tempdir: "tmp" summary: false input: "s3://wastewater" logDir: log runid: 1 logLevel: 1 scratch: "/vol/scratch" publishDirMode: "symlink" steps: dereplication: bottomUpClustering: # stricter MIMAG medium quality minimumCompleteness: 50 maximumContamination: 5 ANIBuffer: 20 mashBuffer: 2000 method: 'ANI' additionalParams: mash_sketch: "" mash_dist: "" # cluster cutoff cluster: " -c 0.05 " pyani: " -m ANIb " representativeAniCutoff: 0.95 readMapping: bwa2: additionalParams: bwa2_index: "" bwa2_mem: "" # This module produces two abundance tables. # One table is based on relative abundance and the second one on the trimmed mean. # Just using relative abundance makes it difficult to tell if a genome is part of a dataset. # Thats why it makes sense to set at leat a low min covered fraction parameter. coverm: additionalParams: " --exclude-supplementary --min-covered-fraction 90 --min-read-percent-identity 95 --min-read-aligned-percent 95 " minimap2: additionalParams: minimap2_index: "" minimap2: "" cooccurrence: inference: additionalParams: method: 'spiec-easi' rscript: " --mincovthreshold 0.9 --maxzero 60" timeLimit: "AUTO" metabolicAnnotation: additionalParams: metabolicEdgeBatches: 5 metabolicEdgeReplicates: 10 smetana: " --flavor bigg --molweight " resources: highmemLarge: cpus: 28 memory: 230 highmemMedium: cpus: 14 memory: 113 large: cpus: 28 memory: 58 medium: cpus: 14 memory: 29 small: cpus: 7 memory: 14 tiny: cpus: 1 memory: 1