.1%)
Interface 4.0% usb (63.4%), usb 2.0 (31.5%), hi-speed usb (7.4%)
Color 38.2% black (68.3%), white (20.1%), silver (16.5%)
Operating System 31.1% windows (78.7%), mac os (34.2%), windows xp (32.3%)
Audio Formats 1.8% MP3 (98.6%), WMA (90.0%), WAV (48.0%)

17.6.1 MDS Based Product Catalog Map Using Attribute Weights

The MDS based product catalog map prototype can be visited online at http:
//www.browsingmap.com/mapvis.html, where it is available as a Java ap-
plet. A screenshot of this prototype is shown in Figure 17.6. The GUI of the pro-
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totype mainly consists of a large focus map which gives a detailed view of a part
of the complete product catalog map. In this map, a couple of products, in this case
12, are represented by a larger full color image, the other products are visualized as
smaller monochrome images. By default, the monochrome images are colored ac-
cording to the cluster they belong to. Alternatively, the user has the option to color
them by product popularity (based on the clickstream data) or by attribute value.
The small overview map at the top always shows the complete product catalog map.
The user can navigate over the map in several ways. By selecting a rectangular sub-
space in the focus or overview map, the user can zoom in on a specific part of the
map. Zooming is also possible using the mouse wheel. Finally, the user can move
over the map using dragging. Since the map itself is static, that is, the coordinates
of products are fixed, the computation of the map can be done offline, decreasing
online computation time. Of course, it is straightforward to add traditional search
technology, such as performing crisp queries, to the map based interfaces. All re-
maining products satisfying the constraints can then be displayed using a map. This
would require the map to adapt when the product set changes and in this case client
computations may be necessary.

Fig. 17.6: Screenshot of the MDS based product catalog map prototype.
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The map of the prototype has been made using the attribute weight determination
technique described in Section 17.4. These weights were determined using the data
and product catalog described above. To be able to impute the missing values, we
excluded attributes having more than 50% missing values and categories of (multi-
valued) categorical attributes that were observed less than 10 times. The weights
determined in this way are shown in Table 17.3. Note that attributes not mentioned in
the table have a weight of zero and, hence, have no influence in the MDS procedure.
According to our method, Brand and Memory Size are the most important attributes
determining popularity of MP3 players and receive the highest weights.

Table 17.3: Weights determined using stepwise Poisson regression for the MP3
player catalog. Only selected attributes are shown.

Attribute Weight
Brand 0.242
Memory Size 0.176
Audio Formats 0.131
Battery Type 0.106
Width 0.090
Operating System 0.086
Color 0.084
Storage Type 0.084

In Figure 17.7, we labeled the product points of both a map made by MDS using
equal weights for all attributes and a map made using our weighting approach by
their corresponding Brand. The second map was rotated using Procrustean transfor-
mation [16] to best match the first map. As can be seen in Figure 17.7, the products
having the same brand are more clustered in the second map where brand had been
made more important.

Figure 17.8a shows the second most important attribute, i.e., Memory Size. This
map shows that the MP3 players are generally ordered from cheap at top left to
expensive at the bottom right in the map. The most striking attribute absent in Table
17.3 and, thus, receiving a weight of zero, was Price. However, when we look at
Figure 17.8b where we have made a map labeled by Price, there is a clear pattern in
the map. Both effects exist, since Price highly correlates with other features of MP3
players, such as the Memory Size. These features are, hence, the features explaining
most of the price that is given to a product.

More generally, we can see that the MDS produces a kind of circular shaped map
with some outliers that represent products very different from all other ones. Due to
this, large parts of the map are unused. On the other hand, the map provides at first
sight a good interpretation, where the important attributes show a clear pattern.
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a. Equal weights b. Poisson regression weights

Fig. 17.7: Product catalog maps based on MDS labeled by brand.
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Fig. 17.8: Product catalog maps based on MDS labeled by Memory Size and Price.
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17.6.2 NL-PCA Based Product Catalog Map

A screenshot of the prototype using NL-PCA is shown in Figure 17.9. This applica-
tion is available online at http://www.browsingmap.com/mapvis.html.
The main part of the GUI is the product catalog map. Initially, this map shows all
products. A couple of products, in this case 12, are highlighted using a larger full
color image, the other products are represented by a smaller monochrome image.
For the initial map, the products that are highlighted are selected using a k-means
clustering procedure identical to the one used in the MDS based product catalog
map.

Fig. 17.9: Screenshot of the NL-PCA based product catalog map prototype.

Above the product catalog map, there is a list with all product attributes. Each at-
tribute can be selected by clicking on its check box. If one selects a certain attribute,
the category points of this attribute are added to the map. The category points of the
selected attributes not only help the user to interpret the map, they are also tools to
navigate through the map. By clicking on a category point on the map this category
is added to the selection list.

The selection list, which is shown to the right of the list of attributes, determines
the products that are highlighted on the map. The set of highlighted products is
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determined as follows. For each of the selected attributes, a shown product should
belong to at least one of the selected categories.

When the selection list has been adapted by adding or removing a category point,
a couple of things are modified in the visualization of the map. The first thing is that
all products satisfying the new constraints are colored red, while all other products
are colored blue. Furthermore, a number of products is randomly selected from this
set to be highlighted.

Since a selection will often lead to a subspace of the map, it is also possible to
zoom in on this part of the map. However, there is no guarantee that all points in this
subspace satisfy all constraints imposed by the selection list. We have chosen not
to delete these product points, since these may be interesting to the user. Although
these products do not satisfy all the demands of the user, they are very similar to the
products that do and may have some appealing characteristics the user until then did
not think of.

In both the complete and the zoomed in map, the user can click on the highlighted
products to get a full product description of this selected product, which is shown
at the right side of the application. However, by moving over both a full color or
a monochrome image, a tooltip is shown containing an image of the product and
the values of some of its most important attributes. Furthermore, the values for the
attributes in the selection list are shown in this tooltip, colored green when they
match the preferred category value and red when they do not. Since the GUI is
based on a single NL-PCA map, this map too can be computed offline just as the
MDS product catalog map.

Since the quality of NL-PCA maps may become quite poor when having a lot of
missing values, we removed attributes having more than 50% missing values. Then,
we also removed products having more than 50% missing values on this limited set
of attributes. This resulted in a set of 189 MP3-players described by 19 attributes,
namely the attributes shown in Table 17.2.

In the NL-PCA algorithm, we will treat all numerical attributes as being ordinal,
because of two reasons. In the first place, many of the numerical attributes do not
have a linear interpretation for users, such as, for example, the memory size. The
second advantage of using the ordinal transformation is that due to the underlying
monotone regression procedure some adjacent categories can be merged into a sin-
gle category point. Since a numerical attribute has a lot of categories (i.e. all unique
values in the data set), visualizing all these categories may become unclear and
selection using these category values may become useless, since a lot of category
values only belong to a single object. Using an ordinal transformation this becomes
less of a problem, since categories with a small number of objects are often merged
with their neighbors.

In Figure 17.10, two biplots are shown resulting from the NL-PCA algorithm. A
biplot visualizes both the products labeled by their attribute value and the category
points also labeled by their value. Also, the origin is plotted in the biplots. By the
design of the NL-PCA method, ordinary products (products having attribute values
that are similar to many other products) should be close to the origin, while more
distinct products should be far away. This also holds for the categories. Since both
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biplots in Figure 17.10 are plots of numerical attributes, the category points are on
a line. Like in the MDS map, also here both Price and Memory Size correlate with
each other and are well represented, in this case on the second dimension.

x

xxx

x

x

   128 mb
 81856 mb
163840 mb
Missing x

 12.90 euro
286.80 euro
586.50 euro
Missing

a. Memory Size b. Price

Fig. 17.10: Biplots based on NL-PCA labeled by Memory Size and Price. Large
circles are category points and small dots represent object points.

Where the second dimension tells something about the memory size and at-
tributes correlating with that, the first dimension seems to separate older from newer
products. This can, for instance, be seen in Figure 17.11, where we labeled products
by the Interface attributes. Since Interface is a multi-valued categorical attribute, we
have chosen to label each product only by a single value, namely the one most fre-
quent in the product catalog. Also, we only show the category points of the three
most occurring categories, since all products belong to at least one of them. As said,
there seem to be two groups, the older MP3 players supporting USB and the newer
ones supporting USB 2.0. For the operating systems attribute one can observe a
similar pattern.

More generally, the NL-PCA approach creates a map in which more of the avail-
able space is used than in the MDS approach. However, most of the map is used
to visualize the special, not that common products, while the ordinary products are
cluttered together near the right top corner of the map. Also, the map only shows
those products and attributes that do not have too many missing values.

17.6.3 Graphical Shopping Interface

A screenshot of the graphical shopping interface prototype is shown in Figure 17.12.
This prototype is available at http://www.browsingmap.com/mapvis.
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Fig. 17.11: Biplot based on NL-PCA labeled by Interface. Large shapes indicate
category points and small transparent shapes represent object points.

html. The interface uses four tabs: The Navigate tab implementing the graphical
shopping interface (GSI), the Direct Search tab implementing the graphical recom-
mender system (GRS) [23], a Preferences tab to set weights, and a Saved Products
tab to save products in.

The graphical recommender system creates a map of products given a search
query. The represented products are those most similar to the query. Representing
these results in a map instead of, as is usually done, a list has the advantage that it
makes clear which search results are similar to each other and which differ from the
query on a different set of attributes.

In both the GSI and GRS map, products are represented by a thumbnail picture.
By clicking, products can be selected and detailed information is shown right from
the map. Above the map in the GSI tab, there are some buttons to go to the next
iteration, to go one iteration back, to restart the process, and to save a product.

In the Preferences tab the user can set the weights used to compute dissimilarity
in the GRS and GSI. Also, the user can deselect certain attributes, which means
that their weights are set to 0. When weights are changed, the maps are immedi-
ately adapted. This tab also has a ‘smart weights’ button which can be used to set
the weights to the values determined using the approach discussed in Section 17.4.
Hence, the weights are then set to the the values shown in Table 17.3.

There is a smooth transition between two steps in the GSI. After the selection of
a product by the user, the new products are added to the map at random positions.
Then, the map is optimized using MDS. The optimization process is shown to the
user. When the optimization has converged, the old products are gradually made
less important (using the weighted version of MDS) until their influence is zero.
Finally, the old products are removed from the map and the new map is optimized.
This implementation yields smooth visual transitions, which are important for an
effective GUI.
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Fig. 17.12: Screenshot of the MDS based product catalog map prototype.

When starting the application, the GSI tab first shows a tree of attributes and
attribute values that can be used to preselect a subset of products to be used. In this
way, the user can rule out products of which she is certain she is not interested in.

Since the maps of the GSI are dynamically generated, that is, they are dependent
on user input and the randomization process, we do not show one here. Using an-
other MP3 player catalog, it was shown in [23] that the theoretical quality (in terms
of Stress, see (17.5)) of these maps is high, mainly since they only show about eight
products. Also, the recommendation algorithm was tested in a simulation study,
showing promising results.

In [23], also a usability study among 71 respondents was reported. Results of this
study showed that compared to a traditional list-based interface, the users were not
significantly less satisfied with the GSI, while they found it more complex. However,
it was only the first time the respondents used the GSI. Some weaknesses of the GSI
reported in that usability study have been taken into account in the GSI prototype
discussed here. Since the graphical recommender tab was switched off during the
experiment, users missed a way to formulate a query. Secondly, people missed a
way to restrict the search space, which is facilitated by the selection tree in the new
prototype.
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However, the main disadvantage of the GSI approach seems to be its complexity.
In that sense, the static product catalog maps might be a better alternative. Still, this
should to be tested in a usability study.

17.7 Conclusions and Outlook

In this chapter, we have discussed how product catalogs can be visualized in a map
to provide a way in which e-commerce website users may get a better overview of all
products being available. In such a map, products that are similar in their attributes
should be located close to each other, while dissimilar products should be located in
different areas of the map.

In the framework presented in this chapter, two methods have been used to cre-
ate such product catalog maps: Multidimensional scaling (MDS) and nonlinear
principal components analysis (NL-PCA). MDS has the advantage that it is the
only method providing a real distance interpretation. Similarity between products
is matched as closely as possible to distances in a two dimensional space. We com-
bined MDS with an adapted version of the Gower coefficient, which is very flexible,
since it is able to handle mixed attribute types and missing values. The map made
by MDS for the MP3 player application we have shown, seems to have a clear in-
terpretation with a clustering of brands and a important price dimension. The main
disadvantage of this map (and MDS in general) is that the map has a circular shape
leaving the corners of the map open and positions outliers relatively far away from
the rest of the map. However, using a weighting scheme emphasizing the small dis-
similarities, this may be overcome.

NL-PCA has the advantage that it is the only method that is able to also visualize
attribute categories next to the product visualization. These category points can be
used to select subsets of products in the map as was shown in our prototype. In
general, the interpretation of the NL-PCA map was in line with the interpretation of
the MDS map. Although distinct products also take a large part of the map in the NL-
PCA approach, the objects are more spread over the map. The main disadvantage of
using the NL-PCA method on our product catalog was that we could not visualize
all products, because NL-PCA may create poor maps when introducing objects with
too many missing values. Another disadvantage is that the dissimilarity between
products is not directly mapped to distances as is done in the MDS method. This
can be done in NL-PCA by using a different normalization method. However, then
interpretation of category points becomes more difficult which may mean that these
cannot be used for navigation anymore.

Since users do usually not consider all product attributes to be equally important
we have shown a method based on a Poisson regression model, which can determine
attribute importance weights automatically based on counting product popularity in
a clickstream log file. Since this method is independent from the visualization tech-
nique, it can be used with every technique allowing weights of attributes and it can
be even applied in recommender systems which allow for attribute weights. How-
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ever, the proposed method has some shortcomings. Weights for categorical attributes
are determined in a quite heuristic way and interactions between attributes are ig-
nored. Therefore, we are working on a different way to determine these weights
using a more flexible model based on boosted regression trees [25].

Introducing the graphical shopping interface, we have shown one way in which
map based visualization could be combined with recommendation techniques,
in this case with recommendation by proposing. However, we expect that map
based visualization could also be successfully combined with other content- and
knowledge-based recommendation techniques, such as critiquing (see [70] and
Chapter 13).

Besides combinations with other types of recommendation, we think there are
some more challenges in product catalog visualization. First of all, since determin-
ing which methods provides the best map is a matter of personal taste and subject to
the data to be visualized, one could also try different visualization methods, such as
independent component analysis [8] or projection pursuit [12]. A good idea would
be to compare different visualization approaches in a user study. In this study, we
used a data set of reasonable size. Using larger product catalogs, for instance, hav-
ing thousands of products, means that both the algorithms used to create the map
as well as the interface itself should be able to cope with these numbers. Besides
visualizing a large catalog of a single product type, another challenge might be to
create a map containing multiple types of products, for instance, different electronic
devices.
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Chapter 18
Communities, Collaboration, and Recommender
Systems in Personalized Web Search

Barry Smyth, Maurice Coyle and Peter Briggs

Abstract Web search engines are the primary means by which millions of users
access information everyday and the sheer scale and success of the leading search
engines is a testimony to the scientific and engineering progress that has been made
over the last ten years. However, mainstream search engines continue to deliver
largely one-size-fits-all services to their user-base, ultimately limiting the relevance
of their result-lists. In this chapter we will explore recent research that is seeking to
make Web search a more personal and collaborative experience as we look towards
a new breed of more social search engines.

18.1 Introduction

Web search engines are among the most important and wide-spread information
tools in use today. Every month the leading search engines recommend search re-
sults to billions of users and, in the process, generate billions of dollars in advertising
revenue annually. In all of this Google stands tall as the clear market leader and one
would be forgiven for assuming that all of the major web search challenges have by
now been addressed, and that all that remains is the need for some minor algorith-
mic refinements. The reality is very different however, and while Google may have
won the current round of search battles, the web search war is far from over.

Recent research has highlighted how even the leading search engines suffer from
low success rates when it comes to delivering relevant results to the average searcher.
For example, in one study [24] of more than 20,000 search queries researchers found
that, on average, Google delivered at least one result worth selecting only 48% of the
time; in other words, in 52% of cases, searchers chose to select none of the results
returned. In large part this problem is as much due to the searcher as it is the search
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engine: our search queries tend to be vague and under-specified, and rarely provide
a clear indication of our search needs [100, 98, 99, 45, 90]. As frequent searchers
we have adapted to these success rates, generally responding to poor result-lists
with follow-up or alternative queries. However, at best, this means that web search
is far less efficient than it should be — indeed recent studies suggest that among
information workers 10% of salary costs are lost due to wasted search time [30] —
and at worst a significant proportion of searchers may fail to find the information
they need.

Thus, while Google, Yahoo and others continue to provide strong search ser-
vices for millions of users, there remains plenty of headroom for improvement. In
this chapter we will look into the future of web search by reviewing some of most
promising research ideas that have the potential to bring game-changing innovation
to this exciting technology sector. We will argue that the past is apt to repeat it-
self, and just as Google’s game-changing take on web search led to its relentless
rise over the past 10 years, so too will new search technologies emerge to have a
similarly disruptive effect on the market over the next 10 years.

Even in their current form, modern search engines can be loosely viewed as a
type of recommender system: they respond to users’ queries with a set of result page
recommendations. But recommendation technologies are set to play an increasingly
important role in web search, by helping to address core web search challenges as
well as contributing to the solution of a number of secondary search features. For ex-
ample, recently modern search engines have added query recommendation services
to supplement core search functionality. As the user enters their query, services like
Google Suggest use recommendation techniques to identify, rank and recommend
previously successful and relevant queries to the user; see [81]. In this paper, we will
focus on two promising and powerful new ideas in web search — personalization
and collaboration — that can trace their origins to recent recommender systems re-
search [6, 53, 83, 35, 89, 77] and Chapters 5, 4 and 13. They question the very core
assumptions of mainstream web search engines and suggest important adaptations to
conventional web search engines. The first assumption concerns the one-size-fits-all
nature of mainstream web search — two different users with the same query will,
more or less, receive the very same result-list, despite their different preferences
— and argues that web search needs to become more personalized so that the im-
plicit needs and preferences of searchers can be accommodated. We will describe a
number of different approaches to personalizing web search by harnessing different
types of user preference and context information to influence the search experience;
see for example [19, 23, 33, 97, 2, 48, 49, 108, 22, 69, 86, 14, 31]. The second
assumption that will be questioned concerns the solitary nature of web search. By
and large web search takes the form of a isolated interaction between lone searcher
and search engine, however, recent research has suggested that there are many cir-
cumstances where the search for information has a distinctly collaborative flavour,
with groups of searchers (e.g., friends, colleagues, classmates) cooperating in vari-
ous ways as they search for and share results. We will describe recent work in the
area of collaborative information retrieval, which attempts to capitalize on poten-
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tial for collaboration during a variety of information seeking tasks; see for example,
[70, 71, 73, 72, 58, 59, 94, 1].

In addition we will highlight a new breed of search service that combines el-
ements of personalization and collaboration: so-called social search services take
advantage of the recent evolution of the web as a social medium, one that promotes
interaction and collaboration among individuals during search, so that searchers can
benefit from the preferences and experiences of other like-minded individuals. In-
deed this provides a new source of information for search engines to use during
retrieval: interaction and collaboration information. And this information can be
used to drive recommendations at search time so that organic search results, based
on term-overlap and link connectivity information, are complimented by additional
result recommendations that are based on the preferences and activities of searchers.
This will represent a coming together of recommendation systems and search sys-
tems and, just as the introduction of connectivity information led to its rise to dom-
inance, there is considerable optimism that this new source of interaction and pref-
erence information will lead to an entirely new phase of search engine development
in the quest to deliver the right information to the right user at the right time.

18.2 A Brief History of Web Search

Before considering some of the emergent search technologies that have the potential
to disrupt the search industry, it is first worth briefly reviewing the history of web
search over the past 15 years, to better understand the evolution of modern web
search. The early web was not a place of search. Instead if you wanted to get to a
particular web page then you either typed the URL directly into your browser, or
you used a portal like Yahoo as a starting point to navigate to this page. As the web
grew (and grew, and grew) it became clear that portal browsing would not scale,
and web search began to emerge in the guise of early search engines such as Lycos,
Excite, and Altavista.

These search engines all relied on so-called information retrieval (IR) technolo-
gies that had been around since the 1970’s [104, 4]. A simplified schematic of a
typical search engine architecture is preseneted in Fig. 18.1. Briefly, early search
engines constructed their own index of the web, by crawling the web’s network of
pages and analysing the content of each page in turn, recording the words, and their
frequencies, contained in each page. To respond to a search query, the search engine
retrieves and ranks pages that contain query terms. During the early days of web
search, the emphasis was very much on the size of the index, and search engines
that had indexed more of the web had a clear coverage advantage over their rivals.
Attention was also paid to the ranking of search results; for the most part, these
search engines relied on the frequency of query terms in a web page (relative to the
index as a whole) as the primary arbiter of relevance [96], preferring pages that con-
tained frequent occurrences of distinctive query terms. While this approach worked
reasonably well in the well-structured, closed-world of information retrieval sys-



582 Barry Smyth, Maurice Coyle and Peter Briggs

tems, where information retrieval experts could be relied upon to submit detailed,
well-formed queries, it did not translate well to the scale and heterogenous nature of
web content or our vague search queries. The outcome was a poor search experience
for most searchers, with relevant results hidden deep within result-lists dominated
by results that were, at best, only superficially relevant to the query.

Fig. 18.1: Functional components of a typical web search engine. A page, pi , is
located on the web by the crawler and its content, the terms t1,...,tn, are retrieved
and indexed as part of an offline process. In response to a search query, the engine
probes the index to retrieve results which match the query terms, pi,..., p j, which
are then ranked by their relevance according to the search engines particular ranking
metrics, before being presented to the searcher as a result-list.

Improving the ranking of search results became the challenge for these early
search engines and even the race for the largest search index took a back seat in the
face of this more pressing need. It soon became clear, however, that relying solely
on the terms in a page was not going to be sufficient, no matter how much time
was invested in tweaking these early ranking algorithms. Simply put, there were
lots of pages that scored equally well when it came to counting matching query and
page terms, but few of these pages turned out to be truly relevant and authoritative.
Although term matching information had a role to play in overall relevance, on its
own it was insufficient, and it was clear that there was vital information missing
from the ranking process.

The missing ingredient came about as a result of research undertaken by a num-
ber of groups during the mid 1990’s. This included the work of John Kleinberg [40]
and, most famously, the work of Google founders Larry Page and Sergey Brin [13].
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These researchers were among the first to take advantage of the connectedness of
web pages, and they used this information to evaluate the relative importance of
individual pages. Kleinberg, Page, and Brin recognised the web as a type of cita-
tion network (see for example, [60]). Instead of one paper citing another through
a bibliographic reference, on the web one page cited another page through a hy-
perlink connecting the two. Moreover, it seemed intuitive that the importance of a
given page should be a function of the various pages that linked to it; the so-called
back-links of the page. Thus a page could be considered important if lots of other im-
portant pages linked to it. This provided the starting point for a fundamentally new
way to measure the importance of a page and, separately, the work of [40, 17] and
[13] led to novel algorithms for identifying authoritative and relevant pages for even
vague web search queries. By the late 1990’s Page and Brin’s so-called PageRank
algorithm was implemented in the first version of Google, which combined tradi-
tional term-matching techniques with this new approach to link analysis, to provide
search results that were objectively superior to the results of other search engines of
the day. The rest, as they say, is history.

18.3 The Future of Web Search

There is no doubt that web search represents a very significant recommendation
challenge. The size and growth characteristics of the web, and the sheer diversity of
content types on offer represent formidable information retrieval challenges in their
own right. At the same time, as the demographics of the web’s user-base continues
to expand, search engines must be able to accommodate a diverse range of user types
and search skill levels. In particular, most of us fail to live up to the expectations of
the document-centric, term-based information retrieval engines that lie at the heart
of modern search technology. These engines, and the techniques they rely upon,
largely assume well-formed, detailed search queries, but such queries are far from
common in web search today [36, 37, 100, 45]. Instead most web search queries
are vague or ambiguous, with respect to the searcher’s true information needs, and
many queries can contain terms that are not even reflected in the target document(s).

Given that many queries fail to deliver the results that the searcher is looking
for there is considerable room for improvement in this most fundamental feature of
the search experience. While the problem may reside, at least in part, with the na-
ture of web search queries, as discussed above, it is unlikely that users will improve
their query-skills any time soon. In response, researchers have begun to explore two
complementary strands of research as a way to improve the overall searcher experi-
ence. One widely held view is that web search needs to become more personalized:
additional information about users, their preferences and their current context, for
example, should be used to deliver a more personalized form of web search by se-
lecting and ranking search results that better match the preferences and context of
the individual searcher (see for e.g. [86, 14, 31, 22, 2, 48]). Another view is that
there is an opportunity for web search to become more collaborative, by allowing
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communities of users to co-operate (implicitly or overtly) as they search (see for
e.g. [70, 71, 73, 72, 58, 59, 94, 1]).

In the following sections we will review this research landscape, describing a
number of initiatives that are attempting to transform static (non-personalized), soli-
tary (non-collaborative), mainstream search engines into more personalized (see
Section 18.3.1) or more collaborative (see Section 18.3.2) search services. These
initiatives borrow ideas from recommender systems, user profiling, and computer-
supported collaborative working research; see for example [84, 41, 89, 35, 52]. We
will also highlight recent research that seeks to bring both of these approaches to-
gether leading to a new generation of search services that are both collaborative and
personalized. We will refer to these hybrid services as social search services and
in the remainder of this chapter we will describe two detailed case-studies of two
different approaches to social search.

18.3.1 Personalized Web Search

Many recommender systems are designed to make suggestions to users that are rel-
evant to their particular circumstances or their personal preferences — for example,
recommender systems help users to identify personally relevant information such
as news articles [8, 9, 41], books [46], movies [54, 27, 42], and even products to
buy [83, 74, 76, 51, 75, 20]— and the application of recommender technologies to
web search allows for a departure from the conventional one-size-fits-all approach
to mainstream web search. When it comes to delivering a more personalized search
experience there are two key requirements: firstly, we must understand the needs of
searchers (profiling); secondly, we must be able to use these profiles to influence
the output of the search engine, for example by re-ranking results according to the
profile, or, indeed, by influencing other components of the web search experience.

To put these research efforts into perspective it is useful to consider two important
dimensions to personalizing web search. On the one hand we can consider the nature
of the profiles that are learned: some approaches focus on short-term user profiles
that capture features of the user’s current search context (e.g. [86, 14, 31]), while
others accommodate long-term profiles that capture the user’s preferences over an
extended period of time (e.g. [22, 2, 48]). On the other hand, when it comes to
harnessing these profiles during search, we can usefully distinguish between those
approaches that are guided by an individual target user’s profile (e.g. [15, 89, 38,
43]) versus those that are collaborative, in the sense that they are guided by the
profiles of a group of users (e.g. [46, 85, 41, 35, 90]).

Generally speaking, user profiles can be constructed in two ways. Explicit profil-
ing interrogates users directly by requesting different forms of preference informa-
tion, from categorical preferences [22, 48] to simple result ratings [2]. In contrast,
implicit profiling techniques attempt to infer preference information by monitoring
user behaviour, and without interfering with users as they go about their searches;
e.g. [22, 47, 69].
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With explicit profiling, the users themselves do the profiling work by either spec-
ifying search preferences up front, or by providing personal relevance feedback such
as rating returned search results. Chirita et al [22] use individual user profiles which
are defined by the searcher through ODP1 web directory categories to re-rank re-
sults according to the distance between the profile and ODP categories for each
result. They investigate a number of different distance metrics, and report the find-
ings of a live user evaluation that shows that their personalized approach is capable
of more relevant result rankings than standard Google search. One of the drawbacks
of relying on ODP categories in this way however is that only a small proportion
of the web is categorised in the ODP and so many of the returned search results
have no category information to base the re-ranking on. Ma et al [48] propose a
similar approach whereby user profiles are explicitly expressed through ODP cat-
egories, except they re-rank search results based on the cosine similarity between
result page content and the ODP directory category profiles. In this way the search
results themselves are not required to be categorised in the ODP.

In contrast, ifWeb [2] builds user profiles using a less structured approach through
keywords, free-text descriptions, and web page examples provided by the user to ex-
press their specific information needs, which are stored as a weighted semantic net-
work of concepts. ifWeb also takes advantage of explicit relevance feedback where
the searcher provides result ratings that are used to refine and update their profile.
A similar approach is used by the Wifs system [55] in which profiles initially built
using terms selected from a list can be subsequently improved with feedback on
viewed documents provided by the users. The major drawback with these types of
explicit approaches to profiling is that the majority of users are reluctant to make the
extra effort in providing feedback [16]. Furthermore, searchers may find it difficult
to categorise their information needs and preferences accurately in the first place.

A potentially more successful approach to profiling is to infer user preferences
implicitly (implicit profiling). As in the work of [22], Liu et al [47] also use hier-
archical categories from the ODP to represent a searcher’s profile, except in this
work the categories are chosen automatically based on past search behaviour such
as previously submitted queries and the content of selected result documents. A
number of different learning algorithms are analysed for mapping this search be-
haviour onto the ODP categories, including those based on Linear Least Squares
Fit (LLSF) [107], the Rocchio relevance feedback algorithm [78], and k-Nearest
Neighbor (kNN) [28]. In a related approach, [103] use statistical language methods
to mine contextual information from this type of long-term search history to build
a language model based profile, and [69] also infer user preferences based on past
behaviour, this time using the browser cache of visited pages to infer subject areas
that the user is interested in. These subject areas, or categories, are combined into
a hierarchical user profile where each category is also weighted according to the
length of time the user spent viewing the pages corresponding to the category.

The above are all examples of long-term user profiles that seek to capture in-
formation about the user’s preferences over an extended period of time, certainly

1 The Open Directory Project, http://dmoz.org
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beyond the bounds of a single search session. The alternative is to capture short-
term profiling information, typically related to the particular context of the current
information finding task. For example, the UCAIR system [86] concentrates on re-
cently submitted queries and selected results to build a short-term profile that is
used to personalize results for the current search task. When a new search session
is initiated, a new profile for the user and their current information requirements
is created. Similarly Watson [14] and IntelliZap [31] both generate short-term pro-
files from current context information. Watson identifies informative terms in local
documents that the user is editing and web pages that are being browsed, and uses
these to modify the user’s search queries to personalize results. IntelliZap users ini-
tiate a search by selecting a textual query from within a document they are currently
viewing, and the search is then guided by additional terms occurring in close prox-
imity to the query terms in the document. In these examples, the profiles guiding
the personalization of search results capture context which is pertinent to the users
immediate, and possibly temporary, information needs.

The availability of profile and/or context information is the pre-requisite for per-
sonalization and there have been a wide range of techniques developed for utilizing
profile information to influence different aspects of search experience. These tech-
niques are not limited to influencing the retrieval and ranking of search results, for
example, and in fact there has been research on how profiles can be used to influence
many other stages in the web search pipeline including the spidering and indexing
[32, 44, 34, 29] of raw page content, and query generation [3, 7, 56]. For example,
one common way to personalize search results based on a user profile involves us-
ing the profile to re-write, elaborate, or expand the original search query so that it
returns more specific results that better reflect search interests or context. For exam-
ple, Koutrika and Ioannidis [43] propose an algorithm they call QDP (Query Disam-
biguation and Personalization) to expand a query submitted by the user according to
a user profile represented by weighted relationships between terms. These relation-
ships take the form of operators between terms, such as conjunction, disjunction,
negation and substitution, and so in effect the user’s profile provides a set of per-
sonalized query rewriting rules, which can be applied to the submitted query before
it is dispatched to the search engine. Croft et al [26] describe how individualized
language models can be used as user profiles with a view to supporting query ex-
pansion and relevance feedback. There is also much research in the area of query ex-
pansion and disambiguation from the perspective of short term, session-based user
profiles from a relevance feedback standpoint which is also highly relevant to work
in personalized search [82]. This perspective is not so much targeted at personaliz-
ing search per se, but rather at improving search at the level of independent search
sessions and many of these approaches can be expanded to encompass longer-term
personalized search profiles.

However, perhaps the most popular way to personalize search through user pro-
files is to directly influence the ranking of search results. For example, Jeh and
Widom [38] do this by introducing a personalized version of PageRank [13] for set-
ting the query-independent priors on web pages based on user profiles. These pro-
files consist of a collection of preferred pages with high PageRank values which are



18 Personalized Web Search 587

explicitly chosen by the user, and used to compute a personalized PageRank score
for any arbitrary page based on how related it is to these highly scored preferred
pages. Chirita et al [23] build on this idea by automatically choosing these profile
pages by analysing the searcher’s bookmarked pages and past surfing behaviour,
along with a HubFinder algorithm that finds related pages with high PageRank
scores which are suitable for driving the personalized PageRank algorithm. Both
of these approaches are based on long-term user profiles drawn from an extended
period of the user’s browsing history.

Chang et al [19] propose a personalized version of Kleinberg’s HITS [39] ranking
algorithm. Their technique harnesses short-term feedback from the searcher, either
explicitly or implicitly, to build a profile consisting of a personalized authority list
which can then be used to influence the HITS algorithm to personalize the ranking
of search results. Experimental results using a corpus of computer science research
papers shows that personalized HITS is able to significantly improve result ranking
in line with the searcher’s preferences, even with only minimal searcher feedback.

Another popular ranking-based approach is the re-ranking of results returned
from some underlying, generic web search engine according to searcher preferences
without requiring access to the inner workings of the search engine. Speretta and
Gauch [97] create individual user profiles by recording the queries and selected re-
sult snippets from results returned by Google which are classified into weighted con-
cepts from a reference concept hierarchy. The results from future Google searches
are then re-ranked according to the similarity between each result and the searcher’s
profile concept hierarchy. Rohini and Varma [79] also present a personalized search
method where results from an underlying web search engine are re-ranked accord-
ing to a collaborative filtering technique that harnesses implicitly generated user
profiles.

All of the above techniques focus on harnessing single user profiles (the prefer-
ences of the target searcher) to personalize that user’s search experience. In recom-
mender systems research it is common to take advantage of groups of related profiles
when it comes to generating recommendations for a target individual. For instance,
the well known collaborative filtering approach to recommendation explicitly uses
the preferences of a group of users who are similar to the target user when it comes
to generating recommendations [77, 85, 46]; see also [35, 52] and Chapter 21. Sim-
ilar ideas are beginning to influence web search and, indeed, in Section 18.4 we
will describe one particular approach that harnesses the preferences of communities
of users, albeit in the form of single community profiles rather than a collection of
individual user profiles; see also [92, 90]. Sugiyama et al. [101] propose a method
whereby long-term user profiles are constructed from similar searchers according
to browsing history using a modified collaborative filtering algorithm. The idea is
that searchers who issued similar queries and selected similar results in the past can
benefit from sharing their search preferences. Sun et al. [102] propose a similar ap-
proach called CubeSVD which is also based on collaborative filtering to personalize
web search results by analysing the correlation of users, queries and results in click-
through data. Both these methods involve the identification of similar searchers to
the current searcher in order to create a more comprehensive user profile for the
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individual. More recently, the work of [12] describes a peer-to-peer approach to
personalizing web search that also leverages the profiles of similar users during re-
sult recommendation. Each searcher is profiled in terms of their prior queries and
result selections (once again these are long-term profiles). In response to a new tar-
get query, recommendations are derived from the user’s own personal profile, but
in addition, the query is propagated through the peer-to-peer search network so that
connected users can also suggest relevant results based on their prior search be-
haviours. The resulting recommendations are aggregated and ranked according to
their relevance to the target query and also in terms of the strength of the trust re-
lationship between the target user and the relevant peer; see also recent trust-based
recommendation techniques by [63, 65, 64, 66, 67, 62] and Chapter 20.

18.3.2 Collaborative Information Retrieval

Recent studies in specialised information seeking tasks, such as military com-
mand and control tasks or medical tasks, have found clear evidence that search-
type tasks can be collaborative as information is shared between team members
[70, 71, 73, 72]. Moreover, recent work by [57] highlights the inherently collabora-
tive nature of more general purpose web search. For example, during a survey of just
over 200 respondents, clear evidence for collaborative search behaviour emerged.
More than 90% of respondents indicated that they frequently engaged in collabo-
ration at the level of the search process. For example, 87% of respondents exhib-
ited “back-seat searching” behaviours, where they watched over the shoulder of the
searcher to suggest alternative queries. A further 30% of respondents engaged in
search coordination activities, by using instant messaging to coordinate searches.
Furthermore, 96% of users exhibited collaboration at the level of search products,
that is, the results of searches. For example, 86% of respondents shared the results
they had found during searches with others by email. Thus, despite the absence of
explicit collaboration features from mainstream search engines there is clear evi-
dence that users implicitly engage in many different forms of collaboration as they
search, although, as reported by [57], these collaboration “work-arounds” are of-
ten frustrating and inefficient. Naturally, this has motivated researchers to consider
how different types of collaboration might be supported by future editions of search
engines.

The resulting approaches to collaborative information retrieval can be usefully
distinguished in terms of two important dimensions, time — that is, synchronous
versus asynchronous search — and place — that is, co-located versus remote
searchers. Co-located systems offer a collaborative search experience for multiple
searchers at a single location, typically a single PC (e.g. [1, 87]) whereas remote
approaches allow searchers to perform their searches at different locations across
multiple devices; see e.g. [58, 59, 94]. The former enjoy the obvious benefit of
an increased faculty for direct collaboration that is enabled by the face-to-face na-
ture of co-located search, while the latter offer a greater opportunity for collabo-
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rative search. Alternatively, synchronous approaches are characterised by systems
that broadcast a “call to search” in which specific participants are requested to en-
gage in a well-defined search task for a well defined period of time; see e.g. [87].
In contrast, asynchronous approaches are characterised by less well-defined, ad-hoc
search tasks and provide for a more open-ended approach to collaboration in which
different searchers contribute to an evolving search session over an extended period
of time; see e.g. [58, 92].

A good example of the co-located, synchronous approach to collaborative web
search is given by the work of [1]. Their CoSearch system is designed to improve
the search experience for co-located users where computing resources are limited;
for example, a group of school children having access to a single PC. CoSearch is
specifically designed to leverage peripheral devices that may be available (e.g. mo-
bile phones, extra mice etc.) to facilitate distributed control and division of effort,
while maintaining group awareness and communication. For example, in the sce-
nario of a group of users collaborating though a single PC, but with access to mul-
tiple mice, CoSearch supports a lead searcher or driver (who has access to the key-
board) with other users playing the role of search observers. The former performs
the basic search task but all users can then begin to explore the results returned by
independently selecting links so that pages of interest are added to a page queue for
further review. The CoSearch interface also provides various opportunities for users
to associate notes with pages. Interesting pages can be saved and as users collabo-
rate a search summary can be created from the URLs and notes of saved pages. In
the case where observers have access to mobile phones, CoSearch supports a range
of extended interface functionality to provide observers with a richer set of indepen-
dent functionality via a bluetooth connection. In this way observers can download
search content to their mobile phone, access the page queue, add pages to the page
queue and share new pages with the group.

The purpose of CoSearch is to demonstrate the potential for productive collab-
orative web search in resource-limited environments. The focus is very much on
dividing the search labour while maintaining communication between searchers,
and live user studies speak to the success of CoSearch in this regard [1]. The work
of [88] is related in spirit to CoSearch but focuses on image search tasks using a
table-top computing environment, which is well suited to supporting collaboration
between co-located users who are searching together. Once again, preliminary stud-
ies speak to the potential for such an approach to improve overall search productivity
and collaboration, at least in specific types of information access tasks, such as im-
age search, for example. A variation on these forms of synchronous search activities
is presented in [87], where the use of mobile devices as the primary search device
allows for a remote form of synchronous collaborative search. The iBingo system
allows a group of users to collaborate on an image search task with each user using
a ipod touch device as their primary search/feedback device (although conventional
PCs appear to be just as applicable). Interestingly, where the focus of CoSearch is
largely on the division of search labour and communication support, iBingo offers
the potential to use relevance feedback from any individual searcher to the benefit
of others. Specifically, the iBingo collaboration engine uses information about the
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activities of each user in order to encourage other users to explore different infor-
mation trails and different facets of the information space. In this way, the ongoing
activities of users can have an impact on future searches by the group and, in a
sense, the search process is being “personalized” according to the group’s search
behaviour.

Remote search collaboration (whether asynchronous or synchronous) is the aim
of SearchTogether, which allows groups of searchers to participate in extended
shared search sessions as they search to locate information on particular topics; see
also [58]. In brief, the SearchTogether system allows users to create shared search
sessions and invite other users to join in these sessions. Each searcher can indepen-
dently search for information on a particular topic, but the system provides features
to allow individual searchers to share what they find with other session members
by recommending and commenting on specific results. In turn, SearchTogether sup-
ports synchronous collaborative search by allowing searchers to invite others to join
in specific search tasks, allowing cooperating searchers to synchronously view the
results of each others’ searches via a split-screen style results interface. As with
CoSearch above, one of the key design goals in SearchTogether is to support a divi-
sion of labour in complex, open-ended search tasks. In addition, a key feature of the
work is the ability to create a shared awareness among group members by reduc-
ing the overhead of search collaboration at the interface level. SearchTogether does
this by including various features, from integrated messaging, query histories, and
recommendations arising out of recent searches.

In the main, the collaborative information retrieval systems we have so far ex-
amined have been largely focused on supporting collaboration from a division of
labour and shared awareness standpoint, separate from the underlying search pro-
cess. In short, these systems have assumed the availability of an underlying search
engine and provided a collaboration interface that effectively imports search results
directly, allowing users to share these results. As noted by [68], one of the major
limitations of these approaches is that collaboration is restricted to the interface in
the sense that while individual searchers are notified about the activities of collabo-
rators, they must individually examine and interpret these activities in order to rec-
oncile their own activities with their co-searchers. Consequently, the work of [68]
describes an approach to collaborative search that is more tightly integrated with
the underlying search engine resource so that the operation of the search engine is
itself influenced by the activities of collaborating searchers in a number of ways.
For example, mediation techniques are used to prioritise, as yet, unseen documents,
while query recommendation techniques are used to suggest alternative avenues for
further search exploration.

18.3.3 Towards Social Search

So far we have focused on two separate strands of complementary research in the
field of web search and information finding motivated by questions that cut to the
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very core of conventional web search. The one-size-fits-all nature of mainstream
web search is questioned by researchers developing more personalized web search
techniques, and the assumption that search is largely a solitary experience is ques-
tioned by recent studies that highlight the inherently collaborative nature of many
search scenarios.

To date, these different strands of research have been separated by different mo-
tivations and objectives. The world of personalized search, for example, has been
largely guided by the need to produce result-lists that are better targeted to the needs
of the individual searcher, whereas collaborative information retrieval has focused
on supporting groups of searchers by facilitating the division of search labour and by
promoting shared awareness among cooperating searchers. However both of these
research communities are linked by a common thread of research from the recom-
mender systems field and a recommender systems perspective has helped to identify
opportunities to bring these two different strands of research together. In what fol-
lows we will describe two related case-studies that attempt to bring together these
strands of research in the pursuit of web search techniques that are both collabo-
rative and personalized. The result is an approach to web search that is both more
collaborative — each case study assumes the involvement of groups of searchers
— and more personalized, albeit at the level of the group rather than the individ-
ual searcher. Both of these case-studies will describe remote, asynchronous forms
of collaborative web search and we will summarize the results of recent live-user
studies to highlight their potential end-user benefits. In each case we will describe
the central role that recommendations play in adding-value to a conventional search
result-list. For example, we will describe how the preferences and activities of com-
munities and groups of users can be harnessed to promote recommended search
results in addition to conventional result-lists.

18.4 Case-Study 1 - Community-Based Web Search

In this first case-study we review recent work in the area of Community-based web
search in which the search activities of communities of like-minded users are used
to augment the results of a mainstream search engine to provide a more focused
community-oriented result-list; see [91, 92]. This can include well-defined or ad-hoc
communities, and our aim is to take advantage of the query repetition and selection
regularity that naturally occurs within the search behaviour of such communities as
a source of result recommendations. In this case-study we describe and evaluate one
particular implementation of this approach to web search that has been designed to
work with a mainstream search engine such as Google.
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18.4.1 Repetition and Regularity in Search Communities

There are many scenarios in which search can be viewed as a community-oriented
activity. For example, the employees of a company will act as a type of search com-
munity with overlapping information needs. Similarly, students in a class may serve
as a search community as they search for information related to their class-work.
Visitors to a themed website (e.g., a wildlife portal or a motoring portal) will tend
to share certain niche interests and will often use the site’s search facilities to look
for related information. And of course, groups of friends on a social networking site
may act as a community with shared interests.

Fig. 18.2: Repetition and similarity amongst the search queries used by the employ-
ees of a software company.

We became interested in these emergent search communities because we be-
lieved that there was a high likelihood that similarities would exist between the
search patterns of community members. For example, Figure 18.2 presents the re-
sults of a recent 17-week study of the search patterns for 70 employees of a local
software company; this study preceded the trial discussed later in this paper. Dur-
ing the study we examined more than 20,000 individual search queries and almost
16,000 result selections. We see that, on average, just over 65% of queries submit-
ted shared at least 50% (> 0.5 similarity threshold) of their query terms with at least
5 other queries; and more than 90% of queries shared at least 25% of their terms
with about 25 other queries. In other words, searchers within this ad hoc corporate
search community do search for similar things in similar ways, much more so than
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in generic search scenarios where we typically find much lower repetition rates of
about 10% at the 0.5 similarity threshold [92].

This is an important result which is supported by similar studies on other commu-
nities of searchers [92], and which motivates our collaborative web search approach.
It tells us that, in the context of communities of like-minded searchers, the world of
web search is a repetitive and regular place. A type of community search knowledge
is generated from the search experiences of individuals as they search. This in turn
suggests that it may be possible to harness this search knowledge by facilitating the
sharing of search experiences among community members. So, as a simple example,
when a visitor to the previously mentioned wildlife portal searches for “jaguar pic-
tures” they can be recommended search results that have been previously selected
by other community members for similar queries. These results will likely relate to
the wildlife interests of the community and so, without any expensive processing
of result content, we can personalize search results according to the learned prefer-
ences of the community. In this way, novice searchers can benefit from the shared
knowledge of more experienced searchers.

18.4.2 The Collaborative Web Search System

Figure 18.3 presents the basic architecture for our collaborative web search system,
which is designed to work alongside an underlying mainstream search engine — in
this case, Google. Briefly, a proxy-based approach is adopted to intercept queries
on their way to the underlying search engine, and to manipulate the results that
are returned from this engine back to the searcher. In this way users get to use their
favourite search engine in the normal way, but with collaborative web search (CWS)
promotions incorporated into the result-lists directly via the proxy. For example,
consider a user Ui submitting query qT to Google. This request is redirected to the
CWS system whereupon two things happen. First, the query is passed on to Google
and the result-list RS is returned in the normal way. Second, in parallel the query is
also used to access a local store of the search activity for U ′i s community – the CWS
hit-matrix – to generate a ranked set of promotion candidates, RP, as outlined below.
These promotion candidates are annotated by the explanation engine to present the
searcher with a graphical representation of their community history. Result-lists RP
and RS are merged and the resulting list R f inal is returned to the user; typically this
merge involves promoting the k (e.g., k = 3) most relevant promotions to the head
of the result-list.

Thus for a target search query, CWS combines a default result-list, RS, from a
standard search engine, with a set of recommended (promoted) results, RP, drawn
from the community’s past search history. To do this the search histories of a given
community, C, of users (C = {U1, ...,Un}) are stored in a hit-matrix, HC, such that
each row corresponds to some query qi and each column to some selected result
page p j. The value stored in HC

i j refers to the number of times that page p j has been
selected for query qi by members of C. In this way, each hit-matrix acts as a repos-
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Fig. 18.3: Proxy architecture for a CWS system.

itory of community search experiences: the results that the community members
have found to be relevant for their queries.

Relevance(p j,qi) =
Hi j

∑∀ j Hi j
(18.1)

Sim(q,q′) =
|q∩q′|
|q∪q′| (18.2)

WRel(p j,qT ,q1, ...,qn) = (18.3)

∑i=1...n Relevance(p j,qi)•Sim(qT ,qi)

∑i=1...n Exists(p j,qi)•Sim(qT ,qi)

When responding to a new target query, qT , HC is used to identify and rank results
that have been regularly selected in the past. The relevance of a result p j in relation
to a query qi can be estimated by the relative frequency that p j has been selected for
qi in the past, as shown in Equation 18.1. More generally, we can pool the results
that have been selected for queries that are similar to qT (see Equation 18.2) and
rank each result according to the weighted model of relevance shown in Figure 18.3,
which weights each individual result’s relevance by the similarity of the associated
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query to qT ; note that the predicate Exists returns 1 if page p j has been previously
selected for query qi in the target community, and 0 otherwise.

Fig. 1.4. The result-list returned by Google in response to the query ‘michael jordan’.

Fig. 18.4: The result-list returned by Google in response to the query ‘michael jor-
dan’.

Figures 18.4 and 18.5 present example screen shots for the result-list returned
by Google for the query ‘Michael Jordan’. In the case of Figure 18.4 we see the
default Google result-list, with results for the basketball star clearly dominating. In
Figure 18.5, however, we see a result-list that has been modified by our proxy-based
version of CWS, trained by (in this example) a community of computer science
researchers. The results are presented through the standard Google interface, but we
see that the top 3 results are promotions for the well-known Berkeley professor. In
addition, promoted results are annotated with explanation icons designed to capture
different aspects of the result’s community history. These include icons that capture
the popularity of the result among community members, information about how
recently it has been selected, and information about the other queries that have led
to its selection.
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Fig. 18.5: The result-list returned by CWS in response to the query ‘michael jordan’
issued within a community with a shared interest in computer science. The extra
explanation information available by mousing-over each promoted result icon type
is also shown.

18.4.3 Evaluation

The current proxy-based architecture has been used as the basis of a long-term trial
of the CWS approach in a corporate search scenario. In this section we will de-
scribe some recent results drawn from this trial, which speak to the value of the
community-based promotions offered by CWS.

The trial participants included the 70+ employees of a local Dublin software
company where the CWS architecture was configured to work with the standard
Google search engine so that all Google requests were redirected through the CWS
system. The search experience was based on the standard Google interface with a
maximum of 3 results promoted (and annotated with explanations) in any session;
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if more than 3 promotions were available then non-promoted results were annotated
with explanation icons, but left in their default Google position. The results pre-
sented here are drawn from just over 10 weeks of usage and cover a total of 12,621
individual search sessions.

One of the challenges in evaluating new search technologies in a natural setting
is how to evaluate the quality of individual search sessions. Ideally we would like
to capture direct relevance feedback from users as they search. While it would be
relatively straightforward to ask users to provide such feedback during each session,
or as they selected specific results, this was not feasible in the current trial because
participants were eager to ensure that their search experience did not deviate from
the norm, and were unwilling to accept pop-ups, form-filling or any other type of
additional feedback. As an alternative, in this evaluation, we used a less direct mea-
sure of relevance based on the concept of a successful session (see also [92, 91]).
We define a successful session to be one where at least one search result has been
selected, indicating that the searcher has found at least one (partially) relevant result.
In contrast, search sessions where the user does not select any results are considered
to be unsuccessful, in the sense that the searcher has found no relevant results. While
this is a relatively crude measure of overall search performance, it at least allows us
to compare search sessions in a systematic way.

Fig. 18.6: The success rates for sessions containing promotions compared to those
without promotions.

A comparison of success rates between sessions with promotions (promoted ses-
sions) and search sessions without promotions (standard sessions) is presented as
Figure 18.6. The results show that during the course of the 10 week trial, on aver-
age, sessions with promotions are more likely to be successful (62%) than standard
sessions (48%) containing only Google results, a relative benefit of almost 30% due
to the community-based promotion of results. In other words, during the course of
the trial we found that for more than half of the standard Google search sessions
users failed to find any results worth selecting. In contrast, during the same period,
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the same searchers experienced a significantly greater success rate for sessions that
contained community promotions, with less than 40% of these sessions failing to at-
tract user selections. Within an enterprise these results can have an important impact
when it comes to overall search productivity because there are significant savings to
be made by eliminating failed search sessions in many knowledge-intensive business
scenarios. For example, a recent report [30] by the International Data Corporation
(IDC) found that, on average, knowledge workers spend 25% of their time searching
for information, and an enterprise employing 1,000 knowledge workers will waste
nearly $2.5 million per year (at an opportunity cost of $15 million) due to an in-
ability to locate and retrieve information. In this context any significant reduction
in the percentage of failed search sessions can play an important role in improving
enterprise productivity, especially in larger organisations.

18.4.4 Discussion

The model of collaborative web search presented here is one that seeks to take ad-
vantage of naturally occurring query repetition and result selection regularity among
communities of like-minded searchers. In this case-study we have focused on one
particular type of search community in the form of a group of employees. Obvi-
ously this is a reasonably straightforward community to identify and it is perhaps
not surprising that we have found a high degree of repetition and regularity to take
advantage of during collaborative web search. Nonetheless, this type of community,
where groups of individuals come together to perform similar information finding
tasks, is a common one, whether it is employees in a company or students in a class
or researchers in a research group.

There are of course many other types of community. For example, we have al-
ready mentioned the scenario where a group of visitors to a themed web site can be
considered to be an ad-hoc search community. More generally, it is interesting to
consider the open question of community discovery and identification, and there is
considerable research at the present time devoted to exploring various approaches to
automatically identifying online communities; see for example [11, 5, 21, 106, 105].
And as we develop a better understanding of the nature of online communities in
the new world of the social web it may be possible to offer a more flexible form of
search collaboration, facilitated by a more flexible and dynamic definition of search
community.

18.5 Case-Study 2 - Web Search. Shared.

The previous case-study looked at a community-oriented view of collaborative web
search, where the search activities of like-minded communities of searchers were
used to influence mainstream search engine results. In this section we describe an
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alternative model of collaborative web search, as implemented in a system called
HeyStaks, that is different in two important ways. First of all, HeyStaks adopts more
user-led approach to collaborative web search, one that is focused on helping users
to better organise and share their search experiences. HeyStaks does this by allowing
users to create and share repositories of search experiences as opposed to coordinat-
ing the participation of search communities. Secondly, we adopt a very different ap-
proach to search engine integration. Instead of the proxy-based approach described
in the previous case-study, HeyStaks is integrated with a mainsream search engine,
such as Google, through a browser toolbar, which provides the collaborative search
engine with the ability to capture and guide search activities. Finally, we will also
summarize the findings of a recent live-user study to investigate the nature of search
collaboration that manifests within HeyStaks’ user population.

18.5.1 The HeyStaks System

HeyStaks adds two basic features to a mainstream search engine. First, it allows
users to create search staks, as a type of folder for their search experiences at search
time. Staks can be shared with others so that their searches will also be added to the
stak. Second, HeyStaks uses staks to generate recommendations that are added to
the underlying search results that come from the mainstream search engine. These
recommendations are results that stak members have previously found to be relevant
for similar queries and help the searcher to discover results that friends or colleagues
have found interesting, results that may otherwise be buried deep within Google’s
default result-list.

As per Fig. 18.7, HeyStaks takes the form of two basic components: a client-side
browser toolbar and a back-end server. The toolbar allows users to create and share
staks and provides a range of ancillary services, such as the ability to tag or vote for
pages. The toolbar also captures search click-throughs and manages the integration
of HeyStaks recommendations with the default result-list. The back-end server man-
ages the individual stak indexes (indexing individual pages against query/tag terms
and positive/negative votes), the stak database (stak titles, members, descriptions,
status, etc.), the HeyStaks social networking service and, of course, the recommen-
dation engine. In the following sections we will briefly outline the basic operation of
HeyStaks and then focus on some of the detail behind the recommendation engine.

Consider the following motivating example. Steve, Bill and some friends are
planning a European vacation and they know that during the course of their research
they will use web search as their primary source of information about what to do
and where to visit. Steve creates a (private) search stak called “European Vacation
2008“ and shares this with Bill and friends, encouraging them to use this stak for
their vacation-related searches.

Fig. 18.8 shows Steve selecting this stak as he embarks on a new search for
“Dublin hotels“, and Fig. 18.9 shows the results of this search. The usual Google
results are shown, but in addition HeyStaks has made two promotions. These have
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Fig. 18.7: The HeyStaks system architecture and outline recommendation model.

Fig. 18.8: Selecting a new active stak.



18 Personalized Web Search 601

been promoted because other members of the “European Vacation 2008“ stak had
recently found these results to be relevant; perhaps they selected them for similar
queries, or voted for them, or tagged them with related terms. These recommen-
dations may have been promoted from much deeper within the Google result-list,
or they may not even be present in Google’s default results for the target query.
Other relevant results may also be highlighted by HeyStaks, but left in their default
Google position. In this way Steve and Bill benefit from promotions that are based
on their previous similar searches. In addition, HeyStaks can recommend results
from other related public staks as appropriate, helping searchers to benefit from the
search knowledge that other groups and communities have created.

Fig. 18.9: Google search results with HeyStaks promotions.

Separately from the toolbar, HeyStaks users can also benefit from the HeyStaks
search portal, which provides a social networking service built around people’s
search histories. For example, Fig. 18.10 shows the portal page for the “European
Vacation 2008“ stak, which is available to all stak members. It presents an activity
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feed of recent search history and a query cloud that makes it easy for the user to
find out about what others have been searching for. The search portal also provides
users with a wide range of features such as stak maintenance (e.g., editing, moving,
copying results in staks and between staks), various search and filtering tools, and a
variety of features to manage their own search profiles and find new search partners.

Fig. 18.10: The HeyStaks search portal provide direct access to staks and past
searches.

18.5.2 The HeyStaks Recomendation Engine

In HeyStaks each search stak (S) serves as a profile of the search activities of the
stak members and HeyStaks combines a number of implicit and explicit profiling
techniques to capture a rich history of search experiences. Each stak is made up
of a set of result pages (S = {p1, ..., pk}) and each page is anonymously associated
with a number of implicit and explicit interest indicators, including the total number
of times a result has been selected (sel), the query terms (q1, ...,qn) that led to its
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selection, the number of times a result has been tagged (tag), the terms used to tag
it (t1, ..., tm), the votes it has received (v+,v−), and the number of people it has been
shared with (share) (all explicit indicators of interest) as indicated by Eq. 18.4.

pS
i = {q1, ...,qn, t1, ..., tm,v+,v−,sel, tag,share} (18.4)

In this way, each page is associated with a set of term data (query terms and/or
tag terms) and a set of usage data (the selection, tag, share, and voting count). The
term data is represented as a Lucene (lucene.apache.org) index table, with each
page indexed under its associated query and tag terms, and provides the basis for
retrieving and ranking promotion candidates. The usage data provides an additional
source of evidence that can be used to filter results and to generate a final set of
recommendations. At search time, a set of recommendations is produced in a num-
ber of stages: relevant results are retrieved and ranked from the Lucene stak index;
these promotion candidates are filtered based on an evidence model to eliminate
noisy recommendations; and the remaining results are added to the Google result-
list according to a set of recommendation rules.

Briefly, there are two types of promotion candidates: primary promotions are
results that come from the active stak St ; whereas secondary promotions come from
other staks in the searcher’s stak-list. To generate these promotion candidates, the
HeyStaks server uses the current query qt as a probe into each stak index, Si, to
identify a set of relevant stak pages P(Si,qt). Each candidate page, p, is scored
using Lucene’s TF.IDF retrieval function as per 18.5, which serves as the basis for
an initial recommendation ranking.

score(qt , p) = ∑
t∈qt

t f (t ∈ p)• id f (t)2 (18.5)

Staks are inevitably noisy, in the sense that they will frequently contain pages
that are not on topic. For example, searchers will often forget to set an appropriate
stak at the start of a new search session and, although HeyStaks includes a number
of automatic stak-selection techniques to ensure that the right stak is active for a
given search, these techniques are not perfect, and misclassifications do inevitably
occur; see also [18, 95]. As a result, the retrieval and ranking stage may select pages
that are not strictly relevant to the current query context. To avoid making spuri-
ous recommendations HeyStaks employs an evidence filter, which uses a variety
of threshold models to evaluate the relevance of a particular result, in terms of its
usage evidence; tagging evidence is considered more important than voting, which
in turn is more important than implicit selection evidence. For example, pages that
have only been selected once, by a single stak member, are not automatically con-
sidered for recommendation and, all other things being equal, will be filtered out at
this stage. In turn, pages that have received a high proportion of negative votes will
also be eliminated. The precise details of this model are beyond the scope of this
paper but suffice it to say that any results which do not meet the necessary evidence
thresholds are eliminated from further consideration.
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After evidence pruning we are left with revised primary and secondary promo-
tions and the final task is to add these qualified recommendations to the Google
result-list. HeyStaks uses a number of different recommendation rules to determine
how and where a promotion should be added. Once again, space restrictions prevent
a detailed account of this component but, for example, the top 3 primary promo-
tions are always added to the top of the Google result-list and labelled using the
HeyStaks promotion icon. If a remaining primary promotion is also in the default
Google result-list then this is labeled in place. If there are still remaining primary
promotions then these are added to the secondary promotion list, which is sorted
according to TF.IDF scores. These recommendations are then added to the Google
result-list as an optional, expandable list of recommendations; for further details see
[93, 94]

18.5.3 Evaluation

In this section we examine a subset of 95 HeyStaks users who have remained active
during the course of the early beta release of the toolbar and service. These users
registered with HeyStaks during the period October-December 2008 and the results
below represent a summary of their usage during the period October 2008 - January
2009. Our aim is to gain an understanding of both how users are using HeyStaks,
and whether they seem to be benefiting from its search promotions. Because this is a
study of live-users in the wild there are certain limitations about what we have been
able to measure. There is no control group, for example, and it was not feasible,
mainly for data privacy reasons, to analyse the relative click-through behaviour of
users, by comparing their selections of default Google results to their selections
of HeyStaks promotions. However, for the interested reader, our earlier work does
report on this type of analysis in more conventional control-group laboratory studies
[10, 25, 92].

Key to the HeyStaks proposition is that searchers need a better way to organise
and share their search experiences. HeyStaks provides these features but do users
actually take the time to create staks? Do they share them with others or join those
created by others?

During the course of the initial deployment of HeyStaks users did engage in a
reasonable degree of stak creation and sharing activity. For example, as per Fig.
18.11, on average, beta users created just over 3.2 new staks and joined a further
1.4. Perhaps this is not surprising: most users create a few staks and share them with
a small network of colleagues or friends, at least initially.

In total there were over 300 staks created on a wide range of topics, from broad
topics such as travel, research, music and movies, to more niche interests including
archaeology, black and white photography, and mountain biking. A few users were
prolific stak creators and joiners: one user created 13 staks and joined another 11, to
create a search network of 47 other searchers (users who co-shared the same staks).
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Fig. 18.11: (a) Average staks created and joined per user. (b) The percentage of
sociable and solitary users.

In fact on average, each user was connected to a search network of just over 5 other
searchers by the staks that they shared.

The vast majority of staks were created as public staks, although most (52%)
remained the domain of a single member, the stak creator. Thus 48% of staks were
shared with at least one other user and, on average, these staks attracted 3.6 mem-
bers. Another way to look at this is as depicted in Fig. 18.11(b): 70% of users make
the effort to share or join staks (sociable users); and only 30% of users created staks
just for their own personal use and declined to join staks created by others (solitary
users).

At its core HeyStaks is motivated by the idea that web search is an inherently
social or collaborative activity. And even though mainstream search engines do not
support this, searchers do find alternative collaboration channels (e.g., email, IM,
etc.) with which to partially, albeit inefficiently, share their search experiences; see
for example [57]. One of the most important early questions to ask about HeyStaks
users concerns the extent to which their natural search activity serves to create a
community of collaborating searchers. As users search, tag, and vote they are effec-
tively producing and consuming community search knowledge. A user might be the
first to select or tag a given result for a stak and, in this context, they have produced
new search knowledge. Later, if this result is promoted to another user and then
re-selected (or tagged or voted on), then this other user is said to have consumed
that search knowledge; of course they have also produced search knowledge as their
selection, tag, or vote is added to the stak.

We have found that 85% of users have engaged in search collaborations. The
majority have consumed results that were produced by at least one other user, and
on average these users have consumed results from 7.45 other users. In contrast
50% of users have produced knowledge that has been consumed by at least one
other user, and in this case each of these producers has created search knowledge
that is consumed by more than 12 other users on average.

One question we might ask is to what degree individual users tend to be produc-
ers or consumers of search knowledge. Are some searchers net producers of search
knowledge, in the sense that they are more inclined to create search knowledge that
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Fig. 18.12: (a) Net producers vs. consumers. (b) Promotion sources (self vs. peer).

is useful to others? Are other users net consumers, in the sense that they are more
inclined to consume search knowledge that others have created? This data is pre-
sented in Fig. 18.12(a). To be clear, a net producer is defined as a user who has
helped more other users than they themselves have been helped by, whereas a net
consumer is defined as a user who has been helped by more users than they them-
selves have helped. The chart shows that 47% of users are net producers. Remember
that, above, we noted how 50% of users have produced at least some search knowl-
edge that has been consumed by some other user. It seems that the vast majority
of these users, 94% of them in fact, are actually helping more people than they are
helped by in return.

So, we have found that lots of users are helping other users, and lots of users
are helped by other users. Perhaps this altruism is limited to a small number of
searches? Perhaps, most of the time, at the level of individual searches, users are
helping themselves? A variation on the above analysis can help shed light on this
question by looking at the source of promotions that users judge to be relevant
enough to select during their searches. Overall, the beta users selected more than
11,000 promotions during their searches. Some of these promotions will have been
derived from the searcher’s own past history; we call these self promotions. Oth-
ers will have been derived from the search activities of other users who co-share
staks with the searcher; we call these peer promotions. The intuition here is that
the selection of self promotions corresponds to examples of HeyStaks helping users
to recover results they have previously found, whereas the selection of promotions
from peers corresponds to discovery tasks, where the user is benefiting from fo-
cused new content that might otherwise have been missed, or have been difficult
to find; see [61, 50]. Thus Fig. 18.12(b) compares the percentage of peer and self
promotions and shows that two-thirds of selected promotions are generated from the
searcher’s own past search activities; most of the time HeyStaks is helping searchers
to recover previously found results. However, 33% of the time peer promotions are
selected (and we already know that these come from many different users), helping
the searcher to discover new information that others have found.
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The bias towards self promotions is perhaps not surprising, especially given the
habits of searchers, and especially during the early stages of stak development. The
growth of most staks is initially led by a single user, usually the creator, and so
inevitably most of the promotions are generated in response to the creator’s own
search queries. And most of these promotions will be self promotions, derived from
the leader’s own search activities. Many staks are not shared and so are only capable
of making self promotions. As staks are shared, however, and more users join, the
pool of searchers becomes more diverse. More results are added by the actions of
peers and more peer promotions are generated and selected. It is an interesting task
for future work to explore the evolution of a search stak and to investigate how stak
content and promotions are effected as more and more users participate. Are there
well-defined stages in stak evolution, for example, as self promotions give way to
peer promotions? For now it is satisfying to see that even in the early stages of stak
evolution, where the average stak has between 3 and 4 members, that 34% of the
time members are benefiting from promotions that are derived from the activities of
their peers.

18.5.4 Discussion

Compared to the first case-study, HeyStaks promotes a much more explicit form
of search collaboration — search staks are explicitly created and shared by users —
and the result is the formation of micro search communities in which small groups of
searchers collaborate on particular search themes or topics. Of course this does not
preclude the formation of larger groups of collaborating searchers, and it is entirely
likely that certain types of search stak will evolve to become search communities in
a manner that fits well with those contemplated by the previous case-study.

Once again, there are many questions left unanswered by this case-study as it
provides a fertile ground for further research. For example, the potential prolifer-
ation of search staks leads to entirely new recommendation opportunities as users
may benefit from suggestions about which staks to join, for example. Moreover, it
may be interesting to consider the merging and/or splitting of staks in certain cir-
cumstances, allowing users to create staks by combining existing staks, for instance.

18.6 Conclusions

Web search engines are, and no doubt will continue to be, the primary tools that
we will use to discover and explore online information. For all of the success of
mainstream search engines like Google, the web search problem is far from being
solved and research into a new generation of web search technologies is maturing.
In the future it is likely that mainstream search engines will evolve to offer users
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greater support when it comes to finding the right information at the right time, and
recommendation technologies are set to play an important part of this future.

Already, for example, researchers are exploring how to make search engines
more responsive to our particular, individual needs and preferences by combin-
ing user profiling and recommendation technologies to deliver a more personalized
user experience, whether through the generation of targeted result-lists or improved
query recommendation, for example. Another strand of research seeks to take ad-
vantage of the inherently collaborative nature of many web search tasks by providing
searchers with new tools to foster and promote search collaboration between small
groups and even large communities of searchers.

In this chapter we have provided a snapshot of these interesting areas of inde-
pendent research by surveying a number of representative systems and techniques.
In turn we have highlighted how these complementary approaches to collaborative
and personalized web search are beginning to come together to offer users improved
personalization as a side-effect of collaboration, with recommender systems playing
a central role in a new type of social search service. In this regard we have presented
two separate case-studies of these social search systems to show how mainstream
search engines like Google may be enhanced by such approaches in practice.

In the future it is likely that mainstream search engines will evolve to accommo-
date many elements of these approaches, as recommendation technologies play an
increasing role in web search. Where today the burden of web search is very much
on the individual searcher, we believe that the introduction of recommendation tech-
nologies will provide search engines with the opportunity to be a lot more proactive
as they work to anticipate, rather than respond to, a user’s information needs. This
in turn will lead to many new research opportunities, especially at the level of the
search interface, as we look for new ways to incorporate recommendation tech-
niques into the very fabric of web search. Indeed, already we are seeing some early
examples of this as, for instance, search engines like Google and Yahoo, incorpo-
rate query recommendation techniques in to their regular search boxes. But this is
just the beginning and as researchers address the challenges of profiling, privacy,
and recommendation head-on, search engines will provide a unique platform for the
next generation of recommendation technologies. And just as the e-commerce sites
have served as an early platform for recommender systems, search engines will help
to introduce a new era of recommendation technologies to a much wider audience.
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Chapter 19
Social Tagging Recommender Systems

Leandro Balby Marinho, Alexandros Nanopoulos, Lars Schmidt-Thieme, Robert
Jäschke, Andreas Hotho, Gerd Stumme and Panagiotis Symeonidis

Abstract The new generation of Web applications known as (STS) is successfully
established and poised for continued growth. STS are open and inherently social;
features that have been proven to encourage participation. But while STS bring
new opportunities, they revive old problems, such as information overload. Rec-
ommender Systems are well known applications for increasing the level of relevant
content over the “noise” that continuously grows as more and more content becomes
available online. In STS however, we face new challenges. Users are interested in
finding not only content, but also tags and even other users. Moreover, while tra-
ditional recommender systems usually operate over 2-way data arrays, STS data is
represented as a third-order tensor or a hypergraph with hyperedges denoting (user,
resource, tag) triples. In this chapter, we survey the most recent and state-of-the-art
work about a whole new generation of recommender systems built to serve STS. We
describe (a) novel facets of recommenders for STS, such as user, resource, and tag
recommenders, (b) new approaches and algorithms for dealing with the ternary na-
ture of STS data, and (c) recommender systems deployed in real world STS. More-
over, a concise comparison between existing works is presented, through which we
identify and point out new research directions.
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19.1 Introduction

With the advent of affordable domestic high-speed communication facilities, in-
expensive digitization devices, and the open access nature of the Web, a new and
exciting family of Web applications known as Web 2.0 has been born. The underly-
ing idea is to decentralize and cheapen content creation, thus leading the Web into a
more open, connected, and democratic environment. In this chapter we will focus on
a particular family of Web 2.0 applications known as Social Tagging Systems (STS
for short). STS assign a major role to the ordinary user, who is not only allowed
to publish and edit resources, but also and more importantly, to create and share
lightweight metadata in the form of freely chosen keywords called tags. The expo-
sure of users to both tags and resources creates a fundamental trigger for communi-
cation and sharing, thus lowering the barriers to cooperation and contributing to the
creation of collaborative lightweight knowledge structures known as folksonomies1.
Some notable examples of STS are sites like Delicious2, BibSonomy3, and Last.fm4,
where Delicious allows the sharing of bookmarks, BibSonomy the sharing of book-
marks and lists of literature, and Last.fm the sharing of music. These systems are
characterized by being easy to use and free to anyone willing to participate. Once a
user is logged in, he can add a resource to the system, and assign arbitrary tags to it.

If on the one hand this new family of applications brings new opportunities, it re-
vives old problems on the other, namely the problem of information overload. Mil-
lions of individual users and independent providers are flooding STS with content
and tags in an uncontrolled way, thereby lowering the potential for content retrieval
and information sharing. One of the most successful approaches for increasing the
level of relevant content over the “noise” that continuously grows as more and more
content becomes available online lies on Recommender Systems (RS for short). In
STS however, we face several new challenges. Users are interested in finding not
only content, but also tags, and even other users. Moreover, while traditional RS
usually operate over 2-way data arrays, folksonomy data is represented as a third-
order tensor or a hypergraph with hyperedges denoting (user, resource, tag) triples.
Furthermore, while there is an extensive literature for rating prediction based on
explicit user feedback, i.e., a numerical value denoting the degree of preference of
a user for a given item, in folksonomies there are usually no ratings. Thus, before
arguing why not to simply use an old solution to a recurrent problem, we need to
investigate to which extent the traditional RS paradigm and approaches apply to
STS.

Social tagging recommender systems is a young research area that has attracted
significant attention recently, which is expressed by the increasing number of publi-
cations (e.g., [15, 11, 37, 35, 31]) and is poised for continued growth. Furthermore,

1 The term folksonomy refers to a blend of the two words folk and taxonomy, i.e., a collaborative
classification system created and maintained by ordinary users.
2 http://delicious.com/
3 http://www.bibsonomy.org/
4 http://www.last.fm/
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real and large scale STS, such as Delicious, BibSonomy, and Last.fm, for example,
already offer some recommender services to their users, which implies an increas-
ing commercial interest in the area. In this chapter we survey in a concise manner,
the most recent and state-of-the-art work about a whole new generation of RS built
to serve STS. We describe: (a) novel facets of RS for STS, such as user, resource,
and tag recommenders, (b) the challenges for deploying RS in real-world STS, (c)
new approaches and algorithms for dealing with the inherent ternary relational data
of folksonomies, and (d) approaches for tag acquisition. Emphasis is given on pre-
senting a concise comparison between existing works, through which we identify
and point out new research directions.

The chapter is structured as follows. In Section 19.2 we characterize the data
structure of folksonomies and point out some of the differences between the tra-
ditional RS paradigm and social tagging RS. In Section 19.3 we discuss the chal-
lenges of deploying RS in real world STS and present the BibSonomy system as
a study case. Section 19.4 presents several families of social tagging RS, such as:
graph/content-based algorithms for recommending users, resources or tags. Sec-
tion 19.5 provides comparisons and discussions about the algorithms presented in
Section 19.4; and finally Section 19.6 closes the chapter pointing out new directions
of research in this area.

19.2 Social Tagging Recommenders Systems

Folksonomies are the underlying structures of STS and result from the practice of
collaboratively creating tags to annotate and categorize content. Tags, in general,
are a way of grouping content by category to make them easy to view by topic. This
is a grassroot approach to organize a site and help users find content they are inter-
ested in. Note that with the introduction of tags, the usual binary relation between
users and resources, which is largely exploited by traditional RS, turns into a ternary
relation between users, resources, and tags.

Since tags are voluntarily and freely provided by ordinary users, problems such
as unwillingness to tag and diverging vocabulary can easily arise. As we will see in
the course of this chapter, a possible way to address these problems is through tag
RS. Tags also represent additional and personalized information about resources,
which if properly exploited, can eventually boost the performance of resource RS.
But before we delve into how RS can deal and benefit from the additional informa-
tion provided by tags, we need to formally define folksonomies and its data struc-
tures, elaborate on the differences between traditional RS and social tagging RS,
and the challenges involved in deploying RS in real world STS; topics which are
covered in the following sections.
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19.2.1 Folksonomy

Formally, a folksonomy is a tuple F := (U,T,R,Y ) where

• U , T , and R are non-empty finite sets, whose elements are called users, tags,
and resources, resp., and

• Y is a ternary relation between them, i. e., Y ⊆U ×T ×R, whose elements are
called tag assignments.5

Users are typically described by their user ID, and tags may be arbitrary strings.
What is considered a resource depends on the type of system. For instance, in Deli-
cious, the resources are URLs, in BibSonomy URLs or publication references, and
in Last.fm, the resources can be artists, song tracks or albums.

Folksonomy data can be represented in different ways, and as we will see in
Section 19.4, each representation can lead to different recommendation algorithms.

Folksonomies as Tensors The set of triples in Y can be represented as third-order
tensors (3-dimensional arrays) A= (au,t,r) ∈ R|U |×|T |×|R|. There are different ways
to represent Y as a tensor (see left-hand sinde of Figure 19.1). Symeonidis et al. [35],
for example, proposed to interpret Y as a sparse tensor in which 1 indicates positive
feedback and 0 missing values:

au,t,r =

{
1, (u, t,r) ∈ Y
0, else

Rendle et al. [26], on the other hand, distinguish between positive/negative ex-
amples and missing values in order to learn personalized ranking of tags (see Sec-
tion 19.4). The idea is that positive and negative examples are only generated from
observed tag assignments. Observed tag assignments are interpreted as positive
feedback, whereas the non observed tag assignments of an already tagged resource
are negative evidences. All other entries are assumed to be missing values (see right-
hand side of Figure 19.1).

Note that in folksonomies, differently from typical RS, there are usually no nu-
merical ratings indicating the explicit preference of a user for a given resource/tag.

Folksonomies as Hypergraphs An equivalent, but maybe more intuitive repre-
sentation of a folksonomy, is a tripartite (undirected) hypergraph G := (V,E), where
V := U∪̇T ∪̇R is the set of nodes, and E := {{u, t,r} | (u, t,r) ∈ Y} is the set of
hyperedges (see Figure 19.2).

5 In the original definition [12], it is introduced additionally a subtag/supertag relation, which we
omit here. The version used here is known in Formal Concept Analysis [7] as a triadic context [21,
34].
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Fig. 19.1: Left [35]: 0/1 sparse tensor representation where positive feedback is
interpreted as 1 and the remaining data as 0. Right [26]: Non observed tag assign-
ments for a given already tagged resource are negative examples. All other entries
are missing values.

Fig. 19.2: Tripartite undirected hypergraph representation of a folksonomy.

19.2.2 The Traditional Recommender Systems Paradigm

Recommender systems are software applications that aim at predicting the user
interest for a particular resource based on a collection of user profiles, e.g., the
user’s history of purchase/resources’ ratings, click-stream data, demographic infor-
mation, and so forth. Usually RS predict ratings of resources or suggest a list of
new resources that the user hopefully will like the most. Traditionally, for m users
and n resources, the user profiles are represented in a sparse user-resource matrix
X ∈ Rm×n ∪ {.}, where {.} denote missing values. The matrix can be decomposed
into row vectors:

X := [x1, ...,xm]T with xu := [xu,1, ...,xu,n], for u := 1, . . . ,m,

where xu,r indicates that user u rated resource r by xu,r ∈R. Each row vector xu cor-
responds thus to a user profile representing the resource’s ratings of a particular user.
This decomposition usually leads to algorithms that leverage user-user similarities,
such as the well known user-based collaborative filtering (CF) [27]. The matrix can
alternatively be represented by its column vectors:

X := [x1, ...,xn] with xr := [x1,r, ...,xm,r]T, for r := 1, . . . ,n,
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in which each column vector xr corresponds to a specific resource’s ratings by all
m users. This representation usually leverages item-item similarities and leads to
item-based CF algorithms [3]. For a survey on neighborhood-based recommenda-
tion methods, such as CF, see Chapter 4.

Note that because of the ternary relational nature of folksonomies, traditional
RS cannot be applied directly. Therefore, in order to develop RS for folksonomies,
one needs to either (i) reduce the ternary relation Y to a lower dimensional space
(usually second-order tensors) where traditional RS can be applied, or develop new
algorithms that operate over third-order tensors or tripartite undirected hypergraphs.
Note that if one follows (i), care must be taken during the dimensionality reduction
since important information can be discarded, which can lower the overall accuracy
of the recommendations. In Section 19.4 we present and discuss both families of
algorithms.

19.2.3 Multi-mode Recommendations

Differently from the traditional RS paradigm, where one is usually concerned only
with rating prediction or resource recommendations, STS users may be interested in
finding resources/tags, or even other users, and therefore recommendations can be
provided for any of these entity types.

The recommendation of tags is used in several systems, like Delicious and Bib-
Sonomy, for example. It usually involves the recommendation of tags to users, based
on the tags other users have provided for the same resources. Tag recommendations
can expose different facets of an information item and relieve users from the obnox-
ious task of coming up with a good set of tags. Moreover, tag recommendation can
reduce the problem of tag sparsity, which results from the unwillingness of users to
tag. Figure 19.5 illustrates tag recommendations in BibSonomy.

It is important to note that differently from traditional RS, where there is usually
no repeat-buying, i.e., the user usually does not buy the same book, movie, CD, etc.
twice, re-occurring tags are a common feature of STS. A tag that has already been
used to annotate a resource can be reused to annotate other different resources. This
means that while traditional RS usually only recommend items that the user has not
yet bought or rated, tag recommenders can eventually recommend tags that the user
has already used for other resources.

The recommendation of resources is largely used in e-commerce and advertis-
ing, like in Amazon for example. With the actual trend towards STS, the current
resource recommendation services will also be able exploit the tags to boost the rec-
ommendation quality, for example, by recommending resources to users based on
the tags they have in common with other similar users. The movie recommendation
website movielens6, where users rate the movies they like and receive recommen-
dations about other movies in which they might be interested, is a notable example.

6 http://www.movielens.org
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It started as a traditional recommender service operating over the typical user-rating
binary matrix, and just recently added social tagging features, whereby new tag-
aware algorithms are being developed and deployed [30].

A third type of recommendation concerns recommending interesting users to a
target user, which can help to connect people with common interests and encour-
age them to contribute and share more content. With the term interesting users, we
mean those users who have similar profile to the target user. If a set of tags is fre-
quently used by many users, for example, then these users implicitly form a group of
users with common interests, even though they may not have any physical or online
connections. The tags represent the common interests to this user group.

Each mode of recommendation, i.e., tag, resource, or user, is useful, depending of
course on the context of the particular application. Algorithms that are able to pro-
vide integrated multi-mode recommendations are very appealing, as one can spare
the effort of implementing and maintaining several mode-specific recommender sys-
tems.

19.3 Real World Social Tagging Recommender Systems

19.3.1 What are the Challenges?

For a recommender system to be successful in a real world application, it must ap-
proach several challenges. First, the provided recommendations must match the sit-
uation, i.e., tags should describe the annotated resource, products should awake the
interest of the user, suggested resources should be interesting and relevant. Second,
the suggestions should be traceable such that one easily understands why he got the
items suggested. Third, they must be delivered timely without delay and they must
be easy to access (i.e., by allowing the user to click on them or to use tab-completion
when entering tags). Furthermore, the system must ensure that recommendations do
not impede the normal usage of the system.

In this section we focus on tag recommendations as example of recommenders
in STS. Most STS contain a tag recommender which suggests tags to the user when
she is annotating a resource. Recommending tags can serve various purposes, such
as: increasing the chances of getting a resource annotated, reminding a user what a
resource is about, and consolidating the vocabulary across the users. Furthermore, as
Sood et al. [33] point out, tag recommendations “fundamentally change the tagging
process from generation to recognition” which requires less cognitive effort and
time.

More formally, given a user u and a resource r, the task of a tag recommender
is to predict the tags tags(u,r) the user will assign to the resource. We will depict
the (ordered!) set of recommended tags by T̂ (u,r). Although we do not take the
order of tags as the user entered them into account, the order of tags as given by the
recommender plays an important role for the evaluation.
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Fig. 19.3: detail showing a single bookmark post

19.3.2 BibSonomy as Study Case

19.3.2.1 System Description

BibSonomy started as a students project at the Knowledge and Data Engineering
Group of the University of Kassel7 in spring 2005. The goal was to implement a
system for organizing BIBTEX [25] entries in a way similar to bookmarks in De-
licious – which was at that time becoming more and more popular. BIBTEX is a
popular literature management system for LATEX [20], which many researchers use
for writing scientific papers. After integrating bookmarks as a second type of re-
source into the system and upon the progress made, BibSonomy was opened for
public access at the end of 2005 – first announced to collegues only, later in 2006 to
the public.

A detailed view of one bookmark post in BibSonomy can be seen in Figure 19.3.
The first line shows in bold the title of the bookmark which has the URL of the
bookmark as underlying hyperlink. The second line shows an optional description
the user can assign to every post. The last two lines belong together and show de-
tailed information: first, all the tags the user has assigned to this post (web, service,
tutorial, guidelines and api), second, the user name of that user (hotho) followed by
a note, how many users tagged that specific resource. These parts have underlying
hyperlinks, leading to the corresponding tag pages of the user, the users page and a
page showing all four posts (i. e., the one of user hotho and those of the three other
people) of this resource. The structure of a publication post is very similar, as seen
in Figure 19.4.

19.3.2.2 Recommendations in BibSonomy

To support the user during the tagging process and to facilitate the tagging, BibSon-
omy includes a tag recommender (see Figure 19.5). When a user finds an interesting
web page (or publication) and posts it to BibSonomy, the system offers up to ten rec-
ommended tags on the posting page.

7 http://www.kde.cs.uni-kassel.de/
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Fig. 19.4: detail showing a single publication post

Fig. 19.5: Tag recommendations in BibSonomy during annotation of a bookmark.

19.3.2.3 Technological and Infrastructure Requirements

Implementing a recommendation service for BibSonomy required to tackle several
problems, some of them we describe here.

First, having enough data available for recommendation algorithms to produce
helpful recommendations is an important requirement one must address already
in the design phase. The recommender needs access to the systems database and
to what the user is currently posting (which could be accomplished, e.g., by (re)-
loading recommendations using techniques like AJAX). Further data – like the full
text of documents – could be supplied to tackle the cold-start problem (e.g., for
content-based recommenders). The system must be able to handle large amounts of
data, to quickly select relevant subsets and provide methods for preprocessing.
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The available hardware and expected amount of data limits the choice of recom-
mendation algorithms which can be used. Although some methods allow (partial)
precomputation of recommendations, this needs extra memory and might not yield
the same good results as online computation. Both hardware and network infras-
tructure must ensure short response times to deliver the recommendations to the
user without too much delay. Together with a simple and non-intrusive user inter-
face this ensures usability.

Further aspects which should be taken into account include implementation of
logging of user events (e.g., clicking, key presses, etc.) to allow for efficient eval-
uation of the used recommendation methods in an online setting. Together with a
live evaluation this also allows to tune the result selection strategies to dynami-
cally choose the (currently) best recommendation algorithm for the user or resource
at hand. The multiplexing of several available algorithms together with the simple
inclusion of external recommendation services (by providing an open recommenda-
tion interface) is one of the recent developments in BibSonomy.

19.3.3 Tag Acquisition

The quality of tags can directly affect the recommendation performance of social
tagging RS. Although folksonomies represent the “wisdom of crowds”, social tag-
ging can present problems, such as tag sparsity (users tend to provide a constrained
number of tags), polysemy (tags are subject to multiple interpretations), or tag id-
iosyncrasy (tags used for personal organization like “to read”, for example). All
these problems can harm the quality of recommendations. For this reason, we con-
sider alternative ways of acquiring tags. This will help us to better characterize the
advantages and disadvantages of the social tagging process. We then examine the
following tag acquisition methods:

• Expert Tagging: This approach usually relies on a small number of domain
experts, who annotate resources using, mainly, structured vocabularies. Experts
provide tags that are objective and cover multiple aspects. Pandora8 is a notable
example of a system that uses experts for tagging music resources. The main
advantage of using experts is the resulting well agreed tag vocabulary. This
comes, of course, at the cost of manual work, which is both time consuming
and expensive.

• Tagging based on annotation games: Games with a purpose (GWAP) [39],
like the ESPGame9, is a breakthrough idea to use a game to employ humans
for the purpose of annotation. Two players observe simultaneously the same
image and are asked to enter tags until they both enter the same tag. Following
the success of ESPGame, several others appeared (e.g., ListenGame10) in the

8 http://www.pandora.com/
9 http://www.gwap.com/gwap/gamesPreview/
10 http://www.listengame.org/
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domain of music. Like social tagging, games exploit the “computational power
of humans”. By partnering two or more people, the resulting set of tags has the
potential of being highly accurate. The problem with games is that players, opt-
ing for higher scores, may sacrifice the quality of tags. For example, they may
enter more general tags in favor of more specific, just to increase the probability
of match.

• Content-based Tagging: Resources like URLs, sound tracks, etc., contain a
rich content. By crawling associated information from the Web and by convert-
ing this data into a suitable representation, tags can be generated using data min-
ing algorithms. In the tag recommendation task of the ECML PKDD Discovery
Challenge 200811, for example, some of the tags to be predicted in the test set
never appeared in the training set, which forced the participants (e.g., [23]) to
use the textual content of the resources to come up with new tags. In the music
domain, this approach is called auto-tagging and has been proposed to avoid the
cold-start problem [5]. The advantage of content-based tags is that no humans
must be directly involved during the tagging process. The disadvantages are that
these tags can be noisy, their computation is intensive, and users are forced to
agree with the tags generated by the algorithms.

Compared to the alternative methods, social tagging has the advantage of produc-
ing large-scale tag collections. The quality of tags generally improves with a large
number of taggers. Nevertheless, social tagging is prone to the cold-start problem, as
new resources are seldom tagged. In Table 19.1 we summarize the main advantages
and disadvantages of the described approaches.

Table 19.1: Characterization of tag collection methods.

Method Advantages Disadvantages
Social tagging scalable, “wisdom of crowds” idiosyncrasy, polysemy, cold-start

Experts accurate tags expensive process, non scalable
Games “wisdom of crowds”, potentially scalable cold-start, manipulation prone

Mined tags automation, avoids cold-start noisy, computationally intensive

Although social tagging is prone to idiosyncrasy, sparsity, and cold-start prob-
lems, the quality of tags generally improves with a large number of taggers. Fur-
thermore, social tagging systems (as well as annotation games) represent a human
computation paradigm with enormous potential to address problems that content-
based mechanisms for tag acquisition cannot yet tackle on their own. But unlike
computers, humans require some incentive to become part of the “collective compu-
tation”, which can be provided, for example, through the recommendation of tags.

11 http://www.kde.cs.uni-kassel.de/ws/rsdc08/.
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19.4 Recommendation Algorithms for Social Tagging Systems

As we pointed out in Section 19.2, there are some particularities in folksonomies
that one needs to take into account before designing RS, such as:

• Folksonomy data is represented as tensors or tripartite undirected hypergraphs
and thus one needs to either transform the data in order to apply traditional
recommender algorithms or extend the existent methods to operate over tensors
or hypergraphs.

• Folksonomy users might be interested in multi-mode recommendations, so al-
gorithms that serve all modes with minor or no changes during mode switching
are ideally desired.

• Folksonomies allow multi-media resources, and thereby content-based algo-
rithms should be able to efficiently incorporate content information in the folk-
sonomy data structure.

In this section we survey some of the most recent and prominent methods about
social tagging RS, showing and discussing how they address the aforementioned
issues.

19.4.1 Collaborative Filtering

Collaborative Filtering is one of the most used and successfully applied methods for
personalized RS, for which a large and continuously active literature exists (see
Chapters 4 and 5). Basically, it is an algorithm for matching people with simi-
lar interests for the purpose of making recommendations. As pointed out in Sec-
tion 19.2.2, traditional recommender systems typically operate on second-order ten-
sors representing a binary relation between users and resources. Thus, because of
the ternary relational nature of folksonomies, traditional CF cannot be applied di-
rectly, unless the ternary relation Y is reduced to a lower dimensional space [24]. To
this end, in the case of user-based CF, we consider as matrix X alternatively the two
2-dimensional projections πURY ∈ {0,1}|U |×|R| with (πURY )u,r := 1 if there exists
t ∈ T s. t. (u, t,r) ∈ Y and 0 else, and πUTY ∈ {0,1}|U |×|T | with (πUTY )u,t := 1 if
there exists r ∈ R s. t. (u, t,r) ∈ Y and 0 else (Figure 19.6). One could eventually
also consider the resource-tag projection matrix, what would lead to unpersonalized
content-based models.

The projections preserve the user information, and lead to RS based on occur-
rence or non-occurrence of resources or tags, resp., with the users. Notice that we
have here two possible setups in which the k-neighborhood Nk

u of a user u can be
formed, by considering either the resources or the tags as objects. Having defined
matrix X, and having decided whether to use πURY or πUTY for computing user
neighborhoods, we have the required setup to apply CF. We first compute, based on
the row decomposed version of X and for a given k, the set Nk

u of the k users that are
most similar to user u:
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Fig. 19.6 Projections of Y
into the user’s resource and
user’s tag spaces.
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sim(xu,xv) (19.1)

where the superscript in the argmax function indicates the number k ∈ N of neigh-
bors to be returned, and sim is any well defined similarity measure, such as, for
example, the usual cosine similarity measure, i. e., sim(xu,xv) := 〈xu,xv〉

‖xu‖‖xv‖ .

Multi-mode Recommendations Having the neighborhood computed, we can ex-
tract the set T̂ (u,r) of n recommended tags for a given user u, a given resource r,
and some n ∈ N, as follows:

T̂ (u,r) :=
n

argmax
t∈T

∑
v∈Nk

u

sim(xu,xv)δ (v, t,r) (19.2)

where δ (v, t,r) := 1 if (v, t,r) ∈ Y and 0 else.
If one wants to recommend resources instead, the same principle used for tags

can be applied. Note that if we use only the πURY projection, we would end up at
the standard user-based CF algorithm (see Eq. 19.3). But since tags can provide ad-
ditional information about user interests, they can eventually boost the recommen-
dation quality and thereby should be exploited. A trivial tag-aware recommender
method is to compute the user neighborhood based on the πUTY projection matrix
and aggregate the resources of the neighborhood to generate the recommendation
list. A similar idea is presented in [6], where first the user-tag projection matrix
πUTY is used to compute a ranked list of tags, whereby the recommendation list
of resources is extracted. But by using only πUTY alone, one discards the resource
information, which in this case, is the key mode of interest. In this sense, one needs
to find a way to accommodate all the three modes of the folksonomy in a 2-way
data structure so that standard CF can be applied. Tso-Sutter et al. [37] proposed
an approach for doing that by extending the typical user-resource matrix with tags
as pseudo users and pseudo resources (see Figure 19.7). Note that in this way, the
user/resource profile is automatically enriched with tags. A fusion algorithm is then
proposed for combining user-based CF (ucf ) and item-based CF (icf ) predictions



628 Leandro Balby Marinho et al.

over the extended matrix. Recall that in the standard user-based CF for the resource
prediction problem, the interestingness score of a given user u for a particular re-
source r is computed as the averaged number of neighbors that co-occur with re-
source r, i.e.,

pucf(xu,r = 1) :=
|{v ∈ Nu |xv,r = 1}|

|Nu|
, (19.3)

For item-based CF applied to the resource prediction problem, the algorithm sug-
gested by [3] computes the interestingness score of a given user u for a particular
resource r as the averaged sum of similarities between r and its neighboring re-
sources Nr that co-occur with u, i.e.,

picf(xu,r = 1) := ∑
{r′∈Nr |xu,r′=1}

sim(r,r′) (19.4)

The fusion of these two scores is then computed by

piucf(xu,r = 1) := λ · pucf(xu,r = 1)

∑
r

pucf(xu,r = 1)

+(1−λ ) · picf(xu,r = 1)

∑
r

pic f (xu,r = 1)

(19.5)

where λ is just a parameter controlling the influence of ucf or icf. Note that since
the values of the prediction lists computed by ucf and icf have different units (user-
based being the frequency of items and item-based the similarity of items), the pre-
dicted scores are normalized to unity. For some n ∈ N, the top-n recommendation
list is then generated by

arg
n

max
r

piucf(xu,r = 1) (19.6)

A similar idea was proposed by Wetzker et al. [41], where the probabilistic latent
semantic analysis (PLSA) model [10] is extended with tags for the recommendation
of resources. In the standard PLSA, the probability that a resource co-occurs with a
given user can be computed by

P(r|u) := ∑
z

P(r|z)P(z|u), (19.7)

where Z := {z1, ...,zq} is a hidden topic variable and is assumed to be the origin of
observed co-occurrence distributions between users and resources. The same hidden
topics are then assumed to be the origin of resource/tag co-occurrences, i.e.,

P(r|t) := ∑
z

P(r|z)P(z|t). (19.8)
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Fig. 19.7 Extending the user-
resource matrix horizontally
by including tags as pseudo
resources and vertically by
including tags as pseudo
users.

Both models are then combined on the common factor P(r|z) by maximizing the
log-likelihood function

L := ∑
r

[
λ ∑

u
f (r,u)logP(r|u)+(1−λ )∑

t
f (r, t)logP(r|t)

]
, (19.9)

where f (r,u) and f (r, t) correspond to the co-occurrence counts between resources
and users, and resources and tags respectively. Here λ is a predefined weight bal-
ancing the influence of each model. The usual Expectation-Maximization (EM)
algorithm is then applied for performing maximum likelihood estimation for the
model. Resources for a given user u are then weighted by the probability P(r|u)
(see Eq. 19.7), ranked, and the top ranked resources are finally recommended.

For recommending users, one can either recommend a neighborhood based on
πUTY or πURY . In order to recommend a neighborhood that takes into account the
three modes of the folksonomy, one could, for example, either use the matrix ex-
tensions proposed by [37] (see Figure 19.7) or compute a linear combination of the
user similarities based on the user-resource and user-tag projection matrices.

Remarks on Complexity CF usually suffers from scalability problems, given that
the whole input matrix needs to be kept in memory. In STS, one may have to eventu-
ally keep more than one matrix in memory, depending on which kind of projections
one wants to operate upon. To compute recommendations we usually need three
steps:

1. Computation of projections: In order to compose the projections, we need to
determine the (u,r),(u, t) and/or (r, t) co-occurrences. For that, we just need to
do a linear scan in Y .

2. Neighborhood computation: In traditional user-based CF algorithms, the com-
putation of the neighborhood Nu is usually linear on the number of users as one
needs to compute the similarity of a given test user with all the other users in
the database. In addition, we need to sort the similarities in order to determine
the k-nearest neighbors.

3. Recommendations: For predicting the top-n tag/resource recommendations for
a given test user, we need to: (i) count the tags/resources co-occurrences with
the nearest neighbors Nu, (ii) weight each co-occurrence by the corresponding
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neighbor similarity, and (iii) sort the tags/resources based on their weights (e.g.,
Eq. 19.2).

19.4.2 Recommendation based on Ranking

In the following we present recommendation algorithms that, inspired from Web
ranking, base their recommendations on a ranking score. Their common character-
istic is that the score is computed according to spectral attributes extracted from the
underlying folksonomy data structure. However, the different ways to represent a
folksonomy (see Section 19.2.1) can result in different ranking-based algorithms.

19.4.2.1 Ranking based on Tensor Factorization

By representing Y as a tensor, one is able to exploit the underlying latent semantic
structure in A formed by multi-way correlations between users, tags, and resources.
This can be attained using recommendation algorithms that are based on tensor fac-
torization, as the ones proposed in [26, 35, 43]. With such algorithms, multi-way
correlations can be effectively detected, leading to improved performance. Chapter 5
presents several state-of-the-art methods for matrix factorization (i.e., second-order
tensor factorization) for the problem of rating prediction.

The factorization of A is expressed as follows (see Figure 19.8):

Â := Ĉ×u Û×r T̂ ×t R̂ (19.10)

where Û ∈ R|U |×kU , T̂ ∈ R|T |×kT , R̂ ∈ R|R|×kR are low-rank feature matrices repre-
senting an entity, i.e., user, resources, and tags resp., in terms of its small number
of latent dimensions kU , kR, kT , and Ĉ ∈ RkU×kR×kT is a tensor representing inter-
actions between the latent factors called core tensor. The symbol ×i denotes the
i-mode multiplication between a tensor and a matrix. The model parameters to be
learned are then the quadruple θ̂ := (Ĉ,Û , R̂, T̂ ). This decomposition refers to a gen-
eral factorization model known as Tucker decomposition [18]. After the parameters
are learned, predictions can be done as follows:

âu,r,t = ∑̃
u

∑̃
r

∑̃
t

ĉũ,r̃,t̃ · ûu,ũ · r̂r,r̃ · t̂t,t̃ (19.11)

where indices over the feature dimension of a feature matrix are marked with a tilde,
and elements of a feature matrix are marked with a hat (e.g. t̂t,t̃ ).

Symeonidis et al. [35] proposed to factorize A, using the 0/1 interpretation sch-
eme (see left-hand side of Figure 19.1), through higher order SVD (HOSVD), which
is the multi-dimensional analog of SVD for tensors; see [18] for a recent survey. The
basic idea is to minimize an element-wise loss on the elements of Â by optimizing
the square loss, i.e.,
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Fig. 19.8 Tensor Factoriza-
tion.

argmin
θ̂

∑
(u,t,r)∈U×T×R

(âu,t,r−au,t,r)
2

Rendle et al. [26], on the other hand, propose RTF (Ranking with Tensor Factor-
ization), a method for learning an optimal factorization of A for the specific problem
of tag recommendations. First, the observed tag assignments are divided in positive,
negative, and missing values as described in Section 19.2.1 (see right-hand side
of Figure 19.1). Let PA := {(u,r)|∃t ∈ T : (u, t,r) ∈ Y} be the set of all distinct
user/resource combinations in Y , the sets of positive and negative tags of a particu-
lar (u,r) ∈ PA are then defined as:

T+
u,r := {t |(u,r) ∈ PA∧ (u, t,r) ∈ Y}

T−u,r := {t |(u,r) ∈ PA∧ (u, t,r) ,∈ Y}

From this, pairwise tag ranking constraints can be defined for the values of Â:

au,t1,r > au,t2,r⇔ (u, t1,r) ∈ T+
u,r ∧ (u, t2,r) ∈ T−u,r (19.12)

Thus, instead of minimizing the least-squares as in the HOSVD-based methods,
an optimization criterion that maximizes the ranking statistic AUC (area under the
ROC-curve) is proposed. The AUC measure for a particular (u,r) ∈ PA is defined
as:

AUC(θ̂ ,u,r) :=
1

|T+
u,r||T−u,r| ∑

t+∈T+
u,r

∑
t−∈T−u,r

H0.5(âu,t+,r− âu,t−,r) (19.13)

where Hα is the Heaviside function:

Hα :=






0, x < 0
α, x = 0
1, x > 0

(19.14)

The overall optimization task with respect to the ranking statistic AUC and the ob-
served data is then:
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argmax
θ̂

∑
(u,r)∈PA

AUC(θ̂ ,u,r) (19.15)

The optimization problem is then solved by means of gradient descent [26]. Note
that with this optimization criterion missing values are also taken into account since
the maximization is only done on the observed tag assignments.

Multi-mode Recommendations Once Â is computed, the list with the n highest
scoring tags for a given user u and a given resource r can be calculated by:

Top(u,r,n) :=
n

argmax
t∈T

âu,t,r (19.16)

Recommending n resources/users to a given user u for a particular t can be done
in a similar manner (see [36]). Thus, tensor modeling may allow multi-mode recom-
mendations in an easy way. However, for the RTF method described above, in which
the factorization is learned by solving a specific tag ranking optimization problem,
it might be necessary to define a specific optimization function for each mode of
interest.

Remarks on Complexity A major benefit of a factorization model like RTF or
HOSVD is that after a model is built, predictions only depend on the smaller factor-
ization dimensions. HOSVD can be performed efficiently following the approach of
Sun and Kolda [19]. Other approaches to improve the scalability to large data sets
is through slicing [38] or approximation [4].

19.4.2.2 FolkRank

The web search algorithm PageRank [2] reflects the idea that a web page is impor-
tant if there are many pages linking to it, and if those pages are important them-
selves.12 In [12], Hotho et al. employed the same underlying principle for Google-
like search and ranking in folksonomies. The key idea of the FolkRank algorithm
is that a resource which is tagged with important tags by important users becomes
important itself. The same holds, symmetrically, for tags and users. We have thus
a graph of vertices which are mutually reinforcing each other by spreading their
weights. In this section we briefly recall the principles of the FolkRank algorithm,
and explain how it can be used for generating tag recommendations.

Because of the different nature of folksonomies compared to the web graph
(undirected triadic hyperedges instead of directed binary edges), PageRank cannot
be applied directly on folksonomies. In order to employ a weight-spreading ranking
scheme on folksonomies, we overcome this problem in two steps. First, we trans-
form the hypergraph into an undirected graph. Then we apply a differential ranking
approach that deals with the skewed structure of the network and the undirectedness
of folksonomies, and which allows for topic-specific rankings.

12 This idea was extended in a similar fashion to bipartite subgraphs of the web in HITS [17] and
to n-ary directed graphs in [42].
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Folksonomy-Adapted PageRank First we convert the folksonomy F=(U,T,R,Y )
into an undirected tri-partite graph GF = (V,E). The set V of nodes of the graph con-
sists of the disjoint union of the sets of tags, users and resources (i. e., V =U∪̇T ∪̇R).
All co-occurrences of tags and users, users and resources, tags and resources become
edges between the respective nodes. I. e., each triple (u, t,r) in Y gives rise to the
three undirected edges {u, t}, {u,r}, and {t,r} in E.

Like PageRank, we employ the random surfer model, that is based on the idea
that an idealized random web surfer normally follows links (e. g., from a resource
page to a tag or a user page), but from time to time jumps to a new node without
following a link. This results in the following definition.

The rank of the vertices of the graph is computed (like in PageRank) with the
weight spreading computation

wt+1← dATwt +(1−d)p , (19.17)

where w is a weight vector with one entry for each node in V , A is the row-stochastic
version of the adjacency matrix13 of the graph GF defined above, p is the random
surfer vector – which we use as preference vector in our setting, and d ∈ [0,1] is
determining the strength of the influence of p. By normalization of the vector p, we
enforce the equality ||w||1 = ||p||1. This14 ensures that the weight in the system will
remain constant. The rank of each node is its value in the limit w := limt→∞ wt of
the iteration process.

For a global ranking, one will choose p = 1, i. e., the vector composed by 1’s.
In order to generate recommendations, however, p can be tuned by giving a higher
weight to the user node and to the resource node for which one currently wants to
generate a recommendation. The recommendation T̂ (u,r) is then the set of the top
n nodes in the ranking, restricted to tags.

As the graph GF is undirected, most of the weight that went through an edge at
moment t will flow back at t+1. The results are thus rather similar (but not identical,
due to the random surfer) to a ranking that is simply based on edge degrees. In the
experiments presented below, we will see that this version performs reasonable, but
not exceptional. This is in line with our observation in [12] which showed that the
topic-specific rankings are biased by the global graph structure. As a consequence,
we developed in [12] the following differential approach.

FolkRank – Topic-Specific Ranking The undirectedness of graph GF makes it
very difficult for other nodes than those with high edge degree to become highly
ranked, no matter what the preference vector is. This problem is solved by the dif-
ferential approach in FolkRank, which computes a topic-specific ranking of the el-
ements in a folksonomy. In our case, the topic is determined by the user/resource
pair (u,r) for which we intend to compute the tag recommendation.

1. Let w(0) be the fixed point from Equation (19.17) with p = 1.

13 ai j := 1
degree(i) if {i, j} ∈ E and 0 else

14 . . . together with the condition that there are no rank sinks – which holds trivially in the undi-
rected graph GF.
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2. Let w(1) be the fixed point from Equation (19.17) with p = 1, but p[u] = 1+ |U |
and p[r] = 1+ |R|.

3. w := w(1)−w(0) is the final weight vector.

Thus, we compute the winners and losers of the mutual reinforcement of nodes
when a user/resource pair is given, compared to the baseline without a preference
vector. We call the resulting weight w[x] of an element x of the folksonomy the
FolkRank of x.15

Multi-mode Recommendations For generating tag recommendations for a given
user/resource pair (u,r), we compute the ranking as described and then restrict the
result set T̂ (u,r) to the top n tag nodes. Similarly, one can compute recommenda-
tions for users (or resources) by giving preference to a certain user (or resource).
Since FolkRank computes a ranking on all three dimensions of the folksonomy, this
produces the most relevant tags, users, and resources for the given user (or resource).

Remarks on Complexity One iteration of the adapted PageRank requires the com-
putation of dAw+(d−1)p, with A ∈Rs×s where s := |U |+ |T |+ |R|. If t marks the
number of iterations, the complexity would therefore be (s2 + s)t ∈ O(s2t). How-
ever, since A is sparse, it is more efficient to go linearly over all tag assignments in
Y to compute the product Aw. After rank computation we have to sort the weights
of the tags to collect the top n tags.

19.4.3 Content-Based Social Tagging RS

All the algorithms described so far do not exploit the content of resources, and
hence can be applied to any folksonomy regardless the type of resource supported.
Nonetheless, the content of resources is a valuable source of information, specially
in cold-start scenarios where there is scarcity of explicit user feedback. In the follow-
ing, we shortly discuss recommenders that make explicit use of resources’ content.

19.4.3.1 Text-Based

Song et al. [32] proposed an approach based on graph clustering for tagging tex-
tual resources, like web pages or other kinds of documents. It does not perform
personalized recommendations, as it does not examine users individually. In partic-
ular, it considers the relationship among documents, tags, and words contained in
resources. These relationships are represented in two bipartite graphs. The approach
is divided in two stages:

15 In [12] we showed that w provides indeed valuable results on a large-scale real-world dataset
while w(1) provides an unstructured mix of topic-relevant elements with elements having high edge
degree. In [13], we applied this approach for detecting trends over time in folksonomies.
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• In the offline stage, it efficiently performs low rank approximation for the
weighted adjacency matrix of the two bipartite graphs, using the Lanczos al-
gorithm [8] for symmetrically partitioning the graphs into multi-class clusters.
Moreover, a novel node ranking scheme is proposed to rank the nodes corre-
sponding to tags within each cluster. Next, it applies a Poisson mixture model
to learn the document distributions for each class.

• In the online stage, given a document vector, based on the joint probabilities of
the tags and the document, tags are recommended for this document based on
their within-cluster ranking.

As explained in [32], this two-stage framework can be interpreted as an
unsupervised-supervised learning procedure. During the offline stage, nodes are par-
titioned into clusters (unsupervised learning) and cluster labels are assigned to doc-
ument nodes, acting as “class” labels. Moreover, tag nodes are given ranks in each
cluster. A mixture model is then built based on the distribution of document and
word nodes. In the online stage, a document is classified (supervised learning) into
predefined clusters acquired in the first stage by naive Bayes, so that tags can be
recommended in the descending orders of their ranks.

Song et al. [32] emphasize the efficiency of the approach, which is guaranteed by
the Poisson mixture modeling that allows recommendations in linear-time. Experi-
mental results with two large data sets crawled from CiteULike (9,623 papers and
6,527 tags) and Delicious (22,656 URLs and 28,457 tags) show that recommenda-
tions can be provided within one second.

Different content-based methods to suggest tags, given a resource, have also been
investigated recently by Illig et al. [14].

19.4.3.2 Image-Based

Abbasi et al. [1] proposed to use tags as high level features, along with low level
image features to train an image classifier on Flickr. Even though this method is
not directly applied for RS, it gives some interesting insights about how one can
combine tags with low level image features, which could eventually serve as input
for a RS. The idea is to first create a vector space from tagging information of
images, and then a low level feature space of images using the wavelet transform.
These two feature spaces are then joined and used to train a One Class Support
Vector Machine (SVM) classifier on the combined feature space.

For creating a feature vector of images based on its tags, a bag-of-words model
is used to represent tags as features. Then, the feature vectors are normalized using
Term Frequency normalization. Note that this gives low weights to tags in images
having a lot of tags. The tag feature vector is then represented as

ft :=
(
t f (t1,r), t f (t2,r), ..., t f (t|T |,r)

)T,

where t f (t,r) represents the normalized term frequency value of tag t co-occurring
with resource r.
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RGB colors are used for the low level feature extraction. Each image r is repre-
sented as a four-dimensional vector

fr := (c1,r,c2,r,c3,r,c4,r)
T,

where the first component c1,r is the mean pixel value in the image r and the remain-
ing components represent the red, green, and blue channel respectively.

The feature vectors are then combined, i.e.,

ft,r :=
(
t f (t1,r), t f (t2,r), t f (t|T |,r),c1,r,c2,r,c3,r,c4,r

)T.

This combined feature vectors are then used as input for training a One Class
SVM classifier. Experiments were done in real data collected for Flickr and it was
shown that the classifier trained with the combined feature vectors performed con-
siderably better than if trained only with the tag feature vectors or low level image
feature vectors alone.

19.4.3.3 Audio-Based

Eck et al. [5] proposed a method for predicting social tags directly from MP3 files.
These tags are called automatic tags (shortly, autotags), because they are directly
generated from the musical content. Autotags help in the case where there exist sev-
eral songs in a collection that are either untagged or poorly tagged. Thus, autotags
help to address the “cold-start problem” in music RS. Nevertheless, autotags can be
used to smooth the tag space by providing a set of comparable baseline tags for all
tracks in a music RS.

Autotags are generated with a machine learning model which uses the meta-
learning algorithm AdaBoost to predict tags from audio features, such as: Mel-
Frequency Cepstral Coefficients (MFCCs), auto-correlation coefficients computed
for selected tags inside songs, and spectrogram coefficients sampled by constant-Q
frequency. The audio features are calculated over short sliding windows within the
song, leading to an overwhelming total number of features. To reduce this number,
“aggregated” features were created by computing individual means and standard de-
viations (i.e., independent Gaussians) of the previous audio features over short (e.g.,
5 seconds) windows of feature data.

Feature selection is performed as follows. The model selects features based on a
features ability to minimize empirical error. Therefore, it discards features when
weak learners associated with those features are being selected too late by Ad-
aBoost.

Due to the high skewness in the frequency of tags, the prediction task is treated
as a classification problem. For each tag, prediction is about whether a particular
artist has “none”, “some” or “a lot” of a particular tag relative to other tags. The
quantification of the boundaries between the 3 classes is done by summing the nor-
malized tag counts of all artists, generating a 100-bin histogram for each tag and
moving the category boundaries such that an equal number of artists fall into each
of the categories.
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To generate autotags, the classes have to be transformed into a bag of words to
be associated with an artist. Based on the semantics of the 3 classes, this is done by
subtracting the value of the “none” bin from the value of the “a lot” bin, because
“none” is the opposite of “a lot” (thus the “some” class serves just to make the
classifier more selective in predicting “none” and “a lot”).

Experimental evaluation of autotag generation was done with 89,924 songs for
1,277 artists, which resulted in more than 1 million 5 seconds aggregated features.
Focus was given on the 60 most popular tags from the social online radio station
Last.fm. These tags included genres such as “Rock”, and tags related to mood like
“chillout”. The classification errors where significantly lower than the random er-
rors. As described by the authors [5], performance should be compared against other
classifiers, like SVM or neural networks, in order to better assess the merit of the
approach.

19.4.4 Evaluation Protocols and Metrics

In the following we present some of the protocols and metrics used for the evalua-
tion of the different recommendation modes. For a more comprehensive survey on
evaluating recommender systems refer to Chapter 8.

Resource Recommendations For evaluating tag-aware resource recommenders,
the usual protocols and metrics used for traditional RS can be directly used [9] (c.f.
Chapter 8).

Tag Recommendations For evaluating tag recommenders, there are two possible
scenarios that can eventually lead to two different evaluation protocols:

• ‘New post’: A user selects a resource that he has not tagged yet and the system
tries to suggest a personalized list of n tags for this resource to the user. This
protocol was first used in [24, 16] and was called LeaveOnePostOut protocol.
For each user u, a separate training set is generated by removing all tags of
one of his resources ru, which has been selected randomly. The training set is
then the folksonomy (U,T,R,Y ′) with Y ′ :=Y \({u}× tags(u,ru)×{ru}) where
tags(u,ru) is the set of tags used by user u for ru. The task is then to generate
a prediction that is close to tags(u,ru). This reproduces the scenario in which
a user has an untagged resource for which the system tries to generate useful
recommendations.

• ‘Tagging refinement’: A user selects a resource that he has already tagged in the
past and the system suggests a personalized list of n additional tags that the user
might want to use for improving his tagging for the resource. This protocol was
first introduced in [35]. The idea is to split the tag assigments into past (training
set) and future tag assigments (test set). This reflects the scenario where users
gradually tag items and receive recommendations before they provide all their
tags.



638 Leandro Balby Marinho et al.

For both protocols the usual precision, recall and f1-measure metrics are com-
monly used [15, 35, 11, 26]:

Recall
(
T̂ (u,ru)

)
=

| tags(u,ru)∩ T̂ (u,ru)|
| tags(u,ru)|

(19.18)

Precision
(
T̂ (u,ru)

)
=

| tags(u,ru)∩ T̂ (u,ru)|
|T̂ (u,ru)|

(19.19)

F1-measure
(
T̂ (u,ru)

)
=

2 ·Recall
(
T̂ (u,ru)

)
·Precision

(
T̂ (u,ru)

)

Recall
(
T̂ (u,ru)

)
+Precision

(
T̂ (u,ru)

) (19.20)

Furthermore, both scenarios can be applied in an online setting, where the recom-
mendations are computed in real time and shown to the user during annotation of a
resource.16 One can then record if the user clicked on one of the recommended tags
or otherwise used the recommendation (e.g., with autocompletion mechanisms).
This setting is probably the most realistic one and gives a good measure on how
the user liked the recommendation. However, it is pretty laborious to set up and
needs a system with active users. There are also some users which don’t click on
recommendations or use autocompletion which whould affect this evaluation.

User Recommendations For the task of user recommendation, the system suggests
to the target user a personalized list of n users, which form his neighborhood. Some
systems, like Last.fm, provide information about links between users (in Last.fm
socially connected users are called neighbors). If such information is available, then
it can serve as a ground truth for the evaluation of user recommendation. In cases
where such ground truth is not available (like in Bibsonomy), the evaluation of user
recommendation can be performed along the lines of evaluating user communities,
most notably by calculating the item similarities within them as described in [22]. In
particular, in a social bookmarking system (like BibSonomy), for each web resource,
its first (home) page can be crawled and preprocessed to create a vector of terms.
This way, between any two web resources, their cosine similarity can be computed
as follows. For each test user’s neighborhood (i.e., most similar users), the Average
Cosine Similarity (ACS) of all web resource pairs inside the neighborhood can be
computed. ACS corresponds to the intra-neighborhood similarity. Moreover, from a
selected number of random neighborhood pairs among all test users’ neighborhoods,
the average pairwise web resource similarity between every two neighborhoods can
be computed. This measure corresponds to the inter-neighborhood similarity. There-
fore, the quality of recommended user-neighborhood is judged according both to its
intra-neighborhood similarity (the higher the better) and to its inter-neighborhood-
similarity (the lower the better).

16 This was one of the tasks of the ECML PKDD Discovery Challenge 2009 – see http://www.kde.
cs.uni-kassel.de/ws/dc09/.
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19.5 Comparison of Algorithms

In this section, we briefly discuss the main advantages and disadvantages of the
algorithms presented in Section 19.4. Note that we just consider the non content-
based algorithms since they can be compared under a common basis.

We saw in Section 19.4.1 that in order to apply standard CF-based algorithms to
folksonomies, some data transformation must be performed. Such transformations
lead to information loss, which can lower the recommendation quality. Another well
known problem with CF-based methods is that large projection matrices must be
kept in memory, which can be time/space consuming thus compromising the ability
to perform real-time recommendations. Another problem is that for each different
mode to be recommended, the algorithm must be eventually changed, demanding
an additional effort for offering multi-mode recommendations.

FolkRank builds on PageRank and proved to give significantly better tag rec-
ommendations than CF [15]. This method also allows for mode switching with no
change in the algorithm. Moreover, as well as CF-based algorithms, FolkRank is ro-
bust against online updates since it does not need to be trained every time a new user,
resource or tag enters the system. However, FolkRank is computationally expensive
and not trivially scalable, making it more suitable for systems where real-time rec-
ommendations is not a requirement.

Similarly to FolkRank, tensor factorization methods work directly on the ternary
relations of folksonomies. Although the learning phase can be costly, it can be
performed offline. After the model is learned, the recommendations can be done
fast, making these algorithms suitable for real-time recommendations. A poten-
tial disadvantage of tensor factorization methods is that easy mode switching can
only be achieved if one consider that the different recommendation problems, i.e.,
user/resource/tag, can be addressed by minimizing the same error function. If one
chooses HOSVD, for example, the model can be used for multi-mode recommen-
dations with trivial mode switching, but at the cost of evtl. solving the wrong prob-
lem: HOSVD minimizes a least-square error function while social tagging RS are
more related to ranking. If one tries to optimally reconstruct the tensor w.r.t. an
error function targeted to a specific recommendation mode, on the other hand, accu-
racy is eventually improved for the targetted mode, but at the cost of making mode
switching more involved. Figure 19.9 shows a comparison between some of the
aforementioned algorithms in a snapshot of the BibSonomy dataset for the tag rec-
ommendation problem [26]. Note that the best method is RTF followed by FolkRank
and HOSVD.

Table 19.2 summarizes this discussion. Note that the absence of a “X” in Ta-
ble 19.2 indicates that the corresponding property is not trivially achieved by the
algorithm being considered.
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Fig. 19.9 F-Scores for Top-1,
Top-2 to Top-10 lists on a
snapshot of the BibSonomy
dataset. FolkRank, PageRank
and HOSVD are compared
to RTF with an increasing
number of dimensions under
the LeaveOnePostOut proto-
col [26].
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Table 19.2: Summary of advantages and disadvantages of the presented algorithms.

Method Scalable Multi-mode recommendation Keeps Ternary Relation Online Update
CF-based X
Folkrank X X X
HOSVD X X X

RTF X X

19.6 Conclusions and Research Directions

The Web 2.0 represents a shift of paradigm from the Web-as-information-source to
a Web-as-participation-platform where users can upload content, exercise control
over that content, and therefore add value to the application as they use it. Among
the most prominent family of Web 2.0 applications are the Social Tagging Systems,
which promote the sharing of user’s tags/resources by exposing them to other users.
Due to the increasing popularity of these systems, issues like information overload
rapidly become a problem. RS proved to be well suited for this kind of problem in
the past and are thus a prominent solution for tackling the information overload in
the Web’s next generation. In this chapter we presented:

• The data structures of folksonomies, stressing the differences in comparison to
the ones used by traditional RS.

• The different modes that can be recommended in STS.
• RS deployed in real STS, stressing the challenges and requirements for doing

so.
• Different ways of acquiring tags and how they can affect recommender algo-

rithms.
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• Algorithms that:

– reduce the data dimensionality in order to apply standard CF algorithms,
– operate directly on the ternary relational data of folksonomies,
– exploit the content of resources.

• Evaluation protocols and metrics.
• Comparison of the algorithms in terms of pros and cons.

Although the methods that transform the original folksonomy data allow the
direct application of standard CF-based algorithms, the transformation inevitably
cause some loss of information, which can lower the overall recommendation qual-
ity. Some methods try to overcome this problem by doing some sort of ensemble
over the different data projections resulting from the transformation, which adds
additional free parameters to the problem in order to control the influence of each
component. A more natural solution is to operate over the original ternary relation
of a folksonomy, which requires the development of new RS algorithms such as
FolkRank, that explores the folksonomy hypergraph, or the ones based on tensor
factorization. Although FolkRank is known for its high predictive quality, it suffers
from scalability problems, and so an interesting research direction is to investigate
ways of making it scale.

Tensor factorization for social tagging RS is a recent and prominent field. The re-
search work on this topic has just started to uncover the benefits that those methods
have to offer. A particularly appealing research direction concerns investigating ten-
sor factorization models that feature both high recommendation accuracy and easy
mode switching.

As pointed out before, folksonomies usually do not contain numerical ratings, but
recently the GroupLens17 research group released a folksonomy dataset in which
numerical ratings for the tagged resources are also given.18 This represents several
research opportunities on how to exploit the resource’s rating information in order
to improve recommendations. In this case, a single data structure for all the modes,
such as tensors or hypergraphs, would evtl. fail since the ratings are only related to
user-resource pairs and not to tags. Similar issues can be investigated for content-
based methods. We saw that content-based methods usually disregard the user infor-
mation, but past research shows that hybrid methods that combine user preferences
with resource’s content usually lead to better recommenders. Here, again, tensor
or hypergraph representations would evtl. fail since resources’ content are only re-
lated to the resources but not to the users or tags. So hybrid-based methods that
perform some sort of fusion between folksonomy representations and resources’
content would be a valuable contribution to the area.

Other topics that were not covered in this chapter, but are nevertheless interesting
research directions, concern, for example, recommendations’ novelty and serendip-
ity [44], i.e., tags, users and/or resources that are potentially interesting but not obvi-
ous; modeling social wisdom for recommendations [40, 29], i.e., explicit friendship

17 http://www.grouplens.org/
18 This dataset can be downloaded at http://www.grouplens.org/node/73
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strength and mutual trust relations among users, that are evtl. orthogonal to similar-
ities of interests and behavior, can be modeled and used to improve the quality of
RS.
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Chapter 20
Trust and Recommendations

Patricia Victor, Martine De Cock, and Chris Cornelis

Abstract Recommendation technologies and trust metrics constitute the two pillars
of trust-enhanced recommender systems. We discuss and illustrate the basic trust
concepts such as trust and distrust modeling, propagation and aggregation. These
concepts are needed to fully grasp the rationale behind the trust-enhanced recom-
mender techniques that are discussed in the central part of the chapter, which focuses
on the application of trust metrics and their operators in recommender systems. We
explain the benefits of using trust in recommender algorithms and give an overview
of state-of-the-art approaches for trust-enhanced recommender systems. Further-
more, we explain the details of three well-known trust-based systems and provide a
comparative analysis of their performance. We conclude with a discussion of some
recent developments and open challenges, such as visualizing trust relationships in
a recommender system, alleviating the cold start problem in a trust network of a rec-
ommender system, studying the effect of involving distrust in the recommendation
process, and investigating the potential of other types of social relationships.

20.1 Introduction

Collaboration, interaction and information sharing are the main driving forces of the
current generation of web applications referred to as ‘Web 2.0’ [48]. Well-known ex-
amples of this emerging trend include weblogs (online diaries or journals for sharing
ideas instantly), Friend-Of-A-Friend1 (FOAF) files (machine-readable documents
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describing basic properties of a person, including links between the person and ob-
jects/people they interact with), wikis (web applications such as Wikipedia2 that
allow people to add and edit content collectively) and social networking sites (vir-
tual communities where people with common interests can interact, such as Face-
book3, dating sites, car addict forums, etc.). In this chapter, we focus on one specific
set of Web 2.0 applications, namely social recommender systems. These recom-
mender systems generate predictions (recommendations) that are based on informa-
tion about users’ profiles and relationships between users. Nowadays, such online
relationships can be found virtually everywhere, think for instance of the very pop-
ular social networking sites Facebook, LinkedIn and MSN4.

Research has pointed out that people tend to rely more on recommendations from
people they trust (friends) than on online recommender systems which generate rec-
ommendations based on anonymous people similar to them [57]. This observation,
combined with the growing popularity of open social networks and the trend to in-
tegrate e-commerce applications with recommender systems, has generated a rising
interest in trust-enhanced recommendation systems. The recommendations gener-
ated by these systems are based on information coming from an (online) trust net-
work, a social network which expresses how much the members of the community
trust each other. A typical example is Golbeck’s FilmTrust [16], an online social
network combined with a movie rating and review system in which users are asked
to evaluate their acquaintances’ movie tastes on a scale from 1 to 10. Another exam-
ple is the e-commerce site Epinions.com, which maintains a trust network by asking
its users to indicate which members they trust (i.e., their personal ‘web of trust’) or
distrust (‘block list’).

Trust-enhanced recommender systems use the knowledge that originates from
such trust networks to generate more personalized recommendations: users receive
recommendations for items rated highly by people in their web of trust (WOT), or
even by people who are trusted by these WOT members, etc. (see e.g. [7, 16, 46,
61]). The main strength of most of these systems is their use of trust propagation
and trust aggregation operators; mechanisms to estimate the trust transitively by
computing how much trust a user a has in another user c, given the value of trust for
a trusted third party b by a and c by b (propagation), and by combining several trust
estimates into one final trust value (aggregation). Propagation and aggregation are
the two key building blocks of trust metrics, which aim to estimate the trust between
two unknown users in the network.

Apart from trust, in a large group of users (each with their own intentions, tastes
and opinions) it is only natural that also distrust occurs. For example, Epinions first
provided the possiblity to include users in a personal WOT (based on their quality
as a reviewer), and later on also introduced the concept of a personal ‘block list’,
reflecting the members that are distrusted by a particular user. The information in

2 See www.wikipedia.org
3 See www.facebook.com
4 See www.linkedin.com, or www.msn.com
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the WOT and block list is then used to make the ordered list of presented reviews
more personalized. From a research perspective, too, it is generally acknowledged
that distrust can play an important role [21, 62, 68], but much ground remains to be
covered in this domain.

Recommendation technologies and trust metrics constitute the two pillars of trust-
enhanced recommender systems. Since the former are covered in much detail in
other chapters of this handbook, we will restrict ourselves to the essentials. On the
other hand, we do not assume that most readers are familiar with the trust research
area. Therefore, in the following section, we start with a discussion and illustra-
tion of the basic trust concepts, namely trust and distrust modeling, propagation
and aggregation; concepts that are needed to fully grasp the rationale behind the
trust-enhanced recommender techniques as they are discussed in Section 3. This is
the central part of the chapter, and focuses on the application of trust metrics and
their operators in recommender systems. We explain the benefits of using trust in
recommender algorithms and give an overview of state-of-the-art approaches for
trust-enhanced recommender systems. Furthermore, we explain the details of three
well-known trust-based systems and provide a comparative analysis of their perfor-
mance. After this overview of classical trust-enhanced research, in Section 4, we
focus on some recent developments and open challenges, such as visualizing trust
relationships in a recommender system, alleviating the cold start problem in a trust
network of a recommender system, studying the effect of involving distrust in the
recommendation process, and investigating the potential of other types of social re-
lationships. The chapter is concluded in Section 5.

20.2 Computational Trust

In this section we provide the reader with a basic introduction to the field of compu-
tational interpersonal trust, i.e., trust that can be computed among two individuals
in a social trust network. This implies that we cover trust models (how to represent
trust and how to deal with distrust; Section 2.1), trust propagation operators (how to
estimate the trust between two individuals by using information coming from users
that are on the connecting path between them; Section 2.2.1), and trust aggrega-
tion (how to combine trust values generated by multiple propagation paths; Section
2.2.2). We illustrate these concepts by classical and recent examples.

Note that this overview is inexhaustive; for instance, we do not cover trust up-
dating or trust bootstrapping. Our primary goal is to familiarize the reader with the
main concepts of the trust computation area, and as such to lay the foundation for
an easy understanding of the rationale and details of the trust-enhanced recommen-
dation techniques presented in Section 3.
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20.2.1 Trust Representation

Trust models come in many flavours and can be classified in several ways. In this
chapter we focus on two such classifications, namely probabilistic versus gradual
approaches, and representations of trust versus representations of both trust and dis-
trust. Table 20.1 shows some representative references for each class.

A probabilistic approach deals with a single trust value in a black or white fash-
ion — an agent or source can either be trusted or not — and computes a probability
that the agent can be trusted. In such a setting, a higher suggested trust value cor-
responds to a higher probability that an agent can be trusted. Examples can, among
others, be found in [66] in which Zaihrayeu et al. present an extension of an in-
ference infrastructure that takes into account the trust between users and between
users and provenance elements in the system, in [55] where the focus is on com-
puting trust for applications containing semantic information such as a bibliography
server, or in contributions like [32] in which a trust system is designed to make
community blogs more attack-resistant. Trust is also often based on the number of
positive and negative transactions between agents in a virtual network, such as in
Kamvar et al.’s Eigentrust for peer-to-peer (P2P) networks [28], or Noh’s formal
model based on feedbacks in a social network [44]. Both [25] and [51] use a sub-
jective logic framework (discussed later on in this section) to represent trust values;
the former for quantifying and reasoning about trust in IT equipment, and the latter
for determining the trustworthiness of agents in a P2P system.

On the other hand, a gradual approach is concerned with the estimation of trust
values when the outcome of an action can be positive to some extent, e.g. when
provided information can be right or wrong to some degree, as opposed to being
either right or wrong (e.g. [1, 11, 15, 21, 35, 59, 68]). In a gradual setting, trust val-
ues are not interpreted as probabilities: a higher trust value corresponds to a higher
trust in an agent, which makes the ordering of trust values a very important factor
in such scenarios. Note that in real life, too, trust is often interpreted as a gradual
phenomenon: humans do not merely reason in terms of ‘trusting’ and ‘not trusting’,
but rather trusting someone ‘very much’ or ‘more or less’. Fuzzy logic [29, 65] is
very well-suited to represent such natural language labels which represent vague
intervals rather than exact values. For instance, in [59] and [31], fuzzy linguistic
terms are used to specify the trust in agents in a P2P network, and in a social net-
work, respectively. A classical example of trust as a gradual notion can be found in
[1], in which a four-value scale is used to determine the trustworthiness of agents,
viz. very trustworthy - trustworthy - untrustworthy - very untrustworthy.

The last years have witnessed a rapid increase of gradual trust approaches, rang-
ing from socio-cognitive models (for example implemented by fuzzy cognitive maps
in [12]), over management mechanisms for selecting good interaction partners on
the web [59] or for pervasive computing environments (Almenárez et al.’s PTM [3]),
to representations for use in recommender systems [15, 35], and general models tai-
lored to semantic web applications [68].
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Table 20.1: Classification of trust models

trust only trust and distrust

probabilistic
Kamvar et al. [28]

Jøsang et al. [25]Richardson et al. [55]
Zaihrayeu et al. [66]

gradual
Abdul-Rahman et al. [1]

Falcone et al. [12] Victor et al. [62]
Golbeck [15] Guha et al. [21]

Massa et al. [35]

While trust is increasingly getting established, the use and modeling of distrust re-
mains relatively unexplored. Most approaches completely ignore distrust (see for
example [31, 32, 43, 55, 66]), or consider trust and distrust as opposite ends of the
same continuous scale (see e.g. [1, 19, 59]). However, in agent network theory there
is a growing body of opinion that distrust cannot be seen as the equivalent of lack of
trust [10, 13, 34]. Moreover, work in the psychology area has repeatedly asked for a
re-examination of the assumption that positive- and negative-valent feelings are not
separable [8, 50, 52], and some researchers even claim that trust and distrust are not
opposite, but related dimensions that can occur simultaneously [9, 33].

To the best of our knowledge, there is only one probabilistic model that considers
trust and distrust simultaneously: in Jøsang’s subjective logic [24, 25], an opinion
includes a belief b that an agent is to be trusted, a disbelief d corresponding to a
belief that an agent is not to be trusted, and an uncertainty u. The uncertainty factor
leaves room for ignorance, but the requirement that the belief b, the disbelief d and
the uncertainty u sum up to 1, rules out options for inconsistency even though this
might arise quite naturally in large networks with contradictory sources [60].

Examples of gradual models for both trust and distrust can be found in [11, 21,
62, 68]. Guha et al. use a couple (t,d) with a trust degree t and a distrust degree
d, both in [0,1]. To obtain the final suggested trust value, they subtract d from t
[21]. However, as explained in [62], potentially important information is lost when
the trust and distrust scales are merged into one. For example, the scenario (0.2,0)
in which there is partial trust collapses to 0.2, but so does the scenario (0.6,0.4)
that exhibits both partial trust and partial distrust. To deal with the issues in Guha’s
and Jøsang’s approach, Victor et al. proposed an extension of [11] in which trust
and distrust values are drawn from a bilattice [14]. Such a bilattice structure is able
to solve trust problems caused by presence of distrust or lack of knowledge, and
provides insight into knowledge problems caused by having too little or too much,
i.e. contradictory, information [62].

Trust and trust models have been used in many fields of computer science, and
also in a wide range of applications; a nice overview can be found in [6] in which
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Artz and Gil classify trust research in four major areas: models that use policies to
establish trust (enforcing access policies, managing credentials, etc.), general trust
models such as [12] and [68], models for trust in information sources such as [66],
and reputation-based trust models. The latter category includes, among others, re-
search that uses the history of an agent’s actions or behaviour (see e.g. [28, 46]), and
work that computes trust over social networks, such as [21, 36]. In fact, the trust-
enhanced recommender techniques that we will describe in Section 20.3 all belong
to this class.

20.2.2 Trust Computation

In online trust networks, most other users are typically unknown to a specific user.
Still there are cases in which it is useful to be able to derive some information on
whether or not an unknown user can be trusted, and if so, to what degree. In the
context of recommender systems for instance, this is important if none of the known
users has rated a specific item that the user is interested in, but there are some ratings
available by unknown users (who are a member of the trust network). For instance,
the number of people that users have in their web of trust in Epinions is estimated
to be around 1.7 on average. The total number of users of Epinions on the other
hand well exceeds 700 000 [61]. In other words, the WOT of a user only contains
a very tiny fraction of the user community. Hence, it would be very useful to be
able to tap into the knowledge of a larger subset of the user population to generate
recommendations.

Trust metrics compute an estimate of how much a user should trust another user,
based on the existing trust relations between other users in the network. Various
types of trust metrics exist in the literature; we refer to [68] for a good overview. In
that paper, Ziegler and Lausen classify trust metrics along three dimensions: group
versus scalar metrics, centralized versus distributed approaches, and global versus
local metrics. The first dimension refers to the way trust relations are evaluated,
while the second classification is based on the place where the trust estimations are
computed. The last dimension refers to the network perspective: trust metrics can
take into account all users and trust relationships between them when computing a
trust estimation (see e.g. [28, 44, 55]), or only rely on a part of the trust network,
hence taking into account personal bias (e.g. [15, 21, 35]). The trust-enhanced tech-
niques of Section 3 belong to the latter type.

20.2.2.1 Propagation

Trust metrics usually incorporate techniques that are based on the assumption that
trust is somehow transitive. We call these techniques trust propagation strategies.
Let us illustrate this with Figure 20.1: if user a trusts user b (whom we call a trusted
third party, or TTP for short), and TTP b trusts user c, then it is reasonable to assume
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Fig. 20.1: Propagation example

that a should trust c to a certain degree. This basic propagation strategy is known
as atomic direct propagation, and is the type that we will focus on in the remainder
of this chapter5. However, trust is not always transitive. For instance, if Jane trusts
Alice to give her a good-looking haircut and Alice trusts John to fix her bicycle, this
does not imply that Jane trusts John to fix bicycles, nor to give a nice haircut.

But, in the same context/scope, and under certain conditions, trust can be tran-
sitive [26]. Suppose e.g. that Jane is new in town and wants to have a haircut. Jane
trusts that Alice can find a good hairdresser, while Alice trusts Mariah to be a good
hairdresser. Hence, Jane can trust Mariah to be a good hairdresser. This example
also shows us that a distinction must be made between trust in a user’s competence
to assess the trustworthiness of a user (functional trust, Alice trusting Mariah), or
trust in a user’s competence to recommend/evaluate a good recommender agent (re-
ferral trust, Jane trusting Alice) [1, 26]. As explained in [26], it is the referral part
that allows trust to become transitive. A propagation path can then be seen as a tran-
sitive chain of referral trust parts, which ends with one functional trust scope.

When dealing with trust only, in a probabilistic setting, multiplication is very of-
ten used as the standard propagation operator, see for instance [55]. This is also the
case in gradual settings [3, 15, 21], but there is a wider spectrum of propagation
operators available, dependent on the goal or the spirit of the application. This is
illustrated by the following example.

5 For a discussion of other trust propagation strategies, such as cocitation, transpose trust, or cou-
pling, we refer to [21].
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Example 20.1. Suppose that, on a scale from 0 to 1, user a trusts user b to the degree
0.5, and that b trusts user c to the degree 0.7. Then, in a probabilistic setting (using
standard multiplication), trust propagation yields 0.35. In a fuzzy logic approach
however, the final trust estimate depends on the choice of the operator: for instance,
the rationale that a propagation chain is only as strong as its weakest link leads to the
use of the minimum as propagation operator, hence yielding 0.5 as the propagated
trust estimate. The use of the Łukasiewicz conjunction operator on the other hand,
i.e. max(t1 + t2−1,0), will yield 0.2. Like with multiplication, this propagated trust
value reflects the individual influences of both composing links, as opposed to only
the weakest link.

Other trust propagation work includes techniques based on fuzzy if-then rules
[31, 59], on the theory of spreading activation models (Ziegler and Lausen’s Apple-
seed [68]), or on the semantic distance between a TTP’s trust and a user’s perception
of the TTP’s trust [1].

Of course, not all propagation paths have the same length. In Figure 20.1 e.g., there
are two paths leading from the source user a to the target user c. If we suppose that
all trust links in the network denote complete trust, then intuitively we feel that the
estimated trust of the second propagation path should be lower than that of the first
path, since we are heading further away from the source user. This idea of ‘trust de-
cay’ [20] is often implemented in propagation strategies. For instance, in Ziegler’s
approach this is incorporated through a spreading factor [68], Golbeck only takes
into account shortest paths and ignores all others [15], and in applications that only
work with binary trust (instead of gradual), Massa determines the propagated trust
based on a user’s distance from a fixed propagation horizon [35].

In the case of atomic direct propagation, if a trusts b and b trusts c, a might trust c
to a certain degree. Analogously, if a trusts b and b distrusts c, it seems clear that
a should somehow distrust c. However, the picture gets more complicated when we
also allow distrust as the first link in a propagation chain. For example, if a distrusts
b and b distrusts c, there are several options for the trust estimation of a in c: a pos-
sible reaction is to infer that a should trust c, since a might think that distrusted ac-
quaintances of users he distrusts are best to be trusted (‘the enemy of your enemy is
your friend’). Or a should distrust c because a thinks that someone that is distrusted
by a user that he distrusts certainly must be distrusted. Yet another interpretation of
distrust propagation is to ignore information coming from a distrusted user b, be-
cause a might decide not to take into account anything that a distrusted user says.

Guha et al. call the second strategy additive distrust propagation, and the first
multiplicative distrust propagation [21]. They discuss the negative side effects of
multiplicative propagation (also see [68]), but conclude that it cannot be ignored be-
cause it has some philosophical defensibility. Besides Guha et al., other researchers
also proposed operators that adhere to the first strategy, such as Victor et al.’s ap-
proach using fuzzy logic concepts [62] or Jøsang et al.’s opposite belief favouring
discount operator [27]. Examples of the last strategy can be found in [21, 27, 62].
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Example 20.2. Like with trust propagation, approaches to distrust propagation are
intimately linked to the representations of trust and distrust at hand. Let us assume
the use of a couple (t,d) with a trust degree t and a distrust degree d, both in [0,1]. In
this representation, (1,0) corresponds to full trust, (0,1) corresponds to full distrust,
and (0,0) corresponds to full ignorance, or full lack of knowledge. Gradual values
such as in (0.5,0.2) denote partial trust 0.5, partial distrust 0.2 and partial lack of
knowledge 1− 0.5− 0.2 = 0.3. Assume that the trust score of user a in user b is
(t1,d1) and, likewise, that the trust score of user b in user c is (t2,d2). The trust
score (t3,d3) of user a in user c can then be calculated as follows [62]:

(t3,d3) = (t1× t2, t1×d2)

This propagation strategy reflects the attitude of listening to whom you trust and
not deriving any knowledge through a distrusted or unknown third party. Below are
some examples of propagated trust scores. Each row correspond to a possible trust
score of a in b, each column to a trust score of b in c, and the corresponding table
entry contains the propagated trust score of a in c.

(0.0,0.0) (0.0,1.0) (1.0,0.0) (0.5,0.2)
(0.0,0.0) (0.0, 0.0) (0.0,0.0) (0.0,0.0) (0.0,0.0)
(0.0,1.0) (0.0, 0.0) (0.0,0.0) (0.0,0.0) (0.0,0.0)
(1.0,0.0) (0.0,0.0) (0.0,1.0) (1.0,0.0) (0.5,0.2)
(0.5,0.2) (0.0,0.0) (0.0, 0.5) (0.5,0.0) (0.25,0.1)

In [25] the same propagation technique is used to combine pairs of beliefs and dis-
beliefs. Furthermore, subtracting the distrust degree from the trust degree, the prop-
agated trust score collapses to t1×(t2−d2), a propagation scheme proposed in [21].

Example 20.3. Alternatively, the trust score (t3,d3) of user a in user c can be calcu-
lated as [62]:

(t3,d3) = (t1× t2 +d1×d2− t1× t2×d1×d2, t1×d2 +d1× t2− t1×d2×d1× t2)

In this propagation strategy, t3 is computed as the probabilistic sum of t1× t2 and
d1 × d2, while d3 is the probabilistic sum of t1 × d2 and d1 × t2. The underlying
assumption is that a distrusted user is giving the wrong information on purpose.
Hence user a trusts user c if a trusted third party tells him to trust c, or, if a distrusted
third party tells him to distrust c (i.e. the enemy of your enemy is your friend).
Subtracting the distrust degree from the trust degree yields (t1 − d1)× (t2 − d2),
a distrust propagation scheme put forward in [21]. Below are some examples of
propagated trust scores.

(0.0,0.0) (0.0,1.0) (1.0,0.0) (0.5,0.2)
(0.0,0.0) (0.0, 0.0) (0.0,0.0) (0.0,0.0) (0.0,0.0)
(0.0,1.0) (0.0, 0.0) (1.0,0.0) (0.0,0.1) (0.2,0.5)
(1.0,0.0) (0.0,0.0) (0.0,1.0) (1.0,0.0) (0.5,0.2)
(0.5,0.2) (0.0,0.0) (0.2, 0.5) (0.5,0.2) (0.28,0.2)
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All these approaches illustrate the fact that, so far, no consensus has yet been reached
on how to propagate distrust. Different operators yield different results depending
on the interpretation, thus revealing part of the complex problem of choosing an
appropriate propagation scheme for the application at hand.

20.2.2.2 Aggregation

Besides propagation, a trust metric must also include an aggregation strategy. After
all, in large networks it will often be the case that not one, but several paths lead
to the user for whom we want to obtain a trust estimate. When this is the case, the
trust estimates that are generated through the different propagation paths must be
combined into one aggregated estimation; see for instance the situation depicted in
Figure 20.2.

Metrics that only work with trust mostly use classical aggregation operators
such as the minimum, maximum, weighted sum, average, or weighted average
[1, 3, 19, 28, 43, 44, 55]. The main benefit of weighted operators is that they give
us the opportunity to consider some sources (TTPs or propagation paths) as more
important than others. In other words, weighted operators provide a way to model
the aggregation process more flexibly.

Aggregation of both trust and distrust has not received much attention so far.
Only Jøsang et al. have proposed three aggregation operators (called consensus op-
erators) for the subjective logic framework [27]; however, they assume equally im-
portant users.

Fig. 20.2: Aggregation example



20 Trust and Recommendations 655

Note that propagation and aggregation very often must be combined together, and
that the final trust estimation might depend on the way this is implemented. Let us
take a look at Figure 20.2. There are two ways for user a to obtain a trust estimate
about user c from user b. The first possibility is to propagate trust to agent c, i.e.,
to apply a propagation operator on the trust from b to d and from d to c, and to
apply one from b to e, from e to f , and from f to c, and then to aggregate the two
propagated trust results. In this scenario, trust is first propagated, and afterwards
aggregated (i.e., first propagate then aggregate, or FPTA). A second possibility is to
follow the opposite process, i.e., first aggregate and then propagate (FATP). In this
scenario, the TTP b must aggregate the estimates that he receives via d and e, and
pass on the new estimate to a. It is easy to see that in the latter case the agents/users
in the network receive much more responsibility than in the former scenario, and
that the trust computation can be done in a distributed manner, without agents hav-
ing to expose their personal trust and/or distrust information.

Example 20.4. In Figure 20.2 there are three different paths from a to c. Assume that
all trust weights on the upper chain are 1, except for the last link which has a trust
weight of 0.9. Hence, using multiplication as propagation operator, the propagated
trust value resulting from that chain is 0.9. Now, suppose that a trusts b to degree
1, and that b trusts d to the degree 0.5 and e to the degree 0.8. That means that
the propagated trust value over the two chains from a to c through b are 1× 0.5×
0.4 = 0.2 and 1×0.8×0.6×0.7≈ 0.34 respectively. Using the classical average as
aggregation operator, FPTA yields a final trust estimate of (0.9+ 0.2+ 0.34)/3 =
0.48. On the other hand, if we would allow b to first aggregate the information
coming from his trust network, then b would pass the value (0.2+0.34)/2= 0.27 on
to a. In a FATP strategy, this would then be combined with the information derived
through the upper chain in Figure 20.2, leading to an overall final trust estimate of
(0.9+0.27)/2≈ 0.59.

20.3 Trust-Enhanced Recommender Systems

The second pillar of trust-enhanced recommendation research is the recommender
system technology. Recommender systems are often used to accurately estimate
the degree to which a particular user (from now on termed the target user) will
like a particular item (the target item). These algorithms come in many flavours
[2, 54]. Most widely used methods for making recommendations are either content-
based (see Chapter 3) or collaborative filtering methods (see Chapter 5). Content-
based methods suggest items similar to the ones that the user previously indicated a
liking for [56]. Hence, these methods tend to have their scope of recommendations
limited to the immediate neighbourhood of the user’s past purchase history or rating
record for items. For instance, if a customer of a DVD rental sevice so far has only
ordered romantic movies, the system will only be able to recommend related items,
and not explore other interests of the user. Recommender systems can be improved
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significantly by (additionally) using collaborative filtering, which typically works by
identifying users whose tastes are similar to those of the target user (i.e., neighbours)
and by computing predictions that are based on the ratings of these neighbours [53].

In the following section, we discuss the weaknesses of such classical recom-
mender systems and illustrate how they can be alleviated by incorporating a trust
network among the users of the system. These advanced, trust-based recommenda-
tion techniques adhere closest to the collaborative filtering paradigm, in the sense
that a recommendation for a target item is based on ratings by other users for that
item, rather than on an analysis of the content of the item. A good overview of classic
and novel contributions in the field of trust systems, and trust-aware recommender
systems in particular, can be found in the book edited by Golbeck [17].

20.3.1 Motivation

Despite significant improvements on recommendation approaches, some important
problems still remain. In [37], Massa and Avesani discuss some of the weaknesses of
collaborative filtering systems. For instance, users typically rate or experience only
a small fraction of the available items, which makes the rating matrix very sparse
(since a recommender system often deals with millions of items). For instance, a par-
ticular data set from Epinions contains over 1 500 000 reviews that received about
25 000 000 ratings by more than 160 000 different users [61]. Due to this data spar-
sity, a collaborative filtering algorithm experiences a lot of difficulties when trying
to identify good neighbours in the system. Consequently, the quality of the gener-
ated recommendations might suffer from this. Moreover, it is also very challenging
to generate good recommendations for users that are new to the system (i.e., cold
start users), as they have not rated a significant number of items and hence cannot
properly be linked with similar users. Thirdly, because recommender systems are
widely used in the realm of e-commerce, there is a natural motivation for producers
of items (manufacturers, publishers, etc.) to abuse them so that their items are rec-
ommended to users more often [67]. For instance, a common ‘copy-profile’ attack
consists in copying the ratings of the target user, which results in the system think-
ing that the adversary is most similar to the target. Finally, Sinha and Swearingen
[57, 58] have shown that users prefer more transparent systems, and that people tend
to rely more on recommendations from people they trust (‘friends’) than on online
recommender systems which generate recommendations based on anonymous peo-
ple similar to them.

In real life, a person who wants to avoid a bad deal may ask a friend (i.e., someone
he trusts) what he thinks about a certain item i. If this friend does not have an opin-
ion about i, he can ask a friend of his, and so on until someone with an opinion about
i (i.e., a recommender) has been found. Trust-enhanced recommender systems try to
simulate this behaviour, as depicted in Figure 20.3: once a path to a recommender
is found, the system can combine that recommender’s judgment with available trust
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information (through trust propagation and aggregation) to obtain a personalized
recommendation. In this way, a trust network allows to reach more users and more
items. In the collaborative filtering setting in Figure 20.4, users a and b will be linked
together because they have given similar ratings to certain items (among which i1),
and analogously, b and c can be linked together. Consequently, a prediction of a’s
interest in i2 can be made. But in this scenario there is no link between a (or c) and
i3 or, in other words, there is no way to find out whether i3 would be a good recom-
mendation for agent a. This situation might change when a trust network has been
established among the users of the recommender system.

The solid lines in Figure 20.4 denote trust relations between user a and user b,
and between b and user c. While in a scenario without a trust network a collaborative
filtering system is not able to generate a prediction about i3 for user a, this could be
solved in the trust-enhanced situation: if a expresses a certain level of trust in b, and
b in c, by propagation an indication of a’s trust in c can be obtained. If the outcome
would indicate that agent a should highly trust c, then i3 might become a good rec-
ommendation for a, and will be highly ranked among the other recommended items.
This simple example illustrates that augmenting a recommender system by includ-
ing trust relations can help solving the sparsity problem. Moreover, a trust-enhanced
system also alleviates the cold start problem: it has been shown that by issuing a few
trust statements, compared to a same amount of rating information, the system can
generate more, and more accurate, recommendations [35]. Moreover, a web of trust
can be used to produce an indication about the trustworthiness of users and as such
make the system less vulnerable to malicious insiders: a simple copy-profile attack
will only be possible when the target user, or someone who is trusted by the target
user, has explicitly indicated that he trusts the adversary to a certain degree. Finally,
the functioning of a trust-enhanced system (e.g. the concept of trust propagation)
is intuitively more understandable for the users than the classical ‘black box’ ap-
proaches. A nice example is Golbeck’s FilmTrust system [16] which asks its users
to evaluate their acquaintances based on their movie taste, and accordingly uses that
information to generate personalized predictions.

Fig. 20.3: Recommending an item
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Fig. 20.4: Trust relations in recommender systems

20.3.2 State of the Art

All these examples illustrate that establishing a trust network among the users of
a recommender system may contribute to its success. Hence, unsurprisingly, some
attempts in this direction have already been made, see for example [15, 23, 30, 37,
46, 49, 51]. Trust-enhanced recommender systems can roughly be divided into two
classes, according to the way the trust values are obtained. The first group uses
information coming from a trust network that is generated by the direct input of the
users, i.e., by explicitly issuing trust statements. Examples can be found in [16, 23,
37]. Such a strategy allows to use trust propagation and aggregation in the network
to infer the final trust values that are needed in the recommender algorithm. On
the other hand, the second group does not require the user to estimate the trust
in his acquaintances. Instead, trust values are computed automatically, for instance
based on a user’s history of making reliable recommendations [30, 46], or based on
transitivity rules for user-to-user similarity [49].

In the behavioral literature, the concept of trust is well defined; see for example
Mayer et al.’s framework in which ability, benevolence, integrity and propensity to
trust are determined as its key factors [40], or McAllister’s work that distinguishes
between cognition-based and affect-based trust [41]. However, in the recommen-
dation research area, trust is often used as an umbrella term for a wide range of
relationships between people, especially when dealing with automatic computation
of trust values. In these cases, trust is being used to denote a variety of concepts,
ranging from perceived similarity of tastes, over reputation, to the assessment of a
user’s competence.

In Section 20.4 we further discuss this in more detail ; in this section, we focus on
the basics of both strategies (i.e., mining a trust network and automatic computation
of trust values), and illustrate the techniques with representative work in each class.
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20.3.2.1 Mining a Trust Network

The most common trust-enhanced recommender strategies ask their users to explic-
itly issue trust statements about other users. Take for instance Moleskiing [7], a ski
mountaineering community site which uses FOAF-files that contain trust informa-
tion on a scale from 1 to 9 [19], or the e-commerce site Epinions.com which orders
reviews based on a trust network that it maintains by asking its users to indicate
which members they trust (i.e., their personal web of trust) or distrust (block list).
Another well-known example is Golbeck’s FilmTrust [16], an online social network
combined with a movie rating and review system in which users are asked to evalu-
ate their acquaintances’ movie tastes on a scale from 1 to 10.

All these systems exploit the relations in the trust network to determine which
opinions or ratings should weigh more or less in the recommendation process. In
other words, this group of algorithms uses the trust estimates (obtained by propa-
gation and aggregation) as weights in the decision process. This weighting can be
done in several ways. In this section, we focus on the two most commonly used
strategies, namely classical weighted average and adaptations of the collaborative
filtering mechanism, and illustrate each of them with one well-known state-of-the-
art implementation.

Trust-based weighted mean In a recommender system without a trust network, a
simple recommendation algorithm that needs to estimate how well a target user will
like a target item i can compute the average rating for i by taking into account the
ratings ru,i from all the system’s users u who are already familiar with i. This base-
line recommendation strategy can be refined by computing a trust-based weighted
mean. In particular, by including trust values ta,u that reflect the degree to which
the raters u are trusted, the algorithm allows to differentiate between the sources. In
fact, it is only natural to assign more weight to ratings of highly trusted users. The
formula is given by Equation (20.1), in which pa,i denotes the predicted rating of
target item i for target user a, and RT represents the set of users who evaluated i and
for which the trust value ta,u exceeds a given threshold.

pa,i =

∑
u∈RT

ta,uru,i

∑
u∈RT

ta,u
(20.1)

TidalTrust This formula is at the heart of Golbeck et al.’s recommendation algo-
rithm [15]. The novelty of this algorithm mainly lies in the way the trust estimates
ta,u are inferred; a trust metric that they have called TidalTrust. In [18], the authors
give an overview of the observations that have lead to the development of Tidal-
Trust. In each experiment, they ignored an existing trust relation from a user a to
a user c, and focused on all paths that connect a to c. In short, by comparing the
propagated trust results from these paths with the original, hidden, trust value, they
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noticed that (1) shorter propagation paths yield more accurate trust estimates, and
that (2) paths containing higher trust values yield better results too.

Hence, taking into account the first observation, only allowing shorter paths
should yield the best results. However, in some cases only a few users will be reach-
able if a limit is set on the path length. This trade-off is incorporated through a
variable path length limit: the shortest path length that is needed to connect the tar-
get user with a user u that has rated the item (i.e., a rater) becomes the path depth
of the algorithm. Like this, the depth of the breadth-first search varies from one
computation to another.

One way of addressing the second observation (higher trust values on the path
yield better trust estimates) is to limit the information such that it only comes from
the most trusted users. However, every user has its own behaviour for issuing trust
values (one user may give the maximum value quite often while another one never
does), and in addition, it will often be the case that only a few paths contain the same
high trust value. This is why Golbeck et al. opted to incorporate a value that repre-
sents the path strength (i.e., the minimum trust rating on a path), and to compute the
maximum path strength over all paths leading to the raters. This maximum (max) is
then chosen as the minimum trust threshold for participation in the process.

The TidalTrust formula is given by Equation (20.2), in which WOT+(a) rep-
resents the set of users for whom a’s trust statement exceeds the given threshold
max. This means that each user in the process computes its trust in another user as
a weighted mean, and only takes into account information from users that he has
rated at least as high as max.

ta,u =
∑

v∈WOT+(a)
ta,vtv,u

∑
v∈WOT+(a)

ta,v
(20.2)

TidalTrust is a recursive algorithm; the trust value ta,u is recursively computed as the
weighted mean of trust values tv,u for all TTPs v that are the first link on the shortest
path from a to u. The users assure that the maximum path depth is not exceeded
by keeping track of the current path length. Note that this algorithm belongs to the
class of gradual trust approaches and is an example of a local trust metric.

Golbeck et al. have shown that using trust-based weighted mean in combination
with TidalTrust does not necessarily offer a general benefit over computing the av-
erage or applying collaborative filtering, but that it does yield significantly more
accurate recommendations for users who disagree with the average rating for a spe-
cific item (see e.g. [15, 18]).

Trust-based collaborative filtering Whereas Golbeck’s approach is an example
of a weighted average implementation, another class of trust-enhanced systems is
tied more closely to the collaborative filtering algorithm. In collaborative filtering,
a rating of target item i for target user a can be predicted using a combination of the
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ratings of the neighbours of a (similar users) that are already familiar with item i
[53]. The classical formula is given by Equation (20.3).

pa,i = ra +

∑
u∈R+

wa,u(ru,i− ru)

∑
u∈R+

wa,u
(20.3)

The unknown rating pa,i for item i and target user a is predicted based on the mean
ra of ratings by a for other items, as well as on the ratings ru,i by other users u
for i. The formula also takes into account the similarity wa,u between users a and u,
usually calculated as Pearson’s Correlation Coefficient (PCC) [22]. In practice, most
often only users with a positive correlation wa,u who have rated i are considered. We
denote this set by R+. However, instead of a PCC-based computation of the weights,
once can also infer the weights through the relations of the target user in the trust
network (again through propagation and aggregation); see Formula (20.4) which
adapts Formula (20.3) by replacing the PCC weights wa,u by the trust values ta,u.
This strategy is also supported by the fact that trust and similarity are correlated, as
shown in [69].

pa,i = ra +

∑
u∈RT

ta,u(ru,i− ru)

∑
u∈RT

ta,u
(20.4)

We call this alternative trust-based collaborative filtering. Note that, because the
weights are not equal to the PCC, this procedure can produce out of bounds results.
When this is the case, pa,i is rounded to the nearest possible rating.

MoleTrust Formula (20.4) is at the basis of Massa et al.’s recommendation algo-
rithm which incorporates a new trust metric, called MoleTrust [38]. This metric
consists of two phases. In the first stage, cycles in the trust network are removed,
while the second stage includes the actual trust computation. Since it is often the
case that a large number of trust propagations must be executed in trust experiments
(think e.g. of the large test sets from Epinions.com), it is much more efficient to
remove trust cycles beforehand, so that every user only needs to be visited once for
obtaining a trust prediction.

The removing of the cycles transforms the original trust network into a directed
acyclic graph, and hence the trust prediction for ta,u can be obtained by performing
a simple graph walk: first the trust of the users at distance 1 is computed (i.e., direct
trust information), then the trust of the users at distance 2, etc. Note that because of
the acyclic nature of the graph, the trust value of a user at distance x only depends
on the already computed trust values of the users at distance x−1.

The trust of the users at distance 2 or more is calculated in a way similar to Gol-
beck et al.’s algorithm, i.e. formula (20.2). However, the details of the breadth-first
implementation differ significantly. In TidalTrust, a user u is added to WOT+(a)
only if he is on a shortest path from target user a to target item i. On the other hand,



662 Patricia Victor, Martine De Cock, and Chris Cornelis

Table 20.2: Characteristic features of two state-of-the-art recommendation ap-
proaches that mine a trust network to predict a rating for target user a and target
item i, based on ratings of other users u for i

TidalTrust MoleTrust
propagation multiplication multiplication
aggregation trust-based weighted mean

(20.2)
trust-based weighted mean
(20.2)

maximum length of dynamic (shortest path) static (horizon)
propagation path
trust threshold dynamic (strongest chain) static
entry requirement for TTP v is on a shortest v is on a path from
v in propagation process path from a to u a to u within the horizon
prediction of rating trust-based weighted mean

(20.1)
trust-based collaborative fil-
tering (20.4)

in MoleTrust, WOT+(a) includes all users who have rated the target item and that
can be reached through a direct or propagated trust relation. But trust is not com-
puted for all eternity: before the computation begins, one must assign a value d to
the ‘propagation horizon’ parameter. Like this, only users who are reachable within
distance d are taken into account. Another important input parameter of MoleTrust
is the trust threshold for participation in the process (unlike the dynamic max value
in TidalTrust), which is for example set to 0.6 (on a scale from 0 to 1) in the experi-
ments reported in [38].

Note that, analogous to TidalTrust, MoleTrust belongs to the class of gradual lo-
cal trust metrics. In their experiments, Massa and Avesani have illustrated that Mo-
leTrust provides better trust estimates than global trust metrics such as eBay’s6,
especially when it comes down to estimating the trust in controversial users (who
are trusted by one group and distrusted by another) [38]. They also showed that Mo-
leTrust yields more accurate predictions for cold start users, compared to a classical
collaborative filtering system [35, 36].

Golbeck’s and Massa’s approach are two typical examples of trust-enhanced rec-
ommender techniques that use explicit trust information. Table 20.2 summarizes
their most prominent characteristics. Other recommendation approaches that also
mine a trust network can be found in, among others, [23, 63].

20.3.2.2 Automatic Trust Generation

The algorithms discussed in the previous section require explicit trust input from the
users. As a consequence, the applications that use such an algorithm must provide

6 www.ebay.com
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a means to obtain the necessary information; think e.g. of FilmTrust or Moleskiing.
However, this might not always be possible or feasible. In such cases, methods that
automatically infer trust estimates, without needing explicit trust information, might
be a better solution. An example of such a system can be found in [47].

Most commonly, these approaches base their trust generation mechanism on the
past rating behaviour of the users in the system. More specifically, deciding to what
degree a particular user should participate in the recommendation process is influ-
enced by his history of delivering accurate recommendations. Let us exemplify this
with the well-known approach of O’Donovan et al. [46].

Profile- and item-level trust Our intuition tells us that a user who has made a lot
of good recommendations in the past can be viewed as more trustworthy than other
users who performed less well. To be able to select the most trustworthy users in the
system, O’Donovan introduced two trust metrics, viz. profile-level and item-level
trust, reflecting the general trustworthiness of a particular user u, and the trustwor-
thiness of a user u with respect to a particular item i, respectively. Both trust metrics
need to compute the correctness of u’s recommendations for the target user a. In
particular, a prediction pa,i that is generated only by information coming from u
(hence u is the sole recommender) is considered correct if pa,i is within ε of a’s
actual rating ra,i.

The profile-level trust tP
u for u is then defined as the percentage of correct recom-

mendations that u contributed. Remark that this is a very general trust measure; in
practice it will often occur that u perfoms better in recommending a set of specific
items. To this aim, O’Donovan also proposed the more fine-grained item-level trust
ti
u, which measures the percentage of recommendations for item i that were correct.

Hence, in such automated approaches, trust values are not generated via trust prop-
agation and aggregation, but are based on the ratings that were given in the past.
Remark that O’Donovan’s methods are global trust metrics. The way the values are
obtained can be seen as probabilistic.

Trust-based filtering Similar to other trust-enhanced techniques, the values that
are obtained through the trust metric are used as weights in the recommendation
process. Just like Massa, O’Donovan et al. focus on trust-based adaptations of col-
laborative filtering. In [46] they investigate several options, such as combining the
obtained trust values with PCC information. An alternative to this scheme is to use
trust values as a filter, so that only the most trustworthy neighbours participate in the
recommendation process. This strategy is called trust-based filtering, see Formula
(20.5) in which wa,u denotes the PCC and RT+ = RT ∩R+.

pa,i = ra +

∑
u∈RT+

wa,u(ru,i− ru)

∑
u∈RT+

wa,u
(20.5)

In other words, only users whose item/profile-level trust exceeds a certain threshold,
and that have a positive correlation with a, are taken into account.
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In [46], O’Donovan and Smyth showed that trust-based filtering achieves better
accuracy than collaborative filtering in terms of average errors. Moreover, the al-
gorithm based on profile-level trust yields lower errors than collaborative filtering
in nearly 70% of all prediction cases.

O’Donovan’s method is a representative example in the group of strategies that
use automatic trust generation. A related approach can be found in [30], which
works with an utilitarian measure instead of a binary correctness function.

20.3.3 Empirical Comparison

One question that stands out is which of the state-of-the-art approaches discussed
above performs best in practice. Basically, so far, researchers in the trust-based rec-
ommender field introduced their own new algorithms and evaluated these on their
own applications and/or data sets, without including a comparison of other trust-
enhanced approaches based on the same data set/application. Therefore, in the re-
mainder of this section, we provide a head-to-head comparison of the performance
that the previously discussed trust-enhanced techniques can achieve on one and the
same data set. We focus on Golbeck’s trust-based weighted mean with TidalTrust
(Eq. (20.1)), Massa’s trust-based collaborative filtering with MoleTrust (Eq. (20.4)),
and O’Donovan’s trust-based filtering (Eq. (20.5)). Since our goal is to compare all
techniques on the same data sets and to investigate the influence of trust propagation,
we have chosen not to implement O’Donovan’s automatic trust generation strategy,
but to mine the same trust network as the other two strategies. Although O’Donovan
et al. do not use trust propagation in their experiments [46], it is of course possible
to do so. Since there is no explicit use of trust values in (20.5), we only need to
specify how propagation enlarges RT+ (see below).

20.3.3.1 Data Sets

The data sets we use in our experiments are obtained from Epinions.com, a popular
e-commerce site where users can write reviews about consumer products and assign
a rating to the products and the reviews. Two Epinions data sets are often used for ex-
perimenting with trust-enhanced recommender systems. The first one was collected
by Massa and Bhattacharjee [39] in a 5-week crawl and contains 139 738 products
that are rated by 49 290 users in total; the consumer products are rated on a scale
from 1 to 5. The second data set was compiled by Guha et al. [21]: this large data
set contains 1 560 144 reviews that received 25 170 637 ratings by 163 634 differ-
ent users. The reviews are evaluated by assigning a helpfulness rating which ranges
from ‘not helpful’ (1/5) to ‘most helpful’ (5/5). This data set does not contain any
information about consumer products and product ratings, but works with reviews
and review ratings instead; in other words, for this data set, we discuss and evaluate
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a ‘review recommender system’. Hence, in the context of Guha’s set, an item de-
notes a review of consumer goods, whereas for the crawled data set an item denotes
a consumer product.

In our experiments we focus on the number of recommendations/predictions that
can be generated by the systems and on the prediction errors, for random items
as well as controversial items. The latter are the most challenging items for a rec-
ommender system, since it is much harder to predict a score for an item that has
received a variety of high and low scores, reflecting disagreement about the item.
More than in any other case, a recommendation for a user needs to be truly per-
sonalized when the target item under consideration is controversial; i.e., when an
item has both ‘ardent supporters’ and ‘motivated adversaries’, with no clear major-
ity in either group. In [63], Victor et al. explain why classical standard deviation is
not sufficient to detect the true controversial items in a data set, and propose a new
measure to define the controversiality level of a particular item. Their methodology
leads to 1 416 controversial items in Guha’s data set, and 266 in Massa’s data set.
We refer to [63] for more details about the controversiality computation. To com-
pare the performance achieved for controversial items (CIs) with the performance
that can be obtained in general, we also present the average coverage and accuracy
for 1 416 and 266 randomly selected ‘popular’ items (RIs) (that have been evaluated
at least 20 times, analogous to the controversial items).

Epinions allows users to evaluate other users based on the quality of their reviews,
and to provide trust and distrust evaluations in addition to ratings. The fact that both
data sets contain explicit trust information from the users makes them very appro-
priate to study issues in trust-enhanced recommender systems. Users can evaluate
other users by including them in their WOT (i.e. a list of reviewers whose reviews
and ratings were consistently found to be valuable7), or by putting them in their
block list (a list of authors whose reviews were consistently found to be offensive,
inaccurate or low quality7, thus indicating distrust). In Guha’s data set, the trust eval-
uations make up an Epinions WOT graph consisting of 114 222 users and 717 129
non self-referring trust relations. Massa’s data set contains information on 49 288
users who issued or received 487 003 trust statements in total.

Note that the data sets only contain binary trust values, hence in our experiments
ta,u in (20.1), (20.4) and (20.5) can take on the values 0 (absence of trust) and 1
(full presence) only. This limitation leads to alterations of some of the trust-basesd
algorithms; e.g., Formula (20.1) reduces to the classical average. For simplicity, we
only consider one-step propagation in this paper. This means that for the propa-
gated versions of (20.4) and (20.5), we consider chains of length 1 and 2, whereas
for (20.2) we only consider chains of length 2 when there are no shorter chains
available. These two simplifications put a restriction on our empirical comparison,
because we cannot analyse the algorithms exactly as they were meant/designed to
be.

7 See www.epinions.com/help/faq/
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20.3.3.2 Coverage

Coverage refers to the number of target user - target item pairs for which a predic-
tion can be generated. A classical way to measure the coverage of a recommender
system is by using the leave-one-out method, which consists of hiding a rating and
trying to predict its hidden value. The coverage of a specific algorithm then refers
to the amount of computable predictions pa,i versus the number of leave-one-out
experiments to perform (i.e., the number of ratings available in the data set). For
Formula (20.3) we call pa,i computable if there is at least one user u for which the
PCC wa,u can be calculated, while for Formulas (20.1) and (20.4) a computable pa,i
means that there is at least one user u for which the (propagated) trust estimate ta,u
can be calculated. Finally, for Formula (20.5), predictions are possible when at least
one user u is found for which the PCC can be computed and ta,u is 1.

Table 20.3 shows the coverage (% COV) for controversial items (CIs) and randomly
selected items (RIs) in Guha’s and Massa’s data sets. The first four rows cover base-
line strategies (B1)–(B4). The first baseline strategy is a system that always predicts
5/5 (B1), since this is the predominant score for items in Epinions. The second sys-
tem computes the average received rating for the target item (B2), while the third
one yields the average rating given by target user a (B3). The latter method will
score well in a system where the users have a rating behaviour with little variation.
Finally, the last baseline returns a random helpfulness score between 1 and 5 (B4).

In general, baselines (B1), (B2) and (B4) achieve maximal coverage for both con-
troversial and randomly selected items: (B1) and (B4) do not rely on any additional
(trust or PCC) information, and since the items in our experiments are evaluated at
least 20 times, it is always possible to compute (B2). With (B3), in those cases in
which the target user rated only one item, his average rating is lacking, so a predic-
tion cannot be generated.

For the other algorithms in Table 20.3, the numbers in the first column refer to
the corresponding recommendation formulas given above. For the trust-enhanced
approaches, we distinguish between experiments that did not use propagated trust
information (higher rows) and those that did (bottom rows). We only consider one-
step propagation: for (P1) and (P4), we maintained the propagation strategy used in
TidalTrust and MoleTrust8 respectively, while for (P5) we added a user to RT if he
belongs to the WOT of the target user a, or is directly trusted by a WOT member of a.

Without propagation, it is clear that the coverage of the collaborative filtering
algorithm is superior to that of the others, and approaches the maximal value. This is
due to the fact that PCC information is, in general, more readily available than direct
trust information: there are normally more users for which a positive correlation
with the target user a can be computed than users in a’s WOT. On the other hand,
trust-based filtering (20.5), which also uses PCC weights, is the most demanding
strategy because it requires users in a’s WOT who have already rated two other

8 Note that we incorporate Massa et al.’s horizon-based strategy for binary trust settings [35].
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items in common with a (otherwise the PCC can not be computed). In between these
extremes, the coverage for TidalTrust (20.1) is a bit higher than that of MoleTrust
(20.4) because the latter can only generate predictions for target users who have
rated at least two items, otherwise the average rating for the target user can not be
computed).

This ranking of approaches in terms of coverage still applies when propagated
trust information is taken into account, but note that the difference with collabo-
rative filtering has shrunk considerably. In particular, thanks to trust propagation,
the coverage increases with about 25% (10%) for controversial (randomly selected)
items in the first set, and more than 30% in the second set.

For Guha’s data set, the coverage results for controversial items are significantly
lower than those for randomly selected items. This is due to the fact that, on average,
controversial items in this data set receive less ratings than randomly selected items,
which yields less leave-one-out experiments per item, but also a smaller chance that
such an item was rated by a user with whom the target user a has a positive PCC, or
by a user that a trusts. This also explains the lower coverage results for the nontriv-
ial recommendation strategies. The same observations cannot be made for Massa’s
data set: on average, the CIs receive more ratings than the RIs (21 131 vs. 12 741).
This explains the somewhat lower coverage performance of the algorithms on the
random item set.

Also remark that the coverage results for Massa’s data set are significantly lower
in general than those for Guha’s; (20.1), (20.4) and (20.5) achieve a coverage that
is at least 20% worse. Users in Guha’s data set rate much more items than users
in Massa’s data set, which yields less users who have rated the same items, i.e.,
neighbours (through trust or PCC) that are needed in the computation.

20.3.3.3 Accuracy

As with coverage, the accuracy of a recommender system is typically assessed
by using the leave-one-out method, more in particular by determining the devia-
tion between the hiding ratings and the predicted ratings. In particular, we use two
well-known measures, viz. mean absolute error (MAE) and root mean squared error
(RMSE) [22]. The first measure considers every error of equal value, while the latter
one emphasizes larger errors. Since reviews and products are rated on a scale from
1 to 5, the extreme values that MAE and RMSE can reach are 0 and 4. Even small
improvements in RMSE are considered valuable in the context of recommender sys-
tems. For example the Netflix prize competition9 offers a $1 000 000 reward for a
reduction of the RMSE by 10%.

The MAE and RMSE reported in Table 20.3 is overall higher for the controver-
sial items than for the randomly selected items. In other words, generating good
predictions for controversial items is much harder than for randomly chosen items.

9 See http://www.netflixprize.com/
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This applies to all the algorithms, but most clearly to the baseline strategies (except
(B4)). While in Massa’s data set all algorithms adjust themselves in more or less
the same way, in Guha’s data set (B1) and (B2) clearly experience more difficulties
when generating predictions for controversial items: whereas for random items they
are competitive with collaborative filtering and the trust-enhanced approaches, their
MAE and RMSE on the controversial item set increase with more than 1 on the
rating scale from 1 to 5.

Also note that it is more difficult to generate good recommendations in Massa’s
data set than in Guha’s, for controversial as well as random items. This is due to the
higher inherent controversiality level of the former data set.

When focusing on the MAE of the non-baseline approaches for controversial items,
we notice that, without propagation, trust-enhanced approaches all yield better re-
sults than collaborative filtering10 (with one exception for trust-based filtering on
Massa’s CIs), which is in accordance with the observations made in [15, 36]. This
can be attributed to the accuracy/coverage trade-off: a coverage increase is usually
at the expense of accuracy, and vice versa. It also becomes clear when taking into
account trust propagation: as the coverage of the trust-enhanced algorithms nears
that of the collaborative filtering algorithm, so do the MAEs.

However, the RMSEs give us a different picture. On the controversial item sets,
the RMSE of the trust-enhanced approaches is generally higher than that of collabo-
rative filtering, which does not always occur on the random sets; recall that a higher
RMSE means that more large prediction errors occur. One possible explanation for
this is the fact that, for controversial items, the set RT of trusted acquaintances that
have rated the target item is too small (e.g., contains only 1 user), and in particular
smaller than R+. This hypothesis is also supported by the fact that with trust prop-
agation (which enlarges RT ) RMSEs rise at a slower rate than the corresponding
MAEs. Moreover, it is often the case that the propagated algorithms achieve lower
RMSEs than their unpropagated counterparts, see e.g. the results on controversial
items in Massa’s data set.

20.3.3.4 Conclusion

The experiments on both Epinions data sets, each with their own characteristics, en-
dorse the same conclusions. For random items, intelligent strategies such as collabo-
rative filtering and trust-based algorithms barely outperform the baselines. However,
the baselines fall short in generating good recommendations for controversial items.
Trust-enhanced systems perform better in this respect, although there is certainly
still room for improvement; remember the higher RMSEs and the fact that trust-
based approaches on Massa’s CIs yield no visible improvements over collaborative
filtering. These findings call for further research on improving the algorithms and

10 Note that all the MAE improvements on Guha’s data set are statistically significant (p < 0.000).
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identifying specific cases where trust approaches are effective (think e.g. of Massa
et al.’s results for cold start users).

The coverage and accuracy results show no clear winner among the three state-
of-the-art trust-enhanced strategies proposed by Golbeck et al., Massa et al., and
O’Donovan et al. Trust-based collaborative filtering seems to score best on Massa’s
data set, while trust-based weighted mean and trust-based filtering achieve the best
accuracy on Guha’s data set; this trend is also confirmed by the results obtained by
propagation.

The two data sets contain rating information and trust information, which makes
them popular in trust-enhanced recommender experiments. However, they have one
shortcoming: the trust values in Epinions are binary, making it impossible to inves-
tigate all aspects of the algorithms we discussed in this chapter, since a lot of the
existing trust-based approaches are based on the assumption that trust is a gradual
concept. Unfortunately, there are no such data sets publicly available.

20.4 Recent Developments and Open Challenges

In the previous sections we have covered the basics of trust modeling, trust metrics,
and trust-enhanced recommender systems. In this section, we want to give the reader
a foretaste of new directions in the research area of trust-based recommendation sys-
tems. This is certainly not meant to be a complete overview, but rather a selection of
recent developments in the field. In particular, we will briefly discuss the following
issues: alleviating the trust-based cold start problem, visualization of trust-enhanced
recommender systems, theoretical foundations for trust-based research, and involv-
ing distrust in the recommendation process.

Massa and Avesani have shown that the user cold start problem in classical rec-
ommender systems can be alleviated by including a trust network among its users.
They demonstrated that, for new users, it is more beneficial to issue a few trust
statements (compared to rating some items) in order to get good recommendations
from the system [35]. However, Victor et al. have shown that cold start users in the
classical sense (who rated only a few items) are very often cold start users in the
trust sense as well [61]. Hence, new users must be encouraged to connect to other
users to expand the trust network as soon as possible, but choosing whom to con-
nect to is often a difficult task. Given the impact this choice has on the delivered
recommendations, it is critical to guide newcomers through this early stage connec-
tion process. In [61] this problem is tackled by identifying three types of key figures
in the recommender system’s network, viz. frequent raters, mavens and connectors.
The authors show that, for a cold start user, connecting to one of the identified key
figures is much more advantageous than including a randomly chosen user, with re-
spect to coverage as well as accuracy of the generated recommendations.

Remark that these connection guidance issues link up with the broader problem
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of trust bootstrapping, i.e., the problem of how to establish initial trust relations in
the network. O’Donovan, too, addresses this problem, but in a very different way:
he introduces PeerChooser, a new procedure to visualize a trust-based collaborative
filtering recommender system [45]. More specifically, PeerChooser visualizes both
information coming from the traditional similarity measure PCC, and information
coming from the underlying trust-space generated fom the rating data (remember
O’Donovan’s profile- and item-level trust [46]). One of the main features of the sys-
tem is its possiblity to extract trust information on the fly, directly from the user at
recommendation time. This is done by moving specific icons (representing users in
the system) on an interactive interface. In this way, the user can indicate his mood
and preferences, thereby actively providing real-time trust information.

There are also other ways to establish trust relations when the information is not
explicitly given by the users. Several sources of social data can be consulted, such
as online friend and business networks (think e.g. of Facebook or LinkedIn), e-mail
communication, reputation systems, etc. In the recommender system literature, they
are often lumped together and collectively referred to as trust, although they map
onto different concepts: behavioral theory clearly draws a distinction between ho-
mophily or cognitive similarity (similarity between people/tastes/etc.), social capital
(reputation, opinion leadership), tie strength (in terms of relationship duration and
interaction frequency), and trust (see e.g. [40, 41]). Potentially all these social data
sources could be incorporated into a (trust-enhanced) recommender system, but so
far not much research has been conducted to find out which ones will be most use-
ful [4], and whether these sources would provide similar results as the classical
trust-based recommendation approaches discussed in this chapter. In [5], Arazy et
al. embark upon this problem and argue that the design of social recommenders
should be grounded in theory, rather than making ad hoc design choices as is often
the case in current algorithms.

Another recent research direction of a completely different nature is the investiga-
tion of the potential of distrust in trust-based recommender systems. Whereas in the
trust modeling domain only a few attempts have been made to incorporate distrust,
in the recommender domain this is even less so. This is due to several reasons, the
most important ones being that very few data sets containing distrust information
are available, and that there is no general consensus yet about how to propagate it
and to use it for recommendation purposes. A first experimental evaluation of the
effects of involving distrust in the recommendation process is reported in [64]. In
this paper, three distrust strategies are investigated, viz. distrust as an indicator to
reverse deviations, distrust as a filter for neighbour selection, and distrust as a de-
bugger of a web of trust. The first two strategies are based on the rationale that trust
can be used to select similar users (neighbours) in collaborative filtering systems,
while the latter strategy has been suggested by various researchers in the field, see
e.g. [20, 68]. The results indicate that the first technique is not the line to take. Dis-
trust as a filter and/or debugger looks more promising, but it is clear that much work
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remains to be done in this nascent research area before one can come to a more
precise conclusion.

20.5 Conclusions

In this chapter we have given an introduction to the research area of trust modeling,
and illustrated how trust networks can improve the performance of classical recom-
mender systems. We discussed several state-of-the-art implementations of these so-
called trust-enhanced recommender strategies, and provided an experimental eval-
uation of their performance on two data sets from Epinions.com. This comparison
in terms of coverage and accuracy did not yield any clear winner, but did show that
each of the algorithms has its own merits.

Recommender applications that maintain a social trust network among their users
can benefit from trust propagation strategies that have proven to yield a surplus
value, whereas in cases where it is not immediately possible to collect explicit trust
statements, methods that are able to automatically compute trust values seem the
most ideal solution. Of course, these strategies could not have been devised without
the appropriate data sets and/or applications to experiment with.

In fact, one of the main difficulties in the trust-enhanced recommender research
domain is the lack of publicly available and suitable test data. Hence, it is our hope
that in the near future more such data and applications become within reach of every
researcher in need of it, and we strongly believe that this will attract and inspire even
more people, thereby stimulating the research in this thriving area of trust-based
recommendation.
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Chapter 21
Group Recommender Systems:
Combining Individual Models

Judith Masthoff

Abstract This chapter shows how a system can recommend to a group of users by
aggregating information from individual user models and modelling the users affec-
tive state. It summarizes results from previous research in this area. It also shows
how group recommendation techniques can be applied when recommending to in-
dividuals, in particular for solving the cold-start problem and dealing with multiple
criteria.

21.1 Introduction

Most work on recommender systems to date focuses on recommending items to
individual users. For instance, they may select a book for a particular user to read
based on a model of that user’s preferences in the past. The challenge recommender
system designers traditionally faced is how to decide what would be optimal for
an individual user. A lot of progress has been made on this, as evidenced by other
chapters in this handbook (e.g. Chapters 2,3, 4,5 and 6).

In this chapter, we go one-step further. There are many situations when it would
be good if we could recommend to a group of users rather than to an individual. For
instance, a recommender system may select television programmes for a group to
view or a sequence of songs to listen to, based on models of all group members. Rec-
ommending to groups is even more complicated than recommending to individuals.
Assuming that we know perfectly what is good for individual users, the issue arises
how to combine individual user models. In this chapter, we will discuss how group
recommendation works, what its problems are, and what advances have been made.
Interestingly, we will show that group recommendation techniques have many uses
as well when recommending to individuals. So, even if you are developing recom-
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mender systems aimed at individual users you may still want to read on (perhaps
reading Section 21.7 first will convince you).

This chapter focusses on deciding what to recommend to a group, in particular
how to aggregate individual user models. There are other issues to consider when
building a group recommender system which are outside the scope of this chapter.
In particular:

• How to acquire information about individual users’ preferences. The usual rec-
ommender techniques can be used (such as explicit ratings and collaborative-
and content-based filtering, see other handbook chapters). There is a complica-
tion in that it is difficult to infer an individual’s preferences when a group uses
the system, but inferences can be made during individual use combined with
a probabilistic model when using it in company. An additional complication is
that an individual’s ratings may depend on the group they are in. For instance,
a teenager may be very happy to watch a programme with his younger siblings,
but may not want to see it when with his friends.

• How will the system know who is present? Different solutions exist, such as
users explicitly logging in, probabilistic mechanisms using the time of day to
predict who is present, the use of tokens and tags, etc [10].

• How to present and explain group recommendations? As seen in this hand-
book’s chapter on explanations, there are already many considerations when
presenting and explaining individual recommendations. The case of group rec-
ommendations is even more difficult. More discussion on explaining group rec-
ommendations is provided in [8] and under Challenges in our final section.

• How to help users to settle on a final decision? In some group recommenders,
users are given group recommendations, and based on these recommendations
negotiate what to do. In other group recommenders this is not an issue (see Sec-
tion 21.2.3 on the difference between passive and active groups). An overview
of how users’ decisions can be aided is provided in [8].

The next section highlights usage scenarios of group recommenders, and pro-
vides a classification of group recommenders inspired by differences between the
scenarios. Section 21.3 discusses strategies for aggregating models of individual
users to allow for group recommendation, what strategies have been used in exist-
ing systems, and what we have learned from our experiments in this area. Section
21.4 deals with the issue of order when we want to recommend a sequence of items.
Section 21.5 provides an introduction into the modelling of affective state, includ-
ing how an individual’s affective state can be influenced by the affective states of
other group members. Section 21.6 explores how such a model of affective state can
be used to build more sophisticated aggregation strategies. Section 21.7 shows how
group modelling and group recommendation techniques can be used when recom-
mending to an individual user. Section 21.8 concludes this chapter and discusses
future challenges.
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21.2 Usage Scenarios and Classification of Group
Recommenders

There are many circumstances in which adaptation to a group is needed rather than
to an individual. Below, we present two scenarios that inspired our own work in this
area, discuss the scenarios underlying related work, and provide a classification of
group recommenders inspired by differences between the scenarios.

21.2.1 Interactive Television

Interactive television offers the possibility of personalized viewing experiences. For
instance, instead of everybody watching the same news program, it could be per-
sonalized to the viewer. For me, this could mean adding more stories about the
Netherlands (where I come from), China (a country that fascinates me after having
spent some holidays there) and football, but removing stories about cricket (a sport
I hardly understand) and local crime. Similarly, music programs could be adapted
to show music clips that I actually like.

There are two main differences between traditional recommendation as it applies
to say PC-based software and the interactive TV scenarios sketched above. Firstly,
in contrast to the use of PCs, television viewing is largely a family or social activ-
ity. So, instead of adapting the news to an individual viewer, the television would
have to adapt it to the group of people sitting in front of it at that time. Secondly,
traditional work on recommendation has often concerned recommending one par-
ticular thing to the user, so for instance, which movie the user should watch. In the
scenarios sketched above, the television needs to adapt a sequence of items (news
items, music clips) to the viewer. The combination of recommending to a group and
recommending a sequence is very interesting, as it may allow you to keep all indi-
viduals in the group satisfied by compensating for items a particular user dislikes
with other items in the sequence which they do like.

21.2.2 Ambient Intelligence

Ambient intelligence deals with designing physical environments that are sensitive
and responsive to the presence of people. For instance, consider the case of a book-
store where sensors detect the presence of customers identified by some portable
device (e.g. a Bluetooth-enabled mobile phone, or a fidelity card equipped with an
active RFID tag). In this scenario, there are various sensors distributed among the
shelves and sections of the bookstore which are able to detect the presence of indi-
vidual customers. The bookstore can associate the identification of customers with
their profiling information, such as preferences, buying patterns and so on.
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With this infrastructure in place, the bookstore can provide customers with a re-
sponsive environment that would adapt to maximise their well-being with a view
to increasing sales. For instance, the device playing the background music should
take into account the preferences of the group of customers within hearing distance.
Similarly, LCD displays scattered in the store show recommended books based on
the customers nearby, the lights on the shop’s display window (showing new titles)
can be rearranged to reflect the preferences and interests of the group of customers
watching it, and so on. Clearly, group adaptation is needed, as most physical envi-
ronments will be used by multiple people at the same time.

21.2.3 Scenarios Underlying Related Work

In this section we discuss the scenarios underlying the best known group recom-
mender systems:

• MUSICFX [15] chooses a radio station for background music in a fitness centre,
to suit a group of people working out at a given time. This is similar to the
Ambient Intelligence scenario discussed above.

• POLYLENS [17] is a group recommender extension of MOVIELENS. MOVIE-
LENS recommends movies based on an individual’s taste as inferred from rat-
ings and social filtering. POLYLENS allows users to create groups and ask for
group recommendations.

• INTRIGUE [2] recommends places to visit for tourist groups taking into account
characteristics of subgroups within that group (such as children and the dis-
abled).

• The TRAVEL DECISION FORUM [7] helps a group to agree on the desired at-
tributes of a planned joint holiday. Users indicate their preferences on a set
of features (like sport and room facilities). For each feature, the system ag-
gregates the individual preferences, and users interact with embodied conver-
sational agents representing other group members to reach an accepted group
preference.

• The COLLABORATIVE ADVISORY TRAVEL SYSTEM (CATS) [16] also helps
users to choose a joint holiday. Users consider holiday packages, and critique
their features (e.g., ‘like the one shown but with a swimming pool’). Based on
these critiques, the system recommends other holidays to them. Users also select
holidays they like for other group members to see, and these are annotated with
how well they match the preferences of each group member (as induced from
their critiques). The individual members’ critiques results in a group preference
model, and other holidays are recommended based on this model.

• YU’S TV RECOMMENDER [20] recommends a television program for a group
to watch. It bases its recommendation on the individuals’ preferences for pro-
gram features (such as genre, actors, keywords).
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21.2.4 A Classification of Group Recommenders

The scenarios provided above differ on several dimensions, which provide a way to
classify group recommender systems:

• Individual preferences are known versus developed over time. In most scenar-
ios, the group recommender starts with individual preferences. In contrast, in
CATS, individual preferences develop over time, using a critiquing style ap-
proach. Chapter 13 discusses critiquing and its role in group recommendation.

• Recommended items are experienced by the group versus presented as options.
In the Interactive TV scenario, the group experiences the news items. In the
Ambient Intelligence and MUSICFX scenarios, they experience the music. In
contrast, in the other scenarios, they are presented with a list of recommenda-
tions. For example, POLYLENS presents a list of movies the group may want to
watch.

• The group is passive versus active. In most scenarios, the group does not interact
with the way individual preferences are aggregated. However, in the TRAVEL
DECISION FORUM and CATS the group negotiates the group model.

• Recommending a single item versus a sequence. In the scenarios of MUSICFX,
POLYLENS, and YU’S TV RECOMMENDER it is sufficient to recommend indi-
vidual items: people normally only see one movie per evening, radio stations
can play forever, and YU’S TV RECOMMENDER chooses one TV program only.
Similarly, in the TRAVEL DECISION FORUM and CATS users only go on one
holiday. In contrast, in our Interactive TV scenario, a sequence of items is rec-
ommended, for example making up a complete news broadcast. Similarly, in
INTRIGUE, it is quite likely that a tourist group would visit multiple attractions
during their trip, so would be interested in a sequence of attractions to visit.
Also, in the Ambient Environment scenario it is likely that a user will hear mul-
tiple songs, or see multiple items on in-store displays.

In this chapter, we will focus on the case where individual preferences are known,
the group directly experiences the items, the group is passive, and a sequence is rec-
ommended. Recommending a sequence raises interesting questions regarding se-
quence order (see Section 21.4) and considering the individuals’ affective state (see
Sections 21.5 and 21.6). A passive group with direct experience of the items makes
it even more important that the group recommendation is good.

DeCampos et al.’s classification of group recommenders also distinguishes be-
tween passive and active groups [4]. In addition, it uses two other dimensions:

• How individual preferences are obtained. They distinguish between content-
based and collaborative filtering. Of the systems mentioned above, POLYLENS
is the only one that uses collaborative filtering.

• Whether recommendations or profiles are aggregated. In the first case, recom-
mendations are produced for individuals and then aggregated into a group rec-
ommendation. In the second case, individual preferences are aggregated into a
group model, and this model is used to produce a group recommendation. They
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mention INTRIGUE and POLYLENS as aggregating recommendations, while the
others aggregate profiles.

These two dimensions are related to how the group recommender is implemented
rather than being inherent to the usage scenario. In this chapter, we focus on ag-
gregating profiles, but the same aggregation strategies apply when aggregating rec-
ommendations. The material presented in this chapter is independent of how the
individual preferences are obtained.

21.3 Aggregation Strategies

The main problem group recommendation needs to solve is how to adapt to the
group as a whole based on information about individual users’ likes and dislikes. For
instance, suppose the group contains three people: Peter, Jane and Mary. Suppose a
system is aware that these three individuals are present and knows their interest in
each of a set of items (e.g. music clips or advertisements). Table 21.1 gives example
ratings on a scale of 1 (really hate) to 10 (really like). Which items should the system
recommend, given time for four items?

Table 21.1: Example of individual ratings for ten items (A to J)

A B C D E F G H I J

Peter 10 4 3 6 10 9 6 8 10 8
Jane 1 9 8 9 7 9 6 9 3 8
Mary 10 5 2 7 9 8 5 6 7 6

21.3.1 Overview of Aggregation Strategies

Many strategies exist for aggregating individual ratings into a group rating (e.g.
used in elections and when selecting a party leader). For example, the Least Misery
Strategy uses the minimum of ratings to avoid misery for group members (Table
21.2).

Eleven aggregation strategies inspired by Social Choice Theory are summarised
in Table 21.3 (see [10] for more details).
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Table 21.2: Example of the Least Misery Strategy

A B C D E F G H I J

Peter 10 4 3 6 10 9 6 8 10 8
Jane 1 9 8 9 7 9 6 9 3 8
Mary 10 5 2 7 9 8 5 6 7 6
Group Rating 1 4 2 6 7 8 5 6 3 6

21.3.2 Aggregation Strategies Used in Related Work

Most of the related work uses one the aggregation strategies in Table 21.3 (some-
times with a small variation), and they differ in the one used:

• INTRIGUE uses a weighted form of the Average strategy. It bases its group rec-
ommendations on the preferences of subgroups, such as children and the dis-
abled. It takes the average, with weights depending on the number of people in
the subgroup and the subgroup’s relevance (children and disabled were given a
higher relevance).

• POLYLENS uses the Least Misery Strategy, assuming groups of people going to
watch a movie together tend to be small and that a small group tends to be as
happy as its least happy member.

• MUSICFX uses a variant of the Average Without Misery Strategy. Users rate
all radio stations, from +2 (really love this music) to -2 (really hate this music).
These ratings are converted to positive numbers (by adding 2) and then squared
to widen the gap between popular and less popular stations. An Average With-
out Misery strategy is used to generate a group list: the average of ratings is
taken but only for those items with individual ratings all above a threshold. To
avoid starvation and always picking the same station, a weighted random selec-
tion is made from the top stations of the list.

• YU’S TV RECOMMENDER uses a variant of the Average Strategy. It bases its
group recommendation on individuals’ ratings of program features: -1 (dislikes
the feature), +1 (likes the feature) and 0 (neutral). The feature vector for the
group minimizes its distance compared to individual members’ feature vectors.
This is similar to taking the average rating per feature.

• The TRAVEL DECISION FORUM has implemented multiple strategies, includ-
ing the Average Strategy and the Median Strategy. The Median strategy (not in
Table 21.3) uses the middle value of the ratings. So, in our example, this results
in group ratings of 10 for A, and 9 for F. The Median Strategy was chosen be-
cause it is nonmanipulable: users cannot steer the outcome to their advantage
by deliberately giving extreme ratings that do not truly reflect their opinions. In
contrast, for example, with the Least Misery strategy devious users can avoid
getting items they dislike slightly, by giving extremely negative ratings. The is-
sue of manipulability is most relevant when users provide explicit ratings, used



684 Judith Masthoff

Table 21.3: Overview of Aggregation Strategies

Strategy How it works Example

Plurality Voting Uses ‘first past the post’: repetitively,
the item with the most votes is chosen.

A is chosen first, as it has the highest
rating for the majority of the group,
followed by E (which has the highest
rating for the majority when exclud-
ing A).

Average Averages individual ratings B’s group rating is 6, namely
(4+9+5)/3.

Multiplicative Multiplies individual ratings B’s group rating is 180, namely
4*9*5.

Borda Count Counts points from items’ rankings in
the individuals’ preference lists, with
bottom item getting 0 points, next one
up getting one point, etc

A’s group rating is 17, namely 0 (last
for Jane) + 9 (first for Mary) + 8
(shared top 3 for Peter)

Copeland Rule Counts how often an item beats other
items (using majority vote) minus
how often it looses

F’s group rating is 5, as F beats
7 items (B,C,D,G,H,I,J) and looses
from 2 (A,E).

Approval Voting Counts the individuals with ratings
for the item above a approval thresh-
old (e.g. 6)

B’s group rating is 1 and F’s is 3.

Least Misery Takes the minimum of individual rat-
ings

B’s group rating is 4, namely the
smallest of 4,9,5.

Most Pleasure Takes the maximum of individual rat-
ings

B’s group rating is 9, namely the
largest of 4,9,5.

Average without
Misery

Averages individual ratings, after ex-
cluding items with individual ratings
below a certain threshold (say 4).

J’s group rating is 7.3 (the average of
8,8,6), while A is excluded because
Jane hates it.

Fairness Items are ranked as if individuals are
choosing them in turn.

Item E may be chosen first (highest
for Peter), followed by F (highest for
Jane) and A (highest for Mary).

Most respected
person

Uses the rating of the most respected
individual.

If Jane is the most respected person,
then A’s group rating is 1. If Mary is
most respected, then it is 10.

for group recommendation only, and are aware of others’ ratings, all of which is
the case in the TRAVEL DECISION FORUM. It is less relevant when ratings are
inferred from user behaviour, also used for individual recommendations, and
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users are unaware of the ratings of others (or even of the aggregation strategy
used).

• In CATS, users indicate through critiquing which features a holiday needs to
have. For certain features, users indicate whether they are required (e.g. ice
skating required). For others, they indicate quantities (e.g. at least 3 ski lifts
required). The group model contains the requirements of all users, and the item
which fulfils most requirements is recommended. Users can also completely
discard holidays, so, the strategy has a Without Misery aspect.

It should be noted that both YU’S TV RECOMMENDER and the TRAVEL DE-
CISION FORUM aggregate preferences for each feature without using the idea of
fairness: loosing out on one feature is not compensated by getting your way on
another.

Though some exploratory evaluation of MUSICFX, POLYLENS and CATS has
taken place, for none of these systems it has been investigated how effective their
strategy really is, and what the effect would be of using a different strategy. The
experiments presented in the next section shed some light on this question.

In contrast, some evaluation of YU’S TV RECOMMENDER has taken place [20].
They found that their aggregation worked well when the group was quite homoge-
nous, but that results were disliked when the group was quite heterogeneous. This is
as we would expect, given the Average Strategy will make individuals quite happy
if they are quite similar, but will cause misery when tastes differ widely.

21.3.3 Which Strategy Performs Best

We conducted a series of experiments to investigate which strategy from Table 21.3
is best (see [10] for details).

In Experiment 1 (see Figure 21.1), we investigated how people would solve this
problem, using the User as Wizard evaluation method [13]. Participants were given
individual ratings identical to those in Table 21.1. These ratings were chosen to
be able to distinguish between strategies. Participants were asked which items the
group should watch, if there was time for one, two, .., seven items. We compared
participants’ decisions and rationale with those of the aggregation strategies. We
found that participants cared about fairness, and about preventing misery and star-
vation (”this one is for Mary, as she has had nothing she liked so far”). Participants’
behaviour reflected that of several of the strategies (e.g. the Average, Least Misery,
and Average Without Misery were used), while other strategies (e.g. Borda count,
Copeland rule) were clearly not used.

In Experiment 2 (see Figure 21.2), participants were given item sequences cho-
sen by the aggregation strategies as well as the individual ratings in Table 21.1. They
rated how satisfied they thought the group members would be with those sequences,
and explained their ratings. We found that the Multiplicative Strategy (which multi-
plies the individual ratings) performed best, in the sense that it was the only strategy
for which all participants thought its sequence would keep all members of the group
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satisfied. Borda count, Average, Average without Misery and Most Pleasure also
performed quite well. Several strategies (such as Copeland rule, Plurality voting,
Least misery) could be discarded as they clearly were judged to result in misery for
group members.

We also compared the participants’ judgements with predictions by simple sat-
isfaction modelling functions. Amongst other, we found that more accurate predic-
tions resulted from using:

• quadratic ratings, which e.g. makes the difference between a rating of 9 and 10
bigger than that between a rating of 5 and 6

• normalization, which takes into account that people rate in different ways, e.g.,
some always use the extremes of a scale, while others only use the middle of
the scale.

21.4 Impact of Sequence Order

As mentioned in Section 21.2, we are particularly interested in recommending a
sequence of items. For example, for a personalised news program on TV, a recom-
mender may select seven news items to be shown to the group. To select the items, it
can use an aggregation strategy (such as the Multiplicative Strategy) to combine in-
dividual preferences, and then select the seven items with the highest group ratings.
Once the items have been selected, the question arises in what order to show them
in the news program. For example, it could show the items in descending order of
group rating, starting with the highest rated item and ending with the lowest rated
one. Or, it could mix up the items, showing them in a random order.

However, the problem is actually far more complicated than that. Firstly, in re-
sponsive environments, the group membership changes continuously, so deciding
on the next seven items to show based on the current members seems not a sensible

I know individual ratings of 
Peter, Mary, and Jane. What to 

recommend to the group?  If 
time to watch 1-2-3-4-5-6-7 

clips…

Why?

Fig. 21.1: Experiment 1: which sequence of items do people select if given the
system’s task
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You know the individual ratings of 
you and your two friends. I have 

decided to show you the following 
sequence. How satisfied would you 

be? And your friends?

Why?

Fig. 21.2: Experiment 2: What do people like?

strategy, as in the worse case, none of these members may be present anymore when
the seventh item is shown.

Secondly, overall satisfaction with a sequence may depend more on the order
of the items than one would expect. For example, for optimal satisfaction, we may
need to ensure that our news program has:

• A good narrative flow. It may be best to show topically related items together.
For example, if we have two news items about Michael Jackson (say about his
funeral and about a tribute tour) then it seems best if these items are presented
together. Similarly, it would make sense to present all sports’ items together.

• Mood consistency. It may be best to show items with similar moods together.
For example, viewers may not like seeing a sad item (such as a soldier’s death)
in the middle of two happy items (such as a decrease in unemployment and a
sporting victory).

• A strong ending. It may be best to end with a well-liked item, as viewers may
remember the end of the sequence most.

Similar ordering issues arise in other recommendation domains. For example, a mu-
sic programme may want to consider rhythm when sequencing items. The recom-
mender may need additional information (such as items’ mood, topics, rhythm) to
optimise ordering. It is beyond the topic of this chapter to discuss how this can be
done (and is very recommender domain specific). We just want to highlight that the
items already shown may well influence what the best next item is. For example,
suppose the top four songs in a music recommender were all Blues. It may well be
that another Blues song ranked sixth may be a better next selection than a Classical
Opera song ranked fifth.

In Experiment 3 (see Figure 21.3), we investigated how a previous item may in-
fluence the impact of the next item. Amongst others, we found that mood (resulting
from the previous item) and topical relatedness can influence ratings for subsequent
items. This means that aggregating individual profiles into a group profile should
be done repeatedly, every time a decision needs to be made about the next item to
display.
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How much would you want to watch these 7 
news items? How would they make you feel?

[Insert name of your favorite sport’s club] wins important game
Fleet of limos for Jennifer Lopez 100-metre trip
Heart disease could be halved 
Is there room for God in Europe?
Earthquake hits Bulgaria
UK fire strike continues
Main three Bulgarian players injured after Bulgaria-Spain football match

The first item on the news is “England football team 
has to play Bulgaria”. Rate interest, resulting mood. 

Rate interest in the 7 news items again

Fig. 21.3: Experiment 3: Investigating the effect of mood and topic

21.5 Modelling Affective State

When recommending to a group of people, you cannot give everybody what they
like all of the time. However, you do not want anybody to get too dissatisfied. For
instance, in a shop it would be bad if a customer were to leave and never come back,
because they really cannot stand the background music. Many shops currently opt
to play music that nobody really hates, but most people not love either. This may
prevent loosing customers, but would not result in increasing sales. An ideal shop
would adapt the music to the customers in hearing range in such a way that they get
songs they really like most of the time (increasing the likelihood of sales and returns
to the shop). To achieve this, it is unavoidable that customers will occasionally get
songs they hate, but this should happen at a moment when they can cope with it
(e.g. when being in a good mood because they loved the previous songs). Therefore,
it is important to monitor continuously how satisfied each group member is. Of
course, it would put an unacceptable burden on the customers if they had to rate their
satisfaction (on music, advertisements etc) all the time. Similarly, measuring this
satisfaction via sensors (such as heart rate monitors or facial expression recognizers)
is not yet an option, as they tend to be too intrusive, inaccurate or expensive. So, we
propose to model group members’ satisfaction; predicting it based on what we know
about their likes and dislikes.
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Is this an 
English word?
(20s to reply)

You got 5 right out 
of 20. How satisfied 
are you with your
performance on this 
task?

Is this an 
English word?
(20s to reply)

You got 15 right out of 20. 
How satisfied are you with your
performance on this task? How 
satisfied are you with your 
performance overall?

Fig. 21.4: Experiment 4: Measuring overall satisfaction during a series of tasks

21.5.1 Modelling an Individual’s Satisfaction on its Own

In [12], we investigated four satisfaction functions to model an individual’s satisfac-
tion. We compared the predictions of these satisfaction functions with the predic-
tions of real users. We also performed an experiment (see Figure 21.4) to compare
the predictions with the real feelings of users.

The satisfaction function that performed best defines the satisfaction of a user
with a new item i after having seen a sequence items of items as:

Sat(items+< i >) =
δ ×Sat(items)+ Impact(i,δ ×Sat(items))

1+δ (21.1)

with the impact on satisfaction of new item i given existing satisfaction s defined as

Impact(i,s) = Impact(i)+(s−Impact(i))×ε, for 0≤ ε ≤ 1 and 0≤ δ ≤ 1 (21.2)

Parameter δ represents satisfaction decaying over time (with δ=0 past items have
no influence, with δ=1 there is no decay).

Parameter ε represents the influence of the user’s satisfaction after experienc-
ing previous items on the impact of a new item. This parameter is inspired by the
psychology and economics literature, which shows that mood impacts evaluative
judgement [12]. For instance, half the participants answering a questionnaire about
their TVs received a small present first to put them in a good mood. These partici-
pants were found to have televisions that performed better. So, if a user is in a good
mood due to liking previous items, the impact of an item they normally dislike may
be smaller (with how much smaller depending on ε).

Parameters δ and ε are user dependent (as confirmed in the experiment in [12]).
We will not define Impact(i) in this chapter, see [12] for details, but it involves
quadratic ratings and normalization as found in the experiment discussed above.
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21.5.2 Effects of the Group on an Individual’s Satisfaction

The satisfaction function given does not take the satisfaction of other users in the
group into account, which may well influence a user’s satisfaction. As argued in
[12] based on social psychology, two main processes can take place.

Emotional Contagion. Firstly, the satisfaction of other users can lead to so-called
emotional contagion: other users being satisfied may increase a user’s satisfaction
(e.g. if somebody smiles at you, you may automatically smile back and feel better as
a result). The opposite may also happen: other users being dissatisfied may decrease
a user’s satisfaction. For instance, if you are watching a film with a group of friends
than the fact that your friends are clearly not enjoying it may negatively impact your
own satisfaction.

Emotional contagion may depend on your personality (some people are more
easily contaged than others), and your relationship with the other person. Anthro-
pologists and social psychologists have found substantial evidence for the existence
of four basic types of relationships, see Figure 21.5. In Experiment 5 (see Figure
21.6), we confirmed that emotional contagion indeed depends on the relationship
you have: you are more likely to be contaged by somebody you love (like your best
friend) or respect (like your mother or boss) then by somebody you are on equal
footing with or are in competition with.

Conformity. Secondly, the opinion of other users may influence your own expressed
opinion, based on the so-called process of conformity.

Figure 21.7 shows the famous conformity experiment by Asch [3]. Participants
were given a very easy task to do, like decide which of the four lines has the same
orientation as the line in Card A. They thought they were surrounded by other par-
ticipants, but in fact the others where part of the experiment team. The others all

Equality 
Matching

Authority Ranking

“Somebody you 
do deals with / 
compete with”

Market Pricing

“Somebody you 
respect highly”

“Somebody you 
share everything 
with, e.g. a best 

friend”

Communal Sharing

“Somebody you 
are on equal footing with”

Fig. 21.5: Types of relationship
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answered the question before them, picking the same wrong answer. It was shown
that most participants then pick that same wrong answer as well.

Two types of conformity exist: (1) normative influence, in which you want to be
part of the group and express an opinion like the rest of the group even though inside
you still belief differently, and (2) informational influence, in which your own opin-
ion changes because you believe the group must be right. Informational influence
would change your own satisfaction, while normative influence can change the sat-
isfaction of others through emotional contagion because of the (insincere) emotions
you are portraying.

More complicated satisfaction functions are presented in [12] to model emotional
contagion and both types of conformity.

21.6 Using Affective State inside Aggregation Strategies

Once you have an accurate model of the individual users’ satisfaction, it would be
nice to use this model to improve on the group aggregation strategies. For instance,
the aggregation strategy could set out to please the least satisfied member of the
group. This can be done in many different ways, and we have only started to explore
this issue. For example:

• Strongly Support Grumpiest strategy. This strategy picks the item which is most
liked by the least satisfied member. If multiple of these items exist, it uses one
of the standard aggregation strategies, for instance the Multiplicative Strategy,
to distinguish between them.

• Weakly Support Grumpiest strategy. This strategy selects the items that are quite
liked by the least satisfied member, for instance items with a rating of 8 or
above. It uses one of the standard aggregation strategies, like the Multiplicative
Strategy, to choose between these items.

• Weighted strategy. This strategy assign weights to users depending on their sat-
isfaction, and then use a weighted form of a standard aggregation strategy. For
instance, Table 21.4 shows the effect of assigning double the weight to Jane

Think of somebody you share 
everything with (maybe your 
best friend). Assume you and 
this person are watching TV 
together. You are enjoying the 
program a little. How would it 
make you feel to know that the 
other person is enjoying it 
greatly / really hating it?

Fig. 21.6: Experiment 5: Impact of relationship type on emotional contagion
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Which card has a 
line oriented as the 

line on card A?

# 3

# 3

# 3

# 3

# 3

# 3 # 3

# 3

I don’t want to 

be odd.

# 3

# 3

Fig. 21.7: Conformity experiment by Asch

when using the Average Strategy. Note that weights are impossible to apply to
a strategy like the Least Misery Strategy.

Table 21.4: Results of Average strategy with equal weights and with twice the
weight for Jane

A B C D E F G H I J

Peter 10 4 3 6 10 9 6 8 10 8
Jane 1 9 8 9 7 9 6 9 3 8
Mary 10 5 2 7 9 8 5 6 7 6
Average (equal weights) 7 6 4.3 7.3 8.7 8.7 5.7 7.7 6.7 7.3
Average (Jane twice) 5.5 6.8 5.3 8.3 8.3 8.8 5.8 8 5.8 7.5

In [14], we discuss this in more detail, propose an agent-based architecture for ap-
plying these ideas to the ambient intelligent scenario, and describe an implemented
prototype. Clearly, empirical research is needed to investigate the best way of using
affective state inside an aggregation strategy.
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21.7 Applying Group Recommendation to Individual Users

So, what if you are developing an application that recommends to a single user?
Group recommendation techniques can be useful in three ways: (1) to aggregate
multiple criteria, (2) to solve the so-called cold-start problem, (3) to take into ac-
count opinions of others. Chapter 22 also discusses how aggregation may be needed
when recommending to individuals, and covers several specific aggregation func-
tions.

21.7.1 Multiple Criteria

Sometimes it is difficult to give recommendations because the problem is multi-
dimensional: multiple criteria play a role. For instance, in a news recommender
system, a user may have a preference for location (being more interested in stories
close to home, or related to their favourite holiday place). The user may also prefer
more recent news, and have topical preferences (e.g. preferring news about politics
to news about sport). The recommender system may end up with a situation like in
Table 21.5, where different news story rate differently on the criteria. Which news
stories should it now recommend?

Table 21.5: Ratings on criteria for 10 news items

A B C D E F G H I J

Topic 10 4 3 6 10 9 6 8 10 8
Location 1 9 8 9 7 9 6 9 3 8
Recency 10 5 2 7 9 8 5 6 7 6

The issue of multiple criteria is discussed in details in Chapter 24. Here we show
how to address this issue in group recommender systems.

Table 21.5 resembles the one we had for group recommendation above (Table
21.1), except that now instead of multiple users we have multiple criteria to satisfy.
It is possible to apply our group recommendation techniques to this problem. How-
ever, there is an important difference between adapting to a group of people and
adapting to a group of criteria. When adapting to a group of people, it seems sen-
sible and morally correct to treat everybody equally. Of course, there may be some
exceptions, for instance when the group contains adults as well as children, or when
it is somebody’s birthday. But in general, equality seems a good choice, and this was
used in the group adaptation strategies discussed above. In contrast, when adapting
to a group of criteria, there is no particular reason for assuming all criteria are as
important. It is even quite likely that not all criteria are equally important to a par-
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ticular person. Indeed, in an experiment we found that users treat criteria in different
ways, giving more importance to some criteria (e.g. recency is seen as more impor-
tant than location) [11]. So, how can we adapt the group recommendation strategies
to deal with this? There are several ways in which this can be done:

• Apply the strategy to the most respected criteria only. The ratings of unimpor-
tant criteria are ignored completely. For instance, assume criterion Location is
regarded unimportant, then its ratings are ignored. Table 21.6 shows the result
of the Average Strategy when ignoring Location.

• Apply the strategy to all criteria but use weights. The ratings of unimportant cri-
teria are given less weight. For instance, in the Average Strategy, the weight of a
criterion is multiplied with its ratings to produce new ratings. For instance, sup-
pose criteria Topic and Recency were three times as important as criterion Lo-
cation. Table 21.7 shows the result of the Average Strategy using these weights.
In case of the Multiplicative Strategy, multiplying the ratings with weights does
not have any effect. In that strategy, it is better to use the weights as exponents,
so replace the ratings by the ratings to the power of the weight. Note that in both
strategies, a weight of 0 results in ignoring the ratings completely, as above.

• Adapt a strategy to behave differently to important versus unimportant criteria:
Unequal Average Without Misery. Misery is avoided for important criteria but
not for unimportant ones. Assume criterion Location is again regarded as unim-
portant. Table 21.8 shows the results of the Unequal Average Without Misery
strategy with threshold 6.

Table 21.6: Average Strategy ignoring unimportant criterion Location

A B C D E F G H I J

Topic 10 4 3 6 10 9 6 8 10 8
Recency 10 5 2 7 9 8 5 6 7 6
Group 20 9 5 13 19 17 11 14 17 14

Table 21.7: Average Strategy with weights 3 for Topic and Recency and 1 for Lo-
cation

A B C D E F G H I J

Topic 30 12 9 18 30 27 18 24 30 24
Location 1 9 8 9 7 9 6 9 3 8
Recency 30 15 6 21 27 24 15 18 21 18
Group 61 36 23 48 64 60 39 51 54 50
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Whom does she 

resemble ?

Fig. 21.8: Cold-start problem in case of social-filtering

Table 21.8: Unequal Average Without Misery Strategy with Location unimportant
and threshold 6

A B C D E F G H I J

Topic 10 4 3 6 10 9 6 8 10 8
Location 1 9 8 9 7 9 6 9 3 8
Recency 10 5 2 7 9 8 5 6 7 6
Group 21 22 26 26 23 20 22

We have some evidence that people’s behaviour reflects the outcomes of these
strategies [11], however, more research is clearly needed in this area to see which
strategy is best. Also, more research is needed to establish when to regard a criterion
as ”unimportant”.

The issue of multiple criteria is also the topic of another chapter in this handbook
(see Chapter 24).

21.7.2 Cold-Start Problem

A big problem for recommender systems is the so-called cold-start problem: to adapt
to a user, the system needs to know what the user liked in the past. This is needed
in content-based filtering to decide on items similar to the ones the user liked. It
is needed in social filtering to decide on the users who resemble this user in the
sense that they (dis)liked the same items in the past (see Figure 21.8). So, what if
you do not know anything about the user yet, because they only just started using the
system? Recommender system designers tend to solve this problem by either getting
users to rate items at the start, or by getting them to answer some demographic
questions (and then using stereotypes as a starting point, e.g. elderly people like
classical music).
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Let’s 
adapt to the 

group

Learned about 
the user so-far

Fig. 21.9: Gradually learning about the user, and whom she resembles most

Both methods require user effort. It is also not easy to decide which items to get a
user to rate, and stereotypes can be quite wrong and offensive (some elderly people
prefer pop music and people might not like being classified as elderly).

The group recommendation work presented in this chapter provides an alterna-
tive solution. When a user is new to the system, we simply provide recommendations
to that new user that would keep the whole group of existing users happy. We as-
sume that our user will resemble one of our existing users, though we do not know
which one, and that by recommending something that would keep all of them happy,
the new user will be happy as well.

Gradually, we will learn about the new user’s tastes, for instance, by them rating
our recommended items or, more implicitly, by them spending time on the items
or not. We provide recommendations to the new user that would keep the group of
existing users happy including the new user (or more precisely, the person we now
assume the new user to be). The weight attached to the new user will be low initially,
as we do not know much about them yet, and will gradually increase. We also start
to attach less weight to existing users whose taste now evidently differs from our
new user.

Figure 21.9 shows an example of the adaptation: the system is including the
observed tastes of the new user to some extent, and has started to reduce the weights
of some of the other users. After prolonged use of the system, the user’s inferred
wishes will completely dominate the selection.

We have done a small-scale study using the MovieLens dataset to explore the
effectiveness of this approach. We randomly selected five movies, and twelve users
who had rated them: ten users as already known to the recommender, and two as
new users. Using the Multiplicative Strategy on the group of known users, movies
were ranked for the new users. Results were encouraging: the movie ranked highest
was in fact the most preferred movie for the new users, and also the rest of the
ranking was fine given the new users’ profiles. Applying weights led to a further
improvement of the ranking, and weights started to reflect the similarity of the new
users with known users. More detail on the study and on applying group adaptation
to solve the cold-start problem is given in [9].
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21.7.3 Virtual Group Members

Finally, group adaptation can also be used when adapting to an individual by adding
virtual members to the group. For instance, a parent may be fine with the television
entertaining their child, but may also want the child occasionally to learn something.
When the child is alone, the profile of the parent can be added to the group as a
virtual group member, and the TV could try to satisfy both.

21.8 Conclusions and Challenges

Group recommendation is a relatively new research area. This chapter is intended
as an introduction in the area, in particular on aggregating individual user profiles.
For more detail please see [10, 12, 14, 11, 9, 7, 8].

21.8.1 Main Issues Raised

The main issues raised in this chapter are:

• Adapting to groups is needed in many scenarios such as interactive TV, am-
bient intelligence, recommending to tourist groups, etc. Inspired by the differ-
ences between scenarios, group recommenders can be classified using multiple
dimensions.

• Many strategies exist for aggregating individual preferences (see Table 21.3),
and some perform better than others. Users seem to care about avoiding misery
and fairness.

• Existing group recommenders differ on the classification dimensions and in the
aggregation strategies used. See Table 21.9 for an overview.

• When recommending a sequence of items, aggregation of individual profiles has
to occur at each step in the sequence, as earlier items may impact the ratings of
later items.

• It is possible to construct satisfaction functions to predict how satisfied an indi-
vidual will be at any time during a sequence. However, group interaction effects
(such as emotional contagion and conformity) can make this complicated.

• It is possible to evaluate in experiments how good aggregation strategies and
satisfaction functions are, though this is not an easy problem.

• Group aggregation strategies are not only important when recommending to
groups of people, but can also be applied when recommending to individuals,
e.g. to prevent the cold-start problem and deal with multiple criteria.
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21.8.2 Caveat: Group Modelling

The term ”group modelling” is also used for work that is quite different from that
presented in this chapter. A lot of work has been on modelling common knowledge
between group members (e.g. [6, 19], modelling how a group interacts (e.g. [18, 5])
and group formation based on individual models (e.g. [18, 1]).

21.8.3 Challenges

Compared to work on individual recommendations, group recommendation is still
quite a novel area. The work presented in this chapter is only a starting point. There
are many challenging directions for further research, including:

• Recommending item sequences to a group. Our own work seems to be the only
work to date on recommending balanced sequences that address the issue of
fairness. Even though sequences are important for the usage scenario of IN-
TRIGUE, their work has not investigated making sequences balanced nor has it
looked at sequence order. Clearly, a lot more research is needed on recommend-
ing and ordering sequences, in particular on how already shown items should
influence the ratings of other items. Some of this research will have to be rec-
ommender domain specific.

• Modelling of affective state. There is a lot more work needed to produce val-
idated satisfaction functions. The work presented in this chapter and [12] is
only the starting point. In particular, large scale evaluations are required, as are
investigations on the affect of group size.

• Incorporating affective state within an aggregation strategy As noted in Sec-
tion 21.6, there are many ways in which affective state can be used inside an
aggregation strategy. We presented some initial ideas in this area, but extensive
empirical research is required to investigate this further.

• Explaining group recommendations: Transparency and Privacy One might
think that accurate predictions of individual satisfaction can also be used to
improve the recommender’s transparency: showing how satisfied other group
members are could improve users’ understanding of the recommendation pro-
cess and perhaps make it easier to accept items they do not like. However, users’
need for privacy is likely to conflict with their need for transparency. An impor-
tant task of a group recommender system is to avoid embarrassment. Users of-
ten like to conform to the group to avoid being disliked (we discussed normative
conformity as part of Section 21.5.2 on how others in the group can influence an
individual’s affective state). In [12], we have investigated how different group
aggregation strategies may affect privacy. More work is needed on explanations
of group recommendations, in particular on how to balance privacy with trans-
parency and scrutability. Chapter 15 provides more detail on the different roles
of explanations in recommender systems.
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• User interface design. An individual’s satisfaction with a group recommenda-
tion may be increased by good user interface design. For example, when show-
ing an item, users could be shown what the next item will be (e.g. in a TV pro-
gramme through a subtitle). This may inform users who do not like the current
item that they will like the next one better.

• Group aggregation strategies for cold-start problems. In Section 21.7.2, we
have sketched how group aggregation can be used to help solve the cold-start
problem. However, our study in this area was very small, and a lot more work
is required to validate and optimise this approach.

• Dealing with uncertainty. In this chapter, we have assumed that we have accu-
rate profiles of individuals’ preferences. For example, in Table 21.1, the recom-
mender knows that Peter’s rating of item B is 4. However, in reality we will
often have probabilistic data. For example, we may know with 80% certainty
that Peter’s rating is 4. Adaptations of the aggregation strategies may be needed
to deal with this. DeCampos et al try to deal with uncertainty by using Baysian
networks [4]. However, they have so far focussed on the Average and Plurality
Voting strategies, not yet tackling the avoidance of misery and fairness issues.

• Empirical Studies. More empirical evaluations are vital to bring this field for-
wards. It is a challenge to design well-controlled, large scale empirical studies
in a real-world setting, particularly when dealing with group recommendations
and affective state. All research so far (including my own) has either been on a
small scale, in a contrived setting or lacks control.
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Chapter 22
Aggregation of Preferences in Recommender
Systems

Gleb Beliakov, Tomasa Calvo and Simon James

Abstract This chapter gives an overview of aggregation functions toward their use
in recommender systems. Simple aggregation functions such as the arithmetic mean
are often employed to aggregate user features, item ratings, measures of similarity,
etc., however many other aggregation functions exist which could deliver increased
accuracy and flexibility to many systems. We provide definitions of some important
families and properties, sophisticated methods of construction, and various exam-
ples of aggregation functions in the domain of recommender systems.

22.1 Introduction

Aggregation of preferences, criteria or similarities happens at various stages in rec-
ommender systems. Typically such aggregation is done by using either the arith-
metic mean or maximum/minimum functions. Many other aggregation functions
which would deliver flexibility and adaptability towards more relevant recommen-
dations are often overlooked. In this chapter we will review the basics of aggrega-
tion functions and their properties, and present the most important families, includ-
ing generalized means, Choquet and Sugeno integrals, ordered weighted averaging,
triangular norms and conorms, as well as bipolar aggregation functions. Such func-
tions can model various interactions between the inputs, conjunctive, disjunctive
and mixed behavior. Following, we present different methods of construction of ag-
gregation functions, based either on analytical formulas, algorithms, or empirical
data. We discuss how parameters of aggregation functions can be fitted to observed
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data, while preserving these essential properties. By replacing the arithmetic mean
with more sophisticated, adaptable functions, by canceling out redundancies in the
inputs, one can improve the quality of automatic recommendations, and tailor rec-
ommender systems to specific domains.

22.2 Types of Aggregation in Recommender Systems

In general, recommender systems (RS) guide users to items of interest selected
from vast databases of electronic objects and information. The orientation toward
the presentation of personalized item-subsets distinguishes RS conceptually from
similar processes such as internet filtering, with the RS drawing on a number of
user-specific justifications in order to generate individualized recommendations.
Since their inception, the use of RS has expanded rapidly with existing applications
that recommend movies [34], web-pages [5], news articles [36], medical treatments
[14, 31], music and other products [32, 40].

Clearly, the justifications used to recommend an item will depend on the specific
application and the way data is collected and used by the system. Recommendations
based on justifications concerning item features can be broadly classified as content-
based (CB), whereas recommendations that utilize user similarity are referred to as
collaborative (CF) [1, 2]. It is useful to further identify demographic (DF), utility-
(UB) and knowledge-based (KB) methods [16] as distinct from the usual perception
of CB recommendation as anything that uses item-item similarity. The more recent
literature has been characterized by a focus on hybrid systems (HS), which combine
two or more of these approaches.

Collaborative methods use the item preferences or ratings of similar users as jus-
tification for recommendation. This type of RS has been successful for e-commerce
sites like Amazon.com [32] where interest is better inferred through similar taste
than vague or subjective item descriptions. Consider a periphery genre like Indie
music, which is defined loosely by its separation from the mainstream. As the genre
encompasses a broad range of styles, Indie artists may have little in common be-
sides their fans.1 Aggregation functions (usually the simple or weighted average)
are often employed to aggregate the ratings or preferences of similar users, however
they can also be used to determine user similarity and help define neighborhoods
(see also Chapter 4 of this book).

Content-based filtering methods form justifications by matching item-features to
user profiles. For instance, a news recommender may build a profile for each user
that consists of keywords and the interest in an unseen news item can be predicted
by the number of keywords in the story that correspond to those in the user’s profile.
The way aggregation functions are used (and whether they are used) for content-
based methods depends on the nature of the profile that is given to each user and

1 It is interesting that Indie music fans, who thrive on a lack of conformity to pop culture and
consumerism, have become an easy target-market for e-commerce cites that utilize collaborative
RS. This is discussed in a recent literary article [26].
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the description of items. We consider their use in item score computation, similarity
computation and the construction of profiles.

Demographic filtering techniques assign each user to a demographic class based
on their user profiles. Each demographic class has an associated user archetype or
user stereotype that is then used to form justifications for recommendation. Rather
than item history, user similarity here is more likely to be calculated from personal
information and hence may be of lower dimension than most collaborative tech-
niques. This makes nearest-neighbor or other classification and clustering tools par-
ticularly useful.

Rather than build long-term models, utility-based recommenders match items to
the current needs of the users, taking into account their general tendencies and pref-
erences. For instance, a user may be looking for a particular book, and it is known
from past behavior that old hardback editions are preferred even if it takes longer
to ship them. As is the case with content-based filtering, items can be described in
the system by their features and, more specifically, the utility associated with each
of those features. Aggregation can then be performed as it is with content-based
filtering, although the user profiles and system information may differ.

Knowledge-based recommenders use background knowledge about associated
and similar items to infer the needs of the user and how they can best be met.
Knowledge-based methods will then draw not only on typical measures of simi-
larity like correlation, but also on feature similarities that will interest the user. For
instance, when a user indicates that he liked A Good Year, a KB recommender sys-
tem might know that this film could be associated with either A Beautiful Mind
(which also stars Russell Crowe) or Jeux d’Enfants (which also stars Marion Cotil-
lard). Since the user has shown a preference for French films in the past, the system
will assume that the user liked A Good Year because it featured Marion Cotillard,
and recommend accordingly. It is pointed out in [16] that KB recommenders often
draw on case-based reasoning approaches.

Hybrid recommender systems are employed to overcome the inherent drawbacks
of each recommendation method. Burke [16] distinguishes weighted, mixed, switch-
ing, feature combination, cascade, feature augmentation and meta-level HS. Aggre-
gation functions may be involved in the hybridization process - e.g. to combine
different recommender scores in weighted HS or the features in feature combina-
tion HS. On the other hand, some of these hybrid methods are particularly use-
ful in improving the performance of aggregation functions used at different stages.
For instance, cascade methods use one filtering technique to reduce the size of the
dataset, while feature augmentation HS might use one method to reduce its dimen-
sion. Similarity measures used for CF could be based on the similarity between
user-specific aggregation functions (e.g. the similarity between weights and param-
eters) constructed in UB and CB frameworks. Similar meta-level HS are described
in [16]. The switching criteria in switching HS could be based to some degree on
aggregation functions, however here, as with mixed HS, their use is less likely.

Aggregation functions take multiple inputs and merge them into a single repre-
sentative output. Simple examples of aggregation functions include the arithmetic
mean, median, maximum and minimum. The use of more complicated and expres-
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sive functions in RS would usually be motivated by the desire for more accurate
recommendations, however in some circumstances aggregation functions might pro-
vide a practical alternative to other data processing methods. In the following sub-
sections we will investigate the role of aggregation functions within different types
of recommender system, indicating where they can be and have been applied.

22.2.1 Aggregation of Preferences in CF

Given a user u and a neighborhood of similar users Uk = {u1, ...,uk}, the preference
of u for an unseen item di can be predicted by aggregating the scores given by Uk.
We will denote the predicted degree of interest, rating or preference by R(u,di).

R(u,di) =
k

∑
j=1

sim(u,u j)R(u j,di) (22.1)

The function can be interpreted as a weighted arithmetic mean (WAM) where sim-
ilarities between the user and similar users sim(u,u j) = w j are the weights and
R(u j,di) = x j are the inputs to be aggregated. Provided w j,x j ≥ 0, the function
R(u,di) is an aggregation function. Whilst the WAM is simply interpreted, satis-
fies many useful properties and is computationally inexpensive, other aggregation
functions including power means (which can be non-linear) or the Choquet integral
(which accounts for correlated inputs) may give a more accurate prediction of the
users’ ratings.

22.2.2 Aggregation of Features in CB and UB Recommendation

Where the profile is representable as a vector of feature preferences, Pu =(p1, ..., pn),
items can then be described in terms of the degree to which they satisfy these fea-
tures, i.e. di = (x1, ...,xn). Here, a value of x j = 1 indicates that the preference p j
is completely satisfied by the item. Pu could also be a vector of keywords, in which
case x j = 1 might simply mean that the keyword p j is mentioned once. The overall
rating R(u,di) of an item is then determined by aggregating the x j,

R(u,di) = f (x1, ...,xn). (22.2)

Eq. (22.2) is an aggregation function provided the function satisfies certain
boundary conditions and is monotone with respect to increases in x j. The R(u,di)
scores can be used to provide a ranking of unseen items, which can then be recom-
mended. If the RS allows only one item to be shown, the how and why of this score
evaluation becomes paramount. If the user is only likely to buy/view items when



22 Aggregation of Preferences in Recommender Systems 709

all of their preferences are satisfied, a conjunctive function like the minimum should
be used. On the other hand, if some of the preferences are unlikely to be satisfied
simultaneously, e.g. the user is interested in drama and horror films, an averaging
or disjunctive function might be more reliable. We present many examples of these
broad classes of aggregation functions in Section 22.3.

In situations where it is practical to calculate item-item similarity, content-based
filtering could also be facilitated using methods that mirror those in collaborative
filtering [2]. In this case, a user profile might consist of all or a subset of previously
rated/purchased items, D = {d1, ...,dq}, and a measure of similarity is calculated
between the unseen item di and those in D,

R(u,di) =
q

∑
j=1,( j "=i)

sim(di,d j)R(u,d j). (22.3)

In this case, content-based methods can benefit from the use of aggregation func-
tions in determining item similarity and item neighborhoods as in Section 22.2.4.

22.2.3 Profile Construction for CB, UB

More sophisticated systems will assign a weight w j to each of the preferences in Pu.
To enhance the online-experience, many recommenders opt to learn the preferences
(and weights) from online behavior, rather than ask the user to state them explicitly.
The features of previously rated or purchased items can be aggregated to give an
overall score for each preference. Given a preference p j, let xi j be the degree to
which item di satisfies p j, then the score w(p j) will be

w(p j) = f (x1 j, ...,xn j). (22.4)

Once all the preferences are determined, these w(p j) can be used to determine w j
for use in calculations such as Eq. (22.2).

22.2.4 Item and User Similarity and Neighborhood Formation

The behavior and accuracy of recommendation when using (22.1) will be largely
dependent on how similarity (the weighting vector) is determined. The similarity
between one user and another can be measured in terms of items previously rated
or bought, or may be calculated based on known features associated with each user
- e.g. the age, location and interests of a user may be known. The most commonly
used measures of similarity, i.e. the weights in Eq. (22.1), are based on the cosine
calculation [39] and Pearson’s correlation coefficient [36]. Recently, other similarity
measures have emerged such as fuzzy distance [4] and other recommender-specific
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metrics [18, 3], based on the distribution of user ratings (see also Chapter 4 of this
book).

Eq. (22.1) can also be considered within the framework of a k-nearest-neighbors
(kNN) approach. Aggregation functions have been used to enhance the accuracy and
efficiency of nearest-neighbor rules, with the OWA and Choquet integral providing
the framework to model decaying weights and neighbor interaction [45, 12]. In the
nearest-neighbor setting, similarity is tantamount to multi-dimensional proximity
or distance. Euclidean distance was considered for measuring similarity for recom-
menders that use both ratings and personal information as inputs in [42]. Euclidean
distance is just one type of metric, and may not capture the concept of distance well
- for instance, where the data dimensions are correlated to some degree or even in-
commensurable. Metrics defined with the help of certain aggregation functions, in-
cluding the OWA operator and Choquet integral, have been investigated in [41, 13]
and could potentially prove useful for measuring similarity in some RS.

If we regard each value sim(u,u j) in (22.1) as a weight rather than a similarity, we
can keep in mind that the problem of weight identification for various aggregation
functions has been studied extensively. One method is to learn the weights from
a data subset by using least-squares fitting techniques. For instance, given a set of
mutually rated items D = {d1, ...,dq}, the weights of a WAM can be fitted using the
following program:

minimize
q

∑
i=1

(
R(u,di)−

k

∑
j=1

w jR(u j,di)

)2

s.t. w j ≥ 0, ∀ j
k

∑
j=1

w j = 1.

What is actually being determined is the vector of weights w= (w1, ...,wk) that min-
imizes the residual errors. Each weight is then the importance of a given user u j in
accurately predicting R(u,di). Non-linear functions such as the weighted geometric
mean can also be fitted in this way. Such algorithms are relatively efficient in terms
of computation time, and could be calculated either offline or in real-time depending
on the RS and size of the database.

Alternatively, aggregation functions can be used to combine differing measures
of similarity. Given a number of similarity measures sim1(u,u1), sim2(u,u1) etc.,
an overall measure of similarity can be obtained2. This type of aggregated simi-
larity was used in [20] for the recommendation of movies. In this example, cosine
and correlation scores were combined using the product, which is a non-linear and
conjunctive aggregation function.

2 For similarity based on multiple criteria, see Chapter 24 of this book.
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22.2.5 Connectives in Case-Based Reasoning for RS

The approach of many researchers in the fuzzy sets community has been to frame the
recommendation problem in terms of case-based reasoning [23] where aggregation
functions can be used as connectives . This results in rules of the form,

If di1 is A1 AND di2 is A2 OR . . . din is An THEN ... (22.5)

x1,x2, . . . ,xn denote the degrees of satisfaction of the rule predicates di1 is A1, etc.,
and aggregation functions are used to replace the AND and OR operations. For
instance, a user whose profile indicates a preference for comedies and action films
might have a recommendation rule “IF the film is a comedy OR an action THEN rec-
ommend it.” 3 Each genre can be represented as a fuzzy set with fuzzy connectives
used to aggregate the degrees of satisfaction. The OR- and AND-type behavior are
usually modeled by disjunctive and conjunctive aggregation functions respectively.
In recommender systems, it has been shown that the property of noble reinforce-
ment is desirable [44, 9]. This property allows many strong justifications to result
in a very strong recommendation, or a number of weak justifications to reduce the
recommendation if desired.

Functions that model (22.5) can be used to match items to profiles or queries in
CB, UB and KB. In some demographic RS, items will be generically recommended
to everyone in a given class, making the classification process the primary task of the
RS. It may be desirable to classify users by the degree to which they satisfy a number
of stereotypes, and in turn describe items in terms of their interest to each of these.
For instance, a personal loan with an interest-free period could be very attractive to
graduating students and somewhat attractive to new mothers, but of no interest to
someone recently married. A user could partially satisfy each of these archetypes,
requiring the system to aggregate the interest values in each demographic. This leads
to rules similar to (22.5). “IF the item is interesting to students OR interesting to
mothers THEN it will be interesting to user u” or “IF user u is unmarried AND
either a student OR mother, THEN recommend the item”.

22.2.6 Weighted Hybrid Systems

Given a number of recommendation scores obtained by using different methods,
e.g. RCF(u,di), RCB(u,di), etc., an overall score can be obtained using

R(u,di) = f (RCF(u,di),RCB(u,di), ...) (22.6)

with f an aggregation function. The P-Tango system [19] uses a linear combination
of collaborative and content-based scores to make its recommendations, and adjusts

3 We note here also that such rules could be used in any RS to decide when to recommend items,
e.g. “IF user is inactive THEN recommend something”.
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the weight according to the inferred user preferences. Aggregation of two or more
methods can be performed using a number of functions with different properties and
behavior. The use of non-linear or more complicated functions would enable some
recommenders to fine-tune the ranking process, creating less irrelevant and more
accurate predictions.

22.3 Review of Aggregation Functions

The purpose of aggregation functions is to combine inputs that are typically inter-
preted as degrees of membership in fuzzy sets, degrees of preference, strength of
evidence, or support of a hypothesis, and so on. In this section, we provide prelim-
inary definitions and properties before giving an introduction to some well known
families.

22.3.1 Definitions and Properties

We will consider aggregation functions defined on the unit interval f : [0,1]n →
[0,1], however other choices are possible. The input value 0 is interpreted as no
membership, no preference, no evidence, no satisfaction, etc., and naturally, an ag-
gregation of n 0s should yield 0. Similarly, the value 1 is interpreted as full mem-
bership (strongest preference, evidence), and an aggregation of 1s should naturally
yield 1.

Aggregation functions also require monotonicity in each argument, where an in-
crease to any input cannot result in a decrease in the overall score.

Definition 22.1 (Aggregation function). An aggregation function is a function of
n > 1 arguments that maps the (n-dimensional) unit cube onto the unit interval f :
[0,1]n→ [0,1], with the properties

(i) f (0,0, . . . ,0︸ ︷︷ ︸
n−times

) = 0 and f (1,1, . . . ,1︸ ︷︷ ︸
n−times

) = 1.

(ii) x≤ y implies f (x)≤ f (y) for all x,y ∈ [0,1]n.

For some applications, the inputs may have a varying number of components
(for instance, some values can be missing). Particularly in the case of automated
systems, it may be desirable to utilize functions defined for n = 2,3, . . . arguments
with the same underlying property in order to give consistent aggregation results.
Functions satisfying the following definition [33] may then be worth considering.

Definition 22.2 (Extended aggregation function). An extended aggregation func-
tion is a mapping

F :
⋃

n∈{1,2,...}
[0,1]n→ [0,1],
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such that the restriction of this mapping to the domain [0,1]n for a fixed n is an n-ary
aggregation function f , with the convention F(x) = x for n = 1.

Aggregation functions are classed depending on their overall behavior in relation
to the inputs [17, 21, 22]. In some cases we require high inputs to compensate for
low inputs, or that inputs may average each other. In other situations, it may make
more sense that high scores reinforce each other and low inputs are essentially dis-
carded.

Definition 22.3 (Classes). An aggregation function f : [0,1]n→ [0,1] is:
Averaging if it is bounded by min(x)≤ f (x)≤max(x);
Conjunctive if it is bounded by f (x)≤min(x);
Disjunctive if it is bounded by f (x)≥max(x);
Mixed otherwise.

The class of aggregation function to be used depends on how the inputs of the
recommender system are interpreted and how sensitive or broad an output is desired.
When aggregating recommendation scores in CF, the use of averaging functions en-
sures that the predicted interest in an item is representative of the central tendency
of the scores. On the other hand, the semantics of some mixed aggregation func-
tions makes their use appealing. For instance, MYCIN [14] is a classical expert
system used to diagnose and treat rare blood diseases and utilizes a mixed aggre-
gation function so that inputs of only high scores reinforce each other, while scores
below a given threshold are penalized.

There are several studied properties that can be satisfied by aggregation func-
tions, making them useful in certain situations. We provide definitions for those that
are frequently referred to in the literature.

Definition 22.4. [Properties] An aggregation function f : [0,1]n→ [0,1] is:
Idempotent if for every t ∈ [0,1] the output is f (t, t . . . , t) = t;
Symmetric if its value does not depend on the permutation of the arguments,

i.e., f (x1,x2, . . . ,xn) = f (xP(1),xP(2), . . . ,xP(n)) for every x and every permutation
P = (P(1),P(2), . . . ,P(n)) of (1,2 . . . ,n);

Associative if, for f : [0,1]2→ [0,1], f ( f (x1,x2),x3) = f (x1, f (x2,x3)) holds for
all x1,x2,x3;

Shift-invariant if for all λ ∈ [−1,1] and for all x = (x1, . . . ,xn), f (x1+λ , . . . ,xn+
λ ) = f (x)+λ whenever (x1 +λ , . . . ,xn +λ ) ∈ [0,1]n and f (x)+λ ∈ [0,1];

Homogeneous if for all λ ∈ [0,1] and for all x = (x1, . . . ,xn), f (λx1, . . . ,λxn) =
λ f (x);

Strictly monotone if x≤ y but x "= y implies f (x)< f (y);
Lipschitz continuous if there is a positive number M, such that for any two inputs

x,y∈ [0,1]n, | f (x)− f (y)|≤Md(x,y), where d(x,y) is a distance between x and
y. The smallest such number M is called the Lipschitz constant of f .

Has neutral elements if there is a value e∈ [0,1] such that f (e, . . . ,e, t,e, . . . ,e)= t
for every t ∈ [0,1] in any position.

Has absorbing elements if there is a value a ∈ [0, 1] such that f (x1, . . . , x j−1, a,
x j+1, . . . ,xn)= a for any x with x j = a.
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22.3.1.1 Practical Considerations in RS

We will discuss some of the implications of each of these properties with some
examples before providing the formal definitions of many important and extensively
studied aggregation functions.

Idempotency All averaging aggregation functions, including the means, OWA and
Choquet integral defined in Section 22.3.2, are idempotent4. The usual interpre-
tation of this property is toward a representation of consensus amongst the in-
puts. However in some RS applications, e.g. when aggregating ratings in CF,
the relative ranking of items is of more concern than the commensurability of
input/output interpretations.

Example 22.1. The geometric mean G(x,y) =√xy is idempotent, whereas
The product TP(x,y) = xy is not. For any two objects, d1 = (x1,y1) and d2 =
(x2,y2), however it follows that G(d1)> G(d2) implies TP(d1)> TP(d2).

Example 22.2. Let d1 = (0.5,0.5),d2 = (0.2,0.8). Using the geomet-
ric mean and the product to aggregate gives G(d1) = 0.5,G(d2) =
0.4,TP(d1) = 0.25,TP(d2) = 0.16. If di are item scores in CF, it might be
better to interpret the outputs as the predicted ratings for user u, in which
case we use G. If di are items described by the degree to which they sat-
isfy two of the user preferences in UB filtering, the overall utility might be
better indicated by TP since we want most of the preferences satisfied.

Symmetry Symmetry is often used to denote equal importance with regard to the
inputs. Weighted and non-weighted quasi-arithmetic means can be used depend-
ing on the situation. Although the ordered weighted averaging function (OWA)
is defined with respect to a weighting vector, the inputs are pre-sorted into non-
increasing order, hence it is symmetric regardless of w.

Example 22.3. A collaborative RS considers an item rated by three simi-
lar users di = (0.2,0.7,0.5). We consider using the weighting vector w =
(0.6,0.3,0.1) with either an OWA function or a weighted arithmetic mean
(WAM). In the case of the WAM, the weights suggest that user u1 is very

4 Idempotency and averaging behavior are equivalent for aggregation functions due to the mono-
tonicity requirement. This property is sometimes referred to as unanimity since the output agrees
with each input when the inputs are unanimous.
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similar to user u, and further that sim(u,u1)> sim(u,u2)> sim(u,u3). The
aggregated score in this case would be R(u,di) = WAM(di) = 0.6(0.2)+
0.3(0.7)+0.1(0.5) = 0.38 since u1 didn’t particularly like the item. If us-
ing the OWA, one interpretation of the weights suggests that user u will
like the item if one or two similar users liked it, no matter which of the
similar users it is. This gives R(u,di) = OWA(di) = 0.6(0.7)+0.3(0.5)+
0.1(0.2) = 0.59.

Associativity Associativity is a useful property for automatic computation as it
allows functions to be defined recursively for any dimension. This is potentially
useful for collaborative RS where data sparsity is a problem. The same function
could be used to evaluate one item rated by 10 similar users, and another rated
by 1000 similar users. T-norms and t-conorms, uninorms and nullnorms are as-
sociative, however the quasi-arithmetic means are not.

Example 22.4. A collaborative RS uses personal information to determine
similarity between users (i.e. the values do not need to be reassessed every
time a new item is rated). Rather than store an items×users matrix for each
user, the system uses a uninorm U(x,y) to aggregate the similar user ratings
and stores a single vector of aggregated item scores d = (U(di), ...,U(dn)).
When a new item score xi j is added, the system aggregates U(U(di),xi j)
and stores this instead of U(di). The advantage here is that neither the
previous scores nor the number of times the item is rated is required in
order to update the predicted rating.

Shift-invariance and Homogeneity The main advantage of shift-invariant and ho-
mogeneous functions is that translating or dilating the domain of consideration
will not affect relative orderings of aggregated inputs. The weighted arithmetic
mean, OWA and Choquet integral are all shift invariant, so it makes no differ-
ence whether inputs are considered on [0,100] or [1,7], as long as the inputs are
commensurable.

Strict monotonicity Strict monotonicity is desired in applications where the num-
ber of items to be shown to the user is limited. Weighted arithmetic means and
OWA functions are strictly monotone when w j > 0,∀ j, while geometric and
harmonic means are strict for x ∈]0,1]n. Aggregation functions which are not
strict, the maximum function for instance, could not distinguish between an item
d1 = (0.3,0.8) and another d2 = (0.8,0.8).
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Example 22.5. A holiday recommendation site uses a utility-based RS
where the Łukasiewicz t-conorm SL(x,y) = min(x + y,1) is used to ag-
gregate item features. It is able to show the user every item SL(di) = 1
by notifications through e-mail. It doesn’t matter that d1 = (0.3,0.8) and
d2 = (0.8,0.8), since both of them are predicted to completely satisfy the
user’s needs.

Lipschitz continuity Continuity, in general, ensures that small input inaccuracies
cannot result in drastic changes in output. Such a property is especially important
in RS where the inputs, whether item descriptions or user ratings, are likely to
be inexact. Some functions only violate this property on a small portion of the
domain (See Example 22.6). As long as this is taken into account when the RS
considers the recommendation scores, the function might still be suitable.

Example 22.6. The geometric mean G(x,y) =√xy fails the Lipschitz prop-
erty since the rate-of-change is unbounded when one of the inputs is close
to zero. On the other hand, the harmonic mean, given by H(x,y) = 2xy

x+y
(in the two-variate case) is Lipschitz continuous with Lipschitz constant
M = 2.

Neutral and absorbent elements Absorbent elements could be useful in RS to en-
sure that certain items always or never get recommended. For example, a UB
recommender could remove every item from consideration which has any fea-
tures that score zero, or definitely recommend items which completely satisfy
one of the user preferences. T-norms and t-conorms each have absorbent ele-
ments. Incorporating functions with neutral elements into a recommender system
that aggregates user ratings (in either a CF or CB framework) allows values to be
specified which will not affect recommendation scores. A movie that is liked by
many people, for instance, would usually have its overall approval rating reduced
by someone who was indifferent toward it but still required to rate it. If a neutral
value exists it will not influence the aggregated score.

22.3.2 Aggregation Families

22.3.2.1 Quasi-Arithmetic Means

The family of weighted quasi-arithmetic means generalizes the power mean, which
in turn includes other classical means such as the arithmetic and geometric mean as
special cases (see [15] for an overview of means).
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Definition 22.5 (Weighted quasi-arithmetic means). For a given strictly mono-
tone and continuous function g : [0,1]→ [−∞,+∞], called a generating function or
generator, and a weighting vector w = (w1, ...,wn), the weighted quasi-arithmetic
mean is the function

Mw,g(x) = g−1

(
n

∑
i=1

w jg(x j)

)
, (22.7)

where ∑w j = 1 and w j ≥ 0 ∀ j.
Special cases include:

Arithmetic means WAMw =
n
∑
j=1

w jx j, g(t) = t;

Geometric means Gw =
n
∏
j=1

xw j
j , g(t) = log(t);

Harmonic means Hw =

(
n
∑
j=1

w j
x j

)−1

, g(t) = 1
t ;

Power means Mw,[r] =

(
n
∑
j=1

w jxr
j

) 1
r

, g(t) = tr.

The term mean is usually used to imply averaging behavior. Quasi-arithmetic means
defined with respect to a weighting vector with all w j =

1
n are symmetric, and asym-

metric otherwise. Usually the weight allocated to a particular input is indicative of
the importance of that particular input. All power means (including WAMw,Gw and
Hw) are idempotent, homogeneous and strictly monotone on the open interval ]0,1[n,
however only the weighted arithmetic mean is shift-invariant. The geometric mean
is not Lipschitz continuous5.

22.3.2.2 OWA Functions

Ordered weighted averaging functions (OWA) are also averaging aggregation func-
tions, which associate a weight not with a particular input, but rather with its relative
value or order compared to others. They have been introduced by Yager [43] and
have become very popular in the fuzzy sets community.

Definition 22.6 (OWA). Given a weighting vector w, the OWA function is

OWAw(x) =
n

∑
j=1

w jx( j),

where the (.) notation denotes the components of x being arranged in non-increasing
order x(1) ≥ x(2) ≥ . . .≥ x(n).

Special cases of the OWA operator, depending on the weighting vector w include:

5 The Lipschitz property for quasi-arithmetic means and other generated aggregation functions is
explored in [11].
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Arithmetic mean where all the weights are equal, i.e. all w j =
1
n ;

Maximum function for w = (1,0, ...,0);
Minimum function for w = (0, ...,0,1);
Median function for w j = 0 for all j "= m, wm = 1 if n = 2m+1 is odd, and w j = 0

for all j "= m,m+1, wm = wm+1 = 0.5 if n = 2m is even.

The OWA function is a piecewise linear idempotent aggregation function. It is sym-
metric, homogeneous, shift-invariant, Lipschitz continuous and strictly monotone if
w j > 0,∀ j.

22.3.2.3 Choquet and Sugeno integrals

Referred to as fuzzy integrals, the Choquet integral and the Sugeno integral are
averaging aggregation functions defined with respect to a fuzzy measure. They are
useful for modeling interactions between the input variables x j.

Definition 22.7 (Fuzzy measure). Let N = {1,2, . . . ,n}. A discrete fuzzy measure
is a set function6 v : 2N → [0,1] which is monotonic (i.e. v(A)≤ v(B) whenever A⊆
B) and satisfies v( /0) = 0,v(N ) = 1. Given any two sets A,B ⊆N , fuzzy measures
are said to be:

Additive where v(A∪B) = v(A)+ v(B), for v(A∩B) = /0;
Symmetric where |A|= |B|→ v(A) = v(B);
Submodular if v(A∪B)− v(A∩B)≤ v(A)+ v(B);
Supermodular if v(A∪B)− v(A∩B)≥ v(A)+ v(B);
Subadditive if v(A∪B)≤ v(A)+ v(B) whenever A∩B = /0;
Superadditive if v(A∪B)≥ v(A)+ v(B) whenever A∩B = /0;
Decomposable if v(A∪B) = f (v(A),v(B)) whenever A∩B = /0, for a given func-

tion f : [0,1]2→ [0,1];
Sugeno (λ -fuzzy measure) if v is decomposable with f = v(A)+v(B)+λv(A)v(B),

λ ∈]−1,∞[.

The behavior of the Sugeno and Choquet integral depends on the values and
properties of the associated fuzzy measure. The fuzzy measure used to define the
Choquet integral can be interpreted as a weight allocation, not merely to individual
inputs but rather to each subset of inputs. It may be that there are redundancies
among the inputs, or that certain inputs complement each other.

Definition 22.8 (Choquet integral). The discrete Choquet integral with respect to
a fuzzy measure v is given by

Cv(x) =
n

∑
j=1

x( j)[v({k|xk ≥ x( j)})− v({k|xk ≥ x( j+1)})], (22.8)

6 A set function is a function whose domain consists of all possible subsets of N . For example,
for n = 3, a set function is specified by 23 = 8 values at v( /0), v({1}), v({2}), v({3}), v({1,2}),
v({1,3}), v({2,3}), v({1,2,3}).
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where (.) in this case denotes the components of x being arranged in non-decreasing
order such that (x(1) ≤ x(2) ≤ · · ·≤ x(n)) (note that this is opposite to OWA).

Special cases of the Choquet integral include weighted arithmetic means and the
OWA function where the fuzzy measure is additive or symmetric respectively. Sub-
modular fuzzy measures result in Choquet integrals which are concave, the upshot
of which is that increases to lower inputs affect the function more than increases
to higher inputs. Conversely, supermodular fuzzy measures result in convex func-
tions. Choquet integrals are idempotent, homogeneous, shift-invariant and strictly
monotone where A ! B→ v(A)< v(B). Where the fuzzy measure is symmetric, the
function will obviously satisfy the symmetry property.

The Choquet integral has been predominantly used for numerical inputs, the
Sugeno integral defined below is useful where the inputs are ordinal. It also uses
fuzzy measures for its definition.

Definition 22.9 (Sugeno integral). The Sugeno integral with respect to a fuzzy
measure v is given by

Sv(x) = max
j=1,...,n

min{x( j),v(Hj)}, (22.9)

where (.) denotes a non-decreasing permutation of the inputs such that (x(1)≤ x(2)≤
· · ·≤ x(n)) (the same as with the Choquet integral), and Hj = {( j), . . . ,(n)}.

Certain indices have been introduced in order to better understand the behavior of
the Choquet and Sugeno integrals. In particular, the Shapley value gives an indica-
tion of the overall importance of a given input, while the interaction index between
two inputs shows to what extent they are redundant or complimentary.

Definition 22.10 (Shapley value).
Let v be a fuzzy measure. The Shapley index for every i ∈N is

φ(i) = ∑
A⊆N\{i}

(n− |A|−1)!|A|!
n!

[v(A∪{i})− v(A)].

The Shapley value is the vector φ(v) = (φ(1), . . . ,φ(n)).

Definition 22.11 (Interaction index). Let v be a fuzzy measure. The interaction
index for every pair i, j ∈N is

Ii j = ∑
A⊆N\{i, j}

(n− |A|−2)!|A|!
(n−1)!

[v(A∪{i, j})− v(A∪{i})− v(A∪{ j})+ v(A)].

Where the interaction index is negative, there is some redundancy between the two
inputs. Where it is positive, the inputs complement each other to some degree and
their weight together is worth more than their combined individual weights.
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22.3.2.4 T-Norms and T-Conorms

The prototypical examples of conjunctive and disjunctive aggregation functions are
so-called triangular norms and conorms respectively (t-norms and t-conorms) [28].
Given any t-norm T : [0,1]2→ [0,1], there is a dual function which is a t-conorm S,
with

S(x,y) = 1−T (1− x,1− y)

and vice-versa. T-norms and t-conorms are hence often studied in parallel, as many
properties concerning S can be determined from T . Triangular norms are associative,
symmetric with the neutral element e = 1, whereas triangular conorms are associa-
tive, symmetric and have the neutral element e = 0. The definitions of the four basic
t-norms and t-conorms are provided below.

Definition 22.12 (The four basic t-norms). The two-variate cases for the four basic
t-norms are given by
Minimum Tmin(x,y) = min(x,y);
Product TP(x,y) = xy;
Łukasiewicz t-norm TL(x,y) = max(x+ y−1,0);

Drastic Product TD(x,y) =

{
0, if (x,y) ∈ [0,1[2,
min(x,y) otherwise.

.

Definition 22.13 (The four basic t-conorms). The two-variate cases for the four
basic t-conorms are given by
Maximum Smax(x,y) = max(x,y);
Probabilistic Sum SP(x,y) = x+ y− xy;
Łukasiewicz t-conorm SL(x,y) = min(x+ y,1);

Drastic Product SD(x,y) =

{
1, if (x,y) ∈]0,1]2,
max(x,y) otherwise.

.

There are families of parameterized t-norms and t-conorms that include the above
as special or limiting cases. These families are defined with respect to generating
functions and are known as Archimedean t-norms.

Definition 22.14 (Archimedean t-norm). A t-norm is called Archimedean if for

each (a,b) ∈]0,1[2 there is an n = {1,2, ...} with T (
n−times︷ ︸︸ ︷
a, ...,a)< b.

For t-conorms, the inequality is reversed, i.e. the t-conorm S > b. Continuous
Archimedean t-norms can be expressed by use of their generators as

T (x1, ...,xn) = g(−1)(g(x1)+ ...+g(xn)),

where g : [0,1]→ [0,∞] with g(1) = 0 is a continuous, strictly decreasing function
and g(−1) is the pseudo inverse of g, i.e.,

g(−1)(x) = g−1(min(g(1),max(g(0),x))).
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Archimedean families include Schweizer-Sklar, Hamacher, Frank, Yager, Dombi,
Aczel-Alsina, Mayor-Torrens and Weber-Sugeno t-norms and t-conorms.

22.3.2.5 Nullnorms and Uninorms

In some situations, it may be required that high input values reinforce each other
whereas low values pull the overall output down. In other words, the aggregation
function has to be disjunctive for high values, conjunctive for low values, and per-
haps averaging if some values are high and some are low. This is typically the case
when high values are interpreted as “positive” information, and low values as “neg-
ative” information.

In other situations, it may be that aggregation of both high and low values moves
the output towards some intermediate value. Thus certain aggregation functions
need to be conjunctive, disjunctive or averaging in different parts of their domain.

Uninorms and nullnorms are typical examples of such aggregation functions, but
there are many others. We provide the definitions below.

Definition 22.15 (Nullnorm). A nullnorm is a bivariate aggregation function V :
[0,1]2→ [0,1] which is associative, symmetric, such that there exists an element a
belonging to the open interval ]0,1[ verifying

∀t ∈ [0,a], V (t,0) = t,
∀t ∈ [a,1], V (t,1) = t.

Definition 22.16 (Uninorm). A uninorm is a bivariate aggregation function U :
[0,1]2→ [0,1] which is associative, symmetric and has a neutral element e belong-
ing to the open interval ]0, 1[.

Some uninorms can be built from generating functions in a similar way to quasi-
arithmetic means and Archimedean t-norms. These are called representable uni-
norms.

Definition 22.17 (Representable uninorm). Let u : [0,1]→ [−∞,+∞] be a strictly
increasing bijection verifying g(0) = −∞,g(1) = +∞ such that g(e) = 0 for some
e ∈]0,1[.

• The function given by

U(x,y) =
{

g−1(g(x)+g(y)), if (x,y) ∈ [0,1]2\{(0,1),(1,0)},
0, otherwise,

is a conjunctive uninorm with the neutral element e, known as a conjunctive repre-
sentable uninorm.

• The function given by
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U(x,y) =
{

g−1(g(x)+g(y)), if (x,y) ∈ [0,1]2\{(0,1),(1,0)},
1, otherwise,

is a disjunctive uninorm with the neutral element e, known as a disjunctive repre-
sentable uninorm.

The 3−Π function is an example of a representable uninorm [46]. It uses a
generating function g(x) = ln( x

1−x ) and is used by the expert system PROSPECTOR
[24] for combining uncertainty factors.

f (x) =

n
∏
i=1

xi

n
∏
i=1

xi +
n
∏
i=1

(1− xi)
,

with the convention 0
0 = 0. It is conjunctive on [0, 1

2 ]
n, disjunctive on [ 1

2 ,1]
n and

averaging elsewhere. It is associative, with the neutral element e = 1
2 , and discon-

tinuous on the boundaries of [0,1]n.

22.4 Construction of Aggregation Functions

There are infinitely many aggregation functions. The question is how to choose the
most suitable aggregation function for a specific application. Sometimes one func-
tion may suffice for all components of the application, at other times a different type
of aggregation may be employed at various stages. The following considerations
should be helpful.

22.4.1 Data Collection and Preprocessing

The type of data, and how it is collected affects the way it can be aggregated to form
justifications. If users could thoughtfully provide accurate scores on a consistent
scale for each item, or numerical descriptions of themselves with their preferences
expressed to a degree of certainty, an RS could quite comfortably make some rel-
evant recommendations. Of course, the aesthetic preference is usually to limit the
explicit information required from the user and hence enhance the interactive expe-
rience. We will briefly consider the different types of data that systems are able to
obtain and how this might affect the suitability of certain aggregation functions.

Ordinal Data CF recommenders that ask for explicit ratings information will usu-
ally do so on a finite ordinal scale - e.g. {1 = didn’t like it!,..., 5 = loved it!}. On
the other hand, it may be possible to convert user actions into ordinal values
as part of their profile - e.g. {regularly views, sometimes views, etc.}. Where
there is an ordinal scale, these values can be turned into numbers and aggregated.
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For non-homogeneous functions and those which lack the shift-invariance prop-
erty, it will be necessary to express these ordinal values on the unit interval. The
coarseness of the aggregated values may make the difference between, say, the
weighted arithmetic mean and the geometric mean negligible. Examples of ag-
gregation functions particularly suitable for the aggregation of ordinal data are
the Sugeno integral and the induced OWA.

• The Sugeno integral Sv (Def. 22.9), is a function which is able to process ordi-
nal data and take into account interactions. It is necessary for the fuzzy mea-
sure values to be on the same ordinal scale as the input values. The Sugeno
integral is capable of modeling median-type functions as well as minimum
and maximum functions, and has the advantage of expressing outputs as ordi-
nal values.

• The induced OWA function [45] is capable of modeling nearest-neighbor ap-
proaches even if the similarity is expressed as ordinal values, although it does
require the ratings to be expressed numerically.

Numerical Data Where a system is capable of representing user inputs or ac-
tions as numerical data, it is useful to take into account whether these values
are accurate, whether they are commensurate, and whether they are independent.
Functions such as the geometric mean have a higher rate of change when in-
put values are high than the arithmetic mean. This can help provide granularity
to the outputs, however it also means that errors on this portion of the domain
will influence the recommendation accuracy. In CF, two users might have sim-
ilar preferences however one may consistently overrate items. In these cases, it
might make sense to standardize the ratings before aggregating so the values be-
tween users are comparable. The use of the WAM implies independence between
inputs, however other averaging functions, especially the Choquet integral, can
express interaction and correlation either among certain inputs or relative scores.

Categorical Data In some cases, the use of categorical data may make it imprac-
tical to use aggregation functions. If there is no order between categories, it is
meaningless to take the average or maximum, and other techniques may be use-
ful for establishing similarity between users etc. It may be possible to transform
the categorical data, for example, by the degree to which it contributes towards a
certain archetype in DF.

There could however, be variations: some components of the vectors associated with
di could be missing - e.g. ratings in CF, or the inputs di = (x1, ...,xn) may have vary-
ing dimension by construction. In other cases, the uncertainty associated with some
of the inputs or outputs could prescribe a range of values - e.g., the interval [6,8] as
a rating for a film. Associative or generating functions are capable of aggregating
inputs of varying dimension with some consistency in terms of the properties, while
either transformations of the data or interval-valued functions can be employed in
the latter case.
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22.4.2 Desired Properties, Semantics and Interpretation

The first step in choosing an aggregation function once the data structure is known is
usually to decide which class of either averaging, conjunctive, disjunctive or mixed
is desired. As discussed in Section 22.3.1.1, sometimes it will be more important
to have a function which sorts items into order of preference than one which gives
easily interpreted outputs. We consider four functions whose semantics can be used
to decide which class of function is required:

Minimum (conjunctive) The minimum uses the minimum input as its output. This
means the function can only return a high output if all the inputs are high. Such
aggregation is useful for certain KB or UB systems using Eq. (22.5) or even CB
where it is desired that all the inputs be satisfied. Functions such as the product
(TP) have an accumulative effect for any output which is not perfect, so might be
less useful than the min when the dimension is high.

Maximum (disjunctive) Whereas the minimum models AND-like aggregation,
disjunctive functions model OR. This type of aggregation results in outputs
which are equal to or greater than the highest input. This is useful in KB, UB
or CB as well if there are multiple preferences or criteria and one good score is
enough justification for recommendation. Consider Example 22.7.

Example 22.7. A user of a CB news recommender has the keywords
{Haruki Murakami, X-Men, bushfires, mathematics, Jupiter orbit} asso-
ciated with her profile. It is unlikely that any one news story will be highly
relevant to all or even any few of these keywords, so the RS uses disjunctive
aggregation as a basis for recommendation.

Arithmetic Mean (averaging) When aggregating user ratings in CF or item fea-
tures in CB it is reasonable to assume that although scores will vary, if enough
inputs are used, the output will be reliable. We do not want the recommendations
to be severely affected by an isolated user that is unsatisfied with every item he
purchases, or a single feature among twenty or so that is completely satisfied.

Uninorm (mixed) In cases where different behavior is required on different parts
of the domain, a mixed aggregation function may be required. This can be as
straightforward as deciding that only values with all high inputs should be high,
or it could be that the bounded behavior affects the accuracy of the function.
The use of a uninorm, for instance, allows high values to push the score up and
low values push the score down. An item with consistently high scores would be
preferred to one with mostly high scores but one or two low ones.

Certain properties of aggregation functions might also make them appealing. Ta-
ble 22.1 lists the main aggregation functions we have presented and whether they
always, or under certain circumstances, satisfy the properties detailed in Section
22.4.
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Table 22.1: Aggregation Functions and Properties

Property WAMw Gw Hw Mw,[r] Cv Sv OWAw max min TP TL U V

idempotent ! ! ! ! ! ! ! ! !
symmetric ♦ ♦ ♦ ♦ ♦ ♦ ! ! ! ! ! ! !
asymmetric ♦ ♦ ♦ ♦ ♦ ♦
associative ! ! ! ! ! !
strictly monotone ♦ ♦ ♦ ♦ ♦
shift-invariance ! ♦ ! ! ! ! !
homogeneous ! ! ! ! ! ! ! ! !
Lipschitz continuous ! ! ♦ ! ! ! ! ! ! ! -
neutral elements ♦ ! ! ! ! !
absorbent elements ! ! ♦ ! ! ! !

!= always ♦= depending on weights -= depends on T,S used

22.4.3 Complexity and the Understanding of Function Behavior

In some cases, simple functions such as the WAM will be adequate to meet the
goals of recommendation, with potential improvements to the RS lying in other
directions. Due to its properties, the WAM is quite a robust and versatile function. It
is not biased towards high or low scores, it does not accumulate the effects of errors,
it is computationally inexpensive and its common use makes it well understood
and easily interpreted. We present the power mean and Choquet integral as two
example alternatives whose properties might make them more appropriate in certain
situations.

The power mean The power mean is a parameterized function, capable of ex-
pressing functions that graduate from the minimum to the maximum including
the WAM. This makes it immediately useful when fitting techniques are at our
disposal, since we can use the one process to identify any number of functions as
the best candidate. Consider the harmonic mean Mw,[−1] and the quadratic mean
Mw,[2]. The harmonic mean cannot give an output greater than zero if even one
of the inputs is zero. This has the nice interpretation of only allowing items to be
considered that at least partially satisfy every criteria, however it is not conjunc-
tive, so still gives a score somewhere between the highest and lowest inputs. The
harmonic mean is also concave and its output is equal to or less than the WAM
for any choice of di. This allows less compensation for low inputs, so items must
satisfy more of the criteria overall to rate highly. On the other hand, the quadratic
power mean tends more towards high scores, favoring items that have a few very
high scores which compensate more for low-scoring features or ratings.

The Choquet integral As with the power mean, the Choquet integral is capable
of expressing functions ranging between the minimum and maximum. The use
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of the Choquet integral is most interesting in asymmetric situations where there
tends to be some correlation. For example, in a KB recommender, sometimes
preferences will be contradictory while at other times one implies the other. In
the case of Entree [16], it is noted that users might demonstrate a preference
for inexpensive and nice restaurants. Since usually some trade-off is involved, a
restaurant that does satisfy these criteria should be especially rewarded when it
comes to recommendation. In the case of CB movie recommendation, it could
be that a user likes Johnny Depp and Tim Burton. As there is a high frequency
of films which are directed by Tim Burton that also star Johnny Depp, it might
not make sense to double-count these features. The Choquet integral can account
for a combination of these situations, since a weight is allocated to each subset
of criteria. The subset of “stars Depp AND is directed by Burton” would be allo-
cated less weight than the sum of its parts, while inexpensive and nice restaurants
in the KB example would be allocated more.

Of course, sometimes the structure of the data might be difficult to understand and
interpret towards the use of a particular function. In these cases, it might be worth-
while to check the accuracy of a number of functions on a subset of the data. A
comparison of the minimum, maximum, arithmetic mean and harmonic mean could
suggest much about which functions will be useful.

22.4.4 Weight and Parameter Determination

The determination of weights for use in ratings aggregation for CF is often under-
stood in terms of the similarity between users and neighborhood formation. Weights
in CB and UB are a measure of the importance of each feature to the user, while the
weights in weighted HS are indicative of the reliability of each component in rec-
ommendation. Weights can be selected using predetermined measures like cosine,
or might be decided in advance by the RS designers - e.g. we decide to weight
the similar users with a decreasing weighting vector w = (0.4,0.3,0.2,0.1). Some
systems adjust weights incrementally according to implicit or explicit feedback con-
cerning the quality of recommendation, for instance in the hybrid RS, P-Tango [19].
In Section 22.5, programming methods are discussed for determining weights from
available data-sets.

22.5 Sophisticated Aggregation Procedures in Recommender
Systems: Tailoring for Specific Applications

We consider the fitting problem in terms of a CF recommender, however it is also
possible to fit weights in CB and UB recommender systems provided the system has
access to input and output values so that the strength of fit can affirm the suitability
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of the weights or parameters. Fitting can be accomplished by means of interpolation
or approximation. In the case of interpolation, the aim is to fit the specified output
values exactly (in the case of aggregation functions, the pairs ((0,0, . . . ,0),0) and
((1,1, . . . ,1),1) should always be interpolated). In the case of RS, the data will nor-
mally contain some errors or degree of approximation, and therefore it may not be
appropriate to interpolate the inaccurate values. In this case our aim is to stay close
to the desired outputs without actually matching them. This is the approximation
problem.

The selection of an aggregation function can be stated formally as follows:

Let us have a number of mathematical properties P1,P2, . . . and the data D =
{(xk,yk)}K

k=1. Choose an aggregation function f consistent with P1,P2, . . ., and sat-
isfying f (xk)≈ yk,k = 1, . . . ,K.

We can also vary the problem to accommodate a fitting to intervals, i.e. we require
f (xk) ∈ [yk,yk]. How these values are specified will depend on the application. In
some cases it may be possible to fit the function exactly without violating any of the
desired properties, however most of the time we merely want to minimize the error
of approximation.

Mathematically, the satisfaction of approximate equalities f (xk) ≈ yk can be
translated into the following minimization problem.

minimize ||r|| (22.10)
subject to f satisfies P1,P2, . . . ,

where ||r|| is the norm of the residuals, i.e., r ∈ RK is the vector of the differences
between the predicted and observed values rk = f (xk)−yk. There are many ways to
choose the norm, and the most popular are the least squares norm

||r||2 =
(

K

∑
k=1

r2
k

)1/2

,

and the least absolute deviation norm

||r||1 =
K

∑
k=1

|rk|,

or their weighted analogues if some of the yk are considered less reliable than
others.

Consider Example 22.8.7

7 All examples in this section utilize the software packages aotool and fmtools [8]
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Example 22.8. In a CF recommending application we want to use five similar
users to predict the ratings of new objects for a given user. At hand we have a
data set of many items previously rated by the user and the five similar users or
neighbors {(di,R(u,di))}10

i=1 where di = (R(u1,di), ...,R(u5,di)) denotes the
ratings given by each of the neighbors u1, ...,u5 to a past item di, and the
R(u,di) are the user’s actual ratings. I.e. di = xk,R(u,di) = yk from above.
Table 22.2 shows an example data set with two items rated by the neighbors
which the user is yet to rate and could be recommended. We want to define
a weighted arithmetic mean using the least squares approach that assigns a
weight wi to each user. So we have

minimize
1

∑
i=1

0

(
5

∑
j=1

w jR(u j,di)−R(u,di)

)2

subject to
5

∑
j=1

w j = 1,

w1, . . . ,w5 ≥ 0.

This is a quadratic programming problem, which is solved by a number of
standard methods. In the current example one resulting model allocates the
weights w =< 0.27,0.07,0.06,0.19,0.41 > with recommendation scores of
4.7 and 7.9 for the unrated items. The maximum difference between ob-
served and predicted ratings is 2.45 with an average of 0.98. If we had
instead used the cosine calculation to define the weights, we would have
w =< 0.19,0.24,0.23,0.18,0.17 > and recommendation scores of 5.6 and
7.1. The accuracy is similar for this method, with maximum error 2.48 and
average error 1.6. Interestingly u5 was least similar using this measure, but
most important when accurately predicting the ratings for u.

Table 22.2: Example dataset for mutually rated items in CF

Items i = 1..10 rated by user and neighbors Unrated
User ratings R(u,di) 6 4 6 8 10 5 7 7 5 5 ? ?
Neighbor ratings
R(u1,di) 4 4 4 8 10 3 7 5 3 3 4 7
R(u2,di) 6 0 6 4 6 1 3 3 1 5 8 7
R(u3,di) 3 1 8 5 7 2 4 4 2 2 7 5
R(u4,di) 6 5 6 8 8 6 5 5 3 5 3 8
R(u5,di) 6 4 6 7 8 1 5 8 5 8 5 9
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As mentioned, if the number of items to be recommended is limited, the rank-
ing, rather than the accuracy of prediction becomes crucial (see also [27]). In sit-
uations where it makes sense, the ranking of the outputs can be preserved with
f (R(u1,dk), ...,R(un,dk)) ≤ f (R(u1,dl), ...,R(un,dl)) if R(u,dk) ≤ R(u,dl) for all
pairs k, l added as an extra constraint. In CF, imposing this condition weights the
similar users higher who have rankings that better reflect the user’s. This is useful
when we know that some users might tend to overrate or underrate items, but will
be consistent in terms of the items they prefer.

The approximation problem thus far described may turn out to be a general non-
linear optimization problem, or a problem from a special class. Some optimization
problems utilize a convex objective function or variant of this, in which case the dif-
ficulty is not so much in this step, but rather in defining the constraints. Fitting the
Choquet integral, for instance has an exponential number of constraints which need
to be defined. Many problems, however can be specified as linear or quadratic pro-
gramming problems, which have been extensively studied with many solution tech-
niques available. Example 22.9 uses the same dataset (Table 22.2) with the Choquet
integral as the desired function. In practice, it is preferable to have a much larger
data set for the Choquet integral given that it is defined at 2n points (so ideally, the
number of data for fitting should be well above this). This ensures that the resulting
function is not too specialized.

Example 22.9. (Continued from Example 22.8)... The system designers de-
cide that they would prefer to use a Choquet integral to predict the unknown
ratings. To make the fitting process less susceptible to outliers, they decide to
use the least absolute deviation norm and express the optimization process as
the following:

minimize
5

∑
i=1

|Cv(di)−R(u,di)|

subject to v(A)− v(B)≥ 0, for all B⊆ A,
v(A)≥ 0,∀A⊂N ,v( /0) = 0,v(N ) = 1.

This results in a Choquet integral defined by a fuzzy measure with the follow-
ing values

v({1}) = 1,v({2}) = 0.33,v({3}) = 0,v({4}) = v({5}) = 0.67

v({2,3}) = 0.33,v({2,4}) = v({3,4}) = v({3,5}) = v({2,3,4}) = 0.67

v(A) = 1 for all other subsets.

The Shapley values provide a good indication of the influence of each of the
neighbors, and are given as
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φ1 = 0.39,φ2 = 0.11,φ3 = 0,φ4 = 0.22,φ5 = 0.28

. As with the weighted arithmetic mean, the values suggest that neighbors 1, 4
and 5 are perhaps more similar to the given user. We also note the interaction
indices for pairs, given as

I12 = I24 = I45 =−0.17, I14 =−0.33, I15 =−0.5

Ii j = 0 for all other pairs.

This shows the redundancy between some of the neighbors. In particular,
neighbors 1 and 5 are very similar. The maximum error in this case is 1.6
and the average error is 0.6, with resulting recommendations 6.0 and 8.7. Be-
cause of the substitutive variables, the function behaves similar to a maximum
function. We see the high score given for the latter item, mainly due to the high
ratings given by neighbors 4 and 5.

The families of aggregation functions defined in Section 22.3.2 are convenient to
use when trying to understand and interpret the results. The weights and parameters
have a tangible meaning and fitting these functions essentially involves finding the
best values for each parameter to maximize the reliability of the RS.

In other situations however, the interpretation side of things may not be as impor-
tant: we just want to predict the unknown ratings reliably and automatically. There
are many non-parametric methods for building aggregation functions, which do not
have the advantage of system interpretation, however can be constructed automat-
ically and fit the data closely. One “black-box” type method is to build a general
aggregation operator piecewise from the data. We can ensure that monotonicity and
boundary conditions are specified by smoothing the data and ensuring these proper-
ties hold for each individual segment. We consider here, the construction of spline
based aggregation functions [10].

Monotone tensor product splines are defined as

fB(x1, ...,xn) =
J1

∑
j1=1

J2

∑
j2=1

...
Jn

∑
jn=1

c j1 j2... jn B j1(x1)B j2(x2)...B jn(xn).

If it is desired the built function belong to a particular class or hold certain proper-
ties, additional constraints can be added when fitting. In particular, we can ensure
monotonicity holds by expressing linear conditions on the coefficients c j1 j2... jn . The
fitting of this function to data involves sparse matrices, their size increasing with the
number of basis functions in respect to each variable and exponentially with n. We
give an example of this fitting process in the Example 22.10.
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Example 22.10. (Continued from Examples 22.8-22.9). It is not necessary in
our application that the weighting of similar users be known. We simply want
automatically built functions that can predict the ratings of unseen items. We
decide that we still desire the properties of monotonicity and idempotency to
ensure reliable outputs, and build a general aggregation operator represented
by tensor product splines. The following quadratic programming problem is
used:

minimize
5

∑
i=1

( fB(di)−R(u,di))
2

subject to
J1

∑
j1=1

J2

∑
j2=1

...
Jn

∑
jn=1

c j1 j2... jn ≥ 0,

fB(0, ...,0) = 0, fB(1, ...,1) = 0.

Idempotency is also ensured by imposing a number of interpolation conditions
such that fB(ti, ..., ti) = ti. These conditions must be chosen in a certain way
(see [6, 7]). The fitted non-parametric function gives resulting recommenda-
tion scores for the unrated items of 4.2 and 8.1 so it seems that the latter item
should be suggested to the user.

Clearly it is the choice of system designers of whether to use non-parametric
or parametric methods, and how complex an aggregation function should be used.
Recommender systems usually require timely decisions and deal with large data
sets, so a compromise between expressibility and simplicity is usually sought.

22.6 Conclusions

The purpose of this chapter has been to present the state of the art in aggregation
functions and introduce established families of these functions that have proper-
ties useful for the purposes of recommendation. This has included means defined
with various weights, Choquet integrals defined with respect to fuzzy measures, t-
norms/t-conorms which can be built from generators, and representable uninorms.
Many of the current methods used in recommender systems involve constructing
weighted arithmetic means where weights are determined by varying measures of
similarity, however in many cases the accuracy and flexibility of functions could
be improved with only slight increases to complexity. We have provided a num-
ber of illustrative examples of the different ways in which aggregation functions
can be applied to recommendation processes including ratings aggregation, feature
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combination, similarity and neighborhood formation and component combination
in weighted hybrid systems. We also referred to some current software tools which
can be used to fit these functions to data (see also [29, 25]) when we are trying to
find weights, similarity or the parameters used that best model the dataset.

The research in aggregation functions is extensive with a number of important
results, some of which have been explored with the application to recommender
systems in mind. As only an introduction has been provided here, we recommend
the recent books listed under Further Reading which provide details of many aggre-
gation methods.

22.7 Further Reading

• Alsina, C., Frank, M.J. and Schweizer, B.: Associative Functions: Triangular
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• Beliakov, G., Pradera, A. and Calvo, T.: Aggregation Functions: A guide for
practitioners. Springer, Heidelberg, Berlin, New York (2007)
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and Applications. Physica-Verlag, Heidelberg, New York (2002)

• Grabisch, M., Marichal, J.-L. Mesiar, R. and Pap, E.: Aggregation Functions.
Cambridge University Press, Encyclopedia of Mathematics and its Applica-
tions, No 127, Cambridge (2009)
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(2000)

• Torra, V. and Narukawa, Y.: Modeling Decisions. Information Fusion and Ag-
gregation Operators. Springer, Berlin, Heidelberg (2007)
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Chapter 23
Active Learning in Recommender Systems

Neil Rubens, Dain Kaplan, and Masashi Sugiyama

23.1 Introduction

Recommender Systems (RSs) are often assumed to present items to users for one
reason – to recommend items a user will likely be interested in. Of course RSs do
recommend, but this assumption is biased, with no help of the title, towards the
“recommending” the system will do. There is another reason for presenting an item
to the user: to learn more about his/her preferences, or his/her likes and dislikes. This
is where Active Learning (AL) comes in. Augmenting RSs with AL helps the user
become more self-aware of their own likes/dislikes while at the same time providing
new information to the system that it can analyze for subsequent recommendations.
In essence, applying AL to RSs allows for personalization of the recommending
process, a concept that makes sense as recommending is inherently geared towards
personalization. This is accomplished by letting the system actively influence which
items the user is exposed to (e.g. the items displayed to the user during sign-up or
during regular use), and letting the user explore his/her interests freely.

Unfortunately, there are very few opportunities for the system to acquire infor-
mation, such as when a user rates/reviews an item, or through a user’s browsing
history.1 Since these opportunities are few, we want to be as sure as possible that the
data we acquire tells us something important about the user’s preferences. After all,
one of the most valuable assets of a company is user data.
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1 There is an increasing trend to utilize social networks for acquiring additional data (see Chapters
18 and 19).
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For example, when a new user starts using a recommender system, very little is
known about his/her preferences [44, 36, 2]. A common approach to learning the
user’s preferences is to ask him/her to rate a number of items (known as training
points). A model that approximates the user’s preferences is then constructed from
this data. Since the number of items reviewed by the user cannot span the system’s
entire catalog (and indeed would make the task of AL as well as recommending moot
points), the collection of items presented to the user for review must necessarily
be very limited. The accuracy of the learned model thus greatly depends on the
selection of good training points. A system might ask the user to rate Star Wars I,
II, and III. By rating all three volumes of this trilogy, we will have a good idea of
the user’s preferences for Star Wars, and possibly by extension, an inclination for
other movies within the Sci-Fi genre, but overall the collected knowledge will be
limited. It is therefore unlikely that picking the three volumes of a trilogy will be
informative.2 Another issue with selecting a popular item such as Star Wars is that
by definition the majority of people like them (or they would not be popular). It is
not surprising then, that often little insight is gained by selecting popular items to
learn about the user (unless the user’s tastes are atypical).

There is sometimes a notion that AL is a bothersome, intrusive process, but it
does not have to be this way [54, 38]. If the items presented to the user are interest-
ing, it could be both a process of discovery and of exploration. Some Recommender
Systems provide a “surprise me!” button to motivate the user into this explorative
process, and indeed there are users who browse suggestions just to see what there
is without any intention of buying. Exploration is crucial for users to become more
self-aware of their own preferences (changing or not) and at the same time inform
the system of what they are. Keep in mind that in a sense users can also be defined
by the items they consume, not only by the ratings of their items, so by prompting
users to rate different items it may be possible to further distinguish their prefer-
ences from one another and enable the system to provide better personalization and
to better suit their needs.

This chapter is only a brief foray into Active Learning in Recommender Sys-
tems.3 We hope that this chapter can, however, provide the necessary foundations.

For further reading, [46] gives a good, general overview of AL in the context
of Machine Learning (with a focus on Natural Language Processing and Bioinfor-
matics). For a theoretical perspective related to AL (a major focus in the field of
Experimental Design), see [7, 4, 22]; there have also been recent works in Com-
puter Science [16, 5, 51].

2 Unless our goal is to learn a kind of micro-preference, which we can define as a person’s tendency
to be more ’picky’ concerning alternatives close to one another in a genre they like.
3 Supplementary materials on Active Learning can be found at: http://www.DataMilking.org/AL
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23.1.1 Objectives of Active Learning in Recommender Systems

Different RSs have different objectives (see Chapter 8), which necessitate different
objectives for their Active Learning components as well. As a result, one AL method
may be better suited than another for satisfying a given task [35]. For example, what
is important in the recommender system being built (see Chapter 10)? The difficulty
of signing-up (user effort)? If the user is happy with the service (user satisfaction)?
How well the system can predict a user’s preferences (accuracy)? How well the sys-
tem can express a user’s preferences (user utility)? How well the system can serve
other users by what it learns from this one (system utility)? System functionality
may also be important, such as when a user inquires about a rating for an item of
interest the system has insufficient data to predict a rating for, what the system does
in response. Does it in such a case give an ambiguous answer, allowing the user to
train the system further if they have the interest and the time to do so? Or does it
require them to rate several other items before providing a prediction? Perhaps the
user has experienced the item (e.g. watched the movie or trailer) and thinks their
rating differs substantially from the predicted one [10]. In all these cases how the
system responds to the user is important for consideration.

Traditionally AL does not consider the trade-off of exploration (learning user’s
preferences) and exploitation (utilizing user’s preferences), that is, it does not dy-
namically assign weights to exploitation/exploration depending on system objec-
tives. This trade-off is important because for a new user about which nothing or
little is known, it may be beneficial to validate the worth of the system by providing
predictions the user is likely to be interested in (exploitation), while long-term users
may wish to expand their interests through exploration [38, 41].

Though an objective of the RS will likely be to provide accurate predictions to
the user, the system may also need to recommend items of high novelty/serendipity,
improve coverage, maximize profitability, or determine if the user is even able to
evaluate a given item, to name a few [44, 21, 33]. Multiple objectives may need to be
considered simultaneously (see Chapter 24), e.g. minimizing the net acquisition cost
of training data while maximizing net profit, or finding the best match between the
cost of offering an item to the user, the utility associated with expected output, and
the alternative utility of inaction [38]. The utility of training may also be important,
e.g. predicting ratings for exotic cars may not be so useful if the user is not capable of
purchasing them and so should be avoided. It can be seen that the system objective
is often much more complex than mere predictive accuracy, and may include the
combination of several objectives.

While Recommender Systems in general often have an ill-defined or open-ended
objective, namely to predict items a user would be interested in, Conversation-based
AL [32, 37, 9], as the name suggests, engages in a conversation with the user as a
goal oriented approach. It seeks to, through each iteration of questioning, elicit a
response from the user to best reduce the search space for quickly finding what it is
the user seeks (Section 23.8).
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The New User Problem When a user starts using a RS they expect to see in-
teresting results after a minimal amount of training. Though the system knows
little about the user’s preferences, it is essential that training points are se-
lected to be rated by the user that will maximize the understanding of what
the new user wants [35].

The New Product Problem As new products are introduced into the sys-
tem, it is important to quickly improve prediction accuracy for these items by
selecting users to rate them [24].

Cost of obtaining an output value Different means of obtaining an output
value come at different costs. Implicit strategies, such as treating a user click
on a suggested item as positive output, or not clicking as negative, are inex-
pensive in relation to user effort. Conversely, asking the user to explicitly rate
an item is more costly, though still dependent on the task. Watching a movie
like Star Wars to rate may provide good results but requires substantial user
effort [20]; rating a joke requires much less. This often dovetails the explo-
ration/exploitation coupling and trade-offs between obtaining outputs from
different inputs should also be considered (e.g. certainty/uncertainty, ease of
evaluation, etc.)

Adaptation for different AL methods Though we focus on the traditional
objective of reducing predictive error, it is equally plausible to construct a
method for maximizing other goals, such as profitability. In this case a model
would pick points that most likely increase profit rather than a rating’s accu-
racy.

23.1.2 An Illustrative Example

Let us look at a concrete example of Active Learning in a Recommender System.
This is only meant to demonstrate concepts, so it is oversimplified. Please note that
the similarity metric may differ depending on the method used; here, movies are
assumed to be close to one another if they belong to the same genre. Figure 23.1
shows two charts, the leftmost is our starting state, in which we have already asked
the user to rate a movie within the upper right group, which we will say is the Sci-
Fi genre. The right chart shows us four possibilities for selecting our next training
point: (a), (b), (c), or (d). If we select the training point (a) which is an obscure
movie (like The Goldfish Hunter), it does not affect our predictions because no
other movies (points) are nearby. If we select the training point (b), we can predict
the values for the points in the same area, but these predictions are already possible
from the training point in the same area (refer to the chart on the left). If training
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Fig. 23.1: Active Learning: illustrative example (See Section 23.1.2).

point (c) is selected, we are able to make new predictions, but only for the other
three points in this area, which happens to be Zombie movies. By selecting training
point (d), we are able to make predictions for a large number of test points that are
in the same area, which belong to Comedy movies. Thus, selecting (d) is the ideal
choice because it allows us to improve accuracy of predictions the most (for the
highest number of training points).4

23.1.3 Types of Active Learning

AL methods presented in this chapter have been categorized based on our interpre-
tation of their primary motivation/goal. It is important to note, however, that various
ways of classification may exist for a given method, e.g. sampling close to a deci-
sion boundary may be considered as Output Uncertainty-based since the outputs are
unknown, Parameter-based because the point will alter the model, or even Decision
boundary-based because the boundary lines will shift as a result. However, since the
sampling is performed with regard to decision boundaries, we would consider this
the primary motivation of this method and classify it as such.

In addition to our categorization by primary motivation (Section 23.1), we further
subclassify a method’s algorithms into two commonly classified types for easier
comprehension: instance-based and model-based.

Instance-based Methods A method of this type selects points based on their prop-
erties in an attempt to predict the user’s ratings by finding the closest match to other
users in the system, without explicit knowledge of the underlying model. Other
common names for this type include memory-based, lazy learning, case-based, and
non-parametric [2]. We assume that any existing data is accessible, as well as rating
predictions from the underlying model.

4 This may be dependent on the specific prediction method used in the RS.
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Model-based Methods A method of this type selects points in an attempt to best
construct a model that explains data supplied by the user to predict user ratings [2].
These points are also selected to maximize the reduction of expected error of the
model. We assume that in addition to any data available to instance-based methods,
the model and its parameters are also available.

Modes of Active Learning: Batch and Sequential Because users typically
want to see the system output something interesting immediately, a common
approach is to recompute a user’s predicted ratings after they have rated a
single item, in a sequential manner. It is also possible, however, to allow a
user to rate several items, or several features of an item before readjusting
the model. On the other hand, selecting training points sequentially has the
advantage of allowing the system to react to the data provided by users and
make necessary adjustments immediately. Though this comes at the cost of
interaction with the user at each step. Thus a trade-off exists between Batch
and Sequential AL: the usefulness of the data vs. the number of interactions
with the user.

23.2 Properties of Data Points

When considering any Active Learning method, the following three factors should
always be considered in order to maximize the effectiveness of a given point. Sup-
plementary explanations are then given below for the first two. Examples refer to
the Illustrative Example (Figure 23.1).

(R1) Represented: Is it already represented by the existing training set? E.g.
point (b).

(R2) Representative: Is the point a good candidate for representing other data
points? Or is it an outlier? E.g. point (a).

(R3) Results: Will selecting this point result in better prediction ratings or
accomplish another objective? E.g. point (d), or even point (c).

(R1) Represented by the Training Data As explained in the introduction to this
chapter, asking for ratings of multiple volumes from a trilogy, such as Star Wars,
is not likely beneficial, as it may not substantially contribute to the acquisition of
new information about the user’s preferences. To avoid obtaining redundant infor-
mation, therefore, an active learning method should favor items that are not yet well
represented by the training set [18].

(R2) Representative of the Test Data It is important that any item selected for
being rated by an AL algorithm be as representative of the test items as possible (we
consider all items as potentially belonging to the test set), since the accuracy of the
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algorithm will be evaluated based on these items. If a movie is selected from a small
genre, like Zombie movies from the Illustrative Example (Figure 23.1), then ob-
taining a rating for this movie likely provides little insight into a user’s preferences
for other, more prominent genres. In addition, users naturally tend to rate movies
from genres they like, meaning that any genre that dominates the training set (which
is likely composed of items the user likes) may be representative of only a small
portion of all items [38]. In order to increase information obtained, it is important
to select representative items which may provide information about the other yet
unrated items [18, 47, 53].

23.2.1 Other Considerations

In addition to the three Rs listed in Section 23.2, it may also be desirable to consider
other criteria for data points, such as the following.

Cost As touched upon in the introduction to this chapter, obtaining implicit feed-
back from user selections is cheaper than asking the user to explicitly rate an item
[19]. This can be considered a variable cost problem. One approach for tackling this,
is to take into account both the cost of labeling an item and the future cost of esti-
mated misclassification were the item to be added to the training set [27]. Moreover,
the cost may be unknown beforehand [48].

Ratability A user may not always be able to provide a rating for an item; you
cannot properly rate a movie you have not seen! It is suggested therefore that the
probability of a user being able to evaluate an item also be considered [20].

Saliency Decision-centric AL places emphasis on items whose ratings are more
likely to affect decision-making, and acquires instances that are related to decisions
for which a relatively small change in their estimation can change the order of top
rated predictions [43]. For example, unless labeling an item would result in displac-
ing or rearranging a list of the top ten recommended movies on a user’s home page
(the salient items), it may be considered of little use. It is also possible to only con-
sider the effect of obtaining an item’s rating on items that are strongly recommended
by the system [6].

Popularity It has also been suggested to take into account an item’s popularity
[35], i.e. how many people have rated an item. This operates on the principle that
since a popular item is rated by many people, it may be rather informative. Con-
versely, an item’s rating uncertainty should also be considered since positive items
have a tendency to be rated highly by most users, indicating the item may not pro-
vide much discriminative power and thus not worth including in the training set.

Best/Worst It has been shown [29] that looking at the best/worst reviews is ben-
eficial when a user makes a decision about an item. Extending this idea to Active
Learning we hypothesize with the “best/worst” principle that in order to make a de-
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cision about a user’s preferences it may also be beneficial to obtain his/her best/worst
ratings (as it may capture user preferences well). By asking a user to provide his/her
most liked/disliked items, it changes the problem of AL to one in which a user is
asked to provide a rating for an item in a known class (e.g. to select a favorite movie
from within a liked genre), and the process of obtaining an item is what incurs the
cost [30]. This process is called active class selection. This is opposite from tradi-
tional AL techniques in which the labeling process (and not the items themselves)
is what is assumed to incur a cost.

23.3 Active Learning in Recommender Systems

With Traditional AL, users are asked to rate a set of preselected items. This is often
at the time of enrollment, though a preselected list may be presented to existing users
at a later date as well. It may be argued that since these items are selected by experts,
they capture essential properties for determining a user’s preferences. Conceptually
this may sound promising, but in practice this often leads towards selecting items
that best predict the preferences of only an average user. Since the idea of RS is
to provide personalized recommendations, selecting items to rate in a personalized
manner should readily make more sense.

23.3.1 Method Summary Matrix

The following matrix (Table 23.1) provides a summary of the methods overviewed
in this chapter. Explicit performance numbers are not supplied because to our knowl-
edge no such comprehensive comparison in fact exists. AL methods could be com-
pared on an individual basis, but any results would be inconclusive. This is because
authors have a tendency to fix the predictive method and then apply one or more
compatible AL methods to compare performance. Moreover, AL methods are often
designed for a specific predictive method, and may therefore not have good per-
formance when applied to a different method (which creates potentially misleading
results), or may not even be applicable if the underlying system is not able to pro-
vide the required information, e.g. distribution of rating estimates. For these reasons
we have opted to omit performances figures of any kind.

23.4 Active Learning Formulation

Passive Learning (see Figure 23.2) refers to when training data is provided before-
hand, or when the system makes no effort to acquire new data (it simply accumulates
through user activities over time). Active Learning, on the other hand, selects train-
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Primary Motivation of Ap-
proach

Description/Goal Possible Considerations

Uncertainty Reduction
(Section 23.5)

Reducing uncertainty of:

• rating estimates (Section
23.5.1),

• decision boundaries (Sec-
tion 23.5.2),

• model parameters (Section
23.5.3).

Reducing uncertainty may not
always improve accuracy; the
model could simply be certain
about the wrong thing (e.g. when
the predictive method is wrong).

Error Reduction
(Section 23.6)

Reducing the predictive error
by utilizing the relation be-
tween the error and:

• the changes in the output es-
timates (Section 23.6.1.1),

• the test set error (Section
23.6.1.2),

• changes in parameter esti-
mates (Section 23.6.2.1),

• the variance of the pa-
rameter estimates (Section
23.6.2.2).

Estimating reduction of error re-
liably could be difficult and com-
putationally expensive.

Ensemble-based
(Section 23.7)

Identifying useful training
points based on consensus
between:

• models in the ensemble
(Section 23.7.1),

• multiple candidate models
(Section 23.7.1).

The effectiveness depends on
the quality of models/candidates,
and could be computationally ex-
pensive since it is performed
with regards to multiple mod-
els/candidates.

Table 23.1: Method Summary Matrix.

ing points actively (the input) so as to observe the most informative output (user
ratings, behavior, etc.).

Let us define the problem of active learning in a more formal manner. An item
is considered to be a multi-dimensional input variable and is denoted by a vector
x (also referred to as a data point).5 The set of all items is denoted by X . The
preferences of a user u are denoted by a function fu (also referred to as a target
function); for brevity, we use f when referring to a target user. A rating of an item x

5 The way in which an item is represented depends on the RS and the underlying predictive method.
In Collaborative Filtering based approaches items could be represented through the ratings of the
users, or, in content based RSs, items could be represented through their descriptions.
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Fig. 23.2: Active learning employs an interactive/iterative process for obtaining
training data, unlike passive learning, where the data is simply given.

is considered to be an output value (or label) and is denoted as y = f (x). Each item
x could be rated on a finite scale Y = {1,2, . . . ,5}.

In supervised learning, the items and corresponding user ratings are often parti-
tioned into complementary subsets – a training set and a testing set (also called a
validation set). The task of supervised learning is then to, given a training set (often
supplemented by the ratings of all users), learn a function f̂ that accurately approx-
imates a user’s preferences. Items that belong to the training set are denoted by
X (Train), and these items along with their corresponding ratings constitute a training
set, i.e. T = {(xi,yi)}xi∈X (Train) . We measure how accurately the learned function
predicts the true preferences of a user by the generalization error:

G( f̂ ) = ∑
x∈X

L
(

f (x), f̂ (x)
)

P(x). (23.1)

In practice, however, f (x) is not available for all x ∈ X ; it is therefore common to
approximate the generalization error by the test error:

Ĝ( f̂ ) = ∑
x∈X (Test)

L
(

f (x), f̂ (x)
)

P(x), (23.2)

where X (Test) refers to the items in the test set, and prediction errors are measured
by utilizing a loss function L, e.g. mean absolute error (MAE):

LMAE

(
f (x), f̂ (x)

)
=
∣∣∣ f (x)− f̂ (x)

∣∣∣ , (23.3)

or mean squared error (MSE):

LMSE

(
f (x), f̂ (x)

)
=
(

f (x)− f̂ (x)
)2

. (23.4)

The active learning criterion is defined so as to estimate the usefulness of ob-
taining a rating of an item x and adding it to the training set X (Train) for achieving
a certain objective (Section 23.1.1). For simplicity, let us consider this objective to
be the minimization of generalization error of a learned fuction with respect to the
training set. We then denote the active learning criterion as:
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Ĝ(X (Train)∪{x}), (23.5)

or for brevity, denote it as:
Ĝ(x). (23.6)

The goal of active learning is to select an item x that would allow us to minimize
the generalization error Ĝ(x):

argminxĜ(x). (23.7)

If we consider asking a user to rate an item x j or an item xk, then we would
estimate their usefulness by an active learning criterion, i.e. Ĝ(x j) and Ĝ(xk), and
select the one that will result in a smaller generalization error. Note that we need
to estimate the usefulness of rating an item without knowing its actual rating. To
distinguish a candidate item to be rated from the other items we refer to it as xa.
AL can be applied to any predictive method as long as it provides the required
information, such as rating estimates [42] and their distribution [23, 25], closeness
to the decision boundary [55, 15], method parameters [49], etc.

x input (item)
X inputs (items)
y output (item’s rating)
Y = {1,2, . . . ,5} possible outputs (ratings), i.e. y ∈ Y
f user’s preferences function (unknown to the system)
X (Train) training inputs (rated items)
T = {(xi,yi}xi∈X (Train) training set (items and their ratings)
f̂ approximated function of user’s preferences (from training set)
G generalization error (predictive accuracy); see (23.1)
xa item considered for rating
Ĝ(xa) active learning criterion (estimates usefulness of rating an item xa)

Fig. 23.3: Summary of Notation.

Regression and Classification The problem of predicting a user’s ratings could be
treated as both a regression and a classification problem. It is a regression problem
since the ratings are discrete numerical values, such as if we consider their ordi-
nal properties, meaning the ratings could be ordered (e.g. a rating of 4 is higher
than a rating of 3). On the other hand, we can disregard the numerical properties
of the ratings and treat the problem as a classification one by treating ratings as
classes/labels.6 For example, we can use a nearest-neighbor (NN) approach to do
classification, e.g. pick the most frequent label of the neighbors; or we can use NN
to do regression, e.g. calculate the mean of the ratings of the neighbors. Throughout

6 If the ordinal properties of the labels are considered, it is referred to as Ordinal Classification.
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the chapter we use both classification and regression in examples, selecting the one
most appropriate for aiding the current explanation.

23.5 Uncertainty-based Active Learning

Uncertainty-based AL tries to obtain training points so as to reduce uncertainty in
some aspect, such as concerning output values [28], the model’s parameters [23], a
decision boundary [45], etc. A possible drawback to this approach is that reducing
uncertainty may not always be effective. If a system becomes certain about user
ratings, it does not necessarily mean that it will be accurate, since it could simply be
certain about the wrong thing (i.e., if the algorithm is wrong, reducing uncertainty
will not help). As an example, if the user has so far rated items positively, a system
may mistakenly be certain that a user likes all of the items, which is likely incorrect.

23.5.1 Output Uncertainty

In Output Uncertainty-based methods, an item to label (training point) is selected
so as to reduce the uncertainty of rating predictions for test items. In Figure 23.1,
with the assumption that the RS estimates the rating of an item based on the cluster
to which it belongs (e.g. items in the same movie genre receive the same rating),
if a user’s rating for a movie from the Sci-Fi genre (upper-right) has already been
obtained, then there is a higher likelihood that the RS may be more certain about
the ratings of other movies in the Sci-Fi genre, likely making it more beneficial to
obtain a user’s preference for a movie from a genre (cluster) not yet sampled, i.e. a
cluster that is still uncertain.

The difference between instance-based and model-based approaches for Output
Uncertainty-based AL is primarily in how, for an arbitrary item x, the rating’s dis-
tribution P(Yx) is obtained, where a rating’s distribution is defined as the probability
of an item being assigned a certain rating. For model-based methods it is possible to
obtain the rating’s distribution from the model itself. Probabilistic models are partic-
ularly well suited for this as they directly provide the rating’s distribution [23, 25].
For instance-based methods, collected data is used to obtain the rating’s distribution.
As an example, methods utilizing nearest-neighbor techniques can obtain a rating’s
distribution based on the votes of its neighbors, where “neighbor” here means a user
with similar preferences,7 using a formula such as:

P(Yx = y) =
∑nn∈NNx,y wnn

∑nn∈NNx wnn
, (23.8)

7 Defining a neighbor as a similar item is also feasible depending on the method.
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where NNx are neighbors that have rated an item x, and NNx,y are neighbors that
have given an item x a rating of y, and wnn is the weight of the neighbor (such as
similarity).

23.5.1.1 Active Learning Methods

Some AL methods [28] estimate the usefulness of a potential training point in a
local (greedy) manner by measuring the uncertainty of its output value:

ĜUncertaintylocal (xa) =−Uncertainty(Ya). (23.9)

Since our goal is to minimize Ĝ, rating an item with high uncertainty is useful; it will
eliminate the uncertainty about the rating of the chosen item. However, labeling an
item whose rating is uncertain does not necessarily accomplish the goal of reducing
the uncertainty of ratings for other items (e.g. labeling an outlier may only reduce
rating uncertainty for a few other similar items, such as when selecting item (c) in
the Zombie genre, or even none as in (d), shown in Figure 23.1.

We may thus consider reducing uncertainty in a global manner by selecting an
item which may reduce the uncertainty about other unrated items. One approach
[40] for doing this is to define criteria by measuring the uncertainty of ratings over
all of the test items X (Test) with respect to a potential training input item xa:

ĜUncertainty(xa) =
1∣∣X (Test)

∣∣ ∑
x∈X (Test)

ET (a) (Uncertainty(Yx)) , (23.10)

where 1
|X (Test)| is a normalizing factor, and ET (a) (Uncertainty(Yx)) is the expected

value of uncertainty with respect to adding an estimated rating ya of a candidate
item xa to the training set T ; i.e. T (a) = T ∪ (xa,ya).

A possible drawback of this non-local approach is that while with the local ap-
proach it is only necessary to estimate the uncertainty of a single output value ya,
for the non-local approach uncertainty needs to be estimated for the output values
of all the test points with respect to a potential training point (xa,ya); this may be
difficult to estimate accurately and could be computationally expensive.

23.5.1.2 Uncertainty Measurement

Uncertainty of an item’s rating (output value) is often measured by its variance, its
entropy [28], or by its confidence interval [38]. Variance is maximized when ratings
deviate the most from the mean rating, and entropy when all the ratings are equally
likely.

Uncertainty of an output value could be calculated by using a definition of vari-
ance as follows:
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Uncertainty(Ya) =VAR(Ya) = ∑
y∈Y

(
y−Ya

)2 P(Ya = y), (23.11)

where Ya is the mean rating of all users for an item xa and P(Ya = y) is the proba-
bility of an items rating Ya being equal to y, both being calculated based on either
nearest-neighbors for instance-based, or obtained from the model for model-based
approaches.

Uncertainty could also be measured by entropy as follows:

Uncertainty(Ya) = ENT (Ya) =−∑
y∈Y

P(Ya = y) logP(Ya = y). (23.12)

In [47] a method is proposed for measuring the uncertainty of a rating based on the
probability of the most likely rating:

Uncertainty(Ya) =−P(Ya = y∗), (23.13)

where y∗ = argmaxy P(Ya = y) is the most likely rating.
In [38] the confidence interval is used as a measure of uncertainty for selecting

the training input point:

c = P(bl(Ya)< ya < bu(Ya)), (23.14)

where c is the confidence that the actual rating ya will lie in the interval between the
lower bound bl(Ya) and the upper bound bu(Ya). For example, it is possible for the
system to be certain that an item will be assigned a rating between 3 and 5 with a
probability c = 90%. Many methods prefer items with a higher upper bound, indi-
cating that an item may be rated highly (good for exploitation), and if the confidence
interval is also wide then it may be good for exploration. In some cases where it is
desirable to increase the number of items predicted to be more highly rated, it may
be beneficial to use the expected change in the lower bound of the confidence inter-
val for selecting an item [38], the higher the expected change the more desirable.

23.5.2 Decision Boundary Uncertainty

In Decision Boundary-based methods, training points are selected so as to improve
decision boundaries. Often an existing decision boundary is assumed to be some-
what accurate, so points are sampled close to the decision boundary to further refine
it (Figure 23.4). In a way this may also be considered Output Uncertainty-based,
since the uncertainty of the points close to the decision boundary may be high. This
method operates with the assumption that the decision boundary of the underlying
learning method (e.g. Support Vector Machine) is easily accessible. A clear advan-
tage of this method is that given a decision boundary, selecting training examples
by their proximity to it is computationally inexpensive.
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Fig. 23.4: Decision boundary uncertainty.

As discussed in [45], training points may be selected for obtaining a more accu-
rate dividing hyperplane (Figure 23.4 (b)), or if the direction of the hyperplane is
already certain, input points may be selected for reducing the size of margin (Figure
23.4 (c)). While it may seem obvious to sample training points closest to the deci-
sion boundary [55, 15], there are also methods that select the items furthest away
[15] that have potential advantages in scenarios involving several candidate classi-
fiers, which are discussed in Section 23.7. This is because a classifier should be quite
certain about any items far from a decision boundary, but if newly acquired train-
ing data reveals the classifier to be inaccurate, the classifier may not fit the user’s
preferences well, so it should be removed from the pool of candidate classifiers.

23.5.3 Model Uncertainty

Model Uncertainty-based methods select training points for the purpose of reduc-
ing uncertainty within the model, more specifically, to reduce uncertainty about
the model’s parameters. The assumption is that if we improve the accuracy of the
model’s parameters the accuracy of output values will improve as well. If we were to
predict a user’s preferences based on membership in different interest groups [23],
i.e. a group of people with a similar interest, then training points may be selected so
as to determine to which groups the user belongs (Section 23.5.3.1).

23.5.3.1 Probabilistic Models

Probabilistic models are best explained with an example. The aspect model [23], a
probabilistic latent semantic model in which users are considered to be a mixture of
multiple interests (called aspects) is a good choice for this. Each user u ∈U has a
probabilistic membership in different interest groups z ∈ Z. Users in the same inter-
est group are assumed to have the same rating patterns (e.g. two users of the same
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aspect will rate a given movie the same), so users and items x ∈ X are indepen-
dent from each other given the latent class variable z. The probability of the user u
assigning an item x the rating y can be computed as follows:

P(y|x,u) = ∑
z∈Z

p(y|x,z)p(z|u). (23.15)

The first term p(y|x,z) is the likelihood of assigning an item x the rating y by users
in class z (approximated by a Gaussian distribution in [23]). It does not depend on
the target user and represents the group-specific model. The global-model consists
of a collection of group-specific models. The second term p(z|u) is the likelihood
for the target user u to be in class z, referred to as a user personalization parameter
(approximated by a multinomial distribution in [23]). The user model θθθ u consists of
one or more user personalization parameters, i.e. θθθ u = {θuz = p(z|u)}z∈Z .

A traditional AL approach would be to measure the usefulness of the candidate
training input point xa based on how much it would allow for reduction of the un-
certainty about the user model’s parameters θθθ u (i.e. the uncertainty about to which
interest group z the user u belongs):

ĜθUncertainty(xa) =Uncertainty(θθθ u), (23.16)

Uncertainty(θθθ u) =−
〈

∑
z∈Z

θuz|xa,y logθuz|xa,y

〉

p(y|xa,θθθ u)

, (23.17)

where θθθ u denotes the currently estimated parameters of the user u and θuz|x,y a
parameter that is estimated using an additional training point (xa,y). Since the goal
of the above criterion is to reduce the uncertainty of which interest groups the target
user belongs to, it favors training points that assign a user to a single interest group.
This approach may not be effective for all models, such as with the aspect model, in
which a user’s preferences are better modeled by considering that a user belongs to
multiple interest groups [23, 25].

Another potential drawback comes from the expected uncertainty being com-
puted over the distribution p(y|x,θθθ u) by utilizing the currently estimated model θθθ u.
The currently estimated model could be far from the true model, particularly when
the number of training points is small, but the number of parameters to be esti-
mated is large. Therefore, performing AL based only on a single estimated model
can be misleading [25]. Let us illustrate this by the following example shown in
Figure 23.5. The four existing training points are indicated by solid line contours,
test points by dashed ones. Based on these four training examples, the most likely
decision boundary is the horizontal line (dashed), even though the true decision
boundary is a vertical line (solid). If we select training input points based only on
the estimated model, subsequent training points would likely be obtained from ar-
eas along the estimated boundary, which are ineffective in adjusting the estimated
decision boundary (horizontal line) towards the correct decision boundary (vertical
line). This example illustrates that performing AL for the currently estimated model
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Fig. 23.5: A learning scenario when the estimated model is far from the true model.
Training points are indicated by solid contours.

without taking into account the model’s uncertainty can be very misleading, partic-
ularly when the estimated model is far from the true model. A better strategy could
be to consider model uncertainty by utilizing the model distribution for selecting
training input points [25]. This would allow for adjusting the decision boundary
more effectively since decision boundaries other than the estimated one (i.e. hori-
zontal line) would be considered for selecting the training input points. This idea is
applied to probabilistic models in [25] as follows. The usefulness of the candidate
training input point is measured based on how much it allows adjusting the model’s
parameters θθθ u towards the optimal model parameters θθθ u

∗:

ĜθUncertainty(xa) =

〈

∑
z∈Z

θu
∗
z log

θuz|xa,y

θu∗z

〉

p(y|xa,θθθ u∗)

. (23.18)

The above equation corresponds to Kullback–Leibler divergence which is mini-
mized when the estimated parameters are equal to the optimal parameters. The true
model θθθ u

∗ is not known but could be estimated as the expectation over the posterior
distribution of the user’s model i.e. p(θθθ u|u).

23.6 Error-based Active Learning

Error-based Active Learning methods aim to reduce the predictive error, which is
often the final goal. Instance-based approaches try to find and utilize the relation
between the training input points and the predictive error. Model-based approaches
tend to aim at reducing the model error (i.e. the error of model parameters), which
is hoped would result in the improvement of predictive error.

!"#
$%
&$
'()
(*+

%,
*#
+&
-"
.

$)!(/-!$&%,*#+&-".

(+0
#!
1

(+0#!2



752 Neil Rubens, Dain Kaplan, and Masashi Sugiyama

23.6.1 Instance-based Methods

Instance-based methods aim at reducing error based on the properties of the input
points, such as are listed in Section 23.2.

23.6.1.1 Output Estimates Change (Y-Change)

This approach [42] operates on the principle that if rating estimates do not change
then they will not improve. Thus, if the estimates of output values do change, then
their accuracy may either increase or decrease. However, it is expected that at least
something will be learned from a new training point, so it follows then that in many
cases estimates do in fact become more accurate. Assuming that most changes in
estimates are for the better, an item that causes many estimates to change will result
in the improvement of many estimates, and is considered useful.

As an example (Figure 23.6), if a user rates an item that is representative of a
large genre, such as the Sci-Fi movie Star Wars, then its rating (regardless of its
value) will likely cause a change in rating estimates for many other related items
(e.g. items within that genre), in other words, rating such a representative item is
very informative about the user’s preferences. On the other hand, the user rating
an item without many other similar items, such as the movie The Goldfish Hunter,
would change few rating estimates, and supply little information.

To find the expected changes in rating estimates caused by a candidate item’s
rating, all possible item ratings are considered (since the true rating of a candidate
item is not yet known). The difference is calculated between rating estimates for
each item for each of its possible ratings, before and after it was added to the training
set (refer to the pseudocode in Algorithm 1).

More formally the above criterion could be expressed as:

ĜY change(xa) =− ∑
x∈X (Test)

Ey∈YL( f̂T (x), f̂T ∪(xa,y)(x)), (23.19)

where f̂T (x) is the estimated rating for an item x given the current training set T ,
and f̂T ∪(xa,y)(x) is the rating’s estimate after a hypothetical rating y of an item xa is
added to the training set T , and L is the loss function that measures the differences
between the rating estimates f̂T (x) and f̂T ∪(xa,y)(x). By assuming that ratings of a
candidate item are equally likely and using a mean squared loss function, the above
criterion could be written as:

ĜY change(xa) =− ∑
x∈X (Test)

1
|Y| ∑

y∈Y

(
f̂T (x)− f̂T ∪(xa,y) (x)

)2
(23.20)

where 1
|Y| is a normalizing constant since we assume all possible ratings y ∈ Y of

an item xa.
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(a)

(b)

Fig. 23.6: Output estimate-based AL (Section 23.6.1.1). The x-axis corresponds to
an item’s index, and the y-axis to the changes in rating estimates with regard to a
candidate training point. Training points that cause many changes in rating estimates
are considered to be more informative (a).

The advantage of this criterion is that it relies only on the estimates of ratings,
available from any learning method. It has a further advantage of utilizing all unrated
items, something that differentiates it from other methods in which only a small
subset of all items (ones that have been rated by the user) are considered. It also
works in tandem with any of a variety of learning methods, enabling it to potentially
adapt to different tasks.

23.6.1.2 Cross Validation-based

In this approach a training input point is selected based on how well it may allow for
approximation of already known ratings, i.e. items in the training set [15]. That is, a
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Algorithm 1 Output estimates-based Active Learning (Section 23.6.1.1).
# Ĝ estimates predictive error that rating an item xa would achieve
function Ĝ(xa)

# learn a preference approximation function f̂ based on the current training set T
f̂T =learn(T )

# for each possible rating of an item xa e.g. {1,2, . . . ,5}
for ya ∈ Y

# add a hypothetical training point (xa,ya)
T (a) = T ∪ (xa,ya)

# learn a new preference approximation function f̂ based on the new training set T (a)

f̂T (a) =learn(T (a))
# for each unrated item
for x ∈ X (Test)

# record the differences between ratings estimates
# before and after a hypothetical training point (xa,ya) was added to the training set T

Ĝ = Ĝ+

(
−
(

f̂T (x)− f̂T (a) (x)
)2
)

return Ĝ

candidate training point xa with each possible rating y ∈ Y is added to the training
set T , then an approximation of the user’s preferences f̂ is obtained and its accuracy
is evaluated (i.e. cross-validated) on the training items X (Train). It is assumed that
when the candidate training item is paired with its correct rating, the cross-validated
accuracy will improve the most. The usefulness of the candidate training point is
measured by the improvement in the cross-validated accuracy as following:

ĜCVT (xa) =−max
y∈Y ∑

x∈X (Train)

L( f̂T ∪(xa,y)(x), f (x)), (23.21)

where L is a loss function such as MAE or MSE (Section 23.4), and f (x) is the
actual rating of the item x, and f̂T ∪(xa,y)(x) is the approximated rating (where a
function f̂ is learned from the training set T ∪ (xa,y)) .

A potential drawback is that training points selected by this AL method could be
overfitted to the training set.

23.6.2 Model-based

In model-based approaches training input points are obtained as to reduce the
model’s error, i.e. the error of the model’s parameters. A potential drawback of this
approach is that reducing the model’s error may not necessarily reduce the predic-
tion error which is the objective of AL.
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23.6.2.1 Parameter Change-based

Parameter Change-based AL [49] favors items that are likely to influence the model
the most. Assuming that changes in the model’s parameters are for the better, i.e.
approach the optimal parameters, it is then beneficial to select an item that has the
greatest impact on the model’s parameters:

Ĝθchange(xa) =−∑
θ
Ey∈YL(θT , θT ∪(xa,y)), (23.22)

where θT are the model’s parameters estimated from the current training set T ,
and θT ∪(xa,y) are the model’s parameter estimates after a hypothetical rating y of an
item xa is added to the training set T , and L is the loss function that measures the
differences between the parameters.

23.6.2.2 Variance-based

Fig. 23.7: Decomposition of generalization error G into model error C, bias B, and
variance V , where g denotes optimal function, f̂ is a learned function f̂i’s are the
learned functions from a slightly different training set.

In this approach the error is decomposed into three components: model error
C (the difference between the optimal function approximation g, given the current
model, and the true function f ), bias B (the difference between the current approx-
imation f̂ and an optimal one g), and variance V (how much the function approxi-
mation f̂ varies ). In other words, we have:

G =C+B+V. (23.23)

One solution [13] is to minimize the variance component V of the error by assuming
that the bias component becomes negligible (if this assumption is not satisfied then
this method may not be effective). There are a number of methods proposed that
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aim to select training inputs for reducing a certain measure of the variance of the
model’s parameters. The A-optimal design [11] seeks to select training input points
so as to minimize the average variance of the parameter estimates, the D-optimal
design [26] seeks to maximize the differential Shannon information content of the
parameter estimates, and the Transductive Experimental design [56] seeks to find
representative training points that may allow retaining most of the information of
the test points. The AL method in [51], in addition to the variance component, also
takes into account the existense of the model error component.

23.6.2.3 Image Restoration-based

It is also possible to treat the problem of predicting the user’s preferences as one
of image restoration [34], that is, based on our limited knowledge of a user’s pref-
erences (a partial picture), we try to restore the complete picture of the user’s likes
and dislikes. The AL task is then to select the training points that would best allow
us to restore the “image” of the user’s preferences. It is interesting to note that this
approach satisfies the desired properties of the AL methods outlined in Section 23.2.
For example, if a point already exists in a region, then without sampling neighbor-
ing points the image in that region could likely be restored. This approach also may
favor sampling close to the edges of image components (decision boundaries).

23.7 Ensemble-based Active Learning

Sometimes instead of using a single model to predict a user’s preferences, an ensem-
ble of models may be beneficial (see Chapter 21). In other cases only a single model
is used, but it is selected from a number of candidate models. The main advantage
of this is the premise that different models are better suited to different users or dif-
ferent problems. The preferences of one user, for example, could be better modeled
by a stereotype model, while the preferences of another user may be better mod-
eled by a nearest-neighbor model. The training input points for these AL methods
must be selected with regards to multiple models (Section 23.7.1) or multiple model
candidates (Section 23.7.2).

23.7.1 Models-based

In Models-based approaches, the models form a “committee” of models that act,
in a sense, cooperatively to select training input points [50]. Methods tend to differ
with respect to: (1) how to construct a committee of models, and (2) how to se-
lect training points based on committee members [46]. As [46] explains thoroughly
(please refer to it for more details), the Query by Committee approach (QBC) in-



23 Active Learning in Recommender Systems 757

volves maintaining a committee of models which are all trained on the same training
data. In essence, they represent competing hypotheses for what the data might look
like (as represented by the model). The members of this committee then vote on how
to label potential input points (the “query” in “QBC”). The input points for which
they disagree the most are considered to be the most informative. The fundamental
premise of QBC is minimizing the version space, or the subset of all hypotheses that
are consistent with all the collected training data; we want to then constrain the size
of this space as much as possible, while at the same time minimizing the number of
training input points. Put a different way, QBC “queries” in controversial regions to
refine the version space.

There are many ways to construct the committee of models; [46] provides nu-
merous examples. It can, for example, be constructed through simple sampling [50].
With generative model classes, this can be achieved by randomly sampling an ar-
bitrary number of models from some posterior distribution, e.g. using the Dirich-
let distribution over model parameters for naive Bayes [31], or sampling Hidden
Markov Models (HMMs) using the Normal distribution [14]. The ensemble can
be constructed for other model classes (such as discriminative or non-probabilistic
models) as well, e.g. query-by-boosting and query-by-bagging [1], which employ
the boosting [17] and bagging [8] ensemble learning methods to construct the com-
mittees; there has also been research [12] on using a selective sampling algorithm
for neural networks that utilizes the combination of the “most specific” and “most
general” models (selecting the models that lie at two extremes of the current version
space given the current training set).

The “committee is still out” on the appropriate number of models to use, but even
small sizes have demonstrated good results [50, 31, 47].

Measuring the disagreement between models is fundamental to the committee
approach; there are two main means for calculating disagreement: vote uncertainty
[14] and average Kullback-Leibler (KL) divergence [31]. Vote uncertainty selects
the point with the largest disagreement between models of the committee. KL diver-
gence is an information-theoretic measure of the difference between two probability
distributions. KL divergence selects the input point with the largest average differ-
ence between the distributions of the committee consensus and the most differing
model.

23.7.2 Candidates-based

Different models are better suited to different users or to different problems (see
Chapter 2). So both the choice of the training set (AL) and the choice of the model,
called Model Selection (MS), affect the predictive accuracy of the learned function.
There is in fact a strong dependency between AL and MS, meaning that useful points
for one model may not be as useful for another (Figure 23.9). This section discusses
how to perform AL with regards to multiple model candidates and the issues that
may arise when doing so.
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The concept of model has several different meanings. We may refer to a model as
a set of functions with some common characteristic, such as a function’s complex-
ity, or the type of a function or learning method (e.g. SVM, Naive Bayes, nearest-
neighbor, or linear regression). The characteristics of the functions that may differ
are often referred to as parameters. Thus, given a model and training data, the task
of MS is to find parameters that may allow for accurate approximation of the target
function. All of the model’s characteristics affect the predictive accuracy, but for
simplicity we concentrate only on the complexity of the model.

(a) under-fit (b) over-fit (c) appropriate fit

Fig. 23.8: Dependence between model complexity and accuracy.

As illustrated by Figure 23.8, if the model is too simple in comparison with the
target function, then the learned function may not be capable of approximating the
target function, making it under-fit (Figure 23.8a). On the other hand, if the model
is too complex it may start trying to approximate irrelevant information (e.g. noise
that may be contained in the output values) which will cause the learned function
to over-fit the target function (Figure 23.8b). A possible solution to this is to have a
number of candidate models. The goal of model selection (MS) is thus to determine
the weights of the models in the ensemble, or in the case of a single model being
used, to select an appropriate one (Figure 23.8c):

min
M

G(M). (23.24)

The task of AL is likewise to minimize the predictive error, but with respect to the
choice of the training input points:

min
X (Train)

G(X (Train)). (23.25)

It would be beneficial to combine AL and MS since they share a common goal of
minimizing the predictive error:

min
X (Train),M

G(X (Train),M). (23.26)

Ideally we would like to choose the model of appropriate complexity by a MS
method and to choose the most useful training data by an AL method. However



23 Active Learning in Recommender Systems 759

simply combining AL with MS in a batch manner, i.e. selecting all of the training
points at once, may not be possible due to the following paradox:

• To select training input points by a standard AL method, a model must be fixed.
In other words, MS has already been performed (see Figure 23.9).

• To select the model by a standard MS method, the training input points must
be fixed and corresponding training output values must be gathered. In other
words, AL has already been performed (see Figure 23.10).

Fig. 23.9: Training input points that are good for learning one model, are not neces-
sary good for the other.

Unable to determine which model is more appropriate (Model Selec-
tion), until training points have been obtained (Active Learning).

Fig. 23.10: Dependence of Model Selection on Active Learning.

As a result Batch AL selects training points for a randomly chosen model, but
after the training points are obtained the model is selected once again, giving rise
to the possibility that the training points will not be as useful if the initial and final
models differ. This means that the training points could be over-fitted to a possibly
inferior model, or likewise under-fitted.

With Sequential AL, the training points and models are selected incrementally
in a process of selecting a model, then obtaining a training point for this model,
and so on. Although this approach is intuitive, it may perform poorly due to model
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Fig. 23.12: Batch Active Learning.

drift, where a chosen model varies throughout the learning process. As the number
of training points increases, more complex models tend to fit data better and are
therefore selected over simpler models. Since the selection of training input points
depends on the model, the training points chosen for a simpler model in the early
stages could be less useful for the more complex model selected at the end of the
learning process. Due to model drift, portions of training points are gathered for
different models, resulting in the training data being not well suited for any of the
models. However, because the selection of the final model is unclear at the onset,
one possibility is to select training input points with respect to multiple models [52],
by optimizing the training data for all the models:

min
X (Train)

∑
M

Ĝ(X (Train),M)w(M), (23.27)

where w(M) refers to the weight of the model in the ensemble, or among the candi-
dates. This allows each model to contribute to the optimization of the training data
and thus the risk of overfitting the training set to possibly inferior models can be
hedged.

23.8 Conversation-based Active Learning

Differing from standard AL in which the goal is to obtain ratings for dissimilar items
(for improving prediction accuracy over the entire set), Conversation-based AL is
goal oriented with the task of starting general and, through a series of interaction
cycles, narrowing down the user’s interests until the desired item is obtained [32,
37, 9], such as selecting a hotel to stay at during a trip. In essence, the goal is to
supply the user with the information that best enables them to reduce the set of
possible items, finding the item with the most utility. The system therefore aims at
making accurate predictions about items with the highest utility for a potentially
small group of items, such as searching for a restaurant within a restricted locale.
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A common approach is to iteratively present sets of alternative recommendations
to the user, and by eliciting feedback, guide the user towards an end goal in which
the scope of interest is reduced to a single item. This cycle-based approach can
be beneficial since users rarely know all their preferences at the start (becoming
self-aware), but tend to form and refine them during the decision making process
(exploration). Thus Conversation-based AL should also allow users to refine their
preferences in a style suitable to the given task. Such systems, unlike general RSs,
also include AL by design, since a user’s preferences are learned through active
interaction. They are often evaluated by the predictive accuracy, and also by the
length of interaction before arriving at the desired goal.

23.8.1 Case-based Critique

One means for performing a conversation with a user is the Case-based Critique ap-
proach, which finds cases similar to the user’s query or profile and then elicits a cri-
tique for refining the user’s interests (see Chapters [37] and 13). As mentioned above
(Section 23.8), the user is not required to clearly define their preferences when the
conversation initiates; this may be particularly beneficial for mobile device-oriented
systems. Each step of iteration displays the system’s recommendations in a ranked
list and allows for user critique, which will force the system to re-evaluate its recom-
mendations and generate a new ranked list. Eliciting a user critique when a feature
of a recommended item is unsatisfactory may be more effective in obtaining the end
goal than mere similarity-based query revision combined with recommendation by
proposing. As an example of a user critique, he/she may comment “I want a less
expensive hotel room” or “I like restaurants serving wine.”

23.8.2 Diversity-based

While suggesting items to the user that are similar to the user query is important
(Section 23.8.1), it may also be worthwhile to consider diversity among the set of
proposed items [32]. This is because if the suggested items are too similar to each
other, they may not be representative of the current search space. In essence, the rec-
ommended items should be as representative and diverse as possible, which should
be possible without appreciably affecting their similarity to the user query.

It is particularly important to provide diverse choices while the user’s preferences
are in their embryonic stages. Once the user knows what it is they want, providing
items that match as closely as possible may be pertinent, and the AL technique used
should attempt to make this distinction, i.e. if the recommendation space is properly
focused, reduce diversity, and if incorrect, increase it.
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23.8.3 Query Editing-based

Another possibility is to allow a user to repeatedly edit and resubmit a search query
until their desired item is found [9]. Since it is an iterative process, the object is to
minimize the number of queries needed before the user finds the item of highest
utility. A query’s usefulness is estimated based on the likelihood of the user submit-
ting a particular query, along with its satisfiability, accomplished by observing user
actions and inferring any constraints on user preferences related to item utility and
updating the user’s model. As an example, a user may query for hotels that have
air-conditioning and a golf course. The RS can determine this to be satisfiable, and
further infer that though the user is likely to add a restraint for the hotel being lo-
cated in the city-center, no hotels match such criteria, so the system preemptively
notifies the user that such a condition is unsatisfiable to prevent wasted user effort.
The RS may also infer that for a small increase in price there are hotels with a pool
and spa and a restaurant. Knowing the user’s preferences for having a pool (and not
for other options), the system would only offer adding the pool option, since it may
increase the user’s satisfaction, and not the others since they may overwhelm the
user and decrease overall satisfaction.

23.9 Computational Considerations

It is also important to consider the computational costs of AL algorithms. [40] have
suggested a number of ways of reducing the computational requirements, summa-
rized (with additions) below.

• Many AL select an item to be rated based on its expected effect on the learned
function. This may require retraining with respect to each candidate training
item, and so efficient incremental training is crucial. Typically this step-by-step
manner has lower cost than starting over with a large set.

• New rating estimates may need to be obtained with respect to each candidate
item. Likewise, this could be done in an incremental manner, since only the
estimates that change would need to be obtained again.

• It is possible to incrementally update the estimated error only for items likely to
be effected by the inclusion of a training point, which in practice is only nearby
items or items without similar features. A common approach is to use inverted
indices to group items with similar features for quick lookup.

• A candidate training item’s expected usefulness can likely be estimated using a
subset of all items.

• Poor candidates for training points can be partially pruned through a pre-
filtering step that removes poor candidate items based on some criteria, such
as filtering books written in a language the user cannot read. A suboptimal AL
method may be a good choice for this task.
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23.10 Discussion

Though very brief, hopefully the collection of Active Learning methods presented
in this chapter has demonstrated that AL is indeed not only beneficial but also desir-
able for inclusion in many systems, namely Recommender Systems. It can be seen
that due to individual characteristics, the AL method selected, in many cases, relies
heavily on the specific objectives (Section 23.1.1) that must be satisfied, either due
to business constraints, preferred system behavior, user experience, or a combina-
tion of these (and possibly others). In addition to AL objectives, it is also prudent
to evaluate the computational costs (Section 23.9) of any methods under consid-
eration for use, and their trade-offs. Despite the success that many of the meth-
ods discussed have received, there is also something to be said for abstracting the
problem, or finding solutions to other problems that though seemingly unrelated,
may have strikingly similar solutions (e.g. Image Restoration (Section 23.6.2.3)).
We have also touched upon conversation-based systems (Section 23.8) which differ
from traditional RSs, but include the notion of AL by design. Depending on the task
at hand, such as specific goal oriented assistants, this may also be a nice fit for a
Recommender System.

Some issues related to AL have already been well studied in Statistics; this is
not the case in Computer Science, where research is still wanting. Recommender
Systems are changing at a rapid pace and becoming more and more complex. An
example of this is the system that won the NetFlix Recommendation Challenge,
which combined multiple predictive methods in an ensemble manner (see Chapter
5). Given the high rate of change in predictive methods of RSs, and their complex
interaction with AL, there is an ever increasing need for new approaches.

Improving accuracy has traditionally been the main focus of research. Accu-
racy alone, however, may not be enough to entice the user with RSs. This is be-
cause the system implementing AL may also need to recommend items of high
novelty/serendipity, improve coverage, or maximize profitability, to name a few
[44, 21, 33]. Another aspect that is frequently overlooked by AL researchers is the
manner in which a user can interact with AL to reap improvements in performance.
Simply presenting items to the user for rating lacks ingenuity to say the least; surely
there is a better way? One example of this is a work [3] which demonstrated that by
using the right interface even such menial tasks as labeling images could be made
fun and exciting. With the right interface alone the utility of an AL system may
increase dramatically.

Many issues remain that must be tackled to ensure the longevity of AL in RSs;
with a little innovation and elbow grease we hope to see it transform from a “both-
ersome process” to an enjoyable one of self-discovery and exploration, satisfying
both the system objectives and the user at the same time.
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Chapter 24
Multi-Criteria Recommender Systems

Gediminas Adomavicius, Nikos Manouselis and YoungOk Kwon

Abstract This chapter aims to provide an overview of the class of multi-criteria
recommender systems. First, it defines the recommendation problem as a multi-
criteria decision making (MCDM) problem, and reviews MCDM methods and tech-
niques that can support the implementation of multi-criteria recommenders. Then,
it focuses on the category of multi-criteria rating recommenders – techniques that
provide recommendations by modelling a user’s utility for an item as a vector of
ratings along several criteria. A review of current algorithms that use multi-criteria
ratings for calculating predictions and generating recommendations is provided. Fi-
nally, the chapter concludes with a discussion on open issues and future challenges
for the class of multi-criteria rating recommenders.

24.1 Introduction

The problem of recommendation has been identified as the way to help individuals
in a community to find information or items that are most likely to be interesting
to them or to be relevant to their needs [4, 39, 72]. Typically, it assumes that there
is set Users of all the users of a system and set Items of all possible items that
can be recommended to them. Then, the utility function that measures the appro-
priateness of recommending item i ∈ Items to user u ∈ Users is often defined as
R : Users× Items→ R0, where R0 typically is represented by non-negative integers
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or real numbers within a certain range [4]. It is assumed that this function is not
known for the whole Users× Items space but is specified only on some subset of it.
Therefore, in the context of recommendation, we want for each user u∈Users to be
able to (a) estimate (or approximate) the utility function R(u, i) for item i ∈ Items
for which R(u, i) is not yet known, and (b) choose one or a set of items i that will
maximize R(u, i), i.e.,

∀u ∈Users, i = arg max
i∈Items

R(u, i) (24.1)

In most recommender systems, the utility function usually considers a single-
criterion value, e.g., an overall evaluation or rating of an item by a user. In recent
work, this assumption has been considered as limited [2, 4, 48], because the suit-
ability of the recommended item for a particular user may depend on more than one
utility-related aspect that the user takes into consideration when making the choice.
Particularly in systems where recommendations are based on the opinion of others,
the incorporation of multiple criteria that can affect the users’ opinions may lead to
more accurate recommendations.

Thus, the additional information provided by multi-criteria ratings could help
to improve the quality of recommendations because it would be able to represent
more complex preferences of each user. As an illustration, consider the following
example. In a traditional single-rating movie recommender system, user u provides
a single rating for movie i that the user has seen, denoted by R(u, i). Specifically,
suppose that the recommender system predicts the rating of the movie that the user
has not seen based on the movie ratings of other users with similar preferences, who
are commonly referred to as “neighbors” [71]. Therefore, the ability to correctly
determine the users that are most similar to the target user is crucial in order to have
accurate predictions or recommendations. For example, if two users u and u′ have
seen three movies in common, and both of them rated their overall satisfaction from
each of the three movies as 6 out of 10, the two users are considered as neighbors
and the ratings of unseen movies for user u are predicted using the ratings of user
u′.

In contrast, in a multi-criteria rating setting, users can provide ratings on multi-
ple attributes of an item. For example, a two-criterion movie recommender system
allows users to specify their preferences on two attributes of a movie (e.g., story and
visual effects). A user may like the story, but dislike the visual effects of a movie,
e.g., R(u, i) = (9, 3). If we simply use two ratings with the same weight in making
recommendations, rating their overall satisfaction as 6 out of 10 in the single-rating
application might correspond to a variety of situations in multi-rating application:
(9, 3), (6, 6), (4, 8), etc. Therefore, although the ratings of the overall satisfaction
are stated as 6, two users may show different rating patterns on each criterion of
an item, e.g., user u gives ratings (9, 3), (9, 3), (9, 3), and user u′ gives ratings
(3, 9), (3, 9), (3, 9) to the same three movies. This additional information on each
user’s preferences would help to model users’ preferences more accurately, and new
recommendation techniques need to be developed to take advantage of this addi-
tional information. The importance of studying multi-criteria recommender systems
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has been highlighted as a separate strand in the recommender systems literature
[2, 4, 48], and recently several recommender systems (as we present later in this
chapter) have been adopting multiple criteria ratings, instead of traditional single-
criterion ratings. Thus, the aim of this chapter is to provide an overview of systems
that use multiple criteria to support recommendation (referred to as multi-criteria
recommender systems), with a particular emphasis on multi-criteria rating ones.

The remainder of this chapter is organized as follows. First, we overview the
generic recommendation problem under the prism of multi-criteria decision making
(MCDM), and demonstrate the potential of applying MCDM methods to facilitate
recommendation in multi-criteria settings. Second, we focus on the particular type
of multi-criteria recommender systems that use multi-criteria ratings, referred to
as multi-criteria rating recommenders because, while it has not been extensively
researched, this type of systems has significant potential for better recommendation
performance. We survey the state of the art algorithms for this type of recommender
systems. Finally, research challenges and future research directions in multi-criteria
recommender systems are discussed.

24.2 Recommendation as a Multi-Criteria Decision Making
Problem

In order to introduce multiple criteria in the generic recommendation problem, one
of the classic MCDM methodologies can be followed. To facilitate the discussion on
how MCDM methods and techniques can be used when developing a recommender
system, we followed the steps and notations proposed by Bernard Roy (one of the
1960s pioneers in MCDM methods) in the generic modeling methodology for de-
cision making problems [77]. The discussion could also follow some other generic
MCDM modeling methodologies [24, 34, 95, 97], since the scope of this section is
to provide some initial insights into issues that recommender systems researchers
should consider when designing a multi-criteria recommender.

Roy’s [77] methodology includes four steps when analyzing a decision making
problem:

1. Defining the object of decision. That is, defining the set of alternatives (items)
upon which the decision has to be made and the rationale of the recommenda-
tion decision.

2. Defining a consistent family of criteria. That is, identifying and specifying a set
of functions that declare the preferences of the decision maker (targeted user)
upon the various alternatives. These should cover all the parameters affecting
the recommendation decision and be exhaustive and non-redundant.

3. Developing a global preference model. That is, defining the function that syn-
thesizes the partial preferences upon each criterion into a model that specifies
the total preference of a decision maker regarding a candidate alternative.
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4. Selection of the decision support process. This covers the design and develop-
ment of the procedure, methods, or software systems that will support a decision
maker when taking a decision about the set of alternatives (items), in accordance
to the results of the previous steps.

We briefly review these steps in separate subsections below, and mention how
each of them pertains to recommender systems.

24.2.1 Object of Decision

In recommender systems, the object of decision is item i that belongs to the set
of all the candidate items. The elements of this set are referred to as alternatives
or actions in related literature [30]. To express the rationale behind the decision,
Roy [77] refers to the notion of the decision “problematics.” Four types of decision
problematics are identified:

• Choice, which concerns the selection of one or more alternatives that can be
considered as more appropriate from all candidate ones;

• Sorting, which refers to the classification of the alternatives into a number of
pre-defined categories;

• Ranking, which involves ranking all the alternatives, from the best one to the
worst;

• Description, which concerns the description of each alternative in terms of how
it performs upon each criterion.

All four types of decision problematics can be considered valid for the recom-
mendation problem:

• Choosing and recommending one or more items as more suitable for a particular
user;

• Classifying (or sorting, as Roy defines it) all available items into pre-defined
categories according to their suitability, e.g., into “recommended for purchase”
and “recommended for viewing” items;

• Ranking all available items from the most suitable to the least suitable ones for
a particular user, and presenting a ranked list of recommendations to the user;

• Describing how suitable a particular item is for a specific user, based on how
it is evaluated upon each criterion. It corresponds to a full analysis of the item
performance upon all criteria, illustrating the suitability of an item for the spe-
cific user (that is, in a personalized manner that aims to help the user to make a
selection).
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24.2.2 Family of Criteria

The performance of alternatives in set Items is analyzed upon a set of criteria for
each user, in order to model all their characteristics, attributes, effects, or conse-
quences [77, 97]. In recommender systems, the criteria may refer to the multiple
features of an item (often the case in content-based recommendations) or to the
multiple dimensions upon which the item is being evaluated/rated.

Any criterion c can be represented by function gc(i) that expresses the preferences
of one user (therefore is user-specific), in order for the user to be able to decide
between two alternatives i1 and i2, i.e., whether gc(i1) > gc(i2), in the case that
alternative i1 is preferred to alternative i2, or whether gc(i1) = gc(i2), in the case
that the two alternatives are considered equivalent (i.e., perfectly substitutable for
the particular user on this criterion). To be able to make rational decisions using
multiple criteria, it has to be ensured that the whole set of these functions creates a
consistent family of criteria [77]. A family of criteria is said to be consistent when
it has the following three properties:

1. Monotonic: a family of criteria is monotonic only if, for each pair of alternatives
i1 and i2, for which gc1 (i1) > gc1 (i2) for one criterion c1 and gc(i1) = gc(i2) for
every other criterion c != c1, it can be assumed that alternative i1 is preferred to
alternative i2.

2. Exhaustive: a family of criteria is exhaustive only if, for each pair of alternatives
i1 and i2, for which gc(i1) = gc(i2) upon each criterion c, we can assume that i1
and i2 are equivalent.

3. Non-redundant: a family of criteria is non-redundant only if the removal of any
one of the criteria leads to the violation of one of the other two properties.

In the remainder of this chapter, unless explicitly specified otherwise, we will
assume that we have a consistent family of k criteria, i.e., g1, g2, . . . , gk. The design
of a consistent family of criteria for a given recommendation application has been
largely ignored in the recommender systems literature and constitutes an interesting
and important problem for future research. Four types of criteria are usually found
in MCDM [30]:

• Measurable, i.e., a criterion that allows its quantified measurement upon some
evaluation scale;

• Ordinal, i.e., a criterion that defines an ordered set of acceptable values that
allow its evaluation using a qualitative or a descriptive scale;

• Probabilistic, i.e., a criterion that uses probability distributions to represent un-
certainty in its evaluation;

• Fuzzy, i.e., a criterion whose evaluation is represented in relation to its possi-
bility to belong in one of the intervals of a qualitative or descriptive evaluation
scale.

From a broad perspective, a family of criteria can be used to facilitate the rep-
resentation of user preferences in recommender systems as well. Therefore, we can
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assume that all types of criteria could be potentially engaged in multi-criteria rec-
ommender systems, although (as shown later) it seems that some types are used in
currently developed systems more often than others.

24.2.3 Global Preference Model

The development of a global preference model provides a way to aggregate the
values of each criterion gc (where c = 1, . . . ,k) in order to express the preferences
between the different alternatives of the set Items, depending on the selected deci-
sion problematics. In the MCDM literature, a number of methodologies have been
developed, which can be classified in different categories according to the form of
the global preference model that they use and the process of creating this model.
According to [30] and [64], the following categories of global preference modeling
approaches can be identified:

• Value-Focused models, where a value system for aggregating the user prefer-
ences on the different criteria is constructed. In such approaches, marginal pref-
erences upon each criterion are synthesized into a total value function, which is
usually called the utility function [33]. These approaches are often referred to
as multi-attribute utility theory (MAUT) approaches.

• Multi-Objective Optimization models, where criteria are expressed in the form
of multiple constraints of a multi-objective optimization problem. In such ap-
proaches, usually the goal is to find a Pareto optimal solution for the origi-
nal optimization problem [102]. They are also sometimes referred to as multi-
objective mathematical programming methodologies.

• Outranking Relations models, where preferences are expressed as a system of
outranking relations between the items, thus allowing the expression of incom-
parability. In such approaches, all items are pair-wise compared to each other,
and preference relations are provided as relations “a is preferred to b”, “a and b
are equally preferable”, or “a is incomparable to b” [76].

• Preference Disaggregation models, where the preference model is derived by
analyzing past decisions. Such approaches are sometimes considered as a sub-
category of other modeling categories mentioned above, since they try to infer a
preference model of a given form (e.g., value function or outranking relations)
from some given preferential structures that have led to particular decisions in
the past. Inferred preference models aim at producing decisions that are at least
identical to the examined past ones [30].

Methodologies from all categories can be used in order to create global prefer-
ence models for recommender systems, depending on the selected decision prob-
lematic and the environment in which the recommender system is expected to oper-
ate.
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24.2.4 Decision Support Process

In this step, a final decision for a given MCDM problem is made by choosing an
appropriate method among the ones defined in each of the previous steps. Like in
traditional MCDM, multi-criteria recommendation problems may also need to use
different methods for different domains or applications. Note, however, that this
MCDM perspective is broad and not very restrictive when modeling multi-criteria
recommendation problems, because many existing recommender systems can be
thought to fit directly in the MCDM category, since they usually take into account
information from multiple sources (e.g., user profiles and item attributes), thus mak-
ing them de facto multi-criteria decision makers. Therefore, later in the chapter, we
will focus on a particular category of MCDM recommender systems that can be
differentiated from most existing recommender systems.

In Tables 24.1-24.3, we provide an overview of some sample recommender sys-
tems that could be broadly classified as MCDM (or multi-criteria recommender)
systems based on the work of [48]. This survey covers systems that use one of the
MCDM methods discussed in the previous section and, thus, provides insights into
the way that existing MCDM approaches can be employed to support the decision-
making in recommender systems.

The multi-criteria recommender systems are categorized according to the de-
cision problematic they support (Table 24.1), the types of criteria they use (Ta-
ble 24.2), and the global preference modelling approach they follow (Table 24.3).
Based on Table 24.1, it is interesting to note that most of the existing research fo-
cuses on the decision problematic of ranking the items (i.e., ranking candidates
for recommendation). There are also several systems that support the sorting of
items into different categories according to their suitability for the user (e.g., recom-
mended vs. non-recommended items). Very few systems support the choice and de-
scription problematic, although clearly there exist some applications in which they
would prove relevant. Furthermore, as Table 24.2 illustrates, the families of criteria
used are mainly measurable: that is, users rate items upon a measurable scale for
each criterion. Nevertheless, there are also several systems that engage fuzzy, ordi-
nal, and probabilistic criteria for the expression of user preferences regarding the
candidate items. Finally, Table 24.3 indicates that only a few of the multi-criteria
recommenders engage in the creation of the global preference model using a multi-
objective optimization or outranking relations. On the contrary, the vast majority
uses some value-focused model that typically calculates prediction in the form of
an additive utility function. There are also some systems that do not synthesize the
predictions from the multiple criteria, but rather use the raw vector models as their
outcome (e.g., by providing a vector of ratings from all the criteria).

It is important to note that existing systems are sometimes violating the con-
sistency rules that Roy’s methodology proposes (e.g., not using an exhaustive set
of dimensions). Nevertheless, experimental results often indicate that performance
of multi-criteria systems is satisfactory (e.g., see the survey of algorithms that fol-
lows) even in cases where no formal modelling methodology has been followed.
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This could mean that a modelling inconsistency does not always imply problematic
performance, although this is an issue that calls for further investigation.

Table 24.1: Decision problematics supported by existing multi-criteria recom-
mender systems

Choice Ariely et al. 2004 [6], Falle et al. 2004 [23], Kleinberg and Sandler 2003 [38],
Lee et al. 2002 [45], Lee 2004 [44], Price and Messinger 2005 [69], Tewari et
al. 2003 [93]

Sorting Cantador et al. 2006 [12], Choi and Cho 2004 [15], Emi et al. 2003 [22],
Guan et al. 2002 [28], Kim and Yang 2004 [36], Liu and Shih 2005 [47],
Masthoff 2003 [53], Montaner et al. 2002 [57], Nguyen and Haddawy 1999
[60], Nguyen and Haddawy 1998 [59], Stolze and Rjaibi 2001 [90], Wang
2004 [99], Yu 2002 [100], Yu 2004 [101], Zimmerman et al. 2004 [103]

Ranking Adomavicius and Kwon 2007 [2], Ardissono et al. 2003 [5], Balabanovic and
Shoham 1997 [7], Ghosh et al. 1999 [27], Karacapilidis and Hatzieleftheriou
2005 [32], Kerschberg et al. 2001 [35], Kim et al. 2002 [37], Lakiotaki et al.
2008 [42], Lee and Tang 2007 [43], Lee et al. 2002 [45], Li et al. 2008 [46],
Manouselis and Costopoulou 2007b [49], Manouselis and Costopoulou 2007c
[50], Manouselis and Sampson 2004 [52], Mukherjee et al. 2001 [58], Noh
2004 [61], Perny and Zucker 1999 [66], Perny and Zucker 2001 [67], Plantie
et al. 2005 [68], Ricci and Werthner 2002 [73], Ricci and Nguyen 2007 [74],
Sahoo et al. 2006 [79], Schafer 2005 [82], Schickel-Zuber and Faltings 2005
[83], Srikumar and Bhasker 2004 [89], Tang and McCalla 2009 [92], Tsai et
al. 2006 [96]

Description Aciar et al. 2007 [1], Cheetham 2003 [14], Denguir-Rekik et al. 2006 [19],
Herrera-Viedma et al. 2004 [29], Schmitt et al. 2002 [84], Schmitt et al. 2003
[85], Stolze and Stroebel 2003 [91]

24.3 MCDM Framework for Recommender Systems: Lessons
Learned

While, as mentioned earlier, the recommender systems surveyed in Tables 24.1-
24.3 can be considered to be multi-criteria recommender systems according to the
MCDM framework, it is important to understand where the existing types of recom-
mender systems fall within this framework and also whether this MCDM framework
gives rise to any novel types of recommender systems.

Recommendation techniques are often classified based on the recommendation
approach into several categories: content-based, collaborative filtering, knowledge-
based, and hybrid approaches [7]. Content-based recommendation techniques find
the best recommendations for a user based on what the user liked in the past
[65], and collaborative filtering recommendation techniques make recommenda-
tions based on the information about other users with similar preferences [8].
Knowledge-based approaches use knowledge about users and items to find the items
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Table 24.2: Criteria types engaged in existing multi-criteria recommender systems

Measurable Adomavicius and Kwon 2007 [2], Ariely et al. 2004 [6], Balabanovic and
Shoham 1997 [7], Cantador et al. 2006 [12], Choi and Cho 2004 [15], Falle
et al. 2004 [23], Ghosh et al. 1999 [27], Guan et al. 2002 [28], Kerschberg et
al. 2001 [35], Kim and Yang 2004 [36], Kim et al. 2002 [37], Lakiotaki et al.
2008 [42], Lee and Tang 2007 [43], Lee 2004 [44], Lee et al. 2002 [45], Li et al.
2008 [46], Liu and Shih 2005 [47], Manouselis and Costopoulou 2007b [49],
Manouselis and Costopoulou 2007c [50], Manouselis and Sampson 2004 [52],
Masthoff 2003 [53], Montaner et al. 2002 [57], Mukherjee et al. 2001 [58],
Noh 2004 [61], Plantie et al. 2005 [68], Ricci and Werthner 2002 [73], Ricci
and Nguyen 2007 [74], Sahoo et al. 2006 [79], Schafer 2005 [82], Schickel-
Zuber and Faltings 2005 [83], Schmitt et al. 2003 [85], Schmitt et al. 2002
[84], Srikumar and Bhasker 2004 [89], Stolze and Rjaibi 2001 [90], Tang and
McCalla 2009 [92], Tewari et al. 2003 [93], Tsai et al. 2006 [96], Yu 2002
[100], Yu 2004 [101], Zimmerman et al. 2004 [103]

Ordinal Aciar et al. 2007 [1], Cheetham 2003 [14], Emi et al. 2003 [22], Nguyen and
Haddawy 1998 [59], Nguyen and Haddawy 1999 [60]

Fuzzy Herrera-Viedma et al. 2004 [29], Karacapilidis and Hatzieleftheriou 2005 [32],
Perny and Zucker 1999 [66], Perny and Zucker 2001 [67], Stolze and Stroebel
2003 [91], Wang 2004 [99]

Probabilistic Ardissono et al. 2003 [5], Kleinberg and Sandler 2003 [38], Price and
Messinger 2005 [69]

that meet users’ requirements [9]. The bottleneck of this knowledge-based approach
is that it needs to acquire a knowledge base beforehand, but the obtained knowledge
base helps to avoid cold start or data sparsity problems that pure content-based or
collaborative filtering systems encounter by relying on solely the ratings obtained
by users. Hybrid approaches combine content-based, collaborative filtering, and
knowledge-based techniques in many different ways [10]. Upon more in-depth anal-
ysis of the representative MCDM recommender systems surveyed in the previous
section, we discover that the multi-criteria nature of the majority of these systems
can be classified in the following three general categories:

• Multi-attribute content preference modeling. Even though these systems typi-
cally use single-criterion ratings (e.g., numeric or binary ratings), for any given
user these systems attempt to understand and model the commonalities of multi-
attribute content among the items the user preferred in the past, and recommend
to the user the items that best match this preferred content. For example, in a
movie recommender system, these commonalities may be represented by spe-
cific genres, actors, directors, etc. that the user’s preferred movies have in com-
mon.

• Multi-attribute content search and filtering. These systems allow a user to spec-
ify her general preferences on content-based attributes across all items, through
searching or filtering processes (e.g., searching for only “comedy” movies or
specifying that “comedy” movies are preferable to “action” movies), and rec-
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Table 24.3: Global preference models used in existing multi-criteria recommender
systems

Value-focused
models

Aciar et al. 2007 [1], Adomavicius and Kwon 2007 [2], Ariely et al. 2004 [6],
Balabanovic and Shoham 1997 [7], Cantador et al. 2006 [12], Choi and Cho
2004 [15], Denguir-Rekik et al. 2006 [19], Falle et al. 2004 [23], Ghosh et al.
1999 [27], Guan et al. 200 [28], Herrera-Viedma et al. 2004[29], Karacapilidis
and Hatzieleftheriou 2005 [32], Kerschberg et al. 2001 [35], Kim and Yang
2004 [36], Kim et al. 2002 [37], Kleinberg and Sandler 2003 [38],Lakiotaki
et al. 2008 [42], Lee 2004 [44], Lee et al. 2002 [45], Li et al. 2008 [46], Liu
and Shih 2005 [47], Manouselis and Costopoulou 2007b [49], Manouselis and
Costopoulou 2007c [50], Manouselis and Sampson 2004 [52], Masthoff 2003
[53], Montaner et al. 2002 [57], Mukherjee et al. 2001 [58], Noh 2004 [61],
Perny and Zucker 1999 [66], Perny and Zucker 2001 [67], Plantie et al. 2005
[68], Ricci and Werthner 2002 [73], Sahoo et al. 2006 [79], Schafer 2005 [82],
Schickel-Zuber and Faltings 2005 [83], Schmitt et al. 2003 [85], Schmitt et
al. 2002 [84], Srikumar and Bhasker 2004 [89], Stolze and Stroebel 2003 [91],
Stolze and Rjaibi 2001 [90],Tang and McCalla 2009 [92], Tsai et al. 2006 [96],
Yu 2004 [101], Yu 2002 [100], Zimmerman et al. 2004 [103]

Optimization Lee and Tang 2007 [43], Price and Messinger 2005 [69], Tewari et al. 2003
[93]

Outranking re-
lations

Emi et al. 2003 [22], Nguyen and Haddawy 1999 [60], Nguyen and Haddawy
1999 [59]

Other prefer-
ence models

Ardissono et al. 2003 [5], Cheetham 2003 [14], Lee et al. 2002 [45], Ricci and
Nguyen 2007 [74], Wang 2004 [99]

ommend to the user the items that are the most similar to her preferences and
satisfy specified search and/or filtering conditions.

• Multi-criteria rating-based preference elicitation. These systems allow a user
to specify her individual preferences by rating each item on multiple criteria
(e.g., rating the story of movie Wanted as 2 and the visual effects of the same
movie as 5), and recommend to the user the items that can best reflect the user’s
individual preferences based on the multi-criteria ratings provided by this and
other users.

Multi-attribute content preference modeling. One way to model user prefer-
ences is by analyzing multi-attribute content of items that users purchased or liked.
Many multi-criteria recommender systems incorporate these content-based features
either directly into the recommendation process (i.e., use a content-based approach)
or in combination with collaborative recommendation techniques (i.e., use a hybrid
approach). In these systems, users are typically allowed to implicitly or explicitly
express their preferences with single-criterion ratings (e.g., item purchase history or
single numeric ratings). Using these ratings, recommender systems then can learn
users’ content-based preferences in an automated fashion by finding the common-
alities among the individual content attributes of items that the users purchased or
liked, e.g., by identifying favorite content attributes (e.g., “comedy” movies) for
each user. As a result, recommendations are made taking into account these fa-
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vorite content attributes [7]. Numerous traditional recommender systems that em-
ploy content-based, knowledge-based, or hybrid approaches in combination with
some multi-attribute preference modeling of users can be found in this category.
Several scoring or utility functions have been developed and used to rank the
candidate items based on users’ content-based preferences, including information
retrieval-based and model-based techniques, such as Bayesian classifiers and vari-
ous machine learning techniques [4]. More details on these techniques are discussed
in other chapters 3.

Multi-attribute content search and filtering. In some systems, users can explic-
itly provide their general preferences on multi-attribute content of items that can be
used by various searching and filtering techniques to find the most relevant items.
For example, in [82] users can identify the movie genre, MPAA rating, and film
length that they like and specify which attribute is the most important for their de-
cision in choosing the movies at the current time. Then the recommender system
narrows down the possible choices by searching for the items that match these ad-
ditional explicit user preferences. For example, if a user indicates that she wants to
watch “comedy” movies and the movie genre is the most important attribute for her,
she will be recommended only comedy movies. Similarly, in [45], users also can
provide to the recommender system both the preferred specifications for different
content attributes as well as the corresponding importance weights for the different
attributes.

Some of knowledge-based recommender systems [35, 37] can also be classified
into this category, because users can provide their general preferences by building
their own hierarchical taxonomy tree (i.e., where all item features are modeled in
a hierarchical manner) and assigning the relative importance level to each com-
ponent in the tree. As a result, the systems recommend the most relevant items
according to users’ preferences upon the user-defined multiple attributes of item
taxonomy. Furthermore, some of hybrid recommender systems with knowledge-
based approach would also fit in this category, particularly case-based reasoning
recommender systems, where items are represented with multi-criteria content in a
structured way (i.e., using a well-defined set of features and feature values) [88].
These systems allow users to specify their preferences on multi-attribute content of
items in their search for items of interest. For example, several case-based travel
recommender systems [73, 75] filter out unwanted items based on each user’s pref-
erences on multi-attribute content (e.g., locations, services, and activities), and find
personalized travel plans for each user by ranking possible travel plans based on the
user’s preferences and past travel plans of this or similar users. In addition, some
case-based recommender systems [9, 70] allow users to “critique” the recommen-
dation results by refining their requirements as part of the interactive and iterative
recommendation process, which uses various search and filtering techniques to con-
tinuously provide the user with the updated set of recommendations. For example,
when searching for a desktop PC, users can critique the current set of provided rec-
ommendations by expressing their refined preferences on individual features (e.g.,
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cheaper price) or multiple features together (e.g., higher processor speed, RAM, and
hard-disk capacity).

Multi-criteria rating-based preference elicitation. This category of recommender
systems engage multi-criteria ratings, often by extending traditional collaborative
filtering approaches, that show users’ subjective preferences for various components
of individual items. For instance, such systems allow users to rate not only the over-
all satisfaction from a particular movie, but also the satisfaction from the various
movie components (factors), such as the visual effects, the story, or the acting. They
differ from the above-surveyed systems in that the users do not indicate their prefer-
ence or importance weight on the visual effects component for movies in general or
to be used in a particular user query, but rather how much they liked the visual effects
of the particular movie. One example of such system is the Intelligent Travel Rec-
ommender system [73], where users can rate multiple travel items within a “travel
bag” (e.g., location, accommodation, etc.) as well as the entire travel bag. Then,
candidate travel plans are ranked according to these user ratings, and the system
finds the best match between recommended travel plans and the current needs of
a user. These and similar types of multi-criteria rating-based systems are the focus
of this chapter and more exemplar systems and techniques are provided in the later
sections.

In summary, as seen above, many recommender systems that employ traditional
content-based, knowledge-based, and hybrid techniques can be viewed as multi-
criteria recommender systems, since they model user preferences based on multi-
attribute content of items that users preferred in the past or allow users to spec-
ify their content-related preferences – i.e., search or filtering conditions for multi-
attribute content of items (e.g., identifying the preferred movie genre or providing
preferences on multiple pre-defined genre values). However, as mentioned earlier,
there is a recent trend in multi-criteria recommendation that studies innovative ap-
proaches in collaborative recommendation by engaging multi-criteria ratings. We
believe that this additional information on users’ preferences offers many opportu-
nities for providing novel recommendation support, creating a unique multi-criteria
rating environment that has not been extensively researched. Therefore, in the fol-
lowing sections, we survey the state-of-the-art techniques on this particular type of
systems that use individual ratings along multiple criteria, which we will refer to as
multi-criteria rating recommenders.

24.4 Multi-Criteria Rating Recommendation

In this section, we define the multi-criteria rating recommendation problem by for-
mally extending it from its single-rating counterpart, and provide some further dis-
cussion about the advantages that additional criteria may provide in recommender
systems.
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24.4.1 Traditional single-rating recommendation problem

Traditionally recommender systems operate in a two-dimensional space of Users
and Items. The utility of items to users is generally represented by a totally ordered
set R0 (e.g., non-negative integers or real numbers within a certain range), and rec-
ommender systems aim to predict the utility of an item for a user. As mentioned
earlier, a utility function R can be formally written as follows:

R : Users× Items→ R0 (24.2)

The utility function is determined based on user inputs, such as numeric rat-
ings that users explicitly give to items and/or transaction data that implicitly shows
users’ preferences (e.g., purchase history). The majority of traditional recommender
systems use single-criterion ratings that indicate how much a given user liked a par-
ticular item in total (i.e., the overall utility of an item by a user). For example, in
a movie recommender system, as shown in Table 24.4, user Alice may assign a
single-criterion rating of 5 (out of 10) for movie Wanted, which can be denoted by
R(Alice,Wanted) = 5. As an illustration, let us assume that the neighborhood-based
collaborative filtering technique [71], i.e., one of the most popular heuristic-based
recommendation techniques, is used for rating prediction. This technique predicts a
user’s rating for a given item based on the ratings of other users with similar prefer-
ences (i.e., neighbors). Particularly, in this example, the recommender system tries
to predict the utility of movie Fargo for Alice based on the observed ratings. Since
Alice and John show similar rating patterns on the four movies that both of them
have previously seen and rated (see Table 24.4), for the purpose of this simple ex-
ample the rating of movie Fargo for user Alice is predicted using John’s rating (i.e.,
9), although we would like to note that it is more common to use the ratings of more
than one neighbor in a real system.

Table 24.4: Single-rating movie recommender system

 Wanted WALL-E Star Wars Seven Fargo 

Alice    5    7    5    7    ?

John    5    7    5    7    9

Mason    6    6    6    6    5

   :    :    :    :     :     : 

Target 
user

Rating to 
be pre-
dicted User 

most 
similar 
to the 
target 
user

Rating to 
be used in 
prediction 
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24.4.2 Extending traditional recommender systems to include
multi-criteria ratings

With a growing number of real-world applications, extending recommendation tech-
niques to incorporate multi-criteria ratings has been regarded as one of the impor-
tant issues for the next generation of recommender systems [4]. Examples of multi-
criteria rating systems include Zagat’s Guide that provides three criteria for restau-
rant ratings (e.g., food, décor, and service), Buy.com that provides multi-criteria
ratings for consumer electronics (e.g., display size, performance, battery life, and
cost), and Yahoo! Movies that show each user’s ratings for four criteria (e.g., story,
action, direction, and visuals). This additional information about users’ preferences
provided by multi-criteria ratings (instead of a single overall rating) can potentially
be helpful in improving the performance of recommender systems.

Some multi-criteria rating systems can choose to model a user’s utility for a given
item with an overall rating R0 as well as the user’s ratings R1, . . . ,Rk for each indi-
vidual criterion c (c = 1, . . . ,k), whereas some systems can choose not to use the
overall rating and focus solely on individual criteria ratings. Therefore, the utility-
based formulation of the multi-criteria recommendation problem can be represented
either with or without overall ratings as follows:

R : Users× Items→ R0×R1× · · ·×Rk (24.3)

or
R : Users× Items→ R1× · · ·×Rk (24.4)

Given the availability of multi-criteria ratings (in addition to the traditional single
overall rating) for each item, Tables 24.4 and 24.5 illustrate the potential benefits of
this information for recommender systems. While Alice and John have similar pref-
erences on movies in a single-rating setting (Table 24.4), in a multi-criteria rating
setting we could see that they show substantially different preferences on several
movie aspects, even though they had the same overall ratings (Table 24.5). Upon
further inspection of all the multi-criteria rating information, one can see that Alice
and Mason show very similar rating patterns (much more similar than Alice and
John). Thus, using the same collaborative filtering approach as before, but taking
into account multi-criteria ratings, Alice’s overall rating for movie Fargo would be
predicted as 5, based on Mason’s overall rating for this movie.

This example implies that a single overall rating may hide the underlying hetero-
geneity of users’ preferences for different aspects of a given item, and multi-criteria
ratings may help to better understand each user’s preferences, as a result enabling to
provide users more accurate recommendations. It also illustrates how multi-criteria
ratings can potentially produce more powerful and focused recommendations, e.g.,
by recommending movies that will score best on the story criterion, if this is the
most important one for some user.
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Table 24.5: Multi-criteria movie recommender system (ratings for each item: over-
all, story, action, direction, and visual effects)

(ratings for each item: overall, story, action, direction, and visual effects)  

 Wanted WALL-E Star Wars Seven Fargo 

Alice 5,2,2,8,8 7,5,5,9,9 5,2,2,8,8 7,5,5,9,9 ?,?,?,?,?

John 5,8,8,2,2 7,9,9,5,5 5,8,8,2,2 7,8,8,2,2 9,8,8,10,10

Mason 6,3,3,9,9 6,4,4,8,8 6,3,3,9,9 6,4,4,8,8 5,2,2,8,8

   :    :    :    :     :     : 

Target 
user Ratings to 

be pre-
dicted 

User 
most 
similar 
to the 
target 
user 

Ratings to 
be used in 
prediction 

Therefore, new recommendation algorithms and techniques are needed that can
utilize multi-criteria ratings in recommender systems. There are already several sys-
tems implementing such algorithms, which we analyze in the next section.

24.5 Survey of Algorithms for Multi-Criteria Rating
Recommenders

Recommender systems typically calculate and provide recommendations using the
following two-phase process:

• Prediction: the phase in which the prediction of a user’s preference is calcu-
lated. Traditionally, it is the phase in which a recommender estimates the utility
function R for the entire or some part of Users× Items space based on known
ratings and possibly other information (such as user profiles and/or item con-
tent); in other words, it calculates the predictions of ratings for the unknown
items.

• Recommendation: the phase in which the calculated prediction is used to sup-
port the user’s decision by some recommendation process, e.g., the phase in
which the user gets recommended a set of top-N items that maximize his/hers
utility (i.e., N items with highest-predicted ratings).

Multi-criteria rating information can be used in both of these phases in differ-
ent ways, and a number of approaches have been developed for the prediction or
recommendation. Therefore, we classify the existing techniques for multi-criteria
rating recommenders into two groups – techniques used during prediction and tech-
niques used during recommendation – and describe these groups in more detail in
separate subsections below.
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24.5.1 Engaging Multi-Criteria Ratings during Prediction

This section provides an overview of the techniques that use multi-criteria ratings to
predict an overall rating or individual criteria ratings (or both). In general, recom-
mendation techniques can be classified by the formation of the utility function into
two categories: heuristic-based (sometimes also referred to as memory-based) and
model-based techniques [4]. Heuristic-based techniques compute the utility of each
item for a user on the fly based on the observed data of the user and are typically
based on a certain heuristic assumption. For example, a neighborhood-based tech-
nique – one of the most popular heuristic-based collaborative filtering techniques
– assumes that two users who show similar preferences on the observed items will
have similar preferences for the unobserved items as well. In contrast, model-based
techniques learn a predictive model, typically using statistical or machine-learning
methods, that can best explain the observed data, and then use the learned model
to estimate the utility of unknown items for recommendations. Following this clas-
sification, we also present the algorithms of multi-criteria rating recommenders by
grouping them into heuristic and model-based approaches.

24.5.1.1 Heuristic approaches

There has been some work done to extend the similarity computation of the tradi-
tional heuristic-based collaborative filtering technique to reflect multi-criteria rating
information [2, 49, 92]. In this approach, the similarities between users are com-
puted by aggregating traditional similarities from individual criteria or using multi-
dimensional distance metrics.

In particular, the neighborhood-based collaborative filtering recommendation
technique predicts unknown ratings for a given user, based on the known ratings
of the other users with similar preferences or tastes (i.e., neighbors). Therefore, the
first step of the prediction processes is to choose the similarity computation method
to find a set of neighbors for each user. Various methods have been used for sim-
ilarity computation in single-criterion rating recommender systems, and the most
popular methods are correlation-based and cosine-based. Assuming that R(u, i) rep-
resents the rating that user u gives to item i, and I(u,u′) represents the common
items that two users u and u′ rated, two popular similarity measures can be formally
written as follows:

• Pearson correlation-based:

sim(u,u′) =
∑i∈I(u,u′)(R(u, i)−R(u))(R(u′, i)−R(u′))

√
∑i∈I(u,u′)(R(u, i)−R(u))2

√
∑i∈I(u,u′)(R(u′, i)−R(u′))2

(24.5)

• Cosine-based:
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sim(u,u′) =
∑i∈I(u,u′) R(u, i)R(u′, i)

√
∑i∈I(u,u′) R(u, i)2

√
∑i∈I(u,u′) R(u′, i)2

(24.6)

Multi-criteria rating recommenders cannot directly employ the above formulas,
because R(u, i) contains an overall rating r0, and k multi-criteria ratings r1, . . . ,rk,
i.e. R(u, i) = (r0,r1, . . . ,rk)1. Thus, there are k+1 rating values for each pair of (u, i),
instead of a single rating. Two different similarity-based approaches that use k+ 1
rating values in computing similarities between users have been used. The first ap-
proach aggregates traditional similarities that are based on each individual rating.
This approach first computes the similarity between two users separately on each in-
dividual criterion, using any traditional similarity computation, such as correlation-
based and cosine-based similarity. Then, a final similarity between two users is ob-
tained by aggregating k + 1 individual similarity values. Adomavicius and Kwon
[2] propose two aggregation approaches: an average and the worst-case (i.e., small-
est) similarity, as specified in (24.7) and (24.8). As a general approach, Tang and
McCalla [92], in their recommender system of research papers, compute an aggre-
gate similarity as a weighted sum of individual similarities over several criteria of
each paper (e.g., overall rating, value added, degree of being peer-recommended,
and learners’ pedagogical features such as interest and background knowledge) as
specified in (24.9). In their approach, the weight of each criterion c, denoted by wc,
is chosen to reflect how important and useful the criterion is considered to be for the
recommendation.

• Average similarity:

simavg(u,u′) =
1

k+1 ∑k
c=0 simc(u,u′) (24.7)

• Worst-case(smallest) similarity:

simmin(u,u′) = min
c=0,...,k

simc(u,u′) (24.8)

• Aggregate similarity:

simaggregate(u,u′) = ∑k
c=0 wcsimc(u,u′) (24.9)

The second approach calculates similarity using multidimensional distance metrics,
such as Manhattan, Euclidean, and Chebyshev distance metrics [2]. The distance
between two users u and u′ on item i, d(R(u, i),R(u′, i)), can be calculated as:

• Manhattan distance:
∑k

c=0 |Rc(u, i)−Rc(u′, i)| (24.10)

1 In some recommender systems, R(u, i) may not contain the overall ratings r0 in addition to k
multi-criteria ratings, i.e., R(u, i) = (r1, . . . ,rk). In this case, all the formulas in this subsection will
still be applicable with index c ∈ {1, . . . ,k}, as opposed to c ∈ {0,1, . . . ,k}.
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• Euclidean distance: √
∑k

c=0 |Rc(u, i)−Rc(u′, i)|2 (24.11)

• Chebyshev (or maximal value) distance:

max
c=0,...,k

|Rc(u, i)−Rc(u′, i)| (24.12)

The overall distance between two users can be simply an average distance for all
common items that both users rated, and it can be formally written as:

dist(u,u′) =
1

|I(u,u′)| ∑i∈I(u,u′) d(R(u, i),R(u′, i)) (24.13)

The more similar two users are (i.e., the larger the similarity value between them
is), the smaller is the distance between them. Therefore, the following simple trans-
formation is needed because of the inverse relationship of the two metrics:

sim(u,u′) =
1

1+dist(u,u′)
(24.14)

Manouselis and Costopoulou [49] also propose three different algorithms to
compute similarities between users in multi-criteria rating settings: similarity-per-
priority, similarity-per-evaluation, and similarity-per-partial-utility. The similarity-
per-priority algorithm computes the similarities between users based on importance
weights wc(u) of user u for each criterion c (rather than ratings R(u, i)). In this
way, it creates a neighborhood of users that have the same expressed preferences
with the target user. Then, it tries to predict the overall utility of an item for this
user, based on the total utilities of the users in the neighborhood. In addition, the
similarity-per-evaluation and similarity-per-partial-utility algorithms create separate
neighborhoods for the target user for each criterion, i.e., they calculate the similarity
with other users per individual criterion, and then predict the rating that the target
user would provide upon each individual criterion. The similarity-per-evaluation al-
gorithm calculates the similarity based on the non-weighted ratings that the users
provide on each criterion. The similarity-per-partial-utility algorithm calculates the
similarity based on the weighted (using wc(u) of each user u) ratings that the users
provide on each criterion.

In such systems, the similarities between users are obtained using multi-criteria
ratings, and the rest of the recommendation process can be the same as in single-
criterion rating systems. The next step is, for a given user, to find a set of neighbors
with the highest similarity values and predict unknown overall ratings of the user
based on neighbors’ ratings. Therefore, these similarity-based approaches are ap-
plicable only to neighborhood-based collaborative filtering recommendation tech-
niques that need to compute the similarity between users (or items).

In summary, multi-criteria ratings can be used to compute the similarity between
two users in the following two ways [2]: by (i) aggregating similarity values that
are calculated separately on each criterion into a single similarity and (ii) calcu-
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lating the distance between multi-criteria ratings directly in the multi-dimensional
space. Empirical results using a small-scale Yahoo! Movies dataset show that both
heuristic approaches outperform the corresponding traditional single-rating collab-
orative filtering technique (i.e., that uses only single overall ratings) by up to 3.8%
in terms of precision-in-top-N metric, which represents the percentage of truly high
overall ratings among those that the system predicted to be the N most relevant
items for each user [2]. The improvements in precision depend on many parame-
ters of collaborative filtering techniques, such as neighborhood sizes and the num-
ber of top-N recommendations. Furthermore, these approaches can be extended as
suggested by Manouselis and Costopoulou [49] by computing similarities using
not only known rating information, but also importance weights for each criterion.
The latter approaches were evaluated in an online application that recommends e-
markets to users, where multiple buyers and sellers can access and exchange infor-
mation about prices and product offerings, based on users’ multi-criteria evaluations
on several e-markets. The similarity-per-priority algorithm using Euclidian distance
performed the best among their proposed approaches in terms of the mean absolute
error (MAE) (i.e., 0.235 on scale of 1 to 7) with a fairly high coverage (i.e., 93% of
items can be recommended to users) as compared to non-personalized algorithms,
such as arithmetic mean and random, that produce higher MAE (0.718 and 2.063,
respectively) with 100% coverage [49].

24.5.1.2 Model-based approaches

Model-based approaches construct a predictive model to estimate unknown ratings
by learning from the observed data. Several existing approaches for multi-criteria
rating recommenders fall into this category, including aggregation function, proba-
bilistic modeling, and multilinear singular value decomposition (MSVD).

Aggregation function approach. While overall rating r0 is often considered sim-
ply as just another criterion rating in similarity-based heuristic approaches (as il-
lustrated earlier), the aggregation function approach assumes that the overall rating
serves as an aggregate of multi-criteria ratings [2]. Given this assumption, this ap-
proach finds aggregation function f that represents the relationship between overall
and multi-criteria ratings, i.e.,

r0 = f (r1, . . . ,rk) (24.15)

For example, in a movie recommendation application, the story criteria rating
may have a very high “priority,” i.e., the movies with high story ratings are well
liked overall by some users, regardless of other criteria ratings. Therefore, if the
story rating of the movie is predicted high, the overall rating of the movie must also
be predicted high in order to be accurate.

The aggregation function approach consists of three steps, as summarized in
Fig. 24.1. First, this approach estimates k individual ratings using any recommen-
dation technique. That is, the k-dimensional multi-criteria rating problem is decom-
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posed into k single-rating recommendation problems. Second, aggregation function
f is chosen using domain expertise, statistical techniques, or machine learning tech-
niques. For example, the domain expert may suggest a simple average function of
the underlying multi-criteria ratings for each item based on her prior experience
and knowledge. An aggregation function also can be obtained by using statistical
techniques, such as linear and non-linear regression analysis techniques, as well
as various sophisticated machine learning techniques, such as artificial neural net-
works. Finally, the overall rating of each unrated item is computed based on the k
predicted individual criteria ratings and the chosen aggregation function f .

Fig. 24.1: Aggregation function approach (an example of a three-criteria rating sys-
tem)

While the similarity-based heuristic approaches described earlier apply to only
neighborhood-based collaborative filtering recommendation techniques, the aggre-
gation function approach can be used in combination with any traditional recom-
mendation technique, because individual criteria ratings are used for the prediction
in the first step. As one example of possible aggregation functions, Adomavicius and
Kwon [2] use linear regression and estimate coefficients (i.e., importance weights
of each individual criterion) based on the known ratings.

Adomavicius and Kwon [2] also note that the aggregation function can have dif-
ferent scopes: total (i.e., when a single aggregation function is learned based on the
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entire dataset), user-based or item-based (i.e., when a separate aggregation function
is learned for each user or item).

Empirical analysis using data from Yahoo! Movies shows that the aggregation
function approach (using multi-criteria rating information) outperforms a traditional
single-rating collaborative filtering technique (using only overall ratings) by 0.3-
6.3% in terms of precision-in-top-N (N = 3, 5, and 7) metric [2].

Probabilistic modeling approach. Some multi-criteria recommendation approaches
adopt probabilistic modeling algorithms that are becoming increasingly popular in
data mining and machine learning. One example is the work of Sahoo et al. [79],
which extends the flexible mixture model (FMM) developed by Si and Jin [86] to
multi-criteria rating recommenders. The FMM assumes that there are two latent
variables Zu and Zi (for users and items), and they are used to determine a single
rating r of user u on item i, as shown in Fig. 24.2a. Sahoo et al. [79] also discover
the dependency structure among the overall ratings (r0) and multi-criteria ratings
(r1,r2,r3, and r4), using Chow-Liu tree structure discovery [16], and incorporate the
structure into the FMM, as shown in Fig. 24.2b.

(a) Flexible Mixture Model for a
single-rating recommender system [86] (b) FMM with multi-criteria rating dependency

structure [79]

Fig. 24.2: Examples of probabilistic modeling approach in recommender systems

The FMM approach is based on the assumption that the joint distribution of three
variables (user u, item i , and rating r) can be expressed using the sum of probabili-
ties over the all possible combinations of the two latent class variables Zu and Zi, as
follows.

P(u, i,r) = ∑
Zu,Zi

P(Zu)P(Zi)P(u|Zu)P(i|Zi)P(r|Zu,Zi) (24.16)

In summary, an overall rating of an unknown item for a target user is estimated
with the following two steps: learning and prediction. In the first (learning) step, all
the parameters of the FMM are estimated using the expectation maximization (EM)
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algorithm [18]. Using the obtained parameters, in the second (prediction) step, the
overall rating of a given unknown item is predicted as the most likely value (i.e.,
the rating value with the highest probability). This approach has been extended to
multi-criteria ratings, and the detailed algorithm can be found in [79].

Sahoo et al. [79] also compare their model in Fig. 24.2b with the model that as-
sumes independence among multi-criteria ratings conditional on the latent variables,
and found that the model with dependency structure performs better than the one
with the independence assumption. This finding demonstrates the existence of the
“halo effect” in multi-criteria rating systems. The “halo effect” is a phenomenon of-
ten studied in psychometric literature, which indicates a cognitive bias whereby the
perception of a particular object in one category influences the perception in other
categories [94]. In multi-criteria recommender systems, the individual criterion rat-
ings provided by users are correlated due to the “halo effect”, and particularly more
correlated to an overall rating than to other individual ratings [79]. In other words,
the overall rating given by the user to a specific item seems to affect how the user
rates the other (individual) criteria of this item. Thus, controlling for an overall rat-
ing reduces this halo effect and helps to make individual ratings independent of each
other, as represented in the chow-Liu tree dependency structure (Fig. 24.2b).

Using data from Yahoo! Movies, Sahoo et al. [79] show that multi-criteria rat-
ing information is advantageous over a single rating when very little training data
is available (i.e., less than 15% of the whole data is used for training). On the other
hand, when large training data is available, additional rating information does not
seem to add much value. In this analysis, they measure the recommendation accu-
racy using the MAE metric. However, when they validate this probabilistic mod-
eling approach using precision and recall metrics in retrieving top N items, their
model performs better in all cases (i.e., both with small and large datasets) with
a maximum of 10% increase. With more training data, the difference between the
model with multi-criteria ratings and the traditional single-rating model diminishes
in terms of precision and recall metrics.

Multilinear singular value decomposition (MSVD) approach. Li et al. [46] pro-
pose a novel approach to improve a traditional collaborative filtering algorithm by
utilizing the MSVD technique. Singular value decomposition (SVD) techniques
have been extensively studied in numerical linear algebra and have recently gained
popularity in recommender systems applications because of their effectiveness in
improving recommendation accuracy [26, 41, 81]. In single-rating recommender
systems, these techniques identify latent features of items including well-defined
item dimensions and uninterpretable dimensions. In particular, using K latent fea-
tures (i.e., rank-K SVD), user u is associated with a user-factors vector pu (the user’s
preferences on K features), and item i is associated with an item-factors vector qi
(the item’s importance weights on K features). After all the values in user- and
item-factors vectors are estimated, the preference of how much user u likes item i,
denoted by R∗(u, i), is predicted by taking an inner product of the two vectors, i.e.,

R∗(u, i) = pT
u qi (24.17)



24 Multi-Criteria Recommender Systems 791

While the SVD techniques are commonly used as a decomposition method for
two-dimensional data, the MSVD techniques [17] can be used for multi-dimensional
data, such as multi-criteria ratings. In particular, Li et al. [46] use the MSVD to re-
duce the dimensionality of multi-criteria rating data, and evaluate their approach in
the context of a restaurant recommender system, where a user rates a restaurant on
10 criteria (i.e., cuisine, ambience, service, etc.). More specifically, they use MSVD
techniques to uncover relationships among users, items, and criteria and then use
this information for identifying the neareast neighbors of each user and computing
top-N recommendations. The results demonstrate that their approach improves the
accuracy of recommendations (as measured by precision-in-top-N) by up to 5%, as
compared to the traditional single-rating model.

In summary, the above approaches represent initial attempts to apply sophisti-
cated learning techniques to address multi-criteria recommendation problems, and
we expect to see more such techniques in the future.

In the next subsection, we discuss different approaches to recommending items
to users, assuming that the unknown multi-criteria ratings have been estimated using
any of the techniques discussed above.

24.5.2 Engaging Multi-Criteria Ratings during Recommendation

As mentioned above, multi-criteria recommender systems may choose to model a
user’s utility for a given item by including both the overall rating and ratings of
individual item components/criteria or they may choose to include only ratings of
individual criteria. If overall ratings are included as part of the model, the recom-
mendation process in such cases is typically very straightforward: after predicting
all unknown ratings, the recommender system uses the overall rating of items to se-
lect the most highly predicted items (i.e., the most relevant items) for each user. In
other words, the recommendation process is essentially the same as in traditional,
single-criterion recommender systems.

However, without an overall rating the recommendation process becomes more
complex, because it is less apparent how to establish the total order of the items. For
example, suppose that we have a two-criterion movie recommender system, where
users judge movies based on their story (i.e., plot) and visual effects. Further, sup-
pose that one movie needs to be chosen for recommendation among the following
two alternatives: (i) movie X, predicted as 8 in story and 2 in visuals, and (ii) movie
Y, predicted as 5 in story and 5 in visuals. Since there is no overall criterion to
rank the movies, it is not easy to judge which movie is better, unless some other
modeling approach is adopted, using some non-numerical (e.g., rule-based) way for
expressing preferences. Several approaches have been proposed in the recommender
systems literature to deal with this problem: some try to design a total order on items
and obtain a single global optimal solution for each user, whereas others take one of
the possible partial orders of the items and find multiple (Pareto optimal) solutions.
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Below we briefly mention related work on multi-criteria optimization, describe sev-
eral approaches that have been used in the recommender systems literature, and
discuss other potential uses of multi-criteria ratings in the recommendation process.

24.5.2.1 Related work: multi-criteria optimization

Multi-criteria optimization problems have been extensively studied in the operations
research (OR) literature [21], although not in the context of recommender systems.
This multi-criteria optimization approach assists a decision maker in choosing the
best alternative when multiple criteria conflict and compete with each other. For
example, various points of view, such as financial, human resources-related, and
environmental aspects should be considered in organizational decision making. The
following approaches are often used to address multi-criteria optimization problems,
and can be applied to recommender systems, as discussed in [4]:

• Finding Pareto optimal solutions;
• Taking a linear combination of multiple criteria and reducing the problem to the

single-criterion optimization problem;
• Optimizing only the most important criterion and converting other criteria to

constraints;
• Consecutively optimizing one criterion at a time, converting an optimal solution

to constraints and repeating the process for other criteria.

Below we describe several recommendation approaches that have been used in
the recommender systems literature, all of them having roots in multi-criteria opti-
mization techniques.

24.5.2.2 Designing a total order for item recommendations

In the recommender systems literature there has been some work using multi-
attribute utility theories from decision science, which can be described as one way
to take a linear combination of multiple criteria and find an optimal solution [42].

For example, the approach by Lakiotaki et al. [42] ranks the items by adopting the
UTilités Additive (UTA) method proposed by [87]. Their algorithm aims to estimate
overall utility U of a specific item for each user by adding the marginal utilities of
each criterion c(c = 1, . . . ,k).

U = ∑k
c=1 uc(gc) (24.18)

where gc is the rating provided on criterion c, and uc(gc) is a non-decreasing real-
value function (marginal utility function) for a specific user. Since this model uses
the ranking information with ordinal regression techniques, Kendall’s tau is used as
a measure of correlation between two ordinal-level variables to compare an actual
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order and the predicted order. The empirical results obtained by using data from Ya-
hoo! Movies show that 20.4% of users obtain a Kendall’s tau of 1 indicating a total
agreement of the orders between the ones predicted by the recommender system and
the ones stated by users, and the mean value of Kendall’s tau across all users is 0.74.
Their model is also evaluated using the Receiver Operating Curve (ROC), which
depicts relative trade-offs between true positives and false positives. The obtained
Area Under Curve (AUC) of 0.81, where 1 represents a perfect classifier and 0.5
represents the performance of a random classifier, demonstrates that multi-criteria
ratings provide measurable improvements in modeling users’ preferences.

Similarly, Manouselis and Costopoulou [49] propose a method that calculates to-
tal utility U either by summing the k predicted partial utilities uc (in their similarity-
per-partial-utility algorithm) or by weighting the predicted ratings that the user
would give on each criterion c by the user’s importance weights wc (in their
similarity-per-evaluation algorithm). In both cases, the total utility of a candidate
item is calculated using an aggregate function of the following form:

U = ∑k
c=1 uc = ∑k

c=1 wcrc (24.19)

Finally, once the total order on the candidate items is established using any of the
above techniques, each user gets recommended the items that maximize this total
utility.

24.5.2.3 Finding Pareto optimal item recommendations

This approach discovers several good items among large number of candidates
(rather than arriving at a unique solution by solving a global optimization prob-
lem) when different items can be associated with multiple conflicting criteria and
the total order on items is not directly available. Data envelopment analysis (DEA),
often also called “frontier analysis”, is commonly used to measure productive effi-
ciency of decision making units (DMU) in operations research [13]. DEA computes
the efficiency frontier, which identifies the items that are “best performers” over-
all, taking into account all criteria. DEA does not require a priori weights for each
criterion, and uses linear programming to arrive more directly at the best set of
weights for each DMU. Specifically, in the context of multi-criteria recommender
systems, given all the candidate items that are available for recommendation to a
given user (including the information about their predicted ratings across all crite-
ria), DEA would be able to determine the reduced set of items (i.e., the frontier) that
have best ratings across all criteria among the candidates. These items then can be
recommended to the user.

While DEA has not been directly used in multi-criteria rating recommenders, the
multi-criteria recommendation problem without overall ratings can also be formu-
lated as a data query problem in the database field, using similar motivation [43].
Lee and Teng [43] utilize skyline queries to find the best restaurants across multi-
ple criteria (i.e., food, décor, service, and cost). As Fig. 24.3 shows, skyline queries
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identify a few skyline points (i.e., Pareto optimal points) that are not dominated by
any others from a large number of candidate restaurants in two-dimensional data
space (food and décor). Here, for a given user, a candidate item is considered to be
dominated, if there exists another candidate item that has better or equal ratings on
all criteria.

Empirical results using multi-criteria ratings of Zagat Survey in [43] show that
the recommender system using skyline queries helps to reduce the number of
choices that users should consider from their inquiries. For example, when a user
searches for buffet restaurants which are located in New York City with a cost of
no more than $30, the system recommends only two restaurants among twelve can-
didate restaurants, based on the ratings on four criteria. However, this preliminary
work needs to be extended in several directions because the skyline queries may
not scale well with the increasing number of criteria, resulting in a large number of
skyline points with high computational cost.

Fig. 24.3: An example of skyline points (the best candidate restaurants) in two-
dimensional space

24.5.2.4 Using multi-criteria ratings as recommendation filters

Similar to how content attributes can be used as recommendation filters in recom-
mender systems [45, 82], multi-criteria ratings can be used for similar purposes as
well. For example, a user may want to specify that only the movies with an excep-
tionally good story should be recommended to her at a given time, regardless of
other criteria, such as visual effects. Then, only the movies that are highly predicted
in the story criterion (say, ≥ 9 out of 10) will be recommended to the user. This
approach is similar to how content-based [45, 82] or context-aware [3] recommen-
dation approaches filter recommendations; however, it is also slightly different from
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them, because the filtering is done not based on objective content attributes (e.g.,
MovieLength < 120 minutes) or additional contextual dimensions (e.g., TimeOf-
Week = weekend), but on the subjective rating criteria (e.g., Story ≥ 9), the pre-
dicted value of which is highly dependent on user’s tastes and preferences.

24.6 Discussion and Future Work

Recommender systems represent a vibrant and constantly changing research area.
Among the important recent developments, recommender systems have recently
started adopting multi-criteria ratings provided by users, and in this chapter we
investigated algorithms and techniques for multi-criteria recommender systems.
These new systems have not yet been studied extensively, and in this section we
present a number of challenges and future research directions for this category of
recommender systems.

Managing intrusiveness. The extra information provided by multi-criteria ratings
can give rise to an important issue of intrusiveness. For a recommender system to
achieve good recommendation performance, users typically need to provide to the
system a certain amount of feedback about their preferences (e.g., in the form of item
ratings). This can be an issue even in single-rating recommender systems, and some
less intrusive techniques to obtain user preferences have been proposed [40, 56, 62].
Multi-criteria rating systems may require a more significant level of user involve-
ment because each user would need to rate an item on multiple criteria. Therefore,
it is important to measure the costs and benefits of adopting multi-criteria ratings
and find an optimal solution to meet the needs of both users and system designers.
Preference disaggregation methods could support the implicit formulation of a pref-
erence model based on a series of previous decisions. A characteristic example is
the UTA (i.e., UTilités Additive) method, which can be used to extract the utility
function from a user-provided ranking of known items [42]. Another example is
the ability to obtain each user’s preferences on several attributes of an item implic-
itly from the user’s written comments, minimizing intrusiveness [1, 68]. There are
also some empirical approaches with less computational complexity [80]. Lastly,
performing user studies on multi-criteria recommender systems would further ex-
amine the impact of having to submit more ratings on the overall user satisfaction.

Reusing existing single-rating recommendation techniques. A huge number of
recommendation techniques have been developed for single-rating recommender
systems over the last 10-15 years, and some of them could potentially be extended
to multi-criteria rating systems. For example, neighborhood-based collaborative fil-
tering techniques may possibly take into account multi-criteria ratings using the
huge number of design options that Manouselis and Costopoulou [51] suggest. As
another example, there has been a number of sophisticated hybrid recommendation
approaches developed in recent years [11], and some of them could potentially be
adopted for multi-criteria rating recommenders. Finally, more sophisticated tech-
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niques, e.g., based on data envelopment analysis (DEA) or multi-criteria optimiza-
tion, could be adopted and extended for choosing best items in the multi-criteria
rating settings.

Predicting relative preferences. An alternative way to define the multi-criteria
recommendation problem could be formulated as predicting the relative preferences
of users, as opposed to the absolute rating values. There has been some work on
constructing the correct relative order of items using ordering-based techniques. For
example, Freund et al. [25] developed the RankBoost algorithm based on the well-
known AdaBoost method and, in multi-criteria settings, such algorithms could be
adopted to aggregate different relative orders obtained from different rating criteria
for a particular user. In particular, this is an approach taken by the DIVA system
[59, 60].

Constructing the item evaluation criteria. More research needs to be done on
choosing or constructing the best set of criteria for evaluating an item. For example,
most of current multi-criteria rating recommenders require users to rate an item on
multiple criteria at a single level (e.g., story and special effects of a movie). This
single level of criteria could be further broken down into sub-criteria, and there
could be multiple levels depending on the given problem. For example, in a movie
recommender system, special effects could be again divided into sound and graphic
effects. More information with multiple levels of criteria could potentially help to
better understand user preferences, and various techniques, such as the analytic hi-
erarchy process (AHP), can be used to consider the hierarchy of criteria [78], as
Schmitt et al. [85] propose to do in their system. As we consider more criteria for
each item, we may also need to carefully examine the correlation among criteria
because the choice of criteria may significantly affect the recommendation quality.
Furthermore, as mentioned earlier, it is important to have a consistent family of
criteria for a given recommender system application because then the criteria are
monotonic, exhaustive, and non-redundant. In summary, constructing a set of cri-
teria for a given recommendation problem is an interesting and important topic for
future research.

Dealing with missing multi-criteria ratings. Multi-criteria recommender systems
typically would require the users to provide more data to such systems than their
single-rating counterparts, thus increasing the likelihood of obtaining missing or in-
complete data. One popular technique to deal with missing data is the expectation
maximization (EM) algorithm [18] that finds maximum likelihood estimates for in-
complete data. In particular, the probabilistic modeling approach for multi-criteria
rating prediction proposed by [79] uses the EM algorithm to predict values of the
missing ratings in multi-criteria rating settings. The applicability of other existing
techniques in this setting should be explored, and novel techniques could be devel-
oped by considering the specifics of multi-criteria information, such as the possible
relationships between different criteria.

Investigating group recommendation techniques for multi-criteria settings.
Some techniques for generating recommendations to groups can be adopted in
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multi-criteria rating settings. According to [31], a group preference model can be
built by aggregating the diverse preferences of several users. Similarly, a user’s pref-
erence for an item in multi-criteria rating settings can be predicted by aggregating
the preferences based on different rating criteria. More specifically, there can be
many different goals for aggregating individual preferences [55, 63], such as maxi-
mizing average user satisfaction, minimizing misery (i.e., high user dissatisfaction),
and providing a certain level of fairness (e.g., low variance with the same average
user satisfaction). Multi-criteria rating recommenders could investigate the adoption
of some of these approaches for aggregating preferences from multiple criteria.

Developing new MCDM modeling approaches. From the MCDM perspective,
the recommendation problem is posing novel challenges to the decision modellers.
On the one hand, there is a plethora of additional techniques that can be readily
adopted and used in such systems, such as including a sensitivity analysis step in
the algorithm, as [68] proposes. On the other hand, some studies indicate that rec-
ommendation is not a single decision making problem, since there are several de-
cision problems that have to be addressed simultaneously, and each individual has
an influence on the recommendation provided to other individuals [54]. Neither it is
considered to be a typical group decision making problem nor a negotiation between
individuals [66]. Therefore, new MCDM modelling approaches should be proposed
and tested for multi-criteria recommendations [20].

Collecting large-scale multi-criteria rating data. Multi-criteria rating datasets
that can be used for algorithm testing and parameterization are rare. For this new
area of recommender systems to be successful, it is crucial to have a number of
standardized real-world multi-criteria rating datasets available to the research com-
munity. Some initial steps towards a more standardized representation, reusability,
and interoperability of multi-criteria rating datasets have been taken in other appli-
cation domains, such as e-learning [98].

In this section we discussed several potential future research directions for multi-
criteria recommenders that should be interesting to recommender systems commu-
nity. This list is not meant to be exhaustive; we believe that research in this area is
only in its preliminary stages, and there are a number of possible additional topics
that could be explored to advance multi-criteria recommender systems.

24.7 Conclusions

In this chapter, we aimed to provide an overview of multi-criteria recommender
systems. We first defined the recommendation problem as an MCDM problem and
reviewed the MCDM methods and techniques that can support the implementation
of multi-criteria recommenders. Then, we focused on the category of multi-criteria
rating recommenders, i.e., techniques that provide recommendations by modelling
a user’s utility for an item as a vector of ratings along several criteria. We reviewed
current techniques that use multi-criteria ratings for calculating the rating prediction
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and generating recommendations, and discussed open issues and future challenges
for this class of recommender systems.

This survey provides a systematic view of multi-criteria recommender systems,
a roadmap of relevant work, and a discussion of a number of promising future re-
search directions. However, we believe that this is only a first step towards exploring
this problem-rich area of recommender systems, and much more research and de-
velopment are needed to unlock the full potential of multi-criteria recommenders.
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Chapter 25
Robust Collaborative Recommendation

Robin Burke, Michael P. O’Mahony and Neil J. Hurley

Abstract Collaborative recommender systems are vulnerable to malicious users
who seek to bias their output, causing them to recommend (or not recommend)
particular items. This problem has been an active research topic since 2002. Re-
searchers have found that the most widely-studied memory-based algorithms have
significant vulnerabilities to attacks that can be fairly easily mounted. This chapter
discusses these findings and the responses that have been investigated, especially
detection of attack profiles and the implementation of robust recommendation algo-
rithms.

25.1 Introduction

Collaborative recommender systems are dependent on the goodwill of their users.
There is an implicit assumption – note the word “collaborative” – that users are in
some sense “on the same side”, and at the very least, that they will interact with
the system with the aim of getting good recommendations for themselves while
providing useful data for their neighbors. Herlocker et al. [10] use the analogy of
the “water-cooler chat”, whereby co-workers exchange tips and opinions.

However, as contemporary experience has shown, the Internet is not solely in-
habited by good-natured collaborative types. Users will have a range of purposes
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Fig. 25.1: Curves show the theoretical impact of attacks of different degrees of
efficiency. The shaded areas shows attacks that can be detected.

in interacting with recommender systems, and in some cases, those purposes may
be counter to those of the system owner or those of the majority of its user popula-
tion. To cite a well-known example, the Google search engine finds itself engaging
in more-or-less continual combat against those who seek to promote their sites by
“gaming” its retrieval algorithm.

In search engine spam, the goal for an attacker is to make the promoted page
“look like” a good answer to a query in all respects that Google cares about. In the
case of collaborative recommendation, the goal for an adversary is to make a par-
ticular product or item look like a good recommendation for a particular user (or
maybe all users) when really it is not. Alternatively, the attacker might seek to pre-
vent a particular product from being recommended when really it is a good choice.
If we assume that a collaborative system makes its recommendations purely on the
basis of user profiles, then it is clear what an attacker must do – add user profiles that
push the recommendation algorithm to produce the desired effect. A single profile
would rarely have this effect, and in any case, fielded systems tend to avoid making
predictions based on only a single neighbor. What an attacker really needs to do is
to create a large number of psuedonomous profiles designed to bias the system’s
predictions. Site owners try to make this relatively costly, but there is an inherent
tension between policing the input of a collaborative system and making sure that
users are not discouraged from entering the data that the algorithm needs to do its
work. The possibility of designing user rating profiles to deliberately manipulate the
recommendation output of a collaborative filtering system was first raised in [24].
Since then, research has focused on attack strategies, detection strategies to com-
bat attacks and recommendation algorithms that have inherent robustness against
attack.

A framework for understanding this research is sketched in Figure 25.1. First, we
demonstrate the extent of the problem by modeling efficient attacks, attacks that can
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with relatively low cost produce a large impact on system output. This enables us
to understand the shape of the impact curve for efficient attacks. Research on detec-
tion attempts to identify groups of profiles that make up an attack and to eliminate
them from the database. Attacks that are not efficient are more difficult to detect,
but because they are inefficient, must be very large to have an impact. A large influx
of ratings for a particular item is easy to detect with standard system monitoring
procedures. Research on detection therefore focuses on how to detect efficient at-
tacks and variants of them, seeking to increase the size of the “detectable” boxes in
the diagram, and thereby limiting the impact that an attacker can have. At the same
time, researchers have studied a number of algorithms that are intended to be ro-
bust against attack, having lower impact curves relative to efficient attacks. With the
combination of these techniques, researchers have sought, not to eliminate attacks,
but to control their impact to the point where they are no longer cost-effective.

This chapter looks at each of these points in turn. In Section 25.3, we look at
research that aims to identify the most efficient and practical attacks against collab-
orative recommender systems, establishing the shape of the impact curve suggested
above. Section 25.5 looks at the problem of detection: in particular, the left-most
shaded area for detecting efficient attacks. Lastly, in Section 25.6, we examine at-
tempts to reduce the impact of attacks through robust algorithms.

25.2 Defining the Problem

A collaborative recommender is supposed to change its recommendations in re-
sponse to the profiles that users add. It is somewhat counter-intuitive to suppose that
“robustness” or “stability” is a desirable property in a system that is supposed to be
adaptive. The goal of robust recommendation is to prevent attackers from manip-
ulating the system through large-scale insertion of user profiles, a profile injection
attack.

We assume that any user profile is feasible. That is, we do not want to demand
that users’ ratings fit with those that have been entered previously or that they make
any kind of objective sense. Users are entitled to their idiosyncratic opinions and
there is always the possibility that what is an unusual user today may be more typi-
cal tomorrow as new users sign up. So, a profile, taken by itself, cannot constitute an
attack. Also, it is important to note that some web phenomena that look like attacks
are not considered such within this definition. For example, in the Fall of 2008, nu-
merous videogame fans converged on the page for the game Spore on Amazon.com,
using it as a vehicle for airing their complaints about the digital rights management
software included with the game. Presumably these were a large number of authen-
tic individuals, and while their ratings no doubt skewed the recommendations for
Spore for some time, their actions would not be considered an attack as we define it
here. It is not clear that any automated technique can identify when a real user posts
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a rating to make a political statement or as a prank, rather than to reflect an honest
preference.1

For the purposes of this research, an attack is a concerted effort to bias the results
of a recommender system by the insertion of a large number of profiles using false
identities. Each of the separate identities assumed by the attacker are referred to as
an attack profile. Once created, these profiles are used to insert preference data into
the system. The most dangerous attacks are those that are crafted for maximum im-
pact on the system, so much research has been devoted to finding the most effective
and practical attacks against different algorithms.

While random vandalism surely does occur, research in this area has concen-
trated on attacks designed to achieve a particular recommendation outcome. The
objectives of product push and product nuke attacks are to promote or demote the
recommendations made for items, respectively. For example, the goal of an attacker
might be to force a system to output poor recommendations for his competitors’
products (nuke) while attempting to secure positive recommendations for his own
(push).

From the perspective of the attacker, the best attack against a system is one that
yields the biggest impact for the least amount of effort. There are two types of effort
involved in mounting an attack. The first is the effort involved in crafting profiles.
On of the crucial variables here is the amount of knowledge that is required to put
together an attack. A high-knowledge attack is one that requires the attacker to have
detailed knowledge of the ratings distribution in a recommender system’s database.
Some attacks, for example, require that the attacker know the mean rating and stan-
dard deviation for every item. A low-knowledge attack is one that requires system-
independent knowledge such as might be obtained by consulting public information
sources.

We assume that the attacker will have a general knowledge of the type of al-
gorithm being employed to produce recommendations. An attacker that has more
detailed knowledge of the precise algorithm in use would be able to produce an in-
formed attack that makes use of the mathematical properties of the algorithm itself
to produce the greatest impact.

The second aspect of effort is the number of profiles that must be added to the
system in order for it to be effective. The ratings are less important since the in-
sertion of ratings can be easily automated. Most sites employ online registration
schemes requiring human intervention, and by this means, the site owner can im-
pose a cost on the creation of new profiles. This is precisely why, from an attacker’s
perspective, attacks requiring a smaller number of profiles are particularly attractive.

1 It could be argued that even such a technique did exist, it would not be in the interest of a
collaborative system to deploy it.
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Fig. 25.2: Simplified system database showing authentic user profiles and a number
of attack profiles inserted. In this example, user h is seeking a prediction for item 7,
which is the subject of a product nuke attack.

25.2.1 An Example Attack

To illustrate the basic idea of a profile injection attack, consider the simplified rec-
ommender system database that is presented in Figure 25.2. In this example, the
objective is to demote the recommendations that are made for item 7 (i.e. a product
nuke attack), and a number of attack profiles (users i through m) have been inserted
into the system to target this item.

In particular, consider the binary recommendation problem in which the task is
to predict whether or not user h likes item 7. In the first instance, let the attack
profiles be ignored and consider only the authentic profiles (users a through g) as
possible neighbours for the target user, h. Regardless of the specific recommendation
algorithm used, presumably the algorithm would determine that users a and f have
similar tastes to the active user, and since both of these users like item 7, a positive
recommendation for the item follows.

When the attack profiles are also considered as possible neighbours, the situation
is significantly altered. Several of these attack profiles are also similar to user h, and,
since all of these profiles rate item 7 poorly, the system is now likely to recommend
a negative rating for the item. Thus, the objective of the attack is realised. The next
section discusses how these attack profiles must be crafted to work well in a realistic
setting.
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25.3 Characterising Attacks

A profile-injection attack against a recommender system consists of a set of profiles
added to the system by the attacker. A profile consists of a set of rating/item pairs, or
alternately, we can think of the profile being a vector of all items, with a rating value
for each item, but allowing the null value for unrated items. For the attacks that we
are discussing, there will always be a target item it that the attacker is interested
in promoting or demoting. There will generally also be a set of filler items, that are
chosen randomly from those available. We will denote this set IF . Some attack mod-
els also make use of a set of items that are selected out of the database. The small set
usually has some association with the target item (or a targeted segment of users).
For some attacks, this set is empty. This will be the set IS. Finally, for completeness,
the set I/0 contains those items not rated in the profile. Since the selected item set is
usually small, the size of each profile (total number of ratings) is determined mostly
by the size of the filler item set. Some of the experimental results report filler size
as a proportion of the size of I (i.e., the set of all items).

25.3.1 Basic Attacks

Two basic attack models, introduced originally in [12], are the random and aver-
age attack models. Both of these attacks involve the generation of profiles using
randomly assigned ratings to the filler items in the profile.

25.3.1.1 Random Attack

Random attack profiles consist of random ratings distributed around the overall
mean assigned to the filler items and a prespecified rating assigned to the target
item. In this attack model, the set of selected items is empty. The target item it is
assigned the maximum rating (rmax) or the minimum rating (rmin) in the case of push
or nuke attacks, respectively.

The knowledge required to mount such an attack is quite minimal, especially
since the overall rating mean in many systems can be determined by an outsider
empirically (or, indeed, may be available directly from the system). However, this
attack is not particularly effective [12, 6].

25.3.1.2 Average Attack

A more powerful attack described in [12] uses the individual mean for each item
rather than the global mean (except for the pushed item). In the average attack, each
assigned rating for a filler item corresponds (either exactly or approximately) to the
mean rating for that item, across the users in the database who have rated it.
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As in the random attack, this attack can also be used as a nuke attack by using rmin
instead of rmax. It should also be noted that the only difference between the average
attack and the random attack is in the manner in which ratings are computed for the
filler items in the profile.

The average attack might be considered to have considerable knowledge cost of
order |IF | (the number of filler items in the attack profile) because the mean and stan-
dard deviation of these items must be known. Experiments, however, have shown
that the average attack can be just as successful even when using a small filler item
set. Thus the knowledge requirements for this attack can be substantially reduced,
but at the cost of making all profiles contain the same items, possibly rendering them
conspicuous [4].

25.3.2 Low-knowledge attacks

The average attack requires a relatively high degree of system-specific knowledge
on the part of attackers. A reasonable defense against such attacks would be to make
it very difficult for an attacker to accumulate the required distribution data. The next
set of attack types are those for which the knowledge requirements are much lower.

25.3.2.1 Bandwagon Attack

The goal of the bandwagon attack is to associate the attacked item with a small num-
ber of frequently rated items. This attack takes advantage of the Zipf’s distribution
of popularity in consumer markets: a small number of items, bestseller books for ex-
ample, will receive the lion’s share of attention and also ratings. The attacker using
this model will build attack profiles containing those items that have high visibil-
ity. Such profiles will have a good probability of being similar to a large number of
users, since the high visibility items are those that many users have rated. It does not
require any system-specific data, because it is usually not difficult to independently
determine what the “blockbuster” items are in any product space.

The bandwagon attack uses selected items which are likely to have been rated
by a large number of users in the database. These items are assigned the maximum
rating value together with the target item it . The ratings for the filler items are deter-
mined randomly in a similar manner as in the random attack. The bandwagon attack
therefore can be viewed as an extension of the random attack.

As we show in Section 25.4, the bandwagon attack is nearly as effective as the
average attack against user-based collaborative filtering algorithms2, but without the
knowledge requirements of that attack. Thus it is more practical to mount. However,
as in the case of the average attack, it falls short when used against an item-based
algorithm [12].

2 Refer to Chapter 4 for details on the user-based and item-based collaborative filtering algorithms.
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25.3.2.2 Segment Attack

Mobasher et al. [19] introduced the segment attack and demonstrated its effective-
ness against the item-based algorithm. The basic idea behind the segment attack is
to push an item to a targeted group of users with known or easily predicted pref-
erences. For example, the producer of a horror movie might want to get the movie
recommended to viewers who have liked other horror movies. In fact, the producer
might prefer not to have his movie recommender to viewer who do not enjoy the
horror genre, since these users might complain and thereby reveal his attack.

To mount this attack, the attacker determines a set of segment items that are
likely to be preferred by his intended target audience. Like the bandwagon attack, it
is usually fairly easy to predict what the most popular items in a user segment would
be. These items are assigned the maximum rating value together with the target item.
To provide the maximum impact on the item-based algorithm, the minimum rating
is given to the filler items, thus maximising the variations of item similarities.

25.3.3 Nuke Attack Models

All of the attack models described above can also be used for nuking a target item.
For example, as noted earlier, in the case of the random and average attack models,
this can be accomplished by associating rating rmin with the target item instead of
rmax . However, the results presented in Section 25.4 suggest that attack models
that are effective for pushing items are not necessarily as effective for nuke attacks.
Thus, researchers have designed additional attack models designed particularly for
nuking items.

25.3.3.1 Love/Hate Attack

The love/hate attack is a very simple attack, with no knowledge requirements. The
attack consists of attack profiles in which the target item it is given the minimum
rating value, rmin, while other ratings in the filler item set are the maximum rating
value, rmax. This can be seen as a very low-knowledge version of the Popular Attack
below. Surprisingly, this is one of the most effective nuke attacks against the user-
based algorithm.

25.3.3.2 Reverse Bandwagon Attack

The reverse bandwagon attack is a variation of the bandwagon attack, discussed
above, in which the selected items are those that tend to be rated poorly by many
users. These items are assigned low ratings together with the target item. Thus the
target item is associated with widely disliked items, increasing the probability that
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the system will generate low predicted ratings for that item. This attack was de-
signed to reduce the knowledge required by selecting only a handful of known dis-
liked items. For example, in the movie domain, these may be box office flops that
had been highly promoted prior to their openings.

In Section 25.4, we show that although this attack is not as effective as the more
knowledge-intensive average attack for nuking items in the user-based system, it is
a very effective nuke attack against item-based recommender systems.

25.3.4 Informed Attack Models

The low-knowledge attacks above work by approximating the average attack, con-
centrating on items that are expected to be rated because of their popularity. The
average attack in turn is a natural choice for an attacker with a basic intuition about
collaborative recommendation, namely that users will be compared on the basis of
similarity, so the incentive is to make the profiles similar to the average user. If, on
the other hand, the attacker has more detailed knowledge of the precise algorithm, a
more powerful attack can be mounted.

25.3.4.1 Popular Attack

Let us assume that the recommender system uses the widely studied user-based
algorithm proposed in [27], where similarities between users are calculated using
Pearson correlation3. In a similar manner to the bandwagon attack, attack profiles
are constructed using popular (i.e. frequently rated) items from the domain under
attack.

A high degree of overlap does not, however, guarantee high similarities between
attack and authentic profiles. The bandwagon attack used random filler items to gen-
erate variation among ratings with the aim of producing at least some profiles that
correlate correctly with any given user. The Popular Attack makes use of average
rating data and rates the filler items either rmin + 1 and rmin, according to whether
the average rating for the item is higher or lower. Linking the rating value to the
average rating is likely to result in positive correlations between attack and authen-
tic profiles and furthermore also maximises the prediction shift (see Section 25.4)
of attack profiles as computed by the algorithm under consideration (see [25] for
details).4

3 See [25] for a discussion on informed attacks in cases where alternative similarity metrics are
employed. Note that none of the metrics considered provided robustness against attack.
4 Note that an optimal push attack strategy is also presented in [18]. In this case, it is concluded that
maximising the correlation between authentic and attack profiles is the primary objective. While
this conclusion makes sense, it is important to select attack profile ratings that also maximise
prediction shift, as is the case with the popular attack described here.
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The ratings strategy described above applies to push attacks; this strategy can
easily be adjusted for nuke attacks. For example, positive correlations but negative
prediction shifts can be achieved by assigning the target item a rating of rmin, and
ratings of rmax and rmax−1 to the more- and less-liked selected items.

The knowledge requirement here is intermediate between the bandwagon attack
and the average attack. Like the bandwagon attack, the popular items can usually be
easily estimated from outside the system; but because there are no filler items, the
Popular Attack will need more popular items. The attacker then needs to guess at
the relative average preferences between these items in order to provide the correct
rating. It might be possible to extract such distinctions from the system itself, or if
not, to mine them from external sources; for example, by counting the number of
positive and negative reviews for particular items to find general trends.

25.3.4.2 Probe Attack Strategy

Although there are no studies that look at the detectability of the popular attack,
it seems likely that it would be easy to detect since all of the attack profiles are
identical and also because in many rating databases rmin + 1 and rmin ratings are
relatively rare.

A less conspicuous strategy is to obtain items and their ratings from the sys-
tem itself via the Probe Attack. To perform this strategy, the attacker creates a seed
profile and then uses it to generate recommendations from the system. These recom-
mendations are generated by the neighboring users and so they are guaranteed to be
rated by at least some of these users and the predicted ratings will be well-correlated
with these users’ opinions. One could imagine probing narrowly in order to influ-
ence a small group as in the segment attack, or probing more broadly to construct
an average attack. In a sense, the probe attack provides a way for the attacker to
incrementally learn about the system’s rating distribution.

This strategy also has another advantage over the popular attack, since less do-
main knowledge is required by an attacker. Only a small number of seed items need
to be selected by the attacker, thereafter the recommender system is used to iden-
tify additional items and ratings. In the experiments conducted in Section 25.4, seed
items are selected and assigned ratings in a similar manner as in the popular attack.

25.4 Measuring Robustness

Collaborative recommendation algorithms can be categorised into two general
classes, which are commonly referred to as memory-based and model-based al-
gorithms [2]. Memory-based algorithms utilise all available data from a system
database to compute predictions and recommendations. In contrast, model-based
algorithms operate by first deriving a model from the system data, and this model is
subsequently used in the recommendation process.
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A wide range of collaborative recommendation algorithms have been proposed
in the literature, and a comprehensive analysis of the robustness of all of these al-
gorithms is beyond the scope of this chapter. Here, we focus on two widely imple-
mented and studied algorithms, the user-based and item-based algorithms [27, 32].
The reader is referred to [21, 20, 31] for a robustness analysis of some other collab-
orative recommendation algorithms.

25.4.1 Evaluation Metrics

Since the objective of push and nuke attacks is to promote and demote target items,
we need to evaluate how successfully they do so. Evaluation metrics for robustness
need to capture the differences in the predicted ratings and recommended status (i.e.
whether or not the target item in included in a top N recommended list) of target
items pre- and post-attack.

Many researchers have used average prediction shift to evaluate the changes in
predicted ratings. Let UT and IT be the sets of users and items, respectively, in the
test data. For each user-item pair (u, i), the prediction shift denoted by ∆u,i can be
measured as ∆u,i = p′u,i− pu,i, where p and p′ are the pre- and post-attack predic-
tions, respectively. A positive value means, for example, that the attack has suc-
ceeded in making a pushed item more positively rated. The average prediction shift
for an item i over all users can be computed as ∆i = ∑u∈UT ∆u,i/|UT |. Similarly the
average prediction shift for all items tested can be computed as ∆̄ = ∑i∈IT ∆i/|IT |.

Prediction shift is a good indicator that an attack is having the desired effect
of making a pushed (or nuked) item appear more (or less) desirable. However, it
is possible that a pushed item, for example, could be strongly shifted on average
but still not make it onto a recommendation list. Such a situation could arise if the
item’s initial average prediction is so low that even a strong boost is insufficient. To
capture the impact of an attack on prediction lists, another metric has been proposed:
hit ratio. Let Ru be the set of top N recommendations for user u. If the target item
appears in Ru, for user u, the scoring function Hui has value 1; otherwise it is zero.
Hit ratio for an item i is given by HitRatioi = ∑u∈UT Hui/|UT |. Average hit ratio can
then calculated as the sum of the hit ratio for each item i following an attack on i
across all items divided by the number of items: HitRatio = ∑i∈IT HitRatioi/|IT |.

Many experimenters make use of the publicly available MovieLens 100K dataset5.
This dataset consists of 100,000 ratings made by 943 users on 1,682 movies. Rat-
ings are expressed on an integer rating scale of 1 to 5 (the higher the score, the more
liked an item is). Results below should be assumed to be relative to this dataset
unless otherwise stated.

5 http://www.cs.umn.edu/research/GroupLens/data/.
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Fig. 25.3: Prediction shift (left) and hit ratio (right) for product push attacks
mounted against the user-based collaborative recommendation algorithm. Hit ratio
results relate to a 10% attack size.

25.4.2 Push Attacks

To get a sense for the impact that a push attack can have, we will look at results
originally reported in [20]. In these figures, the user-based algorithm is subjected
to various attacks of different sizes (attack size is measured as a percentage of the
total number of authentic profiles in the system; thus an attack of 1% equates to the
insertion of 10 attack profiles into the MovieLens dataset). Figure 25.3 (left) shows
the average attack (3% filler size), the bandwagon attack (using one frequently rated
item and 3% filler size), and the random attack (6% filler size). These parameters
were selected as they are the versions of each attack that were found to be most
effective. Not surprisingly, the most knowledge-intensive average attack achieved
the best performance in terms of prediction shift. This attack works very well. It
is capable of moving an average-rated movie (3.6 is the mean) to the top of the
five point scale. The performance of the bandwagon attack was quite comparable,
despite having a minimal knowledge requirement. In addition, the bandwagon at-
tack was clearly superior to the random attack, which highlights the significance of
including the selected items that are likely to be rated by many users.

Interestingly, Figure 25.3 (right) shows that the largest hit ratios were achieved
by the bandwagon attack, indicating that prediction shift does not necessarily trans-
late directly into top N recommendation performance. This result is particularly
encouraging from the attacker’s perspective, given that the required knowledge to
implement such attacks is low. Note that all attacks significantly outperform the
pre-attack hit ratio results (indicated by “baseline” in the figure).

The item-based algorithm was shown in [12] to be relatively robust against the
average attack. The segment attack, introduced in [19], was specifically crafted as
a limited-knowledge attack for the item-based algorithm. It aims to increase the
column-by-column similarity of the target item with the users preferred items. If the
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Fig. 25.4: Prediction shift (left) and hit ratio (right) for product push attacks
mounted against the item-based collaborative recommendation algorithm. Hit ratio
results relate to a 10% attack size.

target item is considered similar to something that the user likes, then its predicted
rating will be high – the goal of the push attack. The task therefore for the attacker
is to associate her product with popular items that are considered to be similar.
The users who have a preference for these similar items are considered the target
segment. The task for the attacker in crafting a segment attack is therefore to select
items similar to the target item for use as the segment portion of the attack profile
IS . In the realm of movies, we might imagine selecting films of a similar genre or
those containing the same actors.

In [19], user segments are constructed by looking at popular actors and gen-
res. For the results shown in Figure 25.4, the segment is all users who gave above
average ratings (4 or 5) to any three of the five selected horror movies, namely,
Alien, Psycho, The Shining, Jaws, and The Birds. For this set of five movies, the
researchers selected all combinations of three movies that had at least 50 users sup-
port, and chose 50 of those users randomly and averaged the results.

The power of the segmented attack is demonstrated in the figure, which contrasts
the horror movie fans against the set of all users. While the segmented attack shows
some impact against all users, it is clearly very successful in pushing the attacked
movie precisely to those users defined by the segment. Further, in the context of the
item-based algorithm, the performance of this attack compares very favourably to
that of the high-knowledge average attack. For example, the average attack achieved
a hit ratio of 30% against all users for top N lists of size 10 and an attack size of
10%. In contrast, the segmented attack achieved approximately the same hit ratio
for the same size top N list, but using an attack size of only 1%.

It should also be noted that, although designed specifically as an attack against
the item-based algorithm, the segment attack is also effective against the user-based
algorithm. Due to limitations of space, we do not show these results here – refer to
[20] for details.
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Fig. 25.5: Prediction shifts achieved by nuke attacks against the user-based (left)
and item-based (right) algorithms.

25.4.3 Nuke Attacks

It might be assumed that nuke attacks would be symmetric to push attacks, with
the only difference being the rating given to the target item and hence the direction
of the impact on predicted ratings. However, our results show that there are some
interesting differences in the effectiveness of models depending on whether they are
being used to push or nuke an item. In particular, the rating distribution should be
taken into account: there are in general relatively few low ratings in the MovieLens
database, so low ratings can have a big impact on predictions. Furthermore, if we
look at the top N recommendations, the baseline (the rate at which an average movie
makes it into a recommendation list) is quite low, less than 0.1 even at a list size of
50. It does not take much to make an item unlikely to be recommended.

In the love/hate attack, the randomly selected 3% of filler items were assigned
the maximum rating while the target item was given the minimum rating. For the
reverse bandwagon attack (designed to attack the item-based algorithm), items with
the lowest average ratings that meet a minimum threshold in terms of the number of
user ratings in the system are selected as the selected item set, as described in detail
in Section 25.3. The experiments were conducted using |IS| = 25 with a minimum
of 10 users rating each movie.

Results are shown in Figure 25.5 for all attack models. Despite the minimal
knowledge required for the love/hate attack, this attack proved to be the most effec-
tive against the user-based algorithm. Among the other nuke attacks, the bandwagon
attack actually surpassed the average attack, which was not the case with the push
results discussed above.

The asymmetry between these results and the push attack data is somewhat
surprising. For example, the love/hate attack produced a positive prediction shift
slightly over 1.0 for a push attack of 10% against the user-based algorithm, which
is much less effective than even the random attack. However, when used to nuke
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an item against the user-based algorithm, this model was by far the most effective
model we tried, with a prediction shift of almost twice that of the average attack.
For pushing items, the average attack was the most successful, while it proved to be
one of the least successful attacks for nuking items. The bandwagon attack, on the
other hand, performed nearly as well as the average attack in pushing items, and had
superior overall performance for nuking, despite its lower knowledge requirement.

Overall, the item-based algorithm proved to be far more robust. The average
attack was the most successful nuke attack here, with reverse bandwagon close be-
hind. The asymmetries between push and nuke continue as we examine the item-
based results. The random and love/hate attacks were poor performers for push at-
tacks, but as nuke attacks, they actually failed completely to produce the desired
effect. Reverse bandwagon (but not bandwagon) proved to be a reasonable low-
knowledge attack model for a nuke attack against the item-based algorithm.

25.4.4 Informed Attacks

Finally, we turn to the evaluation of the informed attack strategies against the user-
based algorithm. In particular, we compare the performance of the informed popular
and probe push attacks to the average attack as seen above.

The attacks were implemented as follows. Popular attack profiles consisting of
a total of 100 items (including the target item) were selected and assigned ratings
as described in Section 25.3. For the probe attack, 10 seed items were selected at
random from the 100 most frequently rated items from the system. Thereafter the
system was interrogated to discover additional profile items and ratings. In total,
probe attack profiles consisted of 100 items. Likewise, the benchmark average attack
profiles consisted of 100 items, which corresponds to a filler size of approximately
1.7%. For the purposes of comparison, the 100 most frequently-rated items were
chosen for average attack profiles (and not selected randomly, as before).

Figure 25.6 shows the hit ratios achieved by the three attacks. It is clear from the
figure that the impact of the informed attacks was significantly greater than that of
the average attack. For example, for an attack size of only 2%, the hit ratios achieved
by the popular, probe and average attacks were 65%, 34% and 3%, respectively, for
top N lists of size 10. Thus the advantage of creating attacks that consider particular
features of the algorithm under attack is clearly demonstrated.

The main drawback associated with the informed attacks lies in the high degree
of domain knowledge that is required in order to select the appropriate items and rat-
ings with which to create the attack profiles. As discussed in Section 25.3, however,
such knowledge is often made directly available to attackers by recommender sys-
tem applications. Further, the knowledge required can often be obtained from other
sources, e.g. by examining best seller lists and the number of positive and negative
reviews received by items, etc. Even in situations where such data is only partially
available, previous work demonstrates that these informed attacks retain their strong
performance [26].
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Fig. 25.6 Hit ratios achieved
by the popular, probe and
average push attacks against
the user-based algorithm.
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25.4.5 Attack impact

It is clear from the research summarized above that the memory-based algorithms
that form the core of collaborative recommendation research and practice are highly
vulnerable to manipulation. An attacker with fairly limited knowledge can craft at-
tacks that will make any item appear well liked and promote it into many users’
recommendation lists. The “efficient” attacks that have been developed clearly are
a threat to the stability and usability of collaborative systems and thus we see the
justification for the low-scale / high-impact portion of the theoretical curve shown
in Figure 25.1.

To respond to this threat, researchers have examined two complementary re-
sponses. The shaded “detection” areas in Figure 25.1 point towards the first re-
sponse, which is to detect the profiles that make up an attack and eliminate them.
The second approach is to design algorithms that are less susceptible to the types of
attacks that work well against the classic algorithms.

25.5 Attack Detection

Figure 25.7 summarises the steps involved in attack detection. This is a binary clas-
sification problem, with two possible outcomes for each profile, namely, Authentic,
meaning that the classifier has determined that the profile is that of a genuine system
user or Attack, meaning that the classifier has determined that this is an instance of
an attack profile. One approach to the detection problem, followed by work such as
[7, 1], has been to view it as a problem of determining independently for each profile
in the dataset, whether or not it is an attack profile. This is the ‘single profile’ input
shown in Figure 25.7. The input is a single rating vector ru, for some user u from
the dataset. Before processing by the classifier, a feature extraction step may extract
a set of features, fu = ( f1, . . . , fk) from the raw rating vector ru. The classifier takes
fu as input and outputs, “Attack” or “Authentic”. If the classifier is a supervised clas-
sifier, then a training phase makes use of annotated dataset of profiles, i.e. a set of
profiles labelled as Authentic or Attack, in order to learn the classifier parameters.
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Because most attack scenarios consist of groups of profiles working in concert
to push or nuke a particular item, work such as [16, 23] has suggested that there
is benefit to considering groups of profiles together when making the classification.
This is represented by the ‘Group of Profiles’ input, in which the classifier considers
an entire group of profiles, possibly after some feature extraction, and outputs a label
for each profile in the group. Note that not all steps may take place in any particular
scenario. For instance, there may be no feature extraction, in which case, f = r and
if unsupervised classifiers are used, then there is no need for a training phase.

Fig. 25.7: The detection process.

25.5.1 Evaluation Metrics

To compare different detection algorithms, we are interested primarily in measures
of classification performance. Taking a ‘positive’ classification to mean the labeling
of a profile as Attack, a confusion matrix of the classified data contains four sets,
two of which – the true positives and true negatives – consist of profiles that were
correctly classified as Attack or Authentic, respectively; and two of which – the false
positives and false negatives – consist of profiles that were incorrectly classified
as Attack or Authentic, respectively. Various measures are used in the literature
to compute performance based on the relative sizes of these sets. Unfortunately,
different researchers have used different measures, making direct comparison of
results sometimes difficult.

Precision and recall are commonly used performance measures in information
retrieval. In this context, they measure the classifier’s performance in identifying at-
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tacks. Each measure counts the number of attack profiles correctly classified. Recall
which is also called sensitivity presents this count as a fraction of the total number
of actual attacks in the system. Precision, which is also called the positive predictive
value (PPV), presents this count as a fraction of the total number of profiles labelled
as Attack:

recall ≡ sensitivity =
# true positives

# true positives+# false negatives
, (25.1)

precision≡ PPV =
# true positives

# true positives+# false positives
.

Analogous measures can be given for performance in identifying authentic profiles.
Specificity presents the count of authentic profiles correctly classified as a fraction
of the total number of authentic profiles in the system. Negative predictive value
(NPV), presents the count as a fraction of the total number of profiles labelled Au-
thentic:

speci f icity =
# true negatives

# true negatives+# false positives
, (25.2)

NPV =
# true negatives

# true negatives+# false negatives
.

In detection results below, we use the terms precision, recall, specificity and NPV.

25.5.1.1 Impact on Recommender and Attack Performance

The misclassification of authentic profiles results in the removal of good data from
the ratings database, which has the potential to impact negatively on the overall per-
formance of the recommender system. One way to assess this impact is to compute
the MAE of the system before and after detection and filtering. On the positive side,
the removal of attack profiles reduces attack performance. Assuming the attack is
a push or nuke attack, the degree to which attack performance is affected can be
assessed by computing the prediction shift on the targeted item before and after
detection and filtering.

25.5.2 Single Profile Detection

The basis of individual profile detection is that the distribution of ratings in an attack
profile is likely to be different to that of authentic users and therefore each attack
profile can be distinguished by identification of these differences. As such, individ-
ual profile detection is an instance of a statistical detection problem. It should be
noted that it is in the interest of the attacker to minimise the statistical differences
between attack and authentic profiles, in order to minimise the probability of de-
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tection. On the other hand, a cost-effective attack is likely to consist of unusually
influential profiles – e.g., a targeted pushed item will have unusualy high ratings
and filler items may have been chosen to support the influence of the profile towards
high ratings for the target. As a result, distinctive characteristics are likely to exist
and may be manifested in many ways, including an abnormal deviation from the
system average rating, or an unusual number of ratings in a profile [1].

25.5.2.1 Unsupervised Detection

An unsupervised individual profile detection algorithm is described in [7]. Detec-
tion is based on certain common generic attributes of attack profiles, for example
that there is a higher than usual rating deviation from mean in such profiles and that
such profiles are likely to have a higher than usual similarity to their closest neigh-
bours. Measures of these attributes are proposed and these are applied to compute a
probability that a profile is an attack profile.

25.5.2.2 Supervised Detection

Supervised detection algorithms have focussed on the selection of attributes of at-
tack profiles from which to build a feature vector for input to a classifier. Generally,
such features have been selected by observation of generic attributes that are com-
mon across attack profiles of a number of different attack strategies and also model
specific attributes that are common across profiles that have been generated for a
specific type of attack.

In [5] profile attributes based to those proposed in [7] and others along similar
lines were developed into features for inclusion in a feature vector input to a super-
vised classifer. Moreover, other features based on the statistics of the filler and target
items in the user profile, rather than the entire profile, were proposed. For example,
the filler mean variance feature is defined as the variance of the ratings in the filler
partition of the profile and is used to detect average attacks; the filler mean target
difference feature, defined as the difference between the means of the target items
and the means of the filler items, is used to detect bandwagon attacks.

The authors looked at three supervised classifiers: kNN, C4.5, and SVM. The
kNN classifier uses detection attributes of the profiles to find the k = 9 nearest
neighbors in the training set using Pearson correlation for similarity to determine
the class. The C4.5 and SVM classifiers are built in a similar manner such that they
classify profiles based on the detection attributes only. The results for the detection
of a 1% average attack over various filler sizes are reproduced in Figure 25.8. SVM
and C4.5 have near perfect performance on identifying attack profiles correctly, but
on the other hand, they also misclassify more authentic profiles than kNN. SVM has
the best combination of recall and specificity across the entire range of filler sizes
for a 1% attack.
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Fig. 25.8: Recall (left) and specificity (right) vs filler size for three classifiers trained
on a 1% average attack.

The effect of misclassification of authentic profiles is assessed by examining the
MAE of the system before and after detection and filtering. The increase in MAE is
observed to be less than 0.05 on a rating scale of 1–5. Finally the effectiveness of
the attack as measured by the prediction shift on the targeted item is shown to be
significantly reduced when detection is used. All three classifiers reduce the range of
attacks that are successful, particularly at low attack sizes. The SVM algorithm, in
particular, dominates for attack sizes less than 10%, allowing no resulting prediction
shift over that entire range.

25.5.3 Group Profile Detection

A number of unsupervised algorithms that try to identify groups of attack profiles
have been proposed [23, 33, 18]. Generally, these algorithms rely on clustering
strategies that attempt to distinguish clusters of attack profiles from clusters of au-
thentic profiles.

25.5.3.1 Neighbourhood Filtering

In [23] an unsupervised detection and filtering scheme is presented. Rather than fil-
tering profiles from the dataset in a preprocessing step, in this method, filtering is
applied to the profiles in the active user’s neighbourhood during prediction for a par-
ticular item. This approach has the advantage of identifying just those attack profiles
that are targeting the active item. The strategy is based on an algorithm proposed in
[8] in the context of reputation reporting systems that aims to provide a reputation
estimate for buyers and sellers engaged in on-line marketplaces that is robust to
malicious agents who attempt to fradulently enhance their own reputations. The ap-



25 Robust Collaborative Recommendation 825

Fig. 25.9 Precision and
NPV for the neighbourhood
filtering algorithm vs attack
size.
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proach involves the clustering of neighbourhoods into two clusters. Analysing the
statistics of the clusters, a decision is made as to whether an attack is present and, if
so, which cluster contains the attack profiles. All profiles in the cluster are removed.

Clustering is performed using the Macnaughton-Smith [13] divisive clustering
algorithm. The rating distributions for the active item over each of the clusters are
then compared. Since the goal of an attacker is to force the predicted ratings of
targeted items to a particular value, it is reasonable to expect that the ratings for
targeted items that are contained in any attack profiles are centered on the attack
value, which is likely to deviate significantly from the mean of the authentic neigh-
bours’ ratings. Thus an attack is deemed to have taken place if the difference in the
means for the two clusters is sufficiently large. The cluster with the smaller standard
deviation is determined to be the attack cluster.

Results for this algorithm (using precision and NPV ) applied to an informed
nuke attack on the Movielens dataset are reproduced in Figure 25.9. The fraction of
authentic users contained in the cluster identified as the cluster of authentic users
is at least 75% for all attack sizes tested, so attack profiles are being effectively
filtered from the system. However, particularly for small attack sizes, a significant
proportion of the attack cluster is made up of authentic users. The cost of removing
malicious profiles is to also lose authentic profiles that may have contributed to the
accuracy of the prediction. Results show that filtering a system that has not been
attacked leads to an increase of around 10% in the MAE.

25.5.3.2 Detecting attacks using Profile Clustering

In [18] the observation is made that attacks consist of multiple profiles which are
highly correlated with each other, as well as having high similarity with a large
number of authentic profiles. This insight motivates the development of a clustering
approach to attack detection, using Probabilistic Latent Semantic Analysis (PLSA)
and Principal Component Analysis (PCA).

In the PLSA model [11], an unobserved factor variable Z = {z1, . . . zk} is as-
sociated with each observation. In the context of collaborative recommendation, an
observation corresponds to a rating for some user-item pair and ratings are predicted
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using

Pr(u, i) =
k

∑
i=1

Pr(zi)Pr(u|zi)Pr(i|zi) .

The parameters of this expression are chosen to maximise the likelihood of the ob-
served data, using the Expectation Maximisation algorithm. As discussed in [21],
the parameters Pr(u|zi) can also be used to produce a clustering of the users by as-
signing each user u to each cluster Ci such that Pr(u|zi) exceeds a certain threshold
µ or to the cluster that maximises Pr(u|zi) if µ is never exceeded.

It is noted in [18] that all or most attack profiles tend to be assigned to a single
cluster. Identifying the cluster containing the attack profiles provides an effective
strategy for filtering them from the system. Using the intuition that clusters con-
taining attack profiles will be ‘tighter’ in the sense that the profiles are very similar
to each other, the average Mahalanobis distance over the profiles of each cluster is
calculated and that with the minimum distance is selected for filtering. Experiments
show that PLSA based attack detection works well against strong attacks. However,
for weaker attacks the attack profiles tend to be distributed across different clusters.

A second strategy to exploit the high similarity between attack profiles proposed
in [18] is to base a clustering on a PCA of the covariance matrix of the user pro-
files. Essentially this strategy attempts to identify a cluster where the sum of the
pair-wise covariances between profiles in the cluster is maximised. PCA has been
widely used as a dimension reduction strategy for high-dimensional data. Identify-
ing profiles with dimensions, the method is explained intuitively in [18] as a method
of identifying those highly-correlated dimensions (i.e. profiles) that would safely be
removed by PCA. Alternatively, a cluster C can be defined by an indicator vector
y such that y(i) = 1 if user ui ∈ C and y(i) = 0 otherwise. With S defined as the
covariance matrix, the sum of the pair-wise covariances of all profiles in C, may be
written as the quadratic form

yT Sy = ∑
i∈C, j∈C

S(i, j) .

Moreover, for the normalised eigenvectors xi of S, associated with eigenvector λi
such that λ1 ≤ · · ·≤ λm, the quadratic form evaluates as

yT Sy =
m

∑
i=1

(y.xi)
2(xT

i Sxi) =
m

∑
i=1

(y.xi)
2λi .

With this observation, the method described in [18] may be understood as a method
that seeks the binary vector y that maximises the quadratic form by choosing y so
that it has small correlation with those 3−5 eigenvectors corresponding to the small-
est eigenvalues and hence correlates strongly with the eigenvectors corresponding
to large eigenvalues.

Precision and recall results for the PLSA and PCA clustering strategies are re-
produced in Figure 25.10 for an average attack of size 10%. Similar results have
been obtained for random and bandwagon attacks. The PLSA and PCA clustering
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strategies require that the size of the filtered cluster be specified and, in these results,
the cluster size is taken to be the actual number of inserted attack profiles. This point
should be taken into account in comparing the results with those obtained with the
neighbourhood filtering strategy (Figure 25.9), in which no such control on the clus-
ter size was applied. The 80% maximum recall obtained for the PLSA strategy is
due to the fact that the wrong cluster is selected approximately 20% of the time. The
PCA clustering strategy shows very good performance, even in the case of attacks
consisting of a mixture of random, average and bandwagon profiles.

The UnRAP algorithm [3] also uses clustering to distinguish attack profiles. This
algorithm uses a measure called the Hv score which has proved successful in iden-
tifying highly correlated biclusters in gene expression data. In the context of attack
detection, the Hv score measures for each user, a sum of the squared deviations of
its ratings from the user mean, item mean and overall mean ratings:

Hv(u) =
∑i∈I(ru,i− r̄i− r̄u + r̄)2

∑i∈I(ru,i− r̄u)2 ,

where r̄i is the mean over all users of the ratings for item i, r̄u is the mean over all
items of the ratings for user u and r̄ is the mean over users and items.

A Hv score is assigned to all users in the database and users are sorted according
to this score. The top r = 10 users with highest score are identified as potential
attackers and are examined to identify a target item. The target is identified as that
which deviates most from the mean user rating. Next, a sliding window of r users
is passed along the sorted user list, shifting the window by one user each iteration.
The sum of the rating deviation for the target item is calculated over the window
and a stopping point is reached when this sum reaches zero. The users traversed
during this process become candidate attack profiles, which are then further filtered
by removing any that have not rated the item or whose rating deviation is in the
opposite direction to the attack. Precision results for this method on an average
attack are reproduced in Figure 25.10, compared with the PCA clustering strategy.
In general, the authors report that this method performs well particularly for mid-
size attacks, in which other methods show a dip in performance.

25.5.4 Detection findings

For both supervised and unsupervised detection, it has proved possible to achieve
reasonably good performance against the attack types discussed in 25.3. Perhaps
this is not so surprising, since the assumption is that these attacks are crafted ac-
cording to a fairly regular pattern and thereby vary substantially from the real users
of the system. The extent to which real-life attacks against recommender systems
correspond to these idealized models is not known, since e-commerce companies
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Fig. 25.10: Precision and recall for the PLSA and PCA clustering strategies vs filer
size for a 10% average attack (left). Precision vs attack size for PCA clustering and
UnRAP on an average attack, with filler size=10% (right).

have been reluctant to reveal vulnerabilities that they have identified in their own
systems.

Going back to the framework in Figure 25.1, these findings give us some opti-
mism that the shaded area at the upper left exists. That is, it is possible to detect
attacks that are crafted to be optimal against the well-known memory-based algo-
rithms. It remains an open question to what extent these detection measures extend
downward and to the right, into regions where attacks differ from the optimal and
have correspondingly less impact, but still remain a source of profit for the attacker.

25.6 Robust Algorithms

An alternative (or perhaps a complement) to filtering and detection is to develop rec-
ommendation algorithms that are intrinsically robust to attack. To date, researchers
have largely tried to identify algorithms robust against the attacks that work well
on the memory-based algorithms. An open question is whether new attacks can be
tailored to exploit vulnerabilities in algorithms that have shown high robustness to
standard attacks.

25.6.1 Model-based Recomendation

It has been shown in [21] that model-based recommendation algorithms provide a
greater degree of robustness to attack strategies that have proven highly effective on
memory-based algorithms. Moreover, this robustness does not come at a significant
cost in terms of recommendation accuracy. This work has been followed up in [17,
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15], which surveys model-based attack resistant algorithms and proposes a robust
matrix factorisation strategy.

A model-based recommendation strategy based on clustering user profiles is
analysed in [21]. In this strategy, similar users are clustered into segments and the
similarity between the target user and a user segment is calculated. For each seg-
ment, an aggregate profile, consisting of the average rating for each item in the
segment is computed and predictions are made using the aggregate profile rather
than individual profiles. To make a recommendation for a target user u and target
item i, a neighbourhood of user segments that have a rating for i and whose aggre-
gate profile is most similar to u is chosen. A prediction for item i is made using
the k nearest segments and associated aggregate profiles, rather than the k nearest
neighbours. Both k-means clustering and PLSA-based clustering, as described in
Section 25.5.3.2, are evaluated. The prediction shift achieved by an average attack
on these algorithms, compared with the standard kNN algorithm, is shown in Fig-
ure 25.11 (left). The model-based algorithms are considerably more robust and not
significantly less accurate, since, according to [21], PLSA and k-means clustering
achieve an MAE of 0.75 and 0.76 using 30 segments, in comparison to a value of
0.74 for kNN.

25.6.2 Robust Matrix Factorisation (RMF)

One model-based approach to collaborative recommendation which has proven very
successful recently, is the application of matrix factorisation approaches based on
singular value decomposition (SVD) and its variants. Recent work in [15, 18] has
suggested a robust factorisation strategy in which the clustering strategy of Sec-
tion 25.5.3.2 is used in conjunction with the training phase of the factorisation pro-
cedure. For example, the PLSA clustering strategy can be applied in conjunction
with the PLSA recommendation algorithm. In [15], it is proposed that after elimina-
tion of attack clusters, the Pr(zi|u) distribution of the remaining clusters should be
renormalised and the last few steps of training should be re-run, to maintain the pre-
dictive accuracy of the standard PLSA algorithm and significantly reduce prediction
shift.

Another strategy proposed in [18] is in the context of the application of General-
ized Hebbian Learning algorithm to compute a rank-1 SVD factorisation:

R≈ GH ,

where R is the rating matrix and G and H are matrices of rank 1. Again, the algorithm
is modified so that the contribution of the suspicious users towards the prediction
model is zero, once suspicious users have been identified. Results from this strategy
are reproduced in Figure 25.11 (right). The MAE for the attacked algorithm is shown
when the number of suspicious users r is set to the exact number of attack profiles
inserted, and when it is given a fixed value of 7% of the user base. Also shown for
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Fig. 25.11: Prediction shift vs attack size for an average attack at 5% filler for
segment recommendation (left). MAE on the attacked item vs attack size for filler
size of 10% using RMF (right).

reference is the MAE on the kNN algorithm and standard SVD, with and without
attack.

Theoretical results are also emerging to support the robustness of particular
classes of model-based algorithm. In [35], a manipulation-resistant class of collab-
orative filtering algorithm is proposed for which robustness is proved, in the sense
that the effect of any attack on the ratings provided to an end-user diminishes with
increasing number of products rated by the end-user. Here, effectiveness is measured
in terms of a measure of the average distortion introduced by the attack to the ratings
provided to the user. The class of algorithms for which the proof holds is referred to
as a linear probabilistic collaborative filtering. In essence, the system is modelled as
outputting a probability mass function (PMF) over the possible ratings and in linear
algorithms, the PMF of the attacked system can be written as a weighted sum of the
PMF obtained considering only genuine profiles and that obtained considering only
attack profiles. Robustness is obtained, because, as the user supplies more ratings,
the contribution of the genuine PMF to the overall PMF begins to dominate. The
authors show that, while nearest neighbour algorithms are not linear in this sense,
some well-known model-based algorithms such as the naive-bayes algorithm are
asymptotically linear.

25.6.3 Other Robust Recommendation Algorithms

Attack profiles are ineffective if they do not appear in the neighborhoods of authen-
tic users. By avoiding similarity as a criterion for neighbour selection, the recom-
mendation algorithm can be made robust to attacks where the attack profiles are
designed to have high similarity with authentic users. In [23] it is argued that the
goal of neighbour selection is to select the most useful neighbours on which to base
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the prediction. While similarity is one measure of usefulness, the notion of neigh-
bour utility can be extended to include other performance measures. A selection
criterion is proposed based on a notion of inverse popularity. It is shown that, with
this selection strategy, the same overall system performance in terms of MAE is
maintained. Moreover, cost-effective attacks that depend on popular items to build
highly influential profiles are rendered much less effective.

In [31], a robust algorithm is presented based on association rule mining. Con-
sidering each user profile as a transaction, it is possible to use the Apriori algorithm
to generate association rules for groups of commonly liked items. The support of
an item set X ⊂ I is the fraction of user profiles that contain this item set. An asso-
ciation rule is an expression of the form X ⇒ Y (σr,αr), where σr is the support of
X ∪Y and αr is the confidence for the rule, defined as σ(X ∪Y )/σ(X). The algo-
rithm finds a recommendation for a user u by searching for the highest confidence
association rules, such that X ⊆ Pu is a subset of the user profile and Y contains
some item i that is unrated by u. If there is not enough support for a particular item,
that item will never appear in any frequent item set and will never be recommended.
This algorithm proves robust to the average attack. For attack sizes below 15%, only
0.1% of users are recommended an attacked item by the association rule algorithm,
compared to 80− 100% of users for the kNN algorithm. The trade-off is that cov-
erage of the association rule algorithm is reduced in comparison to kNN. However,
the algorithm is not robust against the segment attack.

25.6.4 The Influence Limiter and Trust-based Recommendation

In [28, 29] a recommendation algorithm is presented for which robustness bounds
can be calculated. The algorithm introduces two key additional features to the rec-
ommendation process, an influence limiter and a reputation system. The idea behind
the algorithm is to weight the contribution of each user towards a prediction by using
a global measure of reputation. The reputation value is boosted when a profile cor-
rectly estimates a rating for a neighbor and is reduced which it fails to do so. Within
this recommendation model, the authors prove a non-manipulation result that shows
that any attack strategy involving up to n attack users, the negative impact due to
the attacker is bounded by a small amount. They also show that a user seeking to
maximize influence has a strict incentive to rate honestly. Other properties of this
algorithm, such as its accuracy, are still under study.

The influence limiter is just one algorithm that takes into account trust and rep-
utation (see Chapter 20) in order to build recommendations. In recent years, there
has been increasing focus on incorporating trust models into recommender systems
[14, 22, 9]. In [14], trust propagation is used to increase the coverage of recom-
mender systems while preserving accuracy. In [22] it is argued that the reliability
of a profile to deliver accurate recommendations in the past should be taken into
account by recommendation algorithms. An algorithm that uses trust as a means of
filtering profiles prior to recommendation so that only the top k most trustworthy
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profiles participate in the prediction process is presented in [9]. The trust associ-
ated with a user for making predictions for an item is computed based on the users’
accuracy on predicting their own ratings for that item. The robustness achieved by
such algorithms is a function of how difficult it would be for an attacker to become
trusted.

25.7 Conclusion

Collaborative recommender systems are meant to be adaptive – users add their pref-
erences to these system and their output changes accordingly. Robustness in this
context must mean something different than the classical computer science sense of
being able to continue functioning in the face of abnormalities or errors. Our goal is
to have systems that adapt, but that do not present an attractive target to the attacker.
An attacker wishing to bias the output of a robust recommender system would have
to make his attack sufficiently subtle that it does not trigger the suspicion of an at-
tack detector, sufficiently small that it does not stand out from the normal pattern of
new user enrollment, and sufficiently close to real user distribution patterns that it
is not susceptible to being separated out by dimensionality reduction. If this proves
a difficult target to hit and if the payoff for attacks can be sufficiently limited, the
attacker may not find the impact of his attack sufficiently large relative to the effort
required to produce it. This is the best one can hope for in an adversarial arena.

It is difficult to say how close we have come to this ideal. If an attacker is aware
that such detection strategies are being applied, then the attack can be modified to
avoid detection. For example, [23] shows that if the attacker is aware of the cri-
teria used to decide if an attack profiles exist in the user’s neighbourhood, then
the attacker can construct profiles which, although somewhat less effective than the
standard attacks, can circumvent detection. In [34] the effectiveness of various types
of attack profile obfuscation are evaluated. The general finding is that obfuscated at-
tacks are not much less effective than optimal ones and much harder to detect. More
research is needed in this area.

Similar issues apply in the context of attack resistant recommendation algo-
rithms. While model-based algorithms show robustness to attacks that are effective
on memory-based algorithms, it is possible to conceive of new attacks that target
model-based algorithms. [31], for example, shows that association rule based rec-
ommendation is vulnerable to segment attacks.

Another way to view the problem is as a game between system designer and
attacker. For each system that the designer creates, an optimal attack against it can be
formulated by the attacker, which then requires another response from the designer,
etc. What we would like to see is that there are diminishing returns for the attacker,
so that each iteration of defense makes attacking more expensive and less effective.
One benefit of a detection strategy is that a system with detection cannot be more
vulnerable to attack than the original system, since in the worst case, the attacks are
not detected. We do not yet know if the robust algorithms that have been proposed
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such as RMF have some as-yet-undiscovered flaw that could make them vulnerable
to a sophisticated attack, perhaps even more vulnerable than the algorithms that they
replace.
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