
Security
Assessment
Report

Metrom

Smart Contracts Audit

Version: Final

Date: 15 Jul 2024



Table of Contents

Table of Contents 1
License 2
Disclaimer 3
Introduction 4
Codebases Submitted for the Audit 5
How to Read This Report 6
Overview 7

Methodology 7
Functionality Overview 7

Summary of Findings 8
Detailed Findings 9

1. Redundant revert should be refactored to modifier or function. 10
2. Unnecessary Assignment of State Variables to Local Variables in createCampaigns Function. 11
3. Unnecessary Inner Loop for Duplicate Check in setMinimumRewardTokenRates Function. 12

1



License

THIS WORK IS LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION-NODERIVATIVES 4.0
INTERNATIONAL LICENSE.

2



Disclaimer
THE CONTENT OF THIS AUDIT REPORT IS PROVIDED “AS IS”, WITHOUT REPRESENTATIONS AND
WARRANTIES OF ANY KIND.

THE AUTHOR AND HIS EMPLOYER DISCLAIM ANY LIABILITY FOR DAMAGE ARISING OUT OF, OR IN
CONNECTION WITH, THIS AUDIT REPORT.

COPYRIGHT OF THIS REPORT REMAINS WITH THE AUTHOR.

3



Introduction

Purpose of this report

0xCommit has been engaged by Metrom to perform a security audit of several Token contract
components.

The objectives of the audit are as follows:

1. Determine the correct functioning of the protocol, in accordance with the project
specification.

2. Determine possible vulnerabilities, which could be exploited by an attacker.

3. Determine smart contract bugs, which might lead to unexpected behaviour.

4. Analyze whether best practices have been applied during development.

5. Make recommendations to improve code safety and readability.

This report represents a summary of the findings.

As with any code audit, there is a limit to which vulnerabilities can be found, and unexpected
execution paths may still be possible. The author of this report does not guarantee complete
coverage (see disclaimer).

4



Codebases Submitted for the Audit
The audit has been performed on the following commits:

Github Link: https://github.com/metrom-xyz/contracts/blob/main/src/Metrom.sol

Version Commit hash

Initial 3122502f0a38203d1e9d9943e73798250f9f5aa3

Final

5

https://github.com/metrom-xyz/contracts/blob/main/src/Metrom.sol


How to Read This Report
This report classifies the issues found into the following severity categories:

Severity Description

Critical A serious and exploitable vulnerability that can lead to loss of funds, unrecoverable
locked funds, or catastrophic denial of service.

High An attacker can successfully execute an attack that clearly results in operational issues
for the service. This also includes any value loss of unclaimed funds permanently or
temporary.

Medium The service may be susceptible to an attacker carrying out an unintentional action, which
could potentially disrupt its operation. Nonetheless, certain limitations exist that make it
difficult for the attack to be successful.

Low The service may be vulnerable to an attacker executing an unintended action, but the
impact of the action is negligible or the likelihood of the attack succeeding is very low
and there is no loss of value.

Informational Comments and recommendations of design decisions or potential optimizations, that
are not relevant to security. Their application may improve aspects, such as user
experience or readability, but is not strictly necessary

The status of an issue can be one of the following: Pending, Acknowledged, or Resolved.

Note that audits are an important step to improving the security of smart contracts and can find
many issues. However, auditing complex codebases has its limits and a remaining risk is present
(see disclaimer).

Users of the system should exercise caution. In order to help with the evaluation of the remaining
risk, we provide a measure of the following key indicators: code complexity, code readability,
level of documentation, and test coverage. We include a table with these criteria below.

Note that high complexity or low test coverage does not necessarily equate to a higher risk,
although certain bugs are more easily detected in unit testing than in a security audit and vice
versa.

6



Overview

Methodology

The audit has been performed in the following steps:

1. Gaining an understanding of the code base’s intended purpose by reading the available
documentation.

2. Automated source code and dependency analysis.

3. Manual line by line analysis of the source code for security vulnerabilities and use of best
practice guidelines, including but not limited to:

a. Race condition analysis

b. Under-/overflow issues

c. Key management vulnerabilities

d. Access Control Issues

e. Boundary Analysis

4. Report preparation

Functionality Overview

Metrom is an intuitive tool designed to streamline the incentivization of concentrated liquidity
automated market makers (CL AMMs). Building on the concept of Carrot and our experience with
DIY Liquidity Campaigns, Metrom simplifies the process into three easy steps. It allows users to
distribute rewards to liquidity providers on any trading pair with any reward token. Post-launch,
Metrom will enhance this by adding KPI-based conditions to incentives. By reducing friction in
campaign creation and focusing on efficiency, Metrom empowers communities to attract more
liquidity effectively.

7



Summary of Findings

Sr.
No.

Description Severity Status

1 Redundant revert should be refactored
to modifier or function. Informational Acknowledged

2 Unnecessary Assignment of State
Variables to Local Variables in
createCampaigns Function.

Informational Acknowledged

3 Unnecessary Inner Loop for Duplicate
Check in
setMinimumRewardTokenRates
Function.

Informational Acknowledged

8



Detailed Findings

Critical Findings

No critical findings found.

High Findings
No high findings found.

Medium Findings
No medium findings found.

Low Findings
No low findings found.

9



Informational Findings

1. Redundant revert should be refactored tomodifier or function.

Description

Refactoring this repeated code into a modifier or function will help reduce deployment costs and

enhance code readability.

The codebase contains 10 instances of the following redundant code:

if (msg.sender != owner) revert Forbidden();

1. https://github.com/metrom-xyz/contracts/blob/main/src/Metrom.sol#L100
2. https://github.com/metrom-xyz/contracts/blob/main/src/Metrom.sol#L106
3. https://github.com/metrom-xyz/contracts/blob/main/src/Metrom.sol#L310
4. https://github.com/metrom-xyz/contracts/blob/main/src/Metrom.sol#L358
5. https://github.com/metrom-xyz/contracts/blob/main/src/Metrom.sol#L373
6. https://github.com/metrom-xyz/contracts/blob/main/src/Metrom.sol#L381
7. https://github.com/metrom-xyz/contracts/blob/main/src/Metrom.sol#L390
8. https://github.com/metrom-xyz/contracts/blob/main/src/Metrom.sol#L399
9. https://github.com/metrom-xyz/contracts/blob/main/src/Metrom.sol#L407
10. https://github.com/metrom-xyz/contracts/blob/main/src/Metrom.sol#L415

Remediation

Convert the statement if (msg.sender != owner) revert Forbidden(); into a reusable function or

modifier and apply it wherever necessary. This will improve the efficiency and maintainability of

the code.

Status

Acknowledged

10

https://github.com/metrom-xyz/contracts/blob/main/src/Metrom.sol#L100
https://github.com/metrom-xyz/contracts/blob/main/src/Metrom.sol#L106
https://github.com/metrom-xyz/contracts/blob/main/src/Metrom.sol#L310
https://github.com/metrom-xyz/contracts/blob/main/src/Metrom.sol#L358
https://github.com/metrom-xyz/contracts/blob/main/src/Metrom.sol#L373
https://github.com/metrom-xyz/contracts/blob/main/src/Metrom.sol#L381
https://github.com/metrom-xyz/contracts/blob/main/src/Metrom.sol#L390
https://github.com/metrom-xyz/contracts/blob/main/src/Metrom.sol#L399
https://github.com/metrom-xyz/contracts/blob/main/src/Metrom.sol#L407
https://github.com/metrom-xyz/contracts/blob/main/src/Metrom.sol#L415


2. Unnecessary Assignment of State Variables to Local Variables in
createCampaigns Function.

Description

In the createCampaigns function, the state variables minimumCampaignDuration and
maximumCampaignDuration are assigned to local variables _minimumCampaignDuration and
_maximumCampaignDuration, respectively. These local variables are then used only once within
the function. This results in redundant code, which can be streamlined for better readability,
efficiency and saves gas.

Remediation

Remove the unnecessary assignments of state variables to local variables and use the state

variables directly within the function. This will simplify the code and eliminate the redundant

variable assignments.

Status

Acknowledged

11



3. Unnecessary Inner Loop for Duplicate Check in
setMinimumRewardTokenRates Function.

Description

The setMinimumRewardTokenRates function currently includes an inner loop to check for
duplicate tokens in the _bundles array. This check is redundant and inefficient, especially since
the function can only be called by ratesUpdater, who is trusted to pass unique elements. The
inner loop unnecessarily increases the gas consumption of the function, leading to higher
transaction costs.

Remediation

Remove the inner loop that checks for duplicate tokens within the _bundles array. By trusting the
ratesUpdater to provide unique elements, the function's gas consumption can be significantly
reduced.

Status

Acknowledged

12


