
A new algorithm for computing Boolean

operations on polygons ⋆

Francisco Mart́ınez ∗, Antonio Jesús Rueda,

Francisco Ramón Feito

Departamento de Informática, Universidad de Jaén
Campus Las Lagunillas s/n, 23071 Jaén (Spain)

Abstract

This paper presents a new algorithm for computing Boolean operations on polygons.
This kind of operations are frequently used in Geosciences in order to get spatial
information from spatial data modeled as polygons. The presented algorithm is
simple and easy to understand and implement. Let n be the total number of edges of
all the polygons involved in a Boolean operation and k be the number of intersections
of all the polygon edges. Our algorithm computes the Boolean operation in time
O((n + k) log n).

Finally, the proposed algorithm works with concave polygons with holes, and with
regions composed of polygon sets. Furthermore, it can be easily adapted to work
with self-intersecting polygons.

Key words: Polygon clipping, Boolean operations polygons, Polygon overlay

1 Introduction1

Polygon overlay, which is also referred to as polygon clipping or polygon inter-2

section, operations determine the spatial coincidence (if any) of two polygon3

⋆ Code available from server at http://www.iamg.org/CGEditor/index.htm
∗ Corresponding author. Tel.: +34-953212887; fax: +34-953212420

Email addresses: fmartin@ujaen.es (Francisco Mart́ınez), ajrueda@ujaen.es
(Antonio Jesús Rueda), ffeito@ujaen.es (Francisco Ramón Feito).

Preprint submitted to Elsevier 27 October 2009



data layers, usually creating a new polygon layer in the process. Polygon over-4

lay techniques are often used by field scientists to explore the relationships5

between spatial attributes, stored as layers in a geophysical data model. Ex-6

amples of polygon data are: tectonic plates, biomes, watersheds or sea ice.7

For example, Figure 1 shows two polygons representing the sea ice coverage8

over two time periods. A Boolean operation on the polygons can be used to9

visualize and get information about the changes in sea ice coverage over time.10

For example, P − Q represents the coverage area gained during the period,11

and Q − P the coverage area lost —it is supposed that Q represents a time12

previous to P.13

There is a slight difference between polygon clipping and polygon intersec-14

tion. The former refers to when several polygons are clipped against the same15

clipping polygon. Many efficient algorithms exist for polygon clipping (?).16

However, most of them are limited to certain types of polygons, for instance,17

Andereev’s (1989) and Sutherland and Hodgeman’s (1974) algorithms require18

a convex clip polygon, while the algorithm by Liang and Barsky (1983) re-19

quires a rectangular clip polygon.20

For the general case of polygons, i.e. concave polygons with holes and self-21

intersections, less solutions are available. Furthermore, some of the solutions22

need complex, specific data structures as it is the case of Weiler’s (1980)23

algorithm.24

Greiner and Hormann (1998) propose a new algorithm for clipping polygons.25

The algorithm is very easy to understand and implement. In addition, it is26

very fast, especially for self-intersecting polygons. Nevertheless, the algorithm27

treats degeneracy, which occurs when a vertex of a polygon lies on an edge28

of the other, by perturbing the position of the vertex. Figure 2 shows that29

perturbation is not always a good solution. As can be seen the result of the30

boolean operation P −Q depends on the kind of perturbation, on the left fig-31

ure a polygon with a hole is obtained, on the right figure a polygon with two32

regions is obtained. Liu et al. (2007) propose some optimizations to Greiner33

and Hormann’s algorithm, and explain how the algorithm can be adapted to34

work with polygons with holes and regions composed of polygon sets. Unfor-35

tunately, they do not bring new solutions to the degeneracy problem.36

In this paper we propose a new algorithm for computing Boolean operations37

on polygons. The algorithm is very easy to understand, among other things38

because it can be seen as an extension of the classical algorithm, based on the39

plane sweep, for computing the intersection points between a set of segments,40

see Preparata and Shamos (1985). When a new intersection between the edges41

of polygons is found, our algorithm subdivides the edges at the intersection42

point. This produces a plane sweep algorithm with only two kind of events:43

left and right endpoints, making the algorithm quite simple. Furthermore, the44

2



subdivision of edges provides a simple way of processing degeneracies.45

It must be noted that Vatti’s (1992) algorithm is also based on the plane46

sweep paradigm. However, our algorithm is quite different than Vatti’s one.47

Concretely, our algorithm takes a different, more efficient, approach for com-48

puting the intersections between the edges of the polygons involved in the49

Boolean operation, making our algorithm much faster than Vatti’s one for the50

computation of Boolean operations for large polygons.51

The remainder of the paper is structured as follows. In the next section the52

theoretical background on which the algorithm is based is stated. In Section53

3 the overall algorithm is described. Sections 4 and 5 explain how the edges54

belonging to the result of the Boolean operation are selected and connected55

to form the solution. Section 6 makes a complexity analysis of the algorithm.56

Section 7 describes how the special cases of the algorithm are processed. In57

Section 8 a comparison with Vatti’s and Greiner and Hormann’s algorithms58

is made. Finally, Section 9 brings some conclusions.59

2 Basics60

A natural way to represent a polygon is by listing its vertices in counter-61

clockwise order: v0, v1, v2 . . . v
n
. The ordered list of edges v0v1, v1v2 . . . v

n
v062

defines the polygon boundary.63

The boundary of the result of a Boolean operation on two polygons consists64

of those portions of the boundary of each polygon that lie or do not lie,65

depending on the type of operation, inside the other polygon. For example,66

Figure 3 shows the results of different Boolean operations on two polygons.67

Therefore, the computation of a Boolean operation is reduced to finding these68

portions. Once found, they must be connected to form the result polygon.69

Suppose that the edges of two polygons are subdivided at their intersection70

points, see Figure 4. In this case the boundaries of the polygons intersect at71

endpoints of some of their edges. Therefore, the problem of computing the72

boundary of the result of a Boolean operation on the polygons is reduced to73

finding those edges of each polygon that lie or do not lie, depending on the74

type of operation, inside the other polygon. Again, once these edges are found75

they must be connected to form the result polygon.76

We can therefore sketch the following approach for computing Boolean oper-77

ations on polygons:78

(1) Subdivide the edges of the polygons at their intersection points.79

3



(2) Select those subdivided edges that lie inside the other polygon —or that80

do not lie depending on the operation.81

(3) Join the edges selected in step 2 to form the result polygon.82

The algorithm proposed in this paper uses the plane sweep technique to effi-83

ciently implement this approach.84

3 The algorithm85

In this section we describe the algorithm for computing Boolean operations86

on polygons. In order to subdivide the edges of the polygons we must first find87

their intersection points. This task can be efficiently done using the following88

principle: Suppose that the plane is swept with a vertical line. At every moment89

the edges that intersect the sweep-line are stored, ordered from bottom to top90

as they intersect the sweep-line, in a data structure S. Then, it can be proved91

that: 1) the status of S only changes when the sweep-line reaches an endpoint92

or an intersection point of the edges, and 2) only edges that are adjacent along93

S can intersect. The classical algorithm for computing the intersection points94

between a set of segments is based on this principle given by Preparata and95

Shamos (1985).96

Our algorithm also uses this approach to efficiently find the intersection points97

between the edges of the polygons. Furthermore, the information available98

during the plane sweep is used to subdivide the edges and decide which of99

them should be included in the result of the Boolean operation. The algorithm100

is described next.101

We use a vertical line to sweep the plane from left to right. The sweep-line102

status, S, consists of the ordered sequence of the edges of both polygons inter-103

secting the vertical line. S will only change at the endpoints of the edges:104

• When the left endpoint of an edge is reached the edge must be added to S.105

• When the right endpoint is reached the edge must be removed from S.106

Therefore, the event-point set is formed by the endpoints of the edges of the107

polygons. This set changes dynamically because when an edge is subdivided108

two new endpoints appear. The algorithm implements the event-point set109

using a priority queue that holds the endpoints sorted from left to right.110

Now, we can describe the algorithm, see Figure 5. Firstly, the endpoints of111

the edges are placed into a priority queue sorted by x coordinate. Then the112

endpoints are processed —from left to right— as follows. When a left endpoint113

is found its associated edge is inserted into the sweep line status (S ). Then,114

4



following the approach explained in Section 4, it is computed if the edge lies115

inside the other polygon. Possible intersections with its neighbors along S116

must also be processed. When a right endpoint is found its associated edge117

is removed from S. Now, its two neighbors along S become adjacent, and are118

tested for intersection. The removed edge is also considered for inclusion in119

the result of the Boolean operation.120

The procedure possibleInter is used to detect and process a possible intersec-121

tion between two edges. If the edges belong to the same polygon or they only122

intersect at one of their endpoints no extra processing is required. If the edges123

belong to different polygons and they intersect at a point interior to one of124

the edges then they must be subdivided. When an edge is subdivided the data125

structures Q and S are updated to reflect the new status. Figure 6 shows the126

types of intersections that lead to the subdivision of an edge and how they are127

processed. We have used the intersection routine described in Schneider and128

Eberly (2003) for detecting a possible intersection between two edges.129

Let us see an example of edge subdivision, see Figure 7. When the sweep-line130

reaches the point p1, we have S is {q2q3, q1q2}. Then, the left endpoint of p1p2131

is processed, and p1p2 is inserted into S (S = {q2q3, q1q2, p1p2}). p1p2 intersects132

with its neighbor q1q2 at point i, so p1p2 and q1q2 must be subdivided into edges133

p1i, ip2, q1i and iq2. Q must be updated to include the endpoints of these new134

edges. S will also change to S = {q2q3, iq2, p1i}. After this, the left endpoint135

of p0p1 is processed, and p0p1 is inserted into S (S = {q2q3, iq2, p1i, p0p1}).136

4 Selecting the result edges137

When the sweep-line reaches the right endpoint of an edge e the algorithm138

decides if e belongs to the result of the Boolean operation. As outlined in139

Section 2, this decision is made by testing if e lies inside the other polygon P.140

In the algorithm we compute if e lies inside P when e is inserted into S. We141

can easily make this computation after reading three flags of information from142

the edge that precedes e in S. In Figure 8 we suggest a data structure for rep-143

resenting an endpoint of an edge —an event point— that implicitly represents144

its associated edge —we insert into S the left endpoint of the segments. The145

three flags from the preceding edge that have to be read are:146

• pl: Indicates if the edge belongs to the subject or clipping polygon.147

• inOut: Indicates if the edge determines an inside-outside transition into the148

polygon, to which the edge belongs, for a vertical semi-line that goes up and149

intersects the edge.150

• inside: Indicates if the edge is inside the other polygon.151

5



Figure 9 shows a routine that computes the inOut and inside flags of a left152

endpoint event le, that has been inserted into S, given the left endpoint event153

ple of the immediate predecessor of le in S. If ple is null then le is the first154

event in S and the flags can be trivially set to false.155

To correctly apply this routine endpoints placed at the same x coordinate must156

be processed —that is, sorted into the priority queue— from bottom to top.157

If two endpoints share the same point the right endpoints must be processed158

before the left ones. If two left endpoints share the same point then they must159

be processed in the ascending order of their associated edges in S.160

5 Connecting the result edges to form the solution161

The result of a Boolean operation on two polygons is a set, possibly empty, of162

polygons. In the previous sections we have described how to find the edges of163

these polygons. Next, we show how these edges can be connected to form the164

result polygons.165

We must hold a set C —initially empty— of chains of connected edges and a166

set R that holds the result polygons. Every edge e that belongs to the solution167

must be processed as follows:168

• If e cannot be connected at any of the ends of any chain of C, then a new169

chain, formed by e, is added to C.170

• If e can be connected to only one chain c of C, then e is added to c. If the171

first and last edges in c are connected, then c holds a result polygon and it172

is moved to R.173

• If e can be connected to two chains c1 and c2 of C, then the edges of c2 and174

e are added to c1, and c2 is removed from C. If the first and last edges in175

c1 are connected then c1 is moved to R.176

6 Performance analysis177

In this section we analyse the performance of the algorithm shown in Figure178

5. We will use the following notation: let n be the total number of edges of179

all the polygons involved in the Boolean operation and k be the number of180

intersections of all the polygon edges.181

The algorithm starts inserting all the endpoints of the edges on Q, which takes182

O(nlog(n)). Then the plane sweep starts and all the events are processed in183

the cycle. Let us analyse the cycle body:184

6



• Lines 6, 11, 12, 13 and 16 are operations on S. S holds at most n edges and185

it can be implemented as a dictionary, so these lines take each O(log(n)).186

• Line 7 runs in time O(log(n)), since this is the time needed to determinate187

the immediate predecessor of the event in S —the routine used to set the188

inside and inOut flags runs in time O(1).189

• The function possibleInter takes O(log(n+k)), because after an intersection190

test, which uses constant time, four insertions on Q can be done, and Q has191

an O(n + k) size.192

• Line 3 runs in constant time, and line 4 takes O(log(n + k)).193

• Finally, the inclusion of an edge in the result polygons—lines 14 and 15—194

, which is treated in Section 5, takes O(log(n)). There can be at most n195

chains of connected edges in which to include the edge. The endpoints of196

the chains can be stored in a dictionary, so that finding the chain that joins197

with the edge runs in time O(log(n)). The remainder of operations —joining198

and edge to a chain or joining two chains— can be implemented in constant199

time.200

Therefore we can conclude that the cycle body runs in time O(log(n + k)).201

The cycle is executed (n + 4k) times so the cycle takes O((n + k)log(n + k)),202

i.e., O(n + k)log(n), since k ≤ n2. This time clearly dominates the initial203

O(nlog(n)) step 1, so the whole algorithm runs in time O(n + k)log(n).204

7 Special cases205

In this section we discuss the special cases of the algorithm. As it will be206

shown they are treated in an simple, elegant way.207

7.1 Vertical edges208

Vertical edges are special because their two endpoints are placed at the same209

x coordinate. However, they can be processed by the algorithm as “normal210

edges” as long as the following simple rules are met:211

(1) The lower endpoint of a vertical edge must be considered as its left end-212

point and the upper endpoint as its right endpoint.213

(2) To order the sweep-line status (S ) it must be considered that a vertical214

edge intersects the sweep-line at the y coordinate of its lower endpoint —215

remember that S is ordered by the y coordinate at which edges intersect216

the sweep-line. If a non-vertical edge intersects the sweep-line at the lower217

endpoint of a vertical edge, then the vertical edge is placed in S after the218

non-vertical edge.219

7



7.2 Overlapping edges220

When two edges overlap they are subdivided so that their overlapping frag-221

ments become an edge of each polygon —see the last type of intersection in222

Figure 6. The algorithm must select at most one of these two “equal edges”223

as part of the result of the Boolean operation. Unfortunately, the methods224

explained in Section 4 to select the result edges does not work for overlapping225

edges. Therefore the two “equal edges” representing an overlapping fragment226

need a special processing, which is described next.227

When overlapping between two edges is detected one of the edges represent-228

ing the overlapping fragment is labeled as NON CONTRIBUTING, meaning229

that the edge will not be considered for inclusion in the result of the Boolean230

operation. The other edge is labeled as SAME TRANSITION or DIFFER-231

ENT TRANSITION depending on the overlapping edges having the same232

inOut flag, and it will be included in the result depending on its label and233

on the type of Boolean operation. Edges labeled as SAME TRANSITION are234

only included in the result of union and intersection operations. Edges labeled235

as DIFFERENT TRANSITION are only included in the result of set theo-236

retic difference operations. Figure 10 shows how overlapping fragments are237

included in the result of Boolean operations depending on the inOut flag of238

the overlapping edges and on the type of Boolean operation.239

7.3 Self-intersecting polygons240

When the boundary of a polygon crosses itself, the polygon is called self-241

intersecting. Figure 11 shows a polygon set consisting of three individual poly-242

gons: a square, a triangle inside the square —a hole—, and a self-intersecting243

bow-tie shaped polygon that, in turn, intersects with the square. To know244

whether a point belongs to the interior of the polygon the even-odd rule can245

be applied: let r be a ray thrown from the point to infinity in any direction,246

such as the ray does not cross any polygon vertex or self-intersecting point,247

and let c be the number of times that r crosses the boundary of the polygon.248

Then, the point is inside the polygon if c is odd —and outside if c is even.249

The algorithm does not work for polygons with self-intersections. The rea-250

son is simple: the algorithm is not aware of self-intersection points. However,251

these points should be processed as events of the plane sweep because self-252

intersecting edges should exchange their positions at the sweep-line status at253

their intersection points.254

Fortunately, a small change in the algorithm can make it work for this kind255

of polygons. It is enough to find and process intersection points not only256

8



between the edges of different polygons, but also of the same polygon. In this257

case, self-intersecting edges will be also subdivided at their intersection points,258

and therefore, the result polygons will not contain self-intersections.259

8 Evaluation260

In this section we compare Greiner and Hormann’s and Vatti’s algorithms261

with the one presented in this paper. We have implemented Greiner and Hor-262

mann’s and our algorithm in C++, due to Vatti’s algorithm being difficult263

to implement we have used the implementation available at 1 . To implement264

our algorithm we have used a STL’s priority queue container to represent the265

event queue and a STL’s set container to represent the status line. The pro-266

grams have been executed on a Intel Pentium IV processor at 2.4 GHz under267

Linux. Figure 12 shows a polygon representing the coastline of the Earth and268

its main lakes and a second polygon set consisting in several squares. Figures269

13, 14 and 15 show the result of the Boolean intersection, union and difference,270

respectively.271

We have computed the intersection of the polygon representing the earth with272

several polygon sets with an increasing number of squares, the result are shown273

in Table 1. The last column of the table shows the number of intersections be-274

tween the edges of the polygons. Clearly, our algorithm performs better when275

the number of edges is increased. To understand this it must be said that276

Boolean operation algorithms spend the majority of their CPU time comput-277

ing the intersection points between the polygons. The analyzed algorithms use278

different approaches to compute these points:279

• Greiner and Hormann’s algorithm uses the brute force approach. Of course,280

Greiner and Hormann’s algorithm could also use a plane sweep technique281

to compute the intersection points for large polygons.282

• Our algorithm uses the classical plane sweep approach. Edges are only tested283

for intersection when they become adjacent in the status line. At most a pair284

of intersection tests are computed during the processing of a plane sweep285

event.286

• Although Vatti’s algorithm is also based on the plane sweep technique, it is287

very different from our algorithm. For example, it does not use the classical288

plane sweep approach for computing the intersection points: in Vatti’s algo-289

rithm during the processing of a plane sweep event each edge in the status290

line has to be tested for intersection with its immediate predecessor edge291

in the status line. Obviously, this approach is slower than our method that,292

1 General Polygon Clipper library, by Alan Murta,
http://www.cs.man.ac.uk/ toby/alan/software/

9



as mentioned above, only needs a pair of intersection tests for each plane293

sweep event processed.294

9 Conclusions295

In this paper we have proposed a new algorithm for computing Boolean oper-296

ations on polygons. The algorithm is based on the classical plane sweep tech-297

nique for computing the intersection points between a set of segments. Our298

algorithm subdivides the edges of the polygons at their intersection points.299

This subdivision makes the algorithm quite simple, allowing an elegant way300

of processing degeneracies.301

The proposed algorithm computes a Boolean operation in time O((n+k)log(n)),302

where n is the total number of edges of all the polygons involved in the Boolean303

operation and k is the number of intersections of all the polygon edges.304

Unlike some approaches, the proposed algorithm does not need to be adapted305

to work with polygons with holes, and with regions composed of polygon sets.306

Acknowledgements307

This work has been partially granted by the Ministerio de Ciencia y Tecnoloǵıa308

of Spain and the European Union by means of the ERDF funds, under the re-309

search project TIN2007-67474-CO3-03, and by the Conserjeŕıa de Innovación,310

Ciencia y Empresa of the Junta de Andalućıa and the European Union by311

means of the ERDF funds, under the research projects P06-TIC-01403 and312

P07-TIC-02773.313

We also would like to thank the anonymous reviewers for their helpful com-314

ments.315

References316

Andereev, R.D., 1989. Algorithm for clipping arbitrary polygons. Computer317

Graphics Forum 8 (2), 183–191.318

Foley, J.D., Van Dam, A., Feiner, S.K., Hughes, J.F., 1990. Computer Graph-319

ics: Principles and Practice, Addison-Wesley, Reading, MA, 1174pp.320

Greiner, G., Hormann, K., 1998. Efficient clipping of arbitrary polygons. Asso-321

ciation for Computing Machinery—Transactions on Graphics 17 (2), 71–83.322

10



Liang, Y.D., Barsky, B.A., 1983. An analysis and algorithm for polygon clip-323

ping. Communications of the Association for Computing Machinery 26 (11),324

868–877.325

Liu, Y.K., Wang, X.Q., Bao, S.Z., Gombos̆i, M., Z̆alik, B., 2007. An algorithm326

for polygon clipping, and for determining polygon intersections and unions.327

Computers & Geosciences 33, 589–598.328

Preparata, F., Shamos, M., 1985. Computational Geometry an Introduction,329

Springer-Verlag, New York, NY, 398pp.330

Sutherland, I.E., Hodgeman. G.W., 1974. Reentrant polygon clipping. Com-331

munications of the Association for Computing Machinery 17 (1), 32–42.332

Schneider, P.J., Eberly, D.H., 2003. Geometric Tools for Computer Graphics,333

Elsevier Science, San Francisco, CA, 1060pp.334

Vatti, B.R., 1992. A generic solution to polygon clipping. Communications of335

the Association for Computing Machinery 35 (7), 56–63.336

Weiler, K., 1980. Polygon comparison using a graph representation. In: Pro-337

ceedings of the 7th annual conference on Computer graphics and iteractive338

techniques (SIGGRAPH), Seattle, Washington, United States, pp.10–18.339

Figure/Table captions340

Figure captions341

(1) Sea ice coverage over two time periods.342

(2) Depending on kind of perturbation different solutions are obtained.343

(3) Boolean operations on polygons.344

(4) Subdivision of edges of polygons at their intersection points.345

(5) Algorithm.346

(6) Types of intersections that lead to a subdivision.347

(7) Sweep line.348

(8) Data structure for representing events/edges.349

(9) Routine to set inside and inOut flags of edges.350

(10) Inclusion of overlapping edges in result of Boolean operations.351

(11) Example of self-intersecting polygon.352

(12) Subject and clipping polygons.353

(13) Intersection.354

(14) Union.355

(15) Difference.356

Table captions357

(1) Execution times of intersection operations (in seconds).358

11



Q

P

Fig. 1. Sea ice coverage over two time periods.

P

Q

P − QP − Q

Fig. 2. Depending on kind of perturbation different solutions are obtained.

IntersectionPolygons P and Q Union P − Q

P

Q

Fig. 3. Boolean operations on polygons.

Subdivision

Fig. 4. Subdivision of edges of polygons at their intersection points.

12



01. Insert the endpoints of the edges of polygons into priority queue Q

02. while (! Q.empty ()) {

03. event = Q.top ();

04. Q.pop ();

05. if (event.left_endpoint ()) {

06. pos = S.insert (event);

07. event.setInsideOtherPolygonFlag (S.prev (pos));

08. possibleInter (pos, S.next (pos));

09. possibleInter (pos, S.prev (pos));

10. } else { // the event is a right endpoint

11. pos = S.find (*event.other);

12. next = S.next (pos);

13. prev = S.prev (pos);

14. if (event.insideOtherPolygon ()) Intersection.add (event.segment ());

15. if (! event.insideOtherPolygon ()) Union.add (event.segment ());

16. S.erase (pos);

17. possibleInter (prev, next);

18. }

19. }

Fig. 5. Algorithm.

e1

e2

e1

e2

e1

e2

e11

e12

e22

e1

e11

e12

e21

e22

e21

e22

Subdivision

Non−intersecting edgesIntersecting edges

e21

Fig. 6. Types of intersections that lead to a subdivision.

13



q3

p2

p3

p0

q2

p1

q1

q0

q4

q5

i

Polygon P

Polygon Q

Fig. 7. Sweep line.

struct SweepEvent {

Point p; // point associated with the event

SweepEvent *other; // event associated to the other endpoint of the edge

bool left; // is the point the left endpoint of the edge (p, other->p)?

PolygonType pl; // it can be SUBJECT or CLIPPING

bool inOut; // inside-outside transition into the polygon

bool inside; // is the edge (p, other->p) inside the other polygon?

EdgeType type; // used for overlapping edges

};

Fig. 8. Data structure for representing events/edges.

void setInsideFlag (SweepEvent* le, SweepEvent* ple) {

if (ple == NULL) {

le->inside = le->inOut = false;

} else if (le->pl == ple->pl) { // same polygon ?

le->inside = ple->inside;

le->inOut = ! ple->inOut;

} else {

le->inside = ! ple->inOut;

le->inOut = ple->inside;

}

}

Fig. 9. Routine to set inside and inOut flags of edges.

14



Overlapping edges with different

P

Q

inOut flags

P Q

INTERSECTION UNION P − Q
Overlapping edges with the same
inOut flags

Fig. 10. Inclusion of overlapping edges in result of Boolean operations.

Fig. 11. Example of self-intersecting polygon.

Fig. 12. Subject and clipping polygons.

15



Fig. 13. Intersection.

Fig. 14. Union.

Fig. 15. Difference.

16



Table 1
Execution times of intersection operations (in seconds).

Number of vertices Greiner Vatti New algorithm Number of intersections

76696 x 32 0.03 0.55 0.16 178

76696 x 648 0.21 0.58 0.16 814

76696 x 3895 4.01 2.16 0.22 4294

76696 x 15580 17.04 6.30 0.38 8978

17


