University at Buffalo CDSE Days 2019
Allen, R.J., Rieger, T.R., & Musante, C.J. (2016). Efficient Generation and Selection of Virtual Populations in Quantitative Systems Pharmacology Models. CPT: pharmacometrics & systems pharmacology, 5 3, 140-6.
Definitions of plausible and virtual patients and populations
## [1] "BRAFt" "CRAFt" "dmax" "G13" "Gspry" "Gdusp" "ke2" "ke3"
## [9] "ke4" "MEKb" "MEKt" "PI3Kb" "PI3Kt" "RASb" "RASt" "RTK1t"
## [17] "RTK2t" "wOR" "wRAS" "ka2" "V2" "ka3" "q2" "V3"
## [25] "V3b" "ka4" "V4"
params <- readRDS("../mapk/s10vpop_pk.RDS")
pLower <- params %>% summarise_all(.funs = function(x){min(x)*0.5})
pUpper <- params %>% summarise_all(.funs = function(x){max(x)*1.5})
pLower %<>% gather(key="Name",value="Lower")
pUpper %<>% gather(key="Name",value="Upper")
paramLims <- left_join(pLower,pUpper,by="Name")
paramLims %<>% filter(Name %in% p_names)
kable(paramLims)
Name | Lower | Upper |
---|---|---|
BRAFt | 0.4500000 | 1.422970e+01 |
CRAFt | 0.4255413 | 1.869358e+00 |
dmax | 0.0165304 | 7.826700e-02 |
G13 | 0.0232258 | 1.500000e+00 |
Gspry | 0.0272101 | 1.500000e+00 |
Gdusp | 0.0162001 | 1.500000e+00 |
ke2 | 0.0261162 | 1.918298e+00 |
ke3 | 0.1690308 | 2.373814e+00 |
ke4 | 0.1149115 | 6.152933e+00 |
MEKb | 0.0000010 | 3.874368e+00 |
MEKt | 0.0394415 | 2.694055e+01 |
PI3Kb | 0.0003593 | 7.735705e+00 |
PI3Kt | 0.5000000 | 7.735705e+00 |
RASb | 0.0034015 | 6.129698e-01 |
RASt | 0.0442520 | 2.633074e+01 |
RTK1t | 0.0004352 | 8.721113e+01 |
RTK2t | 0.0001469 | 5.502290e+01 |
wOR | 0.3769756 | 1.500000e+00 |
wRAS | 0.3278130 | 1.500000e+00 |
ka2 | 0.1942810 | 1.310347e+02 |
V2 | 12.4518572 | 7.203180e+02 |
ka3 | 0.4273688 | 1.223939e+03 |
q2 | 25.8518425 | 3.643031e+03 |
V3 | 50.1279601 | 2.356503e+03 |
V3b | 25.4701092 | 4.326330e+03 |
ka4 | 0.1635798 | 1.266548e+05 |
V4 | 33.8116991 | 7.922191e+02 |
Name | Lower | Upper | Time |
---|---|---|---|
TUMOR | 0 | Inf | 56 |
A set of initial random parameters is used as the initial guess for a simulated annealing (SA) optimization algorithm
model <- mread("mapk", '../mapk/', soloc = '../mapk')
sim_fcn <- function(parameters=NULL,model,pnames,dosing,ICs,simulate=0){
loadso(model) # Load model
# Case with parameters defined by plausible patient algorithm
if(!is.null(parameters)){
param_in <- data.frame(Names = pnames,Values=parameters)
param_in <- spread(param_in,key=Names,value=Values)
# Create case for testing with default parameters
}else{
param_in <- data.frame(ID=1)
}
# Bind parameters with initial conditions
param_in %<>% cbind(ICs)
# Simulate and extract tumor size at dat 56
output <- model%>%idata_set(param_in) %>%Req(TUMOR)%>%
obsonly%>%mrgsim(delta=56,end=56,events=as.ev(dosing))%>%
filter(time==56)%>%as.data.frame()
# For VP generation, return a list of steady state and non-steady state outputs
if(simulate==0){
return(list(NSS=output))
# Otherwise return the dataset
}else{
return(output)
}
}
control=list(runParallel="parallel",nCores = 4,
parallel_libs="mrgsolve") # Setup parallel run
plausiblePatients <- generatePPs(model_fn = sim_fcn, NP=1e3, paramLims=paramLims,stateLims = stateLims,
method='SA',
model_args = model_args,
scoreThreshold = 0)
Yield: \(N_{VP}/N_{PP}\) = 21.8%
Name | Lower | Upper | Time |
---|---|---|---|
TUMOR | 0 | 2.5 | 56 |
Yield = 25.5%
See Rieger TR, Allen RJ, Bystricky L, Chen Y, Colopy GW, Cui Y, Gonzalez A, Liu Y, White RD, Everett RA, Banks HT, Musante CJ: Improving the generation and selection of virtual populations in quantitative systems pharmacology models. Prog Biophys Mol Biol 139:15–22, 2018