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Abstract 
Molecular docking is an important tool in virtual screening for the discovery and design of new 

active agents for drug usage. The docking process is influenced by how well molecules fit in 

the binding site and which interactions occur between the protein and the ligand. Detection of 

these interactions can be automated with tools like the Protein-Ligand Interaction Profiler 

(PLIP) by PharmAI. However, identification and assessment of the importance of the different 

interactions in a protein-ligand complex is still a manual task that requires additional 

experimental data or domain knowledge about the target. The goals of this thesis are twofold: 

Firstly, to automatically identify those interactions that have a significant influence on ligand 

binding, and secondly, to develop a novel scoring function which is able to discriminate active 

molecules from inactive ones if possible. The underlying data basis were selected targets of the 

Directory of Useful Decoys: Enhanced (DUD-E) and available structures from the Protein Data 

Bank (PDB). Specifically 11 targets were analysed: 11-Beta-Hydroxysteroid Dehydrogenase 1 

(HSD11B1), Acetylcholinesterase (ACHE), Coagulation Factor XA (FXA), Cyclooxygenase 1 

and 2 (COX1/COX2), Dipeptidyl Peptidase IV (DPP4), Monoamine Oxidase B (MAOB), P38 

Mitogen-Activated Protein Kinase 14 (MAPK14),  Phosphodiesterase 5 (PDE5A), Protein-

Tyrosine Phosphatase 1B (PTP1B) and Soluble Epoxide Hydrolase (SEH). PLIP is used to 

extract interactions present in a protein-ligand complex and the respective interaction’s 

frequency is measured across all target structures. Cofactors were excluded from the analysis 

and hydrophobic interactions were only counted once per residue. Additionally, when analysing 

docking poses only the pose that had the most interactions contributed to the calculation. 

Furthermore, four different scoring functions that are based on the differences in frequencies 

between active and inactive compounds were established and their performance was assessed 

on an independent test partition containing unseen ligands. The results show that interactions 

which are known from literature to be important for ligand binding are found for all targets 

except ACHE, in many cases among the top ranked interactions in terms of frequency. This 

behaviour implies a relationship between interaction frequency and the interaction’s 

significance in ligand binding. Interaction-frequency-based scoring was tested in five targets 

and performed above baseline accuracy in four of the five targets. In all targets scoring led to 

an enrichment of active compounds and false positive rates fluctuated between 0 and 33%. 

Interaction frequency analysis and interaction-frequency-based scoring could therefore be used 

as supporting tools in virtual screening to further enhance results.  
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Kurzfassung 
Molecular Docking ist ein wichtiges Werkzeug im Entdeckungs- und Entwicklungsprozess 

neuer Medikamente. Die Passgenauigkeit des Liganden in der Bindetasche und die 

Interaktionen, die er mit dem Protein eingeht, sind maßgebliche Faktoren, die das Docking 

beeinflussen. Das Auffinden und Charakterisieren eben jener Interaktionen kann mit 

Programmen wie dem Protein-Ligand Interaction Profiler (PLIP) von PharmAI automatisiert 

werden. Das Identifizieren und Bestimmen, wie wichtig die einzelnen Interaktionen für die 

Bindung sind, ist jedoch immer noch ein manuelles Unterfangen, das ausschlaggebende 

experimentelle Daten oder Domänen Know-how voraussetzt. Das Ziel dieser Arbeit teilte sich 

in zwei Aspekte: (i) Die automatische Identifikation von bindungswichtigen Interaktionen und 

(ii) die Entwicklung einer neuen Bewertungsfunktion basierend auf den Frequenzdaten der 

einzelnen Interaktionen, um aktive von inaktiven Molekülen unterscheiden zu können. Das 

Fundament bildeten Daten aus dem Directory of Useful Decoys: Enhanced (DUD-E) und 

Protein-Strukturen aus der Protein Data Bank. Die folgenden 11 Proteine wurden analysiert: 

11-Beta-Hydroxysteroid Dehydrogenase 1 (HSD11B1), Acetylcholinesterase (ACHE), 

Coagulation Factor XA (FXA), Cyclooxygenase 1 und 2 (COX1/COX2), Dipeptidyl Peptidase 

IV (DPP4), Monoamine Oxidase B (MAOB), P38 Mitogen-Activated Protein Kinase 14 

(MAPK14),  Phosphodiesterase 5 (PDE5A), Protein-Tyrosine Phosphatase 1B (PTP1B) und 

Soluble Epoxide Hydrolase (SEH). Die Software PLIP wurde genutzt, um die einzelnen 

Interaktionen aus den Protein-Strukturen zu extrahieren, und die Frequenz jeder Interaktion 

wurde anschließend aus allen Strukturen eines Proteins ermittelt. Cofaktoren wurden aus dem 

Analyseprozess ausgeschlossen und hydrophobe Interaktionen wurden nur einmal pro Residue 

gezählt. In der Analyse von Docking-Daten wurde pro Ligand nur jene Pose miteinbezogen, 

die die größte Anzahl an Interaktionen aufwies. Des Weiteren wurden vier 

Bewertungsfunktionen entwickelt, die auf den Unterschieden zwischen den Frequenzen in 

aktiven und inaktiven Molekülen basierten. Zur Evaluierung der Bewertungsfunktionen wurde 

ein eigenständiger Testdatensatz herangezogen, der ausschließlich aus für die 

Bewertungsfunktionen unbekannten Liganden bestand. Die Ergebnisse zeigen, dass 

literaturbekannte, bindungswichtige Interaktionen in fast allen Protein-Auswertungen 

vorkommen, die einzige Ausnahme bildet ACHE. In vielen Fällen finden sich diese 

Interaktionen sogar unter den Interaktionen mit den höchsten Frequenzen und ein 

Zusammenhang zwischen Frequenz und Bindungssignifikanz liegt daher nahe. Die 

Bewertungsfunktionen wurden an fünf der Proteine getestet und in vier Fällen toppte die 

Performance die Baseline Accuracy. In allen fünf Proteinen kam es zu einem Enrichment der 

aktiven Moleküle und die Falsch-Positiv-Rate fluktuierte zwischen 0 bis 33%. Die Analyse von 

Protein-Ligand-Interaktionen und deren Frequenz sowie darauf basierende 

Bewertungsfunktionen könnten daher in Zukunft den Entwicklungsprozess von Medikamenten 

unterstützen und die Ergebnisse vorhandener Werkzeuge wie Docking verbessern.  
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1. Introduction 
The discovery of new drugs – or generally compounds that can be used for new drugs – is a 

both expensive and time consuming process. From the identification of the first promising 

molecules (leads) over to clinical trials and until market release it is estimated that this process 

takes about 14 years and costs 800 million US dollars (Lavecchia & Di Giovanni, 2013). Efforts 

to shorten this process and to minimize costs is an obvious and logical conclusion. For finding 

new leads two different approaches have been established in the past: High-throughput 

screening (HTS) and virtual screening (VS).  

In HTS a large number of molecules are tested for their impact on a specific target, usually a 

protein, by addressing whether the molecule biochemically reacts with the target or not. This is 

done on so called HTS assays and compounds showing positive results (hits) are then used for 

further research. It is important that these positive hits are further analysed and re-confirmed as 

actually being positive because in case of a false positive a lot of time and money could 

potentially be wasted. Contrary, false negative results could mean that a valuable drug candidate 

will not be further considered, although this tends to be only an issue if there are no positives 

found at all. It should be emphasized however that the goal of HTS is not to find all potential 

candidates in a library collection of compounds but enough to have as set for initial discovery 

efforts. HTS is a time-consuming process, requires specific infrastructure and has low success 

rates of below 5%, yet it still has been the method of choice for the last 20 years (Kontoyianni, 

2017).  

One the other hand, while HTS is an experimental, in vitro approach the contrary is the case for 

VS which is a theoretical, in silico approach. In VS a digital library of chemically diverse 

compounds is screened for leads. Since VS is a computational method it is faster, more cost-

efficient and less resource intensive than its counterpart HTS (Tang & Marshall, 2011). VS can 

be further divided into two sub-categories, namely ligand-based virtual screening (LBVS) and 

structure-based virtual screening (SBVS). In LBVS strategies the structure-activity data from a 

set of known, active ligands is used to identify possible targets for experimental evaluation. 

Among the methods used in LBVS are similarity and substructure searching, quantitative 

structure-activity relationships and 3D shape matching. On the other hand, SBVS makes use of 

the 3D structure of the biological target. Consequentially the structure of the target has to be 

either known beforehand or analysed via X-ray crystallography, NMR spectroscopy or 

computationally via homology modelling. Then a set of ligands is fitted into the binding site of 

the target (docking) and a score – usually based on the predicted binding affinity – is used to 

rank the ligands and determine if they are active or not (Lavecchia & Di Giovanni, 2013). 

SBVS can be further sub-divided by distinguishing approaches that use rigid docking versus 

approaches that use flexible docking (McInnes, 2007). In rigid-body docking the ligand is 

searched in a six-dimensional translational or rotational space to fit in the binding pocket of the 

target protein. The complex is then evaluated in terms of shape of the fitted ligand and the 

binding site, as well as the electrostatic, van der Waals and Coulombic interactions that may 
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take place. The docking score is usually then the sum of these terms. The accuracy for rigid-

body docking approaches tends to be much greater for bound complexes than in unbound 

complexes. Even though the structural differences between bound and unbound molecules are 

small they affect the docking accuracy noticeably (Pagadala, Syed & Tuszynski, 2017). 

Biological targets are in fact not rigid in nature but adjust dynamically. However, 

experimentally resolved structures of targets with bound or unbound ligands are isolated 

snapshots and do not reflect the flexibility that happens in nature (Kontoyianni, 2017). 

Consequentially new docking approaches were developed that allowed ligand or receptor 

flexibility. In the simple case the softening of van der Vaals potentials – also called “soft 

docking” – can allow small overlaps between the receptor and the ligand in the binding pocket. 

The downside is that this may lead to an increase in false positives as more diverse structures 

are allowed to bind (Lavecchia & Di Giovanni, 2013). The more sophisticated and most 

common approach in standard virtual docking studies is having a flexible ligand while fitting 

into a rigid receptor. Generally four different strategies are in use when docking a flexible 

ligand: The application of Monte Carlo methods; combinatorial search; ligand buildup 

algorithms, where ligands are built directly in the binding site of the protein; and site-mapping 

and fragment assembly which extends the ligand buildup approach by connecting molecular 

fragments to mapped functional groups in the binding site (Pagadala, Syed & Tuszynski, 2017). 

In nature, however, the receptor is also flexible and the binding site is altered according to the 

orientation of the ligand by movement of the side chains (Pagadala, Syed & Tuszynski, 2017). 

Therefore flexible receptor docking also became of scientific interest and first programs as well 

as theoretical approaches that are in constant development exist (Lavecchia & Di Giovanni, 

2013). One of these approaches is ensemble docking where a ligand is docked into multiple 

conformations of the same protein (McInnes, 2007). The structures for ensemble docking are 

usually taken from the Protein Data Bank (PDB), if available, or from molecular dynamics 

simulations or from normal mode analyses (Berman et al., 2000; Kontoyianni, 2017).  

In all SBVS approaches docking is followed up by scoring of the ligands. Even though 

predicting one or more potential binding poses is possible most of the times with available 

docking methods, identifying the correct binding pose and ranking the ligands are still 

challenging tasks which are tackled by scoring functions. Firstly, scoring functions aim to 

identify the energetically preferred pose out of a set of bound poses that were generated by the 

docking algorithm for a single ligand. Secondly, the scoring function is used to rank different 

docked ligands in order to discriminate between active and inactive compounds. Scoring 

functions are a major research topic in the docking community with many problems still to be 

overcome and procedures to be refined. To name an example, one of the difficulties of scoring 

functions stems from the fact that a lot of factors, like molecular interactions, are not easy to 

parameterize. Generally existing scoring functions can be divided into three broad groups: 

Force field-based scoring functions, knowledge-based scoring functions and empirical scoring 

functions. Additionally some scoring functions also combine these approaches (Lavecchia & 

Di Giovanni, 2013). 
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In force field-based scoring functions the binding free energy is estimated by the sum of the 

independent molecular mechanic force field potentials like Coulomb, van der Waals and 

hydrogen bonds. Furthermore, solvation and entropy contributions are also considered in some 

cases. On the other hand in empirical scoring functions interaction terms like hydrogen bonds 

and hydrophobic contacts are estimated by fitting the scoring function to the experimental 

binding affinity data of a training dataset of protein-ligand complexes. Subsequently the binding 

free energy for the docked ligands is calculated as the weighted sum of these terms. Thirdly, 

knowledge-based scoring functions are exclusively derived by statistically analysing the atom-

pair frequencies of known 3D structures from protein-ligand complexes (Lavecchia & Di 

Giovanni, 2013). 

Since this work makes use of an SBVS approach, current developments and state of the art in 

the field are described in the following section. 

1.1 Current developments and state of the art 
Today a variety of both open-source and commercial docking software exists. To name a few 

examples DOCK (Venkatachalam et al., 2003), AutoDock (Österberg et al., 2002), GOLD 

(Jones et al., 1997), LigandFit (Venkatachalam et al., 2003), Surflex (Jain, 2003) and Glide 

(Friesner et al., 2004) should be mentioned. Even though all programs share the same goal of 

accurately predicting the correct binding pose, they apply different strategies to do so. DOCK, 

for example, is driven by a shape-based algorithm while GOLD applies genetic algorithms. 

Glide makes use of systematic search techniques and LigandFit predicts docking poses via 

Monte Carlo simulation. Almost all of the currently available flexible docking software treats 

the receptor as rigid, GOLD being the only exception (Pagadala, Syed & Tuszynski, 2017). In 

2016 Wang et al. evaluated the performance of ten different – both academic and commercial 

– docking programs on a dataset of 2002 protein-ligand complexes. They differentiated between 

sampling power, which was denoted as the accuracy of predicting the correct binding pose, and 

scoring power, which was defined as how accurately binding affinity is estimated. Finally, they 

concluded that GOLD and LeDock (Zhao & Caflisch, 2013) had the best sampling power with 

GOLD showing an accuracy of 59.8% for the top scored poses and LeDock yielding 80.8% 

accuracy for the best poses. AutoDock Vina (Trott & Olson, 2009) achieved the best scoring 

power for both the top scored and best poses (Wang et al., 2016).  

Newer approaches include for instance the application of particle swarm optimization (PSO) 

algorithms as demonstrated in PSOVina. PSOVina extended AutoDock Vina’s Broyden-

Fletcher-Goldfarb-Shannon local search and achieved an execution time reduction of 51-60% 

compared to traditional AutoDock Vina (Ng et al., 2015). Furthermore, machine learning (ML) 

and artificial intelligence (AI) have become driving forces in computational biology with AI 

programs like AlphaFold by DeepMind even making headlines in the mainstream media 

(Senior, 2020; Müller-Jung, 2020). Especially in VS machine learning can be utilized in many 

different ways and at various different stages of the drug discovery process. Pham and Jain 

demonstrated in 2008 how a scoring function – specifically that of the docking software Surflex 
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– can be tuned by optimizing its parameters via multiple instance learning (Pham & Jain, 2008). 

Moreover, machine learning has become increasingly popular in LBVS for its ability to 

accurately quantify structure-activity relationships. Both regression and classification methods 

like Linear Regression, Nearest Neighbour, Naïve Bayesian classification, Support Vector 

Machines, Artificial Neural Networks and Decision Trees have been successfully applied. The 

goal of all these ML models is to learn from training data to discriminate between active and 

inactive molecules in order to find new molecules that interact with the target of interest. ML 

algorithms in VS are prone to the same risks as any ML approach and their performance is 

largely dependent on the quality of the underlying training data and how well they can deal with 

unbalanced datasets because inactive compounds are usually several factors more frequent than 

active compounds (Lavecchia & Di Giovanni, 2013). 

One of the newest methods involving ML in computer-assisted drug discovery is the de novo 

design of active compounds based on natural template products which was recently 

demonstrated by the Institute of Pharmaceutical Sciences of ETH Zürich. The goal of this 

procedure is to discover molecules that mimic the function of the natural product but are easier 

to synthesize. In their approach they apply the so called DOGS (design of genuine structures) 

algorithm that constructs new molecules by combining molecular building blocks in accordance 

to a defined list of in silico chemical transformations. The process is optimized by a fitness 

function that is denoted as the pairwise molecular graph similarity between the generated 

molecule and the template compound. The similarity is measured in the CATS (chemically 

advanced template search) distance metric where a lower value symbolizes better similarity, 

therefore the fitness function is minimized. Exercising this strategy utilizing Marinopyrrole A 

as a template they were able to design a novel Cyclooxygenase-1 inhibitor (Friedrich et al., 

2021). 

Cycling back it should be noted here that this thesis builds on top of SBVS and protein-ligand 

docking by further analysing the produced results. The goals of this work are laid out in the 

following. 

1.2 Goals 
There were two objectives defined for this thesis: 

 Firstly, the automatic identification of interactions that are important for binding in 

protein-ligand complexes derived either from experimental structures or from dockings. 

 Secondly, the design of a novel scoring function which is based on the frequency of 

interactions found in docked protein-ligand complexes that is able to discriminate 

between active and inactive molecules. 

Moreover, these goals are not independent from each other but strongly intertwined – frequency 

based scoring makes little sense with interactions that are not contributing to the binding 

between protein and ligand. Therefore the second goal can be viewed as an extension of the 

first.   
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1.3 Motivation 
Improving the predictability of active compounds in VS is of utmost importance as new 

potential molecules for use in medical applications can be more efficiently detected, reducing 

the cost in both time and money of the drug discovery process. Developing new supporting 

tools that can enhance the predictions of molecular docking and improve false positive rates 

means less in vitro experiments and therefore can save lots of resources. Software like the 

Protein-Ligand Interaction Profiler (PLIP) by PharmaAI (Salentin et al., 2015) – which is also 

used as the basis of this thesis – can reliably detect the non-covalent interactions in protein-

ligand complexes, however, automatically assessing the importance of these interactions as well 

as using the interaction frequency to predict active compounds seems to be a novel approach 

where little to no research was found that explores this direction. Combining molecular docking 

(or generally other VS approaches) with the information gained about interactions happening 

between the protein and the ligand could significantly improve results, especially in cases where 

structural data is available but the relationships between protein and ligand are not yet fully 

understood. 

1.4 Interaction types 
The current version of PLIP is able to characterize eight (originally seven on release) different 

protein-ligand interactions: Hydrogen bonds, water bridges, salt bridges, halogen bonds, 

hydrophobic interactions, pi-stacking, pi-cation interactions and metal complexation (Salentin 

et al., 2015). Because of their significance in this work they shall be shortly described here. 

1.4.1 Hydrogen bonds 

Hydrogen bonds play an important role in ligand binding and enzyme catalysis. Their bonding 

properties strongly influence the specificity of binding, transportation, absorption, distribution, 

metabolization and excretion of the respective molecules and therefore have to be considered 

in every drug design process. Furthermore, because hydrogen bonds are ubiquitous and flexible 

they are considered to be the most important physical interactions in biomolecules in aqueous 

solution (Williams & Ladbury, 2003). 

A hydrogen bond is defined as an attractive interaction between a hydrogen atom – either from 

a molecule or a molecular fragment – that is attached to an atom that is more electronegative 

than H and another atom (or group of atoms) in the same or a different molecule. Hydrogen 

bonds are denoted as X–H ··· Y–Z where the three dots represent the bond, H is the hydrogen 

atom and X the more electronegative atom. X–H is called the hydrogen bond donor and Y (or 

Y–Z) the hydrogen bond acceptor, where Y is either a single atom or anion or in case of Y–Z a 

molecule or a fragment of a molecule where Y is bonded to Z. Atoms X and H form a covalent 

bond that is polarized and the strength of the hydrogen bond between H and Y is dependent on 

the electronegativity of X, higher electronegativity of X leads to a stronger hydrogen bond. The 

angle between X–H ··· Y is usually around 180° and the closer the angle is to 180°, the stronger 

is the hydrogen bond (Arunan et al., 2011).  
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The typical binding free energy in hydrogen bonds ranges from -2 kJ/mol (amide – amide in 

protein core) to -46 kJ/mol (squaramides ··· F- in CH3CN) (Biedermann & Schneider, 2016).  

The role of hydrogen bonds in drugs has been thoroughly studied in the past, in fact Lipinski’s 

rule of five states that a majority of orally administered drugs tend to form more than five but 

less than ten hydrogen bonds. However, naturally many exceptions exist (Lipinski, 2004). 

1.4.2 Water bridges 

Although “water bridge” is not a universally defined chemical term, it is used by Salentin et al. 

to denote water-bridged hydrogen bonds. If an atom in a protein forms a hydrogen bond with a 

water molecule and that same water molecule forms a hydrogen bond with an appropriate atom 

in the ligand, this interaction is categorized as a water bridge (Salentin et al., 2015). 

1.4.3 Salt bridges 

Together with hydrogen bonds salt bridges form the structural basis for molecular complexes 

(Biedermann & Schneider, 2016). Salt bridges are defined as ion pairs between two side chains 

of a protein. However, the term salt bridge is often also used to denote ion pairs in general – as 

in the case of protein-ligand binding where the paired ions are located at protein and ligand 

respectively. An ion pair is defined as a cation and anion that are located close enough in space 

that their electrostatic attraction is larger than the thermal energy available to separate them. 

Ion pairing is therefore classified as an electrostatic interaction (Anslyn & Dougherty, 2006). 

Typical binding free energy for salt bridges and ion pairs ranges from near 0 kJ/mol in ionic 

groups at protein surface to -20 kJ/mol for ionic groups in the protein core (Biedermann & 

Schneider, 2016). 

1.4.4 Halogen bonds 

Halogen bonds are defined as attractive interactions between an electrophilic region associated 

with a halogen atom in one molecule and a nucleophilic region in another or the same molecule. 

Halogen bonds are denoted similarly to hydrogen bonds as R–X ··· Y. R–X is in this case the 

halogen bond donor where X is any halogen atom with an electrophilic region and R is a group 

of atoms covalently bound to X. On the other hand Y is the halogen bond acceptor and is 

typically a molecule with at least one nucleophilic region. Halogen bond strength increases with 

decreasing electronegativity of X as well as increasing electron-withdrawing ability of R 

(Desiraju et al., 2013). Typical binding free energies of -1 kJ/mol to -19 kJ/mol have been 

observed for halogen bonds (Biedermann & Schneider, 2016). 

1.4.5 Hydrophobic interactions 

The tendency of hydrocarbons and lipophilic hydrocarbon-like groups in solutes to form 

intermolecular or intramolecular aggregates in an aqueous medium is called hydrophobic 

interaction. The name originates from the hydrophobic effect that describes the repulsion 

between water and hydrocarbons (Muller, 1994). The aggregation of molecular structures is 

explained by the reduction of solvent-accessible surface area. Hydrophobic interactions are 

weaker interactions than hydrogen bonds, salt bridges and halogen bonds with binding free 

energies around -1 kJ/mol to -3 kJ/mol per CH2 (Biedermann & Schneider, 2016). 
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1.4.6 Pi-stacking 

Pi-stacking or pi-pi interactions describe interactions between neighbouring aromatic rings. The 

pi electron density on most aromatic rings creates a quadrupole moment with partial negative 

charge above both aromatic faces and a partial positive charge around the periphery. This leads 

to attraction between the aromatic rings and to one of several possible alignments (stacking). 

However, the term pi-stacking (and pi-pi interaction) has been deemed not appropriate anymore 

by parts of the scientific community as this interaction seems to be not necessarily unique to 

aromatic molecules. Furthermore it is also questioned whether pi-stacking is actually based on 

the attraction between pi cloud electron density or not – which is another aspect why this term 

may be misleading (Martinez & Iversion, 2012). Yet this discussion goes beyond the scope of 

this thesis and it should be noted that this thesis largely follows the terms also used by PLIP 

and interactions between aromatic rings will hereinafter be named pi-stacking. 

1.4.7 Pi-cation interactions 

Pi-cation interactions or also called cation-pi interactions are non-covalent interactions between 

cations and the faces of pi systems. As described in 1.4.6 the face of a pi system forms a 

quadrupole moment with negative charge while the edges are positively charged. It therefore 

comes naturally that the cation is attracted to the face of the pi system and can electrostatically 

bind there. Pi-cation interactions are comparable in strength to salt bridges and in some cases 

even to hydrogen bonds (Anslyn & Dougherty, 2006). 

1.4.8 Metal complexation 

Metal complexation – or coordination complexation or just complexation – refers to a molecular 

structure where a central atom that is often a metal ion is bound to surrounding small molecules 

or ions (Hartshorn et al., 2015). Metal complexation primarily appears in proteins that have to 

bind metal ions to function (metalloproteins) (Andreini et al., 2006). 

All these interaction types will be reappearing throughout this thesis and proper understanding 

of the underlying binding mechanisms can give additional insight where data or results may be 

ambiguous. 

The end of this this chapter will be concluded by a short overview of the structure of the thesis 

and some general remarks. 
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1.5 Thesis overview 
This thesis is divided into five major chapters: 

 The Introduction gives an overview of the topic, current developments, state of the art, 

goals, motivation and essentials and will be concluded with this section. 

 Methods will discuss the data, especially the 11 used targets, the Protein-Ligand 

Interaction Profiler which serves as a basis for follow up approaches, as well as the 

custom built workflows, scoring functions and the metrics that were used to evaluate 

them. 

 Results summarizes the outcomes of the applied methods. 

 The Discussion will mention noticeable aspects of the results as well as faced challenges 

and an outlook for the future. 

 The thesis is finalized with a Conclusion that highlights the most important parts of the 

work. 

Furthermore, it should be mentioned here that all the data, code and results are publicly 

available on GitHub via this repository: https://github.com/michabirklbauer/protein_docking 

  

https://github.com/michabirklbauer/protein_docking
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2. Methods 
This chapter will cover the data and methods used in this thesis and especially give insight on 

the selected target proteins and which ligands were used for docking and subsequent scoring. 

The analysis of interactions as well as the scoring approaches will be discussed after 

establishing the data. Furthermore the chapter will be concluded with a description of the 

applied quality metrics to evaluate the performance of scoring. 

2.1 Data 
In total 11 targets were chosen for subsequent analysis: 11β-hydroxysteroid dehydrogenase type 

1 (HSD11B1), acetylcholinesterase (ACHE), coagulation factor Xa (FXA), cyclooxygenase 1 

(COX1) and cyclooxygenase 2 (COX2), dipeptidyl peptidase IV (DPP4), monoamine oxidase 

B (MAOB), p38 mitogen-activated protein kinase 14 (MAPK14), phosphodiesterase 5 

(PDE5/PDE5A), protein-tyrosine phosphatase 1B (PTP1B) and soluble epoxide hydrolase 

(SEH). The selection of these targets was based on personal interest (research interest of the 

Institute of Pharmacy of the Paracelsus Medical University Salzburg) and availability of ligands 

in the Directory of Useful Decoys: Enhanced (DUD-E) (Mysinger et al., 2012). All in all 868 

molecular structures have been manually selected from the PDB, downloaded and analysed. 

Inclusion criteria for these structures were: 

 Belonging to a certain species (mostly Homo sapiens). 

 Having a co-crystallized ligand. 

 Not being mutated, chimeric or part of a fusion protein. 

Further insights on the specific targets will be given in the respective subchapters. 

2.1.1 Targets: 11β-hydroxysteroid dehydrogenase type 1 

Basic information: 

 EC number: 1.1.1.146 

 Encoding gene name: HSD11B1 

 Encoding gene location: 1q32 – q41 

 Organism: Homo sapiens 

 Number of residues: 292 

 Molecular weight: 32400.665 

 Cellular location: Endoplasmic reticulum membrane 

Data taken from DrugBank (DrugBank - P28845, 2021; Wishart et al., 2018). 

HSD11B1 is a microsomal enzyme belonging to the short-chain dehydrogenase/reductase 

family and catalyses the NADPH-dependent conversation of 11-ketosteroid cortisone to the 

glucocorticoid hormone cortisol in humans. Glucocorticoid hormones play essential roles in 

various physiological processes, among them lipid and bone metabolism, maturation and 

differentiation of cells as well as in inflammatory response and stress modulation. Therefore 

HSD11B1 is highly expressed in the respective glucocorticoid target tissues like the liver tissue, 
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adipose tissue and skeletal muscle tissue. Furthermore elevated levels of HSD11B1 dependent 

glucocorticoids have been associated with several different diseases, for example insulin and 

leptin resistance, visceral obesity, dyslipidemia, type 2 diabetes and cardiovascular 

complications. HSD11B1 is an attractive target for inhibition to manipulate glucorticoid levels 

and treat the corresponding diseases (Classen-Houben et al., 2009; Thomas & Potter, 2011). 

The ligand binding site of HSD11B1 is a predominantly hydrophobic pocket that is open at 

both ends so that ligands that are too long to fit into the binding site can extend out of it. Contacts 

with the following residues are known from experimental structures: ILE121, THR122, 

ASN123, THR124, SER125, LEU126, SER170, LEU171, ALA172, VAL175, TYR177, 

PRO178, MET179, VAL180, TYR183, GLY216, LEU217, THR220, THR222, ALA223, 

ALA226, VAL227, VAL231 and MET233 (Thomas & Potter, 2011). 

Cofactor(s): Human HSD11B1 is co-crystallized with NADP(H) in the cofactor binding site 

(Thomas & Potter, 2011). The cofactors are labelled with 3-letter codes NAP and NDP in the 

PDB respectively. 

Analysed structures: The PDB was queried for Enzyme Classification Number = 1.1.1.146 

AND Scientific Name of Source Organism = Homo sapiens. In total 28 structures were 

manually selected from the resulting hits for further analysis. The complete list of structures 

can be found in the GitHub repository in the respective data folder for HSD11B1 and in the 

appendix. 

2.1.2 Targets: Acetylcholinesterase 

Basic information: 

 EC number: 3.1.1.7 

 Encoding gene name: ACHE 

 Encoding gene location: 7q22 

 Organism: Homo sapiens 

 Number of residues: 614 

 Molecular weight: 67795.525 

 Cellular location: Cell junction 

Data taken from DrugBank (DrugBank - P22303, 2021). 

The principle biological role of ACHE is the termination of impulse transmission at cholinergic 

synapses by hydrolysing the neurotransmitter acetylcholine into choline and acetate (Dvir et 

al., 2010; Tripathi & Srivastava, 2008). ACHE is critically important for the regulation of 

neurotransmissions at synapses in all areas of the nervous system and consequentially the 

inactivation of large amounts of ACHE leads to the death of any organism with a nervous 

system. Irreversible ACHE inhibitors have been utilized in the past as insecticides and in 

chemical warfare. On the other hand reversible inhibitors of ACHE such as donepezil, 

galantamine, rivastigmine and huperzine A have been used to treat neurodegenerative disorders 
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that exhibit defects in cholinergic neurotransmission such as Alzheimer’s disease (Cheung et 

al., 2012; Tripathi & Srivastava, 2008).  

The active site of ACHE consists of three major domains and one peripheral domain. Firstly, 

an esteratic locus containing the catalytic machinery of the enzyme, namely SER200, HIS440 

and GLU327. Secondly, the anionic subsite that is ≥ 4.7 Å away from the esteratic SER and is 

defined by TRP84, PHE330 and PHE331. The anionic subsite is the binding location for the 

quaternary ammonium pole of acetylcholine and is responsible for the orientation of entering 

substrates by aligning the charged part (of the substrate). This is mainly carried out by TRP84. 

Thirdly, there is a hydrophobic region near the esteratic and anionic subsite that is important 

for binding. The fourth and final domain is called the peripheral anionic site and is > 20 Å away 

from the three major domains. It can bind cationic ligands such as gallamine, d-tubo-curarine 

and decamethonium and binding in this site frequently leads to a conformation change of the 

active center (Quinn, 1987; Tripathi & Srivastava, 2008). 

Cofactor(s): None. 

Analysed structures: The PDB query for ACHE was Enzyme Classification Number = 3.1.1.7 

AND Scientific Name of Source Organism = Homo sapiens. In total 53 structures were selected 

out of the resulting hits for further analysis. For docking and scoring the PDB entry 4EY7 was 

used (Cheung at al., 2012). The complete list of used structures can be found in the respective 

folder for ACHE in the GitHub repository or in the appendix. 

2.1.3 Targets: Coagulation factor Xa 

Basic information (for coagulation factor X): 

 EC number: 3.4.21.6 

 Encoding gene name: F10 

 Encoding gene location: 13q34 

 Organism: Homo sapiens 

 Number of residues: 488 

 Molecular weight: 54731.255 

 Cellular location: Secreted 

Data taken from DrugBank (DrugBank - P00742, 2021). 

Coagulation factor Xa denotes the activated form of coagulation factor X which is an important 

enzyme in the cascade of blood coagulation. Coagulation factor X is activated by coagulation 

factor VIIIa which is also the activated product of a chain of interactions with different other 

coagulation factors. FXA activates prothrombin to thrombin, which subsequently catalyses the 

conversion of fibrinogen to fibrin, which is the basis for all blood clots. Logically FXA has 

become a compelling target for treating coagulation disorders like pulmonary embolism or deep 

vein thrombosis. However, since FXA belongs to the trypsine-like serine protease family which 

is involved in numerous physiological functions in the body, the discovery and design of FXA 
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inhibitors pose a challenge. Inhibitors have to specifically and selectively bind to FXA to avoid 

toxicity and adverse side effects (Rai et al., 2001). Examples for FXA inhibitors are 

fondaparinux and otamixaban (Kohrt et al., 2007). 

FXA has an active site catalytic triad compromised of amino acids SER195, HIS57 and 

ASP102. The binding site of FXA is divided into five regions S1, S1’, S2, S3 and S4. Key 

residues are located in the S1 pocket, namely ASP189, ALA190 and GLN192 which likely 

influence inhibitor binding and selectivity (Rai et al., 2001). 

Cofactor(s): None. 

Analysed structures: The corresponding PDB query for FXA was Enzyme Classification 

Number = 3.4.21.6 AND Scientific Name of Source Organism = Homo sapiens. Out of the 

resulting hits 129 entries were considered for further analysis. The complete list of structures 

can be found in the FXA data folder in the GitHub repository or in the appendix section. 

2.1.4 Targets: Cyclooxygenase 1 & Cyclooxygenase 2 

Basic information: 

Cyclooxygenase 1  Cyclooxygenase 2 

 EC number:    1.14.99.1   1.14.99.1 

 Encoding gene name:  PTGS1   PTGS2 

 Encoding gene location:  9q32-q33.3   1q25.2-q25.3 

 Organism:    Homo sapiens   Homo sapiens 

 Number of residues:   599    604 

 Molecular weight:   68685.82   68995.625 

 Cellular location:   Microsome membrane Microsome membrane 

Data taken from DrugBank (DrugBank - P23219, 2021; DrugBank - P35354, 2021). 

The two cyclooxygenases (often also named prostaglandin H2 synthases) are the two enzymes 

that catalyse the first two steps in the biosynthesis of prostaglandins from arachidonic acid in 

the human body. COX1 is constitutive, meaning it is present in nearly all cell types at a constant 

level, while COX2 activity is induced, meaning normally absent in cells but when induced by 

external stimuli the protein levels increase and decrease in a matter of hours. COX1 is involved 

in the production of prostaglandins for stomach and intestine to maintain the integrity of the 

mucosal epithelium as well as in the production of prostaglandins that preserve normal renal 

function in compromised kidneys. Inhibition of COX1 leads to gastric damage, haemorrhage 

and ulceration. On the other hand COX2 is induced by pro-inflammatory cytokines and growth 

factors and consequently the inductively produced prostaglandins are involved in both 

inflammation and control of cell growth. Additionally COX2 is also constitutively present in 

the brain and the spinal cord where it may be involved in nerve transmissions for pain and fever. 

Furthermore, prostaglandins synthesised by COX2 also have shown to be important in 

ovulation and the birth process. Because COX2 is inherently known for its role in inflammation, 
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COX1 and COX2 are sometimes also labelled as physiological and pathological, respectively. 

However, categorization into constitutive and induced is more encouraged. Both 

cyclooxygenase isoforms can be inhibited by aspirin and other nonsteroid anti-inflammatory 

drugs (NSAIDs). Aspirin inhibits the catalytic reaction by irreversibly binding to the active site 

of the enzymes while other NSAIDs such as ibuprofen and indomethacin compete with the 

substrate arachidonic acid for the binding site and inhibit it either reversibly or irreversibly. 

Despite both isoforms being able to be inhibited by NSAIDs, selective inhibition of COX2 is 

preferred to reduce inflammation without removing any protective prostaglandins in the 

stomach and kidney produced by COX1 (Vane, Bakhle & Botting, 1998). 

Structurally both cyclooxygenase isoforms are very similar with a molecular weight at around 

70 000 and a length of about 600 amino acids that share a 63% identical sequence. The 3D X-

ray crystallographic structure of COX2 can be superimposed on that of COX1 revealing that 

the residues that form the substrate binding site, the catalytic region and the residues 

immediately adjacent are all identical except for two variations. To be specific, in COX1 the 

binding pocket consists of amino acid ILE at positions 434 and 523, while on the other hand 

COX2 shows amino acid VAL in those positions instead. This results not only in some 

biochemical differences – for example that COX2 accepts a wider range of fatty acids as 

substrates than COX1 – but also makes selective inhibition of COX2 possible (Vane, Bakhle & 

Botting, 1998). Several binding modes exist for ligands interacting with cyclooxygenases. The 

classic NSAIDs typically bind via ionic interactions to ARG120 and via hydrogen bonding to 

TYR355. Another mode would be binding to TYR385 and SER530 via hydrogen bonding, as 

exhibited by diclofenac. Both of these binding modes are observed when arachidonic acid binds 

to COX2 (Xu et al., 2014). 

Cofactor(s): The single crystal structure for human COX1 (PDB code 6Y3C) does not contain 

a cofactor. The crystal structures for sheep (Ovis aries) COX1 are co-crystallized with the 

cofactor HEME (PDB 3-letter code HEM). Crystal structures for human COX2 contain 

protoporphyrin IX containing CO as a cofactor (PDB 3-letter code COH) and crystal structures 

for mouse (Mus musculus) COX2 are also co-crystallized with the cofactor HEME. 

Analysed structures: For human COX1 and COX2 the PDB was queried for Enzyme 

Classification Number = 1.14.99.1 AND Scientific Name of Source Organism = Homo sapiens. 

This query results in one hit for COX1 and seven hits for COX2, however, the single COX1 

structure does not contain a ligand and was therefore not further analysed. The remaining seven 

hits for COX2 were all kept for further research. Visibly more structures are available for sheep 

COX1 where the PDB was queried for Enzyme Classification Number = 1.14.99.1 AND 

Scientific Name of Source Organism = Ovis aries. From the available structures 25 were 

selected for further analysis. Similarly for COX2 a lot more structures exist for mouse COX2 – 

the PDB was queried for Enzyme Classification Number = 1.14.99.1 AND Scientific Name of 

Source Organism = Mus musculus and from the resulting hits 44 structures were subsequently 

used. Furthermore, docking and scoring was based on the PDB structure 4O1Z (Xu et al., 2014). 
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It should be noted here that docking and scoring results are only available for sheep COX1 but 

frequency analysis was carried out for both cyclooxygenase isoforms (with exception of human 

COX1 as there are no structures with ligands publicly available on the PDB). Complete lists of 

utilized structures can be found in the respective data folders for COX1 and COX2 in the 

GitHub repository or in the appendix section of this thesis. 

2.1.5 Targets: Dipeptidyl peptidase IV 

Basic information: 

 EC number: 3.4.14.5 

 Encoding gene name: DPP4 

 Encoding gene location: 2q24.3 

 Organism: Homo sapiens 

 Number of residues: 766 

 Molecular weight: 88277.935 

 Cellular location: Secreted 

Data taken from DrugBank (DrugBank - P27487, 2021). 

DPP4 is a multifunctional cell surface protein and serine protease that is expressed in most cell 

types and is involved in the inactivation of glucagon-like peptide 1 (GLP-1) and glucose-

dependent insulinotropic peptide (GIP), two insulin-sensing hormones, by cleaving the N-

terminal dipeptides from these and other polypeptides with proline or alanine in the penultimate 

position (Havre et al., 2008; Chen, 2006). Furthermore, this ability allows DPP4 to also regulate 

the activity of numerous other cytokines and chemokines and DPP4 can therefore act as a tumor 

suppressor or activator and is involved in many different cancer types. Manipulation of DPP4 

by specific cDNA-carrying plasmids, siRNA and monoclonal antibodies resulted in inhibition 

of cell growth, enhanced sensitivity to selected chemotherapeutic agents and enhanced survival 

rates in mouse xenograft models, proving the potential of these targeted therapies for specific 

cancers expressing DPP4 (Havre et al., 2008). On the other hand, because of its involvement 

with GLP-1 and GIP, the inhibition of DPP4 has been proposed as an effective approach for the 

treatment of type 2 diabetes and several structurally diverse DPP4 inhibitors have been 

established and approved therapeutically in the past. Among them sitagliptin, vildagliptin, 

saxagliptin, linagliptin and alogliption, to name some examples (Berger et al., 2017). 

Structurally DPP4 is made up by a S1, S2, S1’ and S2’site. The S1 site is categorized as a 

hydrophobic pocket near a catalytic SER630 where – assuming an active substrate compound 

– the substrates P1 region binds. Secondly, the substrates P2 position is anchored by interactions 

with GLU205 and GLU206 in the S2 pocket of DPP4. The S2 pocket is also mostly 

hydrophobic and features residues ARG125, PHE357 and TYR547 of which specifically 

ARG125 forms a hydrogen bond with the substrates P1’ residue. The S1’ pocket is flat and not 

very well defined and the interactions with the substrates P1’ residues are mostly nonspecific 

Van der Waals interactions. Last but not least the S2’ pocket of DPP4 contains a TRP629 
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residue forming a hydrophobic wall that interacts with the lipophilic P2’ region of the substrate. 

Most importantly however, the primary residues involved in substrate recognition and binding 

are located in the S2 pocket, namely the above mentioned GLU205, GLU206 and ARG125 

(Berger et al., 2017). 

Cofactor(s): None. 

Analysed structures: The respective PDB query for DPP4 was Enzyme Classification Number 

= 3.4.14.5 AND Scientific Name of Source Organism = Homo sapiens. From the resulting hits 

98 structures were eligible for further analysis and PDB entry 2G5T (Longenecker et al., 2006) 

was chosen for docking and scoring. Complete lists of all used structures are again available in 

the respective data folder for DPP4 in the GitHub repository and in the appendix section. 

2.1.6 Targets: Monoamine oxidase B 

Basic information: 

 EC number: 1.4.3.4 

 Encoding gene name: MAOB 

 Encoding gene location: Xp11.23 

 Organism: Homo sapiens 

 Number of residues: 520 

 Molecular weight: 58762.475 

 Cellular location: Mitochondrion outer membrane 

Data taken from DrugBank (DrugBank - P27338, 2021). 

Monoamine oxidase A (MAOA) and MAOB are both mitochondrial outer membrane 

flavoenzymes involved in the pathways for controlling amine neurotransmitter levels in the cell 

by oxidation. Additionally to the oxidation of traditional amines such as dopamine and 

serotonin, MAOA and MAOB are also responsible for oxidation of ingested amines such as 

phenethylamine and tyramine to prevent their functioning as false neurotransmitters. 

Monoamine oxidase (MAO) inhibitors were originally discovered to be great antidepressants 

but side effects of covalently bound drugs that showed up during clinical application reduced 

the attractiveness of MAO as therapeutic target. However, MAOB has regained interest of the 

research and medical community after the observation of an age-related increase of MAOB 

levels in humans and a possible connection to neurodegenerative diseases such as Parkinson’s 

disease. Henceforth the selective inhibition of MAOB with non-covalently binding agents has 

become of vital interest (Edmondson, Binda & Mattevi, 2007). 

Human MAOB is crystallized as a dimer with two cavities important for substrate binding. 

Firstly, the so called “entrance cavity” that is very hydrophobic in nature and exhibits a volume 

of 290 Å3. Secondly, separated from the entrance cavity by ILE199 the also hydrophobic 

“substrate cavity” is situated with a volume of 390 Å3. The ILE between the two cavities serves 

as a gate and the substrate cavity can therefore exit in either an open or closed form – which 
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has been shown to be important for inhibitor specificity. Furthermore, at the end of the substrate 

cavity resides the flavin-adenine dinucleotide cofactor which is covalently bound to CYS397. 

Additionally the two nearly parallel residues TYR398 and TYR435 form what has been termed 

an “aromatic cage” which has catalytic significance by polarizing the amine moiety of the 

substrate to make it more nucleophile and by providing a path for guiding the substrate amine 

towards the reactive positions on the flavin ring (Edmondson, Binda & Mattevi, 2007). 

Cofactor(s): Human MAOB is co-crystallized with flavin-adenine dinucleotide (PDB 3-letter 

code FAD). 

Analysed structures: The according PDB query for human MAOB was Enzyme Classification 

Number = 1.4.3.4 AND Scientific Name of Source Organism = Homo sapiens and of the 

resulting hits 47 structures were further analysed. The PDB entry for docking and scoring was 

2XCG (Bonivento et al., 2010). The complete list of utilized structures can be found in the data 

folder for MAOB in the GitHub repository and in the appendix section. 

2.1.7 Targets: P38 mitogen-activated protein kinase 14 

Basic information: 

 EC number: 2.7.11.24 

 Encoding gene name: MAPK14 

 Encoding gene location: 6p21.3-p21.2 

 Organism: Homo sapiens 

 Number of residues: 360 

 Molecular weight: 41292.885 

 Cellular location: Cytoplasm 

Data taken from DrugBank (DrugBank - Q16539, 2021). 

MAPK14 (or p38α) is one of the four p38 mitogen-activated protein kinases (MAPK) in 

mammals together with MAPK11 (p38β), MAPK12 (p38γ) and MAPK13 (p38δ). MAPK14 is 

usually highly expressed in all cells while MAPK11 is expressed at lower levels and MAPK12 

and MAPK13 have more restricted expression patterns (Segalés, Perdiguero & Muñoz-

Cánoves, 2016). MAPKs are part of the MAPK signalling pathway where various extracellular 

stimuli – usually resulting from stress – are converted to activate specific cellular response 

mechanisms through the activation of the individual p38 proteins. Several environmental 

stressors have been identified to activate p38 responses, such as UV light, heat shock, osmotic 

stress, inflammatory cytokines like interleukin 1 and tumor necrosis factor alpha, as well as 

growth factor stimulation. Downstream products of the MAPK signalling pathway are several 

transcription factors and molecules of the translational machinery. Therefore p38 kinases are 

capable of regulating many diverse biological processes like cell growth and differentiation, 

cell cycle arrest, apoptosis, cardiomyocyte hypertrophy, inflammation, senescence and tumor 

progression. Two chemical mechanisms are known to regulate p38 MAPK activity, firstly, 

protein phosphorylation by certain dual kinases called mitogen-activated protein kinase kinases 
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(MKK), particularly MKK3 and MKK6. Secondly, the interaction of p38 with TAB1 (mitogen-

activated protein kinase kinase kinase 7-interacting protein 1) which leads to 

autophosphorylation of the enzyme (Pillai et al., 2011). Inhibition of MAPKs has seen 

therapeutic application especially in the treatment of autoimmune disorders due to the 

involvement of p38 in inflammatory cell signalling (Goldstein & Gabriel, 2005). 

Residues LYS53 and LYS152 have been identified as key amino acids for binding and 

regulating the activity of p38. Specifically LYS53 is important for ATP binding while LYS152 

plays an essential role in substrate binding of p38 (Pillai et al., 2011). 

Cofactor(s): None. 

Analysed structures: The corresponding PDB query for MAPK14 was Enzyme Classification 

Number = 2.7.11.24 AND Gene Name = MAPK14 AND Scientific Name of Source Organism 

= Homo sapiens. In total 199 structures were selected for further research from the resulting 

hits. The full list of analysed structures can be found in the data folder for MAPK14 in the 

GitHub repository and in the appendix section. 

2.1.8 Targets: Phosphodiesterase 5 

Basic information: 

 EC number: 3.1.4.35, 3.1.4.17 (PDB, UniProt) 

 Encoding gene name: PDE5A 

 Encoding gene location: 4q25-q27 

 Organism: Homo sapiens 

 Number of residues: 875 

 Molecular weight: 99984.14 

 Cellular location: Cytoplasm 

Data taken from DrugBank (DrugBank - O76074, 2021). 

Phosphodiester (PDE) enzymes play a key role in all cellular functions involving cyclic 

nucleotides as second messengers by hydrolysing the phosphodiester bonds of cyclic adenosine 

monophosphate (cAMP) and cyclic guanine monophosphate (cGMP). Among the 11 known 

PDE families PDE5 is the predominantly metabolizing cGMP PDE in cavernosal tissue and the 

penile arteries, however, it is also active in vascular smooth muscle cells, in platelets, and other 

tissues, such as the lung (Bischoff, 2004). Because cGMP controls the relaxation of vascular 

smooth muscles and therefore is able to allow increased blood flow, the inhibition of PDE-

mediated degradation of cGMP was first considered for therapeutic use in systemic 

hypertension and angina. However, a first selective PDE5 inhibitor named sildenafil proved to 

be unsuccessful in cardiovascular disease trials. Instead patients reported increased erectile 

function which eventually led to a refocusing of the clinical program and ultimately the 

approval of sildenafil as a drug for treating erectile dysfunction (Ravipati et al., 2007). 
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The active site of PDE5 is approximately 15 Å deep and has on opening of about 20 Å times 

10 Å. Generally it can be subdivided into three pockets, the metal binding pocket (M pocket) 

consisting of dimetal ions as well as polar and hydrophobic residues, a solvent-filled side pocket 

(S pocket) and a pocket containing a purine-selective glutamine and a hydrophobic clamp (Q 

pocket). In PDE5A specifically the purine-selective glutamine GLN817 in the Q pocket is of 

importance as it is involved in nucleotide recognition and is a key residue for the selective 

inhibition of PDE5 where inhibitors usually bind via hydrogen bonds (Card et al, 2004). 

Cofactor(s): None. 

Analysed structures: The respective PDB query to retrieve structures for PDE5 was Enzyme 

Classification Number = 3.1.4.35 AND Scientific Name of Source Organism = Homo sapiens 

of which 32 entries were selected for subsequent analysis. An exhaustive list of used structures 

can be found in the data folder for PDE5A in the GitHub repository and in the appendix section. 

2.1.9 Targets: Protein-tyrosine phosphatase 1B 

Basic information: 

 EC number: 3.1.3.48 

 Encoding gene name: PTPN1 

 Encoding gene location: 20q13.1-q13.2 

 Organism: Homo sapiens 

 Number of residues: 435 

 Molecular weight: 49966.44 

 Cellular location: Endoplasmic reticulum membrane 

Data taken from DrugBank (DrugBank - P18031, 2021). 

Phosphorylation of proteins is an important process in the regulation of many cellular functions 

in eukaryotes. Specifically two different families of proteins are involved in this process, 

protein tyrosine kinases and protein tyrosine phosphatases. Protein tyrosine kinases catalyse the 

phosphorylation of phosphotyrosine residues in proteins while on the other hand protein 

tyrosine phosphatases catalyse the dephosphorylation of phosphotyrosine residues in proteins. 

When functioning properly, these two classes of enzymes provide dynamic control of cellular 

responses to external stimuli and regulation of cell internal mechanisms. PTP1B was the first 

protein tyrosine phosphatase that was cloned and fully characterized and today it is one of the 

best validated biological targets for non-insulin dependent diabetes and obesity. PTP1B 

catalyses the dephosphorylation of the insulin receptor as well as insulin receptor substrates 

involved in insulin signalling and therefore negatively regulates the actions of insulin. 

Furthermore, several research groups have found PTP1B to be also involved in cancer as 

experiments in mice showed that an overexpression of PTP1B is sufficient to drive 

tumorigenesis. Inhibition of PTP1B might therefore be a promising approach in cancer therapy 

(Combs, 2010). 
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PTP1B consists of 435 amino acids of which residues 30 – 278 correspond to the catalytic 

domain while the 35 C-terminal residues are responsible for guiding the protein to the cytosolic 

face of the endoplasmic reticulum where the catalytic reaction takes place. The recognition of 

the substrate binding sequence and binding of the phosphotyrosine are mediated by residues 

HIS214, CYS215, SER216, ALA217, GLY218, ILE219, GLY220 and ARG221. In detail, a 

TRP-PRO-ASP loop closes down on the substrate and positions the thiolate of CYS215 for 

nucleophilic attack upon the phosphotyrosine. The phosphate is then cleaved from the 

phosphotyrosine residue and the dephosphorylated substrate can diffuse from the active side 

and allows water to take its place. As a result PTP1B is left with the phosphorylated CYS215 

which is hydrolysed by a catalytic reaction with ASP181 to regenerate the active form of the 

phosphatase and complete the catalytic cycle (Combs, 2010). 

Cofactor(s): None. 

Analyses structures: The according PDB query for PTP1B was Enzyme Classification 

Number = 3.1.3.48 AND Gene Name = PTP1B AND Scientific Name of Source Organism = 

Homo sapiens. For subsequent analysis 102 structures were selected of which all can be found 

in the data directory for PTP1B in the GitHub directory or in the appendix section (as PDB 

codes). 

2.1.10 Targets: Soluble epoxide hydrolase 

Basic information: 

 EC number: 3.3.2.10 

 Encoding gene name: EPHX2 

 Encoding gene location: 8p21-p12 

 Organism: Homo sapiens 

 Number of residues: 555 

 Molecular weight: 62615.22 

 Cellular location: Cytoplasm 

Data taken from DrugBank (DrugBank - P34913, 2021). 

SEH has two distinct enzyme activities, namely it functions as an epoxide hydrolase and as a 

phosphatase. Structurally the SEH protein is a homodimer and each monomer features two 

separate domains responsible for one of the two enzymatic activities. The C-terminal exerts 

epoxide hydrolase activity and the N-terminal phosphatase activity. Moreover, the N-terminal 

hydrolyses phosphate esters in a magnesium-dependent reaction while the C-terminal is 

responsible for the biological roles associated with SEH, namely the metabolism of arachidonic 

acid epoxides that play an important part in blood pressure, cell growth, inflammation and pain. 

Pharmacological inhibition of the C-terminal active site has seen use in anti-inflammatory, anti-

hypertensive, neuroprotective and cardioprotective drugs (Morisseau et al., 2013). 
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Several residues have been identified to be of importance in the binding process of ligands with 

SEH, specifically the residues ASP335 and TYR383 in the active site as well as residues 

TRP336, LEU499 and HIS524 from hydrophobic pockets. Furthermore, it has been shown that 

TYR383, TYR466 and ASP335 form hydrogen bonds that are important for inhibitor binding 

(Karami et al., 2016). 

Cofactor(s): None. 

Analysed structures: The corresponding PDB query for SEH was Enzyme Classification 

Number = 3.3.2.10 AND Scientific Name of Source Organism = Homo sapiens. Of the resulting 

hits 104 structures were included in the analysis. PDB entry 6HGV (Kramer et al., 2018) was 

used for docking and scoring. Again a complete list of utilized structures can be found in the 

data directory of SEH in the GitHub repository as well as in the appendix section. 

2.1.11 Ligands: DUD-E 

Additionally to the ligands that were co-crystallized in the PDB entries which were used to get 

an overview of interactions present in the respective target, molecules from the Directory of 

Useful Decoys: Enhanced (DUD-E) were used for docking and interaction-frequency-based 

scoring. The DUD-E is a benchmark dataset based on its predecessor DUD, the Directory of 

Useful Decoys (Huang, Shoichet & Irwin, 2006). The DUD-E features 22 886 active 

compounds for 102 targets, an average of 224 ligands per target. Furthermore it contains 50 

decoys for each active compound where each decoy has similar physico-chemical properties 

but a dissimilar 2D topology to its corresponding active compound (Mysinger et al., 2012). 

DUD-E actives and decoys were used for four of the five targets that were evaluated with 

interaction-frequency-based scoring. The following list contains the names of the targets as well 

as the name of the respective DUD-E directory in parentheses.  

 Acetylcholinesterase (ACES) 

 Cyclooxygenase 1 (PGH1) 

 Dipeptidyl peptidase IV (DPP4) 

 Monoamine oxidase B (AOFB) 

2.1.12 Ligands: SEH active and inactive compounds 

The fifth target for interaction-frequency-based scoring was soluble epoxide hydrolase. Since 

SEH is not one of the 102 targets included in the DUD-E, a separate dataset of active and 

inactive molecules was used. Specifically an internal dataset of the Institute of Pharmacy of the 

Paracelsus Medical University Salzburg – which was previously established for the discovery 

of potent SEH inhibitors by pharmacophore-based virtual screening (Waltenberger et al., 2016) 

– was used. Although this dataset is not publicly available, an SDF file containing the docked 

ligands can be found in the scoring directory of SEH in the GitHub repository. 

2.1.13 Data partitioning 

For each of the five docked and scored targets the data was split into distinct training, validation 

and test partitions by random sampling. The training partition was used to calculate the optimal 
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cut-off value for discrimination of active and inactive ligands, the validation partition was used 

for optimization of hyperparameters and the purpose of the test partition was to have an 

unbiased estimate of the scoring performance (Xu & Goodacre, 2018). Particularly the training 

dataset contained 64% of the ligands, the validation dataset 16% and the test dataset 20%. 

The structures from the Protein Data Bank that were considered for interaction frequency 

analysis have also been randomly assigned to a training and test partition using a 80%–20% 

split respectively. This was done because scoring of these structures was originally also 

considered, however it was finally not carried out because mining the experimental binding 

affinities from the web would have been a time consuming and error prone process. Therefore 

the structures that were assigned to the test partitions were never analysed as part of this thesis. 

2.2 Protein-Ligand Interaction Profiler 
To identify the interactions occurring in a specific protein-ligand complex the Protein-Ligand 

Interaction Profiler (PLIP version 2.1.8, PharmAI GmbH, https://plip.biotec.tu-dresden.de) was 

applied. PLIP is available as a web service, command-line tool and as a python package which 

enables high-throughput computation and the integration into existing workflows. The expected 

input is a protein-ligand complex in PDB format (file ending = “.pdb”) which can either be 

from the Protein Data Bank itself or from docking or molecular dynamics software, for 

example. Subsequently the output is a list of detected interactions on single atom level for each 

binding site with a small molecule. Furthermore PLIP also offers 2D and 3D interaction 

diagrams. PLIP is able to identify eight different interaction types, namely hydrogen bonds, 

hydrophobic contacts, pi-stacking, pi-cation interaction, salt bridges, water bridges, halogen 

bonds and metal complexation. To characterize these interactions a rule/knowledge-based 

approach is applied which is founded in literature, mostly large-scale studies of analyses of 

high-quality protein structures. However, to also account for low-quality structures and 

structural errors some thresholds are modified to be more permissive. PLIP was validated on a 

set of 30 diverse literature-validated protein-ligand complexes (Salentin et al., 2015). 

2.2.1 PLIP algorithm 

The PLIP algorithm responsible for detecting and reporting relevant interactions can be 

categorized into four steps, which are structure preparation, functional characterization, rule-

based matching and filtering of interactions. Firstly, in the preparation step, the input structure 

is hydrogenated and ligands are extracted along with their binding sites. Secondly, in the 

functional characterization step, functional groups, atoms and molecules are detected in the 

following procedure: 

 Detection of binding site atoms: A binding site distance cut-off value is defined by 

adding 8.5 Å to the maximum extent of the ligand (which is the maximum distance of a 

ligand atom to ligand centroid). If a protein atom is within this distance cut-off value to 

any binding site atom it is characterized as belonging to the binding site. 

 Detection of hydrophobic atoms: An atom is labelled as hydrophobic if it is a carbon 

atom and only has carbon or hydrogen atoms as neighbours. 

https://plip.biotec.tu-dresden.de/
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 Detection of aromatic rings: The software Open Babel (O’Boyle et al., 2011) is used 

to identify rings and their aromaticity. If Open Babel does not report any aromaticity 

the ring is checked for planarity by calculating the normals of each atom to its 

neighbours in the ring. If the angles between each of pair of normals are less than 7.5° 

the ring is also considered to be aromatic. 

 Detection of hydrogen bond donors and acceptors: This task is also carried out by 

Open Babel. Furthermore, halogen atoms are excluded as hydrogen bond acceptors. 

 Detection of charged groups: For proteins the positive charges are assigned to the side 

chain nitrogen atoms of ARG, HIS and LYS while negative charges are attributed to the 

carboxyl groups in ASP and GLU. For ligands the positive charges are assigned to 

quaterny ammonium groups, tertiary amines with the assumption that the nitrogen could 

pick up a hydrogen and thus get charged, sulfonium and guanidine groups while 

negative charges are defined for phosphate, sulfonate, sulfonic acid and carboxylate. 

The detection of charged groups is only exhaustive for the binding site and not the 

ligand. 

 Detection of halogen bond donors and acceptors: The assumption is made that 

halogen atoms are not present in proteins and therefore halogen bond donors are 

searched for only in ligands. An atom qualifies as a halogen bond donor if it is a fluorine, 

chlorine, bromide or iodine atom connected to a carbon atom. On the other hand an atom 

is considered as a halogen bond acceptor in a protein if it is a proximal oxygen, nitrogen 

or sulphur atom connected to a carbon, nitrogen, phosphor or sulphur atom. 

 Detection of water: Water molecules are considered if the respective oxygen atoms are 

within 8.5 Å to the maximum extent of the ligand. 

In the third step of the PLIP algorithm rule-based matching is applied to detect the interactions 

between the protein and the ligand. The rules are mostly checking for geometric constraints like 

distance or angle between atoms. The approach is described in more detail below: 

 Detection of hydrophobic interactions: Hydrophobic interactions are reported 

between all pairs of hydrophobic atoms within a distance of 4.0 Å. 

 Detection of hydrogen bonds: A hydrogen bond between a hydrogen bond donor and 

a hydrogen bond acceptor is reported if the distance between donor and acceptor is less 

than 4.1 Å and the angle at the donor group X–H is above 100°. 

 Detection of aromatic stacking: A pi-stacking interaction is given whenever the 

centres of the aromatic rings are within a distance of 7.5 Å and the angle deviates no 

more than 30° from the optimal angle. Moreover, the centre of each aromatic ring is 

projected onto the opposing ring’s plane and the distance between centre and projected 

point has to be less than 2.0 Å. 

 Detection of pi-cation interactions: A pi-cation interaction is present if there exists a 

positively charged entity and an aromatic ring where the charge centre and the aromatic 
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ring centre is less than 6.0 Å away. If the pi-cation interaction is putative with a tertiary 

amine an additional angle criterion is applied. 

 Detection of salt bridges: A salt bridge is reported whenever two centres of opposite 

charge are located within a distance of 5.5 Å. 

 Detection of water bridges: Even though residues can be bridged by more than one 

water molecule, PLIP only considers the case of one water molecule bridging ligand 

and protein via hydrogen bonding. A water bridge is reported in this case if two 

conditions are fulfilled. The first condition is that the water molecule is positioned 

between hydrogen bond donor and hydrogen bond acceptor pairs of ligand and protein 

with distances of the water oxygens within 2.5 Å and 4.0 Å to the corresponding polar 

atoms of the donor or acceptor groups. The second condition is that the angle between 

the acceptor atom, the water oxygen and the donor hydrogen is between 75° and 140° 

and the angle between the water oxygen, the donor hydrogen and the donor atom is 

larger than 100°. 

 Detection of halogen bonds: A halogen bond is detected if a halogen bond acceptor 

and halogen bond donor is within 4.0 Å, the angle of the donor group deviates no more 

than 30° from 165° and the angle of the acceptor group deviates no more than 30° from 

120°. 

The final step of the PLIP algorithm is the so called filtering or reduction step where redundant 

and overlapping interactions are eliminated. The process of filtering is dependent on the 

interaction type and is described as follows: 

 Filtering of hydrophobic interactions: Hydrophobic contacts between rings 

interacting via pi-stacking are removed because pi-stacking already involves 

hydrophobic interactions. Additionally if a ligand atom forms hydrophobic interactions 

with several binding site atoms in the same residue, only the interaction with the closest 

distance is kept. Vice versa if a protein atom forms hydrophobic interactions with 

several neighbouring ligand atoms, again only that interaction is kept that exerts the 

shortest distance. 

 Filtering of hydrogen bonds: Hydrogen bonds are removed if one of the atoms already 

belongs to a group that forms a salt bridge. Furthermore, since a hydrogen bond donor 

can only take part in one hydrogen bond, only that hydrogen bond where the donor angle 

is closest to 180° is kept. 

 Filtering of water bridges: A water molecule is only allowed to participate as a 

hydrogen bond donor in two hydrogen bonds and in any case where there are more than 

two hydrogen bonds possible, only the two interactions with a water angle closest to 

110° are kept. 

The output of the PLIP algorithm is a set of residues and the specific interactions they are 

forming for every binding site and small molecule. Additionally the PLIP web service offers 

visual results in JSMol that can be download in PNG format or as PyMOL session files (Salentin 
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et al., 2015). The residue and interaction data has been used as a basis for the research described 

in the upcoming sections. 

2.3 PIA: Protein Interaction Analyzer 
One key component of this research was the development of PIA (Protein Interaction Analyzer). 

PIA is a python package and collection of scripts and workflows to extract interaction 

frequencies of protein-ligand complexes from PDB and SDF files, to compare the interaction 

frequencies of active and inactive molecules, and ultimately to score protein-ligand complexes 

and predict if they are active or not. PIA is completely written in python and builds upon PLIP 

for the extraction of interactions, BioPandas (Raschka, 2017) for PDB structure manipulation, 

and RDKit (RDKit, 2021) to handle and merge molecules from SDF and PDB files. The 

complete source code as well as a configuration file to setup an Anaconda environment 

containing all requirements are available in the GitHub repository. Additionally a Docker image 

can be pulled from DockerHub via michabirklbauer/protein_docking. 

The particular functions of PIA are described in more detail in the corresponding subsections 

below. 

2.3.1 Extracting interaction frequencies 

There are two possible input modes for analysing interaction frequencies, one has to either 

supply a list of PDB files of one target e.g. if one has downloaded structures from the Protein 

Data Bank and wants to analyse them, or supply a SDF file containing ligand coordinates and 

a PDB file that will serve as the host structure e.g. if one wants to analyse docking results (that 

are written to SDF format). In the first case the PDB structures will be directly analysed by 

PLIP. In the second case PIA will first remove any small molecules from the host structure and 

then write every ligand into a separate instance of the cleaned host PDB file. Following from 

that, if a SDF file contains N ligands it will result in N created PDB files. Each of these PDB 

files will then be supplied to PLIP for detection of interactions. 

The result of the analysis by PLIP is a set of interactions for every small molecule in every 

protein-ligand structure that was supplied. To calculate the frequency for every interaction 

several aspects were considered: 

 Dealing with artefacts, suspicious ligands and other unwanted co-crystallized small 

molecules: PLIP returns all interactions found in a protein-ligand complex, which 

includes interactions of possibly unwanted small molecules that were co-crystallized 

with the ligand. To filter out these interactions the BioLiP list of suspicious ligands is 

applied – which is also available in PLIP (Yang, Roy & Zhang, 2013; Salentin et al., 

2015). 

 Dealing with cofactors: Many proteins depend on and are co-crystallized with a 

cofactor, however, the interactions between cofactor and protein are unwanted when 

looking at interaction frequencies due to the fact that they are present in (almost) all 

structures. Cofactor-protein interactions would supersede interactions happening 

https://github.com/michabirklbauer/protein_docking
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between the protein and the ligand which are important for protein-ligand binding and 

therefore would make the results more ambiguous. For this reason a list of known 

cofactors has been compiled using the CoFactor database (EMBL-EBI, 2011) and 

cofactors/cofactor interactions are excluded from further analysis. Furthermore, this list 

is user extensible to enable users the exclusion of cofactors that are not mentioned in 

this list. It should also be noted here that interactions between cofactor and ligand would 

be of interest, however PLIP is not able to detect them and therefore no further research 

was done in that regard. 

 Dealing with hydrophobic interactions: PLIP often reports multiple hydrophobic 

interactions for the same residue. Counting all these interactions would inherently lead 

to very high hydrophobic interaction frequencies and displace non-hydrophobic 

interaction frequencies. This behaviour is unwanted because hydrophobic interactions 

are considerably weaker and less impactful to protein-ligand binding than other 

interaction types. As a result only one hydrophobic interaction per residue was kept. 

 Dealing with multiple docking poses: Many docking programs will not return a single 

pose but multiple docking poses per ligand. For interaction frequency analysis only the 

“best” pose was considered for every ligand where “best” was denoted as that pose that 

showed the most protein-ligand interactions. 

After filtering out all the unwanted interactions based on the above criteria, a set of unique 

interactions was created from all interactions of all ligands. Each interaction was denoted by its 

interaction type, its residue number and the corresponding residue chain. In the experiments of 

this thesis only binding sites in chain A were considered. The absolute interaction frequencies 

are then calculated by counting for each interaction in how many structures it is present. The 

last step consists of calculating the relative frequencies by normalizing with the total number 

of analysed structures. The final result and output is a list of interactions with the corresponding 

frequencies. A summarised overview of the workflow can be seen in Fig. 1. 

Extraction of interaction frequencies has been carried out for all 11 targets using structures from 

the Protein Data Bank as described in the subsections of the specific targets. 

2.3.2 Comparing interaction frequencies between active and inactive molecules 

To compare active molecules with inactive ones the workflow is extended by creating two sets 

of interactions, one for all active molecules and one for all inactive molecules. Naturally the 

input has to be complemented by the according structure information, this can either be in the 

form of having two separate SDF files for active and inactive compounds, labelled ligand names 

(PIA recognizes names containing “inactive” or “decoy” as inactive), or available IC50 values 

in the SDF file – for the later also a condition of what is considered active (or inactive) has to 

be given. For comparison of interactions the union of the two sets is taken and a list of all 

interactions in the union with corresponding active and inactive frequencies as well as the 

differences between the two (sorted by decreasing difference) is returned. For convenience a 
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plotting function is also implemented which shows the frequencies of active and inactive 

compounds in a grouped bar chart. 

 

 

Fig. 1: Overview of the workflow for extracting interaction frequencies.  

2.3.3 Scoring 

The scoring workflow further extends the approach taken in the comparison procedure. 

Although the input is the same, PIA will first split the data into a training, validation and test 

partition – as described in 2.1.13 – before doing any data manipulation or analysis. Interactions 

are extracted from the training partition while the validation and test partition are only checked 

for interactions that appear in the training partition. Therefore an interaction that appears in the 

validation and/or test partition but not in the training partition will not be picked up by PIA and 

has no influence on the scoring. Furthermore, after the extraction of interactions a comparison 

between the interactions in active molecules and the interactions in inactive molecules (in the 

training partition) is made. On the basis of the comparison data a subset of interactions is 

selected for scoring. An interaction is part of this subset if and only if: 



27 
 

 The difference in interaction frequencies between active and inactive molecules is 

greater or equal to D. 

 The interaction frequency in active molecules is greater or equal to A. 

 The interaction frequency in inactive molecules is greater or equal to I. 

Parameters D, A and I are determined by a grid search that looks for the optimal values in terms 

of maximizing the accuracy of the scoring on the validation partition. This procedure also 

returns the optimal scoring strategy (more on that at the end of this section). 

This subset of interactions is then further divided into a subset P that contains all interactions 

that have a positive impact on the score, and a subset N that contains all interactions that 

negatively impact the score. Specifically that means if an interaction is more frequent in active 

molecules it is assigned to P, if it is more frequent in inactive molecules it is assigned to N. 

Based on these subsets P and N, four different scoring strategies have been established. 

Consider a ligand with interactions i1, i2, …, in where each interaction belongs to either P, N or 

neither – in which case the interaction is discarded. Let p be the set of ligand interactions that 

belongs to P with interactions p1, p2, …, px and vice versa let n be the set of ligand interactions 

that belongs to N with interactions n1, n2, …,ny. Moreover the absolute frequency of an 

interaction pi in the ligand shall be denoted as f(pi) – or in the negative case of an interaction ni 

as f(ni). In most cases the frequency of an interaction in a ligand is one, nevertheless it can be 

greater, for example if a residue forms hydrogen bonds with several ligand atoms. Using the 

described notation, the first scoring strategy, herein after named “Strategy 1” or “Strategy +”, 

can be denoted as follows: 

𝑆1 = ∑ 1

𝑥

𝑖=1

 

S1 is the score of the first strategy and is the defined as the number of elements in p. Strategy 1 

therefore does not account for negative interactions and interactions that happen multiple times 

in a single protein-ligand complex are counted only once. 

The second scoring strategy named “Strategy 2” or “Strategy +-“ is defined as the following: 

𝑆2 = ∑ 1

𝑥

𝑖=1

− ∑ 1

𝑦

𝑗=1

 

S2 is the score of the second strategy and is defined as the difference between the number of 

elements in p and the number of elements in n. Strategy 2 is an extension of Strategy 1 that also 

takes into account negative interactions but still counts multiple occurrences of an interaction 

only once. 
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The third strategy is referred to as “Strategy 3” or “Strategy ++” and can be denoted as: 

𝑆3 = ∑ 𝑓(𝑝𝑖)

𝑥

𝑖=1

 

S3 is the score of the third strategy and is defined as the sum of all absolute frequencies in p. 

Strategy 3 is an extension of Strategy 1 that also considers multiple occurrences of an 

interaction.  

Last but not least the fourth strategy is called “Strategy 4” or “Strategy ++--“ and can be 

described as: 

𝑆4 = ∑ 𝑓(𝑝𝑖) − ∑ 𝑓(𝑛𝑗)

𝑦

𝑗=1

𝑥

𝑖=1

 

S4 is the score of the fourth strategy and is defined as the sum of all absolute frequencies in p 

minus the sum of all absolute frequencies in n. Strategy 4 is an extension of Strategy 2 that also 

considers multiple occurrences of an interaction. Strategy 4 is the only strategy that utilizes all 

information available in p and n. 

The optimal scoring strategy (maximization of accuracy on the validation set) can be 

determined via grid search which is also applied for the determination of D, A and I. 

Nevertheless, in the standard workflow each of the scoring functions is applied to every ligand 

in the training dataset and an optimal cut-off value for discriminating between active and 

inactive complexes is determined for all four approaches. Optimal here refers to optimal for the 

maximization of the prediction accuracy on the training dataset. Additionally, the performance 

of each strategy has also been evaluated on the validation and test partition of the data using the 

performance metrics described in the following section 2.4. A summarised overview of the 

scoring workflow can be seen in Fig. 2. 

In total five targets have been scored using the described approach, namely: 

 Acetylcholinesterase (ACHE) 

 Cyclooxygenase 1 (COX1) 

 Dipeptidyl peptidase IV (DPP4) 

 Monoamine oxidase B (MAOB) 

 Soluble epoxide hydrolase (SEH) 

In all cases the ligands were first docked using the software GOLD (Jones et al., 1997) applying 

standard docking workflows for ACHE, COX1, DPP4 and MAOB and a specialized workflow 

that was known from previous experiments for SEH. The resulting SDF files containing 10 

poses for every ligand were then processed and scored with PIA. 
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Fig. 2: Overview of the scoring workflow when applying a single scoring strategy. When 

evaluating more than one scoring strategy the bottom three layers of the workflow are repeated 

for every additional scoring function. 

2.4 Performance metrics 

The predictive power of the scoring workflows has been measured in terms of six metrics, 

namely the prediction accuracy (ACC), the false positive rate (FPR), the area under the receiver 

operating characteristic curve (AUC), the yield of actives (Ya), the enrichment factor (EF) and 

the relative enrichment factor (REF). PIA additionally returns a confusion matrix and the 

receiver operating characteristics (ROC) curve for visual inspection. 

  



30 
 

Let TP be the number of true positives, TN the number of true negatives, FP the number of 

false positives and FN the number of false negatives, then the metrics are defined as follows: 

The accuracy ACC is the fraction of samples that is correctly predicted and is defined as:  

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(Lopes et al., 2017) 

The false positive rate FPR is the number of samples wrongly predicted as active in relation 

to the number of all inactive molecules in the dataset and is defined as:  

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

(Lopes et al., 2017) 

The yield of actives Ya is the fraction of true actives among all predicted actives and is defined 

as: 

𝑌𝑎 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(Güner, 2000) 

The enrichment factor EF is the proportion of how much more frequent true actives are in the 

set of predicted actives compared to the complete dataset. The enrichment factor can be any 

positive real number and is defined as: 

𝐸𝐹 =  

𝑇𝑃
𝑇𝑃 + 𝐹𝑃
𝑇𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

 

(Lopes et al., 2017) 

The relative enrichment factor REF denotes the percentage that the EF takes up of the 

maximum achievable EF. In other words, the relative enrichment factor is the EF normalised 

by the maximum EF. The relative enrichment factor is defined as: 

𝑅𝐸𝐹 =  
100 ∗ 𝑇𝑃

min (𝑇𝑃 + 𝐹𝑃, 𝑇𝑃 + 𝐹𝑁)
 

(Lopes et al., 2017) 
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The area under the receiver operating characteristic curve AUC represents the overall 

accuracy of a scoring workflow with a value close to 1.0 indicating high sensitivity and high 

specificity. The ROC curve is defined by a series of points, each point representing the 

predictive power of a specific cut-off value. The x-coordinate of the point denotes the false 

positive rate and the y-coordinate denotes the true positive rate of that cut-off value (Lopes et 

al., 2017). PIA calculates the AUC with the trapezoidal rule using the python package scikit-

learn (scikit-learn version 0.24.2, scikit-learn: Machine Learning in Python, https://scikit-

learn.org/stable/index.html). 

  

https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html
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3. Results 
In the following the results are described separately for every target, applying the same order 

used in 2. Methods. High resolution plots and tables as well as all the results presented 

hereinafter are available in the GitHub repository in the respective data directory of the target. 

3.1 11β-hydroxysteroid dehydrogenase type 1 
Fig. 3 shows interactions and their relative 

frequencies of the selected structures from the 

PDB. In total 22 structures were used for this 

analysis and the result shows that interactions 

known from literature are among the list that is 

returned by PIA. In more detail and to rehearse 

the known interacting residues mentioned in 

2.1.1, the following interactions shall be 

highlighted: 

 ILE121A: A hydrophobic interaction is 

present in 41% of the structures. 

 THR124A: The threonine residue shows a 

hydrophobic interaction in 23% of the 

structures and forms a hydrogen bond in 5% of 

the structures. 

 LEU126A: Hydrophobic interaction that is 

present in 68% of the structures and is therefore 

the second most frequent interaction. 

 SER170A: A hydrogen bond is formed 

with this residue in 86% of the structures. It 

represents the most frequent interaction. 

 LEU171A: This leucine residue forms two 

different interactions, namely a hydrogen bond 

in 32% of the structures and hydrophobic 

interactions also in 32% of the structures. 

 ALA172A: Alanine at position 172 also 

interacts in two ways, it forms a hydrogen bond 

in 32% of the structures and hydrophobic 

interactions in 9% of the structures. 

 TYR177A: This residue interacts with 

ligands in three different ways, namely by 

hydrophobic interaction in 64% of the cases, by 

pi-stacking in 18% of the cases, and by 

hydrogen bonding in 9% of the cases. 

Fig. 3: Interaction frequencies of selected 

HSD11B1 structures from the PDB. 
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 MET179A: A hydrophobic interaction occurs in 14% of the structures. 

 VAL180A: A hydrophobic interaction is present in 59% of the structures. 

 TYR183A: Tyrosine 183 interacts with ligands via hydrogen bonding in 64% of the 

structures, via hydrophobic interactions in 55% of the structures, and via pi-stacking in 

9% of the structures. 

 LEU217A: Two interactions were detected for this leucine residue, hydrophobic 

interactions in 32% of the structures and hydrogen bonds in 14% of the structures. 

 THR222A: Threonine at position 222 forms a hydrogen bond in 9% of the cases, a 

halogen bond in 5% of the cases, and hydrophobic interactions also in 5% of the cases. 

 ALA223A: A hydrophobic interactions is present in 27% of the cases. 

 ALA226A: This alanine shows hydrophobic interactions with ligands in 45% of the 

structures. 

 VAL227A: A hydrophobic interaction is detected in 36% of the structures. 

 VAL231A: In 9% of the structures this valine exhibits hydrophobic interactions. 

Interacting residues that were mentioned in literature but were either not present or not detected 

in the analysed structures were THR122, ASN123, SER125, VAL175, PRO178, GLY216, 

THR220 and MET233. 

3.2 Acetylcholinesterase 
ACHE was the first of five targets that has been scored additionally to the analysis of interaction 

frequencies in the available PDB structures. The latter is described first. 

3.2.1 Interaction frequencies 

Interactions and their frequencies were extracted for 43 structures from the PDB. A graphical 

representation of all detected interactions and their corresponding frequencies can be seen in 

Fig. 4. 

The resulting list of interactions included none of the residues known from literature. The top 

5 interactions were: 

 Pi-stacking with TRP286A in 58% of the structures. 

 Hydrogen bonding with GLY121A in 51% of the structures. 

 Hydrophobic interactions with TYR337A in 49% of the structures. 

 Hydrogen bonding with GLY122A in 47% of the structures. 

 Hydrogen bonding with ALA204A in 47% of the structures 
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Fig. 4: Interaction frequencies of selected ACHE 

structures from the PDB. 

Fig. 5: Distribution of interaction frequencies of 

active and inactive ACHE ligands in the training 

partition in comparison. 
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Fig. 6: Distribution of interaction frequencies of 

active and inactive ACHE ligands in the validation 

partition in comparison. 

Fig. 7: Distribution of interaction frequencies of 

active and inactive ACHE ligands in the test 

partition in comparison. 
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3.2.2 Scoring 

The ACHE dataset for scoring consisted of 1195 compounds, 664 of them active and 531 

inactive. The baseline prediction accuracy was therefore 55.6%. All of the ligands were 

assigned into one of training, validation or test partition and docked in PDB structure 4EY7. 

The docking result was 10 poses for every ligand, meaning 11 950 structures to be analysed. 

Subsequently all structures were analysed and scored with PIA as described in 2.3.3. The best-

on-validation (best accuracy on the validation partition) scoring strategy was strategy +-. 

Furthermore, the respective cut-off values were 1 for strategy +, 2 for strategy ++, -2 for strategy 

+-, and -2 for strategy ++--. 

Results on the training partition: 

Interaction frequencies of active and inactive molecules in the training partition can be seen in 

Fig. 5. The best-on-validation scoring strategy achieved a classification accuracy of 74.9% on 

the training dataset. A full overview of all scoring strategies and their corresponding metrics 

for the training partition can be seen in Table 1, the confusion matrix of the best-on-validation 

strategy in Fig. 8, and the ROC curve of the best-on-validation strategy in Fig. 9. 

Table 1: Performance metrics for all scoring strategies evaluated on the training partition. 

STRATEGY ACC FPR AUC YA EF REF 

+ 0.640 0.484 0.684 0.659 1.179 73.770 

++ 0.652 0.184 0.697 0.782 1.400 78.246 

+- 0.749 0.306 0.819 0.766 1.371 79.157 

++-- 0.737 0.220 0.813 0.802 1.435 90.214 

 

Results on the validation partition: 

In Fig. 6 the interaction frequencies of active and inactive ligands of the validation partition are 

shown. The best-on-validation strategy achieved a prediction accuracy of 76.6% on the 

validation data. A complete list of performance metrics of all scoring strategies for the 

validation partition can be viewed in Table 2. The confusion matrix and ROC curve of the best-

on-validation strategy are described in Fig. 10 and Fig. 11 respectively. 

Table 2: Performance metrics for all scoring strategies evaluated on the validation partition. 

STRATEGY ACC FPR AUC YA EF REF 

+ 0.703 0.420 0.751 0.694 1.282 80.769 

++ 0.661 0.205 0.749 0.76 1.403 76 

+- 0.766 0.318 0.831 0.757 1.397 83.654 

++-- 0.734 0.273 0.812 0.762 1.407 76.238 
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Fig. 8: Confusion matrix of the best-on-validation scoring strategy on the training data. 

 

Fig. 9: ROC curve of the best-on-validation scoring strategy on the training data. 
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Fig. 10: Confusion matrix of the best-on-validation scoring strategy on the validation data. 

 

Fig. 11: ROC curve of the best-on-validation scoring strategy on the validation data. 
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Results on the test partition: 

The interaction frequencies of active and inactive ACHE ligands in the test partition are show 

in Fig. 7. Out of all ligands 74.9% were classified correctly as active or inactive by the best-on-

validation scoring strategy. An exhaustive list of performance metrics for all scoring strategies 

evaluated on the test partition is shown in Table 3. Confusion matrix and ROC curve of the 

best-on-validation scoring strategy are available in Fig. 12 and Fig. 13. 

Table 3: Performance metrics for all scoring strategies evaluated on the test partition. 

STRATEGY ACC FPR AUC YA EF REF 

+ 0.690 0.472 0.733 0.686 1.232 81.955 

++ 0.665 0.208 0.747 0.773 1.389 77.320 

+- 0.749 0.302 0.831 0.766 1.377 78.947 

++-- 0.745 0.226 0.812 0.8 1.438 80 

 

 

Fig. 12: Confusion matrix of the best-on-validation scoring strategy on the test data. 
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Fig. 13: ROC curve of the best-on-validation scoring strategy on the test data. 

3.3 Coagulation factor Xa 
In Fig. 14 the interactions and frequencies extracted from selected PDB structures for FXA are 

shown. The selected set of PDB structures contained 103 protein-ligand complexes and all three 

residues that were known to be involved in binding are present and detected by PLIP/PIA. 

 ASP189A: This aspartic acid forms a hydrogen bond in 11% of the structures or a water-

mediated hydrogen bond (water bridge) in 1% of the structures. 

 ALA190A: This alanine residue shows hydrophobic interactions in 31% of the 

structures and interacts via hydrogen bonding in 9% of the structures. 

 GLN192A: Four different interaction modes are possible with this residue, namely 

hydrogen bonding in 48%, hydrophobic interactions in 9%, water bridges in 3%, and 

halogen bonding in 1% of the structures. 

The top 5 interactions were: 

 Hydrogen bonding with GLY216A in 73% of the structures. 

 Pi-stacking with TRP215A in 65% of the structures. 

 Metal complexation with GLU80A in 64% of the structures. 

 Hydrophobic interactions with TRP215A in 63% of the structures. 

 Metal complexation with ASP70A and ASN72A in 61% of the structures. 
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Fig. 14: Interaction frequencies of selected FXA structures from the PDB. 
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3.4 Cyclooxygenase 1 
COX1 was the second target that was scored and analysed in terms of interactions present in 

the selected structures of the Protein Data Bank. Again the interaction frequencies will be 

described first. 

3.4.1 Interaction frequencies 

The plot in Fig. 15 shows interactions and frequencies of the 20 structures that were selected 

from the PDB. Almost all known interactions and residues can be found among these results: 

 ILE523A: A hydrophobic interaction is present in 45% of the structures. 

 ARG120A: Two binding modes are present for this residue, the more frequent salt 

bridge occurs in 70% of the structures while the less frequent pi-cation interaction 

appears in 5% of the structures. 

 TYR355A: This tyrosine residue exhibits hydrophobic interactions in 70% of the 

structures. In 50% of the structures it forms a hydrogen bond. 

 TYR385A: A hydrophobic interaction is present in 45% of the structures. 

 SER530A: Serine at position 530 forms a hydrogen bond in 20% of the structures. In 

5% of the structures there is a hydrophobic interaction detected at this residue. 

Two of the known interactions were not present or detected during the analysis: Interactions 

with ILE434 and hydrogen bonds with TYR385. 

The top 5 interactions in terms of frequency were: 

 Hydrophobic interactions with TRP387A in 75% of the structures. 

 Salt bridges with ARG120A in 70% of the structures. 

 Hydrophobic interactions with ALA527A, LEU352A, VAL349A and TYR355A also 

in 70% of the structures. 

3.4.2 Scoring 

The COX1 dataset for scoring consisted of 357 active compounds and 879 inactive compounds, 

meaning 1236 compounds in total. The distribution of active and inactive molecules was 

skewed in favour of the inactive molecules and the baseline classification accuracy was 

therefore 71.1%. The 1236 compounds were randomly assigned to training, validation and test 

partition and each ligand was docked in the PDB structure 4O1Z which resulted in 10 poses for 

each ligand. Consequentially 12 360 structures had to be analysed and each best pose was 

scored with PIA. The best-on-validation accuracy was achieved with the scoring strategy +-. 

Moreover, the respective cut-off values for the specific strategies were 5 for strategy +, 5 for 

strategy ++, 4 for strategy +-, and 4 for strategy ++--. 

Results on the training partition: 

A comparison of interaction frequencies of active and inactive molecules of the training 

partition is shown in Fig. 16. The best-on-validation scoring strategy achieved a prediction 

accuracy of 72.3% on the training data. A full overview of all applied scoring strategies and 
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their respective performance on the training dataset can be seen in Table 4. Additionally the 

confusion matrix and ROC curve of the best-on-validation strategy is shown in Fig. 19 and Fig. 

20. 

Table 4: Performance metrics for all scoring strategies evaluated on the training partition. 

STRATEGY ACC FPR AUC YA EF REF 

+ 0.719 0.037 0.607 0.512 1.812 51.163 

++ 0.716 0.062 0.616 0.493 1.746 49.275 

+- 0.723 0.025 0.633 0.563 1.993 56.25 

++-- 0.724 0.032 0.636 0.561 1.987 56.098 

 

Results on the validation partition: 

The interaction frequencies calculated for the active and inactive molecules of the validation 

partition are plotted in Fig. 17. For this dataset the best-on-validation scoring strategy achieved 

a classification accuracy of 71.7% and the corresponding confusion matrix and ROC curve can 

be seen in Fig. 21 and Fig. 22. A complete list of performance metrics of all scoring strategies 

evaluated on the validation partition can be viewed in Table 5. 

Table 5: Performance metrics for all scoring strategies evaluated on the validation partition. 

STRATEGY ACC FPR AUC YA EF REF 

+ 0.702 0.007 0.521 0.667 2.200 66.667 

++ 0.687 0.043 0.534 0.4 1.32 40 

+- 0.717 0.014 0.600 0.75 2.475 75 

++-- 0.697 0.043 0.626 0.5 1.65 50 

 

Results on the test partition: 

Interaction frequencies of active and inactive COX1 ligands of the test partition are presented 

in Fig. 18. Of the 248 ligands in the test partition 70.2% were correctly predicted as active or 

inactive by the best-on-validation scoring strategy. The calculated performance metrics for all 

applied scoring strategies are described in Table 6. Furthermore, Fig. 23 and Fig. 24 show the 

respective confusion matrix and ROC curve of the best-on-validation strategy. 

Table 6: Performance metrics for all scoring strategies evaluated on the test partition. 

STRATEGY ACC FPR AUC YA EF REF 

+ 0.702 0.063 0.670 0.5 1.676 50 

++ 0.701 0.092 0.680 0.529 1.774 52.941 

+- 0.702 0.034 0.668 0.5 1.676 50 

++-- 0.714 0.034 0.658 0.6 2.011 60 
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Fig. 15: Interaction frequencies of selected COX1 

structures from the PDB. 

Fig. 16: Distribution  of  interaction  frequencies  

of active and inactive COX1 ligands in the 

training partition in comparison. 
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Fig. 17: Distribution  of  interaction  frequencies  

of active and inactive COX1 ligands in the 

validation partition in comparison. 

 

Fig. 18: Distribution  of  interaction  frequencies  

of active and inactive COX1 ligands in the test 

partition in comparison. 
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Fig. 19: Confusion matrix of the best-on-validation scoring strategy on the training data. 

 

Fig. 20: ROC curve of the best-on-validation strategy on the training data. 
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Fig. 21: Confusion matrix of the best-on-validation scoring strategy on the validation data. 

 

Fig. 22: ROC curve of the best-on-validation scoring strategy on the validation data. 
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Fig. 23: Confusion matrix of the best-on-validation scoring strategy on the test data. 

 

Fig. 24: ROC curve of the best-on-validation scoring strategy on the test data. 
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3.5 Cyclooxygenase 2 
The interaction frequencies of selected PDB structures for human COX2 are shown in Fig. 25. 

The sample size of human COX2 structures available in the PDB is relatively small and in total 

6 structures were analysed. 

The following interactions were known form literature and also present in the results: 

 VAL523A: A hydrophobic interaction is detected in 83% of the structures. 

 TYR355A: A hydrophobic interaction is present in 50% of the structures. 

 TYR385A: This residue forms a hydrogen bond in all structures. Additionally it reacts 

via hydrophobic interactions with the ligand in 66% of the structures. 

 SER530A: A hydrogen bond is formed in 66% of the structures. 

Interactions with residue VAL434 and ARG120 – although described in literature – were not 

picked up, either because they were not present or not detected. 

The top 5 interactions in terms of frequency were: 

 The hydrogen bond with TYR385A that was present in all structures. 

 Hydrophobic interactions with VAL349A, ALA527A, TRP387A and VAL523A. All 

occurring at a frequency of 83%. 

The interaction frequencies of mouse COX2 structures from the PDB can be seen in Fig. 26. 

More protein-ligand complexes were available compared to human COX2 with a total of 35 

structures being analysed.  

For mouse COX2 the interactions listed below were described in literature and picked up by 

PIA: 

 VAL523A: The valine residue shows hydrophobic interactions in 57% of the structures. 

 ARG120A: Four possible binding modes were detected, a salt bridge in 26% of the 

structures, a hydrogen bond in 9% of the structures, a pi-cation interaction in 3% of the 

structures, and a halogen bond also in 3% of the structures. 

 TYR355A: In 37% of the structures there is a hydrophobic interaction occurring with 

this tyrosine, in 34% of the structures a hydrogen bond is formed. 

 TYR385A: The most frequent interaction with this residue is a hydrophobic interaction 

which occurs in 43% of the structures. Secondly, a hydrogen bond is formed with this 

residue in 20% of the structures. 

 SER530A: Serine 530 hydrogen bonds in 40% of the structures. Furthermore, in 3% of 

the structures it hydrogen bonds via an intermediate water molecule. 

Again an interaction with VAL434 was not detected. 

The top 5 interactions in terms of frequency were all hydrophobic interactions, either with 

TRP387A in 57%, with VAL523A in 51%, with VAL349A in 46%, with LEU352A in 46%, 

or/and with TYR385A in 43% of the structures. 
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Fig. 25: Interaction frequencies of selected 

human COX2 structures from the PDB. 

Fig. 26: Interaction frequencies of selected 

mouse COX2 structures from the PDB. 
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3.6 Dipeptidyl peptidase IV 
DPP4 was the third target that was scored additionally to the interaction frequency analysis of 

selected PDB structures. The interaction frequencies will be discussed first again and the 

scoring results afterwards. 

3.6.1 Interaction frequencies 

Interactions and their respective frequencies have been extracted from 78 PDB structures 

containing DPP4. A graphical representation of the result can be seen in Fig. 27. All of the 

important and literature established interactions and residues were present in the results 

generated by PIA: 

 GLU205A: Glutamic acid in position 205 forms a hydrogen bond with the ligand in 

97% of the structures. In 1% of the structures a hydrophobic interaction is present. 

 GLU206A: Three possible binding options have been observed for GLU206A, 

hydrogen bonding in 37% of the structures, salt bridges in 4% of the structures, and 

hydrophobic interactions in 1% of the structures. 

 ARG125A: The arginine residue also interacts in four different possible ways with the 

ligand, in 38% of the structures it interacts via hydrogen bonding, in 26% of the 

structures it forms a water bridge, in 9% of the structures a pi-cation interaction is 

observed, and in 5% of the structures a salt bridge forms. 

The top 5 interactions in terms of frequency were: 

 Hydrogen bonding with GLU205A in 97% of the structures. 

 Hydrogen bonding with TYR662A in 72% of the structures. 

 Hydrophobic interactions with VAL711A in 65% of the structures. 

 Hydrophobic interactions with TYR662A in 54% of the structures. 

 Pi-stacking with TYR666A in 53% of the structures. 

3.6.2 Scoring 

A total number of 2018 compounds was used for the scoring workflow of DPP4, of which 1043 

were active ligands and 975 inactive. Following from that the baseline prediction accuracy was 

51.7%. All of the 2018 compounds were randomly split into a training, validation and test 

partition and docked into the PDB structure 2G5T. After docking the resulting 20 180 structures 

were analysed with PIA and subsequently the best pose of each ligand was scored. The best-

on-validation scoring strategy was strategy +-. Furthermore, the calculated optimal cut-off 

values were 6 for strategy +, 7 for strategy ++, 3 for strategy +-, and 4 for strategy ++--. 

Results on the training partition: 

The comparison of interaction frequencies between active and inactive molecules of the training 

data is depicted in Fig. 28. The best-on-validation scoring strategy achieved a classification 

accuracy of 66.2% on the training data as shown in Table 7 together with the performance 
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metrics of all other evaluated strategies. Furthermore, Fig. 31 and Fig. 32 show the confusion 

matrix and ROC curve of the best-on-validation strategy on the training partition. 

Table 7: Performance metrics for all scoring strategies evaluated on the training partition. 

STRATEGY ACC FPR AUC YA EF REF 

+ 0.648 0.509 0.683 0.618 1.220 80.122 

++ 0.642 0.468 0.679 0.622 1.227 74.924 

+- 0.662 0.358 0.724 0.662 1.306 68.196 

++-- 0.670 0.278 0.727 0.696 1.374 69.588 

 

Results on the validation partition: 

Interaction frequencies of active and inactive DPP4 ligands of the validation dataset are 

described in Fig. 29. The prediction accuracy of the best-on-validation scoring strategy was 

70.9% on this split of the data and the according confusion matrix and ROC curve of this 

strategy are shown in Fig. 33 and Fig. 34 respectively. Calculated performance metrics of all 

four strategies based on the validation data are presented in Table 8. 

Table 8: Performance metrics for all scoring strategies evaluated on the validation partition. 

STRATEGY ACC FPR AUC YA EF REF 

+ 0.678 0.5 0.670 0.671 1.211 82.123 

++ 0.669 0.458 0.699 0.676 1.221 77.095 

+- 0.709 0.292 0.739 0.751 1.356 75.148 

++-- 0.706 0.243 0.739 0.773 1.394 77.273 

 

Results on the test partition: 

The interaction frequencies calculated for the active and inactive molecules of the test partition 

are plotted in Fig. 30 and 65.1% of the 404 protein-complexes were correctly predicted as either 

active or inactive by the best-on-validation scoring strategy. The corresponding confusion 

matrix and ROC curve of this strategy and particular data split are shown in Fig. 35 and Fig. 

36. A complete list of performance metrics of all scoring strategies evaluated on the test 

partition can be viewed in Table 9. 

Table 9: Performance metrics for all scoring strategies evaluated on the test partition. 

STRATEGY ACC FPR AUC YA EF REF 

+ 0.626 0.515 0.653 0.614 1.181 75.714 

++ 0.614 0.454 0.644 0.617 1.188 67.619 

+- 0.651 0.330 0.685 0.675 1.299 67.513 

++-- 0.636 0.263 0.690 0.691 1.329 69.091 
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Fig. 27: Interaction frequencies of selected DPP4 

structures from the PDB. 

Fig. 28: Distribution of interaction frequencies of 

active and inactive DPP4 ligands in the training 

partition in comparison. 
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Fig. 29: Distribution of interaction frequencies of 

active and inactive DPP4 ligands in the 

validation partition in comparison. 

 

Fig. 30: Distribution of interaction frequencies of 

active and inactive DPP4 ligands in the test 

partition in comparison. 
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Fig. 31: Confusion matrix of the best-on-validation scoring strategy on the training data. 

 

Fig. 32: ROC curve of the best-on-validation scoring strategy on the training data. 
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Fig. 33: Confusion matrix of the best-on-validation scoring strategy on the validation data. 

 

Fig. 34: ROC curve of the best-on-validation scoring strategy on the validation data. 
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Fig. 35: Confusion matrix of the best-on-validation scoring strategy on the test data. 

 

Fig. 36: ROC curve of the best-on-validation scoring strategy on the test data. 
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3.7 Monoamine oxidase B 
MAOB was the fourth of the five targets that was both scored and analysed. The interaction 

frequency analysis based on the selected PDB structures is presented first. 

3.7.1 Interaction frequencies 

The bar chart in Fig. 37 depicts the interactions and their respective frequencies of the 37 

structures that were selected from the PDB. The three residues known from literature to be 

impactful for ligand binding are among the results and interact in the following way: 

 ILE199A: A hydrophobic interaction is present in 38% of the structures. 

 TYR398A: Three different binding modes are observed with the tyrosine residue, in 

32% of the structures the residue takes part in hydrophobic interactions, in 8% of the 

structures it participates in pi-stacking, and in 3% of the structures it forms a hydrogen 

bond. 

 TYR435A: In 8% of the structures a hydrogen bond is formed with TYR435A, in 3% 

of the structures a water bridge is detected, and also in 3% of the structures hydrophobic 

interactions occur with TYR435A. 

The top 5 interactions in terms of frequency were: 

 Pi-cation interactions with TRP157A in 54% of the structures. 

 Hydrophobic interactions with LEU171A in 54% of the structures. 

 Hydrophobic interactions with GLN206A and ILE199A in 38% of the structures. 

 Hydrophobic interactions with PHE343A in 35% of the structures. 

3.7.2 Scoring 

The scoring dataset for MAOB featured 442 compounds in total of which 168 were active and 

274 were inactive. The baseline prediction accuracy was therefore at 62%. The 442 compounds 

were randomly assigned to either the training partition, the validation partition or the test 

partition. Docking into PDB structure 2XCG yielded 10 poses for each ligand and subsequently 

4420 structures were analysed by PIA and the best poses were scored. The best-on-validation 

accuracy was achieved with scoring strategy ++-- this time. The cut-off values for the different 

scoring strategies were 5 for strategy +, 5 for strategy ++, 4 for strategy +-, and 4 for strategy 

++--. 

Results on the training partition: 

The interaction frequencies calculated for the active and inactive molecules in the training 

partition are depicted in Fig. 38. The best-on-validation scoring strategy achieved a 

classification accuracy of 68.8% on this split of the data, the corresponding confusion matrix 

and ROC curve are plotted in Fig. 41 and Fig. 42. A complete overview of all applied scoring 

strategies and their performance on the training dataset can be viewed in Table 10. 
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Table 10: Performance metrics for all scoring strategies evaluated on the training partition. 

STRATEGY ACC FPR AUC YA EF REF 

+ 0.681 0.130 0.656 0.672 1.676 67.164 

++ 0.677 0.136 0.655 0.662 1.651 66.176 

+- 0.699 0.047 0.672 0.818 2.042 81.818 

++-- 0.688 0.041 0.678 0.821 2.048 82.051 

 

Results on the validation partition: 

The comparison of interaction frequencies of active and inactive molecules of the validation 

partition is shown in Fig. 39. Moreover, the best-on-validation scoring strategy yielded a 

prediction accuracy of 73.2%. The resulting confusion matrix and ROC curve of that strategy 

are shown in Fig. 43 and Fig. 44. The complete list of performance metrics of all scoring 

strategies evaluated on the validation partition is presented in Table 11. 

Table 11: Performance metrics for all scoring strategies evaluated on the validation partition. 

STRATEGY ACC FPR AUC YA EF REF 

+ 0.634 0.234 0.525 0.45 1.331 45 

++ 0.648 0.234 0.523 0.476 1.409 47.619 

+- 0.690 0.128 0.526 0.571 1.690 57.143 

++-- 0.732 0.064 0.554 0.727 2.152 72.727 

 

Results on the test partition: 

A comparative grouped bar chart of the interaction frequencies of active and inactive 

compounds in the test partition can be viewed in Fig. 40. For this split of the data the best-on-

validation scoring strategy performed at a prediction accuracy of 73%. Again the belonging 

confusion matrix and ROC curve can be viewed in Fig. 45 and Fig. 46 respectively. Calculated 

performance metrics for all applied scoring strategies are depicted in Table 12. 

Table 12: Performance metrics for all scoring strategies on the test partition. 

STRATEGY ACC FPR AUC YA EF REF 

+ 0.663 0.172 0.638 0.524 1.504 52.381 

++ 0.674 0.172 0.642 0.545 1.566 54.545 

+- 0.719 0.034 0.702 0.8 2.297 80 

++-- 0.730 0 0.714 1 2.871 100 
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Fig. 37: Interaction frequencies of selected MAOB 

structures from the PDB. 

Fig. 38: Distribution of interaction frequencies 

of active and inactive MAOB ligands in the 

training partition in comparison. 
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Fig. 40: Distribution of interaction frequencies 

of active and inactive MAOB ligands in the test 

partition in comparison. 

 

Fig. 39: Distribution of interaction frequencies of 

active and inactive MAOB ligands in the validation 

partition in comparison. 
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Fig. 41: Confusion matrix of the best-on-validation scoring strategy on the training data. 

 

Fig. 42: ROC curve of the best-on-validation scoring strategy on the training data. 
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Fig. 43: Confusion matrix of the best-on-validation scoring strategy on the validation data. 

 

Fig. 44: ROC curve of the best-on-validation scoring strategy on the validation data. 
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Fig. 45: Confusion matrix of the best-on-validation scoring strategy on the test data. 

 

Fig. 46: ROC curve of the best-on-validation scoring strategy on the test data. 
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3.8 P38 mitogen-activated protein kinase 14 
The bar chart depicted in Fig. 47 shows the interactions and their respective frequencies that 

were extracted from the selected PDB structures for MAPK14. In total 159 protein-ligand 

complexes were analysed for that purpose and the results revealed that one of the two residues 

– that were known from literature to be important for binding – was present. Specifically 

LYS53A reacted with ligands in four different ways: In 79% of the structures via hydrophobic 

interactions, in 31% of the structures it formed a hydrogen bond, in 20% of the structures via 

pi-cation interactions, and in 11% of the structures it formed a water bridge. The other 

interaction know from literature – LYS152 – was either not present or not detected. 

The top 5 interactions in terms of frequency were: 

 Hydrogen bonding with MET109A in 91% of the structures. 

 Hydrogen bonding with GLU71A in 84% of the structures. 

 Hydrophobic interactions with LYS53A in 79% of the structures. 

 Hydrophobic interactions with THR106A in 71% of the structures. 

 Hydrophobic interactions with LEU75A in 68% of the structures. 

3.9 Phosphodiesterase 5 
For PDE5 the number of processed and analysed PDB structures was 25 and their interactions 

and corresponding frequencies are shown in Fig. 48. Residue GLN817A – which was 

mentioned in 2.1.8 – was present in all structures, forming a hydrogen bond in 112% of the 

cases – which means this residue sometimes forms more than one hydrogen bond in a single 

protein-ligand complex. In 8% of the structures GLN817A also reacts with the ligand via 

hydrophobic interactions. 

The top 5 interactions in terms of frequency were: 

 Metal complexation with ASP654A with a frequency of 128%. 

 Hydrogen bonding with GLN817A with a frequency of 112%. 

 Pi-stacking with PHE820A in 92% of the structures. 

 Hydrophobic interactions with PHE820A in 72% of the structures. 

 Metal complexation with HIS617A and HIS653A in 68% of the structures. 
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Fig. 47: Interaction frequencies of selected MAPK14 

structures from the PDB. 

Fig. 48: Interaction frequencies of selected 

PDE5 structures from the PDB. 
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3.10 Protein-tyrosine phosphatase 1B 
Fig. 49 shows interactions and their 

relative frequencies found in the 81 

PTP1B structures that were selected from 

the PDB. Except for HIS214 and CYS125 

all residues mentioned in 2.1.9 are present 

and detected in the selection. The 

following interactions occur with these 

residues: 

 SER216A: The serine residue 

forms a hydrogen bond with the ligand in 

78% of the structures. In 4% of the 

structures the hydrogen bond is water 

mediated. 

 ALA217A: Three different binding 

modes are observed, namely hydrogen 

bonding in 59% of the structures, 

hydrophobic interactions in 58% of the 

structures, and water bridges in 43% of 

the structures. 

 GLY218A: This residue binds via 

hydrogen bonding in 41% of the cases, in 

2% of the structures it binds via water 

bridges. 

 ILE219A: In 52% of the structures 

a hydrogen bond is formed with ILE219A 

and hydrophobic interactions with 

ILE219A occur in 43% of the structures. 

 GLY220A: This residue interacts 

via hydrogen bonding in 74% of the 

structures and via water bridges in 3% of 

the structures. 

 ARG221A: Hydrogen bonding 

with ARG221A is the most frequent 

interaction in this selection of structures 

of PTP1B with a frequency of 138%. 

Alternatively ARG221A binds via salt 

bridging in 51% of the structures or via 

water bridging in 26% of the structures. 

  

Fig. 49: Interaction frequencies of selected PTP1B 

structures from the PDB. 
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The top 5 interactions in terms of frequency were: 

 Hydrogen bonding with ARG221A with a frequency of 138%. 

 Hydrogen bonding with SER216A with a frequency of 78%. 

 Hydrogen bonding with GLY220A with a frequency of 74%. 

 Hydrophobic interactions with TYR46A in 67% of the structures. 

 Hydrogen bonding with ALA217A in 59% of the structures. 

3.11 Soluble epoxide hydrolase 
SEH was the fifth and final target for both interaction frequency analysis and scoring. The 

results of the frequency analysis are described below while scoring results will be depicted right 

after. 

3.11.1 Interaction frequencies 

Altogether 83 of the selected SEH structures from the PDB were analysed and their interactions 

with corresponding frequencies are shown in Fig. 50. All of the interactions known to be 

involved in binding have been picked up by PLIP/PIA: 

 ASP335A: Three different binding modes are observed with the residue, in 42% of the 

structures a hydrogen bond is formed, in 4% of the structures the residue is involved in 

a salt bridge, and in 1% of the structures a water bridge is present. 

 TRP336A: In 39% of the structures TRP336A interacts via pi-stacking and in 29% of 

the structures it is involved in hydrophobic interactions. 

 TYR383A: This tyrosine is involved in four different interaction types, in 49% of the 

structures it takes part in hydrophobic interactions, in 43% of the structures it forms a 

hydrogen bond, in 4% of the structures it interacts via pi-stacking, and in 2% of the 

structures it forms a water bridge.  

 TYR466A: In 34% of the structures hydrogen bonding with TYR466A is detected, the 

residue is also involved in hydrophobic interactions in 14% of the structures, in water 

bridges in 5% of the structures, in halogen bonds in 4% of the structures, and in pi-

stacking in 1% of the structures. 

 LEU499A: Hydrophobic interactions occur in 20% of the structures and hydrogen 

bonds form in 2% of the structures. 

 HIS524A: The histidine residue can partake in almost all interaction types, most 

frequently at a rate of 36% it is involved in pi-stacking, in 19% of the structures it shows 

hydrophobic interactions, in 11% of the structures it forms a hydrogen bond, in also 

11% of the structures it appears in a water bridge, in 2% of the structures pi-cation 

interactions occur, and in 1% of the structures it is part of a salt bridge. 

The top 5 interactions in terms of frequency were: 

 Hydrophobic interactions with TYR383A in 49% of the structures. 

 Hydrophobic interactions with LEU408A in 47% of the structures. 
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 Hydrophobic interactions with TRP525A in 45% of the structures. 

 Hydrogen bonding with TYR383A in 43% of the structures. 

 Hydrogen bonding with ASP335A in 42% of the structures. 

3.11.2 Scoring 

Soluble epoxide hydrolase was the only target where compounds for scoring were not taken 

from the DUD-E, instead a custom SEH dataset consisting of 236 molecules was used. Of the 

236 compounds 58 were active and 178 inactive, leading to a baseline classification accuracy 

of 75.4%. The molecules were randomly distributed into a training, validation and test dataset 

and docked into PDB structure 6HGV. Subsequently the 2360 poses were analysed and the best 

pose for each ligand was scored with PIA. The best-on-validation scoring strategy was strategy 

+. Moreover, the cut-off values for each strategy were 7 for strategy +, 8 for strategy ++, 6 for 

strategy +-, and 8 for strategy ++--. 

Results on the training partition: 

The interaction frequencies of active and inactive ligands in the training partition can be seen 

in Fig. 51. The best-on-validation scoring strategy achieved a prediction accuracy of 78% on 

the training dataset and a full overview of performance metrics of all scoring functions can be 

viewed in Table 13. The confusion matrix and ROC curve of the best-on-validation strategy 

calculated from the training data are plotted in Fig. 54 and Fig. 55. 

Table 13: Performance metrics for all scoring strategies evaluated on the training partition. 

STRATEGY ACC FPR AUC YA EF REF 

+ 0.78 0.108 0.769 0.6 2.308 60 

++ 0.76 0.108 0.729 0.556 2.137 55.556 

+- 0.8 0.081 0.769 0.667 2.564 66.667 

++-- 0.753 0.054 0.728 0.571 2.198 57.143 

 

Results on the validation partition: 

In Fig. 52 the distribution of interaction frequencies of active and inactive molecules in the 

validation partition is displayed. The best-on-validation scoring strategy classified 86.8% of the 

ligands in the validation partition correctly as active or inactive and the corresponding 

confusion matrix and ROC curve of these predictions are shown in Fig. 56 and Fig. 57. A 

complete list of performance metrics of all scoring strategies applied to the validation data is 

depicted in Table 14. 
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Table 14: Performance metrics for all scoring strategies evaluated on the validation partition. 

STRATEGY ACC FPR AUC YA EF REF 

+ 0.868 0.067 0.794 0.714 3.393 71.429 

++ 0.842 0.067 0.810 0.667 3.167 66.667 

+- 0.789 0.1 0.694 0.5 2.375 50 

++-- 0.789 0.067 0.652 0.5 2.375 50 

 

Results on the test partition: 

The interaction frequencies of active and inactive SEH ligands in the test partition are shown 

in the grouped bar chart displayed in Fig. 53. The best-on-validation scoring strategy achieved 

a classification accuracy of 77.1% on the test partition of the data. The resulting confusion 

matrix and ROC curve of this strategy can be seen in Fig. 58 and Fig. 59. An exhaustive list of 

calculated performance metrics for all scoring strategies applied to the training data is shown 

in Table 15. 

Table 15: Performance metrics for all scoring strategies evaluated on the test partition. 

STRATEGY ACC FPR AUC YA EF REF 

+ 0.771 0.162 0.814 0.5 2.182 54.545 

++ 0.833 0.081 0.774 0.667 2.909 66.667 

+- 0.771 0.162 0.792 0.5 2.182 54.545 

++-- 0.813 0.081 0.784 0.625 2.727 62.5 

 

3.12 Computational performance of PIA 
Extraction of interactions and frequencies in a standard workflow with a single PDB structure 

and ligands in SDF format as input takes PIA about 1-2 hours/1000 ligands. The computation 

time is strongly dependent on the structural complexity of the protein and ligand as well as the 

performance of PLIP. During structure preparation the ligands of the SDF file will be written 

into PDB files and additionally protonated by PLIP, as a result about 3-6 GB of files/1000 

ligands will be generated. This has to be kept in mind especially when evaluating large datasets, 

for example when evaluating and scoring DPP4 more than 20 000 poses were analysed which 

created roughly 100 GB of data. Once the interactions and their corresponding frequencies are 

extracted and saved however, scoring works almost instantly since it is just a sequence of 

enumerative and additive operations. The only time consuming process in scoring is the 

determination of optimal threshold parameters for feature selection and cut-off values which 

usually takes between 30-60 minutes per target. 
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Fig. 50: Interaction frequencies of selected SEH 

structures from the PDB. 

Fig. 51: Distribution of interaction frequencies 

of active and inactive SEH ligands in the 

training partition in comparison. 
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Fig. 52: Distribution of interaction frequencies of 

active and inactive SEH ligands in the validation 

partition in comparison. 

 

Fig. 53: Distribution of interaction frequencies 

of active and inactive SEH ligands in the test 

partition in comparison. 
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Fig. 54: Confusion matrix of the best-on-validation scoring strategy on the training data. 

 

Fig. 55: ROC curve of the best-on-validation scoring strategy on the training data. 
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Fig. 56: Confusion matrix of the best-on-validation scoring strategy on the validation data. 

 

Fig. 57: ROC curve of the best-on-validation scoring strategy on the validation data. 
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Fig. 58: Confusion matrix of the best-on-validation scoring strategy on the test data. 

 

Fig. 59: ROC curve of the best-on-validation scoring strategy on the test data. 
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4. Discussion 
Two goals were defined for this thesis, the identification of protein-ligand interactions which 

are important for binding, and the development of a novel scoring function based on the 

interaction frequencies of active and inactive compounds.  

The first goal has been addressed by developing a workflow that extracts the interactions and 

their corresponding frequencies from a set of known PDB structures of a target. The interactions 

are then ranked based on their frequency in decreasing order. The results showed that 

interactions that were already known to be of importance for binding also occurred in the 

selection extracted by PIA for almost all targets – ACHE being the only exception. Moreover, 

these interactions often were among the top ranked interactions of PIA, implying a relationship 

between interaction frequency and binding significance. This could be especially of interest for 

targets where binding interactions are not yet known or fully understood but structural data is 

already available. 

The second goal was built upon the first one and used the extracted interactions and frequencies 

of active and inactive ligands for scoring. In total four different scoring functions were designed 

based on the interaction frequencies and they all performed reasonably well on the five 

evaluated targets. The second of the four scoring functions – which was defined as the 

difference between the number of positive interactions and the number of negative interactions 

in a protein-ligand complex – was the most successful one, yielding the best-on-validation 

accuracy in three out of the five targets. Furthermore, the classification accuracy of the best-

on-validation scoring strategy exceeded the baseline accuracy in four of the five targets and 

resulted in an enrichment in all targets. False positive rates were usually between 0 and 33%. 

However, it should be noted that performance metrics often fluctuated and were not necessarily 

consistent across training, validation and test partition. Therefore interaction-based scoring and 

classification should definitely be seen as a supporting tool to existing VS approaches rather 

than a standalone solution. 

Most recently scoring with PIA has also been applied outside of this thesis’ research for 

evaluation of docking results of vitamin E. Despite returning good results when the docked 

ligands where compared to an established set of decoys, it also showed a potential weakness of 

PIA: The discrimination of weak actives from actives or weak actives from inactives is hardly 

possible using the interaction frequency approach. Although this is to be expected since PIA is 

purely based on the interacting residues, the interaction types and their frequencies without 

weighting interactions or accounting for any binding energies, it is a remark that should be 

especially highlighted. 

Weighting of interactions is also an aspect that could be considered for future research building 

upon this thesis. For example, hydrophobic interactions are comparably weaker than hydrogen 

bonds yet they contribute equally to the score in PIA. Introducing weighting coefficients for the 

specific interaction types could potentially further improve results. Another aspect that could 

be looked upon is how to deal with cofactors. Currently PIA completely ignores any co-
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crystallized cofactors since PLIP is not able to detect and characterize cofactor-ligand 

interactions, however, these interactions could further refine the score. Furthermore, going in 

the direction of AI and ML could be another way worthwhile of exploring. Development of 

more sophisticated scoring functions using ML was already considered for this thesis but fell 

short due to time constraints. Nevertheless, explainable AI approaches could possibly come up 

with more specialized scoring functions that may also give deeper insight on the importance of 

specific interactions in protein-ligand complex. 

Last but not least the technical implementation of PIA is something that could still be improved 

in the future. Rewriting molecules from SDF into PDB format is a necessary step because PLIP 

can only deal with PDB structures. Needless to say that this process is far from optimal since it 

not only takes a lot of time but also consumes a lot of free disk space. Tighter integration of 

PLIP into PIA that is not reliant on creating PDB structures and therefore allows to skip this 

step would be an option to make computation of interaction frequencies a lot faster. Another 

concern would be the pre-processing of structures and merging of protein and ligand 

coordinates. This task is currently done using custom self-implemented functions since there 

are no state-of-the-art solutions available for python, and although the implementation works 

well for the established workflows, merging of more complex structures – for example a single 

protein with multiple ligands or small molecules – would possibly pose a problem. Finally, the 

process of extracting interaction frequencies could also be further optimized: Currently the best 

pose (if multiple poses are detected) is analysed twice due to the underlying data structures and 

how the function is designed, however, rewriting the function to re-use the data from the 

previous analysis instead of re-calculating would definitely be possible. The source code of PIA 

is publicly available on GitHub via https://github.com/michabirklbauer/protein_docking and 

anyone is welcome to contribute to the project. 

  

https://github.com/michabirklbauer/protein_docking
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5. Conclusion 
Molecular docking is an important tool in virtual screening for the discovery and design of new 

active agents for drug usage. The docking process is influenced by how well molecules fit in 

the binding site and which interactions occur between the protein and the ligand. Detection of 

these interactions can be automated with tools like PLIP. However, identification and 

assessment of the importance of the different interactions in a protein-ligand complex is still a 

manual task that requires additional experimental data or domain knowledge about the target. 

The goals of this thesis were twofold: Firstly, to automatically identify those interactions that 

have a significant influence on ligand binding, and secondly, to develop a novel scoring 

function which is able to discriminate active molecules from inactive ones if possible. The 

underlying data basis were selected targets of the DUD-E and available structures from the 

PDB. Specifically 11 targets were analysed: HSD11B1, ACHE, FXA, COX1, COX2, DPP4, 

MAOB, MAPK14, PDE5A, PTP1B and SEH. PLIP was used to extract interactions present in 

a protein-ligand complex and the respective interaction’s frequency was measured across all 

target structures. Cofactors were excluded from the analysis and hydrophobic interactions were 

only counted once per residue. Additionally, when analysing docking poses only the pose that 

had the most interactions contributed to the calculation. Furthermore, four different scoring 

functions that are based on the differences in frequencies between active and inactive 

compounds were established and their performance was assessed on an independent test 

partition containing unseen ligands. The results show that interactions which are known from 

literature to be important for ligand binding are found for all targets except ACHE, in many 

cases among the top ranked interactions in terms of frequency. This behaviour implies a 

relationship between interaction frequency and the interaction’s significance in ligand binding. 

Interaction-frequency-based scoring was tested in five targets and performed above baseline 

accuracy in four of the five targets. In all targets scoring led to an enrichment of active 

compounds and false positive rates fluctuated between 0 and 33%. Interaction frequency 

analysis and interaction-frequency-based scoring could therefore be used as supporting tools in 

virtual screening to further enhance results. 
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Appendix 
Appendix 1 – PDB structures for HSD11B1: 

2BEL, 2ILT, 2IRW, 2RBE, 3BYZ, 3BZU, 3CZR, 3D3E, 3D4N, 3D5Q, 

3EY4, 3FCO, 3FRJ, 3H6K, 3HFG, 3OQ1, 3PDJ, 3QQP, 4BB5, 4BB6, 

4C7J, 4C7K, 4HFR, 4HX5, 4K1L, 4P38, 4YYZ, 6NJ7; 

Appendix 2 – PDB structures for ACHE: 

1B41, 1F8U, 2X8B, 3LII, 4BDT, 4EY4, 4EY5, 4EY6, 4EY7, 4EY8, 

4M0E, 4M0F, 5FPQ, 5HF5, 5HF6, 5HF8, 5HF9, 5HFA, 5HQ3, 6CQT, 

6CQU, 6CQV, 6CQW, 6CQX, 6CQY, 6CQZ, 6F25, 6NEA, 6NTG, 6NTH, 

6NTK, 6NTL, 6NTM, 6NTN, 6NTO, 6O4W, 6O4X, 6O50, 6O52, 6O5R, 

6O5S, 6O5V, 6O66, 6U34, 6U37, 6U3P, 6WUV, 6WUY, 6WUZ, 6WV1, 

6WVC, 6WVP, 6WVQ; 

Appendix 3 – PDB structures for FXA: 

1EZQ, 1F0R, 1F0S, 1FAX, 1FJS, 1G2L, 1G2M, 1IOE, 1IQE, 1IQF, 

1IQG, 1IQH, 1IQI, 1IQJ, 1IQK, 1IQL, 1IQM, 1IQN, 1KSN, 1LPG, 

1LPK, 1LPZ, 1LQD, 1MQ5, 1MQ6, 1NFU, 1NFW, 1NFX, 1NFY, 1P0S, 

1V3X, 1WU1, 1XKA, 1XKB, 1Z6E, 2BMG, 2BOH, 2BOK, 2BQ6, 2BQ7, 

2BQW, 2CJI, 2D1J, 2EI6, 2EI7, 2EI8, 2FZZ, 2G00, 2J2U, 2J34, 

2J38, 2J4I, 2J94, 2J95, 2JKH, 2P16, 2P3T, 2P3U, 2P93, 2P94, 

2P95, 2PHB, 2PR3, 2Q1J, 2RA0, 2UWL, 2UWO, 2UWP, 2VH0, 2VH6, 

2VVC, 2VVU, 2VVV, 2VWL, 2VWM, 2VWN, 2VWO, 2W26, 2W3I, 2W3K, 

2WYG, 2WYJ, 2XBV, 2XBW, 2XBX, 2XBY, 2XC0, 2XC4, 2XC5, 2Y5F, 

2Y5G, 2Y5H, 2Y7X, 2Y7Z, 2Y80, 2Y81, 2Y82, 3CEN, 3CS7, 3ENS, 

3FFG, 3HPT, 3IIT, 3K9X, 3KL6, 3KQB, 3KQC, 3KQD, 3KQE, 3LIW, 

3M36, 3M37, 3Q3K, 3SW2, 3TK5, 3TK6, 4A7I, 4BTI, 4BTT, 4BTU, 

4Y6D, 4Y71, 4Y76, 4Y79, 4Y7A, 4Y7B, 4ZH8, 4ZHA, 5K0H; 

Appendix 4 – PDB structures for sheep COX1: 

1CQE, 1DIY, 1EBV, 1EQG, 1EQH, 1FE2, 1HT5, 1HT8, 1IGX, 1IGZ, 

1PGE, 1PGF, 1PGG, 1PTH, 1Q4G, 2AYL, 2OYE, 2OYU, 3KK6, 3N8X, 

3N8Y, 3N8Z, 4O1Z, 5U6X, 5WBE; 

Appendix 5 – PDB structures for human COX2: 

5IKR, 5IKQ, 5IKT, 5IKV, 5KIR, 5F1A; 
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Appendix 6 – PDB structures for mouse COX2: 

1CVU, 1CX2, 1DDX, 1PXX, 3HS5, 3HS6, 3HS7, 3KRK, 3LN0, 3LN1, 

3MDL, 3MQE, 3NT1, 3NTB, 3NTG, 3OLT, 3OLU, 3PGH, 3Q7D, 3QH0, 

3QMO, 3RR3, 3TZI, 4COX, 4E1G, 4FM5, 4M10, 4M11, 4OTJ, 4OTY, 

4PH9, 4RRW, 4RRX, 4RRY, 4RRZ, 4RS0, 4RUT, 4Z0L, 5W58, 6BL3, 

6BL4, 6COX, 6OFY, 6V3R; 

Appendix 7 – PDB structures for DPP4: 

1N1M, 1NU8, 1R9N, 1RWQ, 1TKR, 1W1I, 1WCY, 1X70, 2AJL, 2BGN, 

2BGR, 2BUB, 2FJP, 2G5P, 2G5T, 2G63, 2HHA, 2I03, 2I78, 2IIT, 

2IIV, 2JID, 2OAG, 2OGZ, 2OLE, 2ONC, 2OPH, 2OQI, 2OQV, 2P8S, 

2QJR, 2QKY, 2QOE, 2QT9, 2QTB, 2RGU, 2RIP, 3BJM, 3C43, 3C45, 

3CCB, 3CCC, 3D4L, 3EIO, 3F8S, 3G0B, 3G0C, 3G0D, 3G0G, 3H0C, 

3HAB, 3HAC, 3KWF, 3KWJ, 3NOX, 3O95, 3O9V, 3OC0, 3OPM, 3Q0T, 

3Q8W, 3QBJ, 3SWW, 3SX4, 3VJK, 3VJL, 3VJM, 3W2T, 3WQH, 4A5S, 

4DSA, 4DSZ, 4DTC, 4G1F, 4J3J, 4JH0, 4KR0, 4L72, 4LKO, 4N8D, 

4N8E, 4PNZ, 4PV7, 4QZV, 5I7U, 5ISM, 5J3J, 5KBY, 5T4B, 5T4E, 

5T4F, 5T4H, 5Y7H, 5Y7J, 5Y7K, 5ZID, 6B1E, 6B1O; 

Appendix 8 – PDB structures for MAOB: 

1GOS, 1OJ9, 1OJA, 1OJC, 1OJD, 1S2Q, 1S2Y, 1S3B, 1S3E, 2BK3, 

2BK4, 2BK5, 2BYB, 2C64, 2C65, 2C66, 2C67, 2C70, 2C72, 2C73, 

2C75, 2C76, 2V5Z, 2V60, 2V61, 2VRL, 2VRM, 2VZ2, 2XCG, 2XFN, 

2XFO, 2XFP, 2XFQ, 2XFU, 3PO7, 3ZYX, 4A79, 4A7A, 4CRT, 5MRL, 

6FVZ, 6FW0, 6FWC, 6RKB, 6RKP, 6RLE, 6YT2; 
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Appendix 9 – PDB structures for MAPK14: 

1A9U, 1BL6, 1BL7, 1BMK, 1DI9, 1IAN, 1KV1, 1KV2, 1M7Q, 1OUK, 

1OUY, 1OVE, 1OZ1, 1W7H, 1W82, 1W83, 1W84, 1WBN, 1WBO, 1WBS, 

1WBT, 1WBV, 1WBW, 1YQJ, 1ZYJ, 1ZZ2, 1ZZL, 2BAJ, 2BAK, 2BAL, 

2BAQ, 2GFS, 2I0H, 2QD9, 2RG5, 2RG6, 2YIS, 2YIW, 2YIX, 2ZAZ, 

2ZB0, 2ZB1, 3BV2, 3BV3, 3BX5, 3CTQ, 3D7Z, 3D83, 3DS6, 3DT1, 

3E92, 3E93, 3FC1, 3FI4, 3FKL, 3FKN, 3FKO, 3FL4, 3FLN, 3FLQ, 

3FLS, 3FLW, 3FLY, 3FLZ, 3FMH, 3FMJ, 3FMK, 3FML, 3FMM, 3FMN, 

3FSF, 3FSK, 3GC7, 3GCP, 3GCQ, 3GCS, 3GCV, 3GFE, 3GI3, 3HA8, 

3HEC, 3HEG, 3HL7, 3HLL, 3HP2, 3HP5, 3HRB, 3HUB, 3HUC, 3HV3, 

3HV4, 3HV5, 3HV6, 3HV7, 3HVC, 3IPH, 3ITZ, 3IW5, 3IW6, 3IW7, 

3IW8, 3K3I, 3K3J, 3KF7, 3KQ7, 3L8S, 3L8X, 3LFA, 3LFB, 3LFC, 

3LFD, 3LFE, 3LFF, 3LHJ, 3MPT, 3MVL, 3MVM, 3MW1, 3NEW, 3NNU, 

3NNV, 3NNW, 3NNX, 3NWW, 3OCG, 3PG3, 3QUD, 3QUE, 3RIN, 3ROC, 

3S3I, 3S4Q, 3U8W, 3UVP, 3UVQ, 3UVR, 3ZS5, 3ZSG, 3ZSH, 3ZSI, 

3ZYA, 4A9Y, 4AA0, 4AA4, 4AA5, 4AAC, 4DLI, 4DLJ, 4E6A, 4E6C, 

4E8A, 4EH2, 4EH3, 4EH4, 4EH5, 4EH6, 4EH7, 4EH8, 4EH9, 4EHV, 

4EWQ, 4F9W, 4F9Y, 4FA2, 4KIN, 4KIP, 4KIQ, 4L8M, 4R3C, 5ML5, 

5MTX, 5MTY, 5N63, 5N64, 5N65, 5N66, 5N67, 5N68, 5OMG, 5OMH, 

5TBE, 5TCO, 5WJJ, 5XYX, 5XYY, 6ANL, 6HWT, 6HWU, 6HWV, 6M95, 

6M9L, 6OHD, 6QDZ, 6QE1, 6SFI, 6SFJ, 6SFK, 6SFO, 6ZWP; 

Appendix 10 – PDB structures for PDE5: 

1RKP, 1T9R, 1T9S, 1TBF, 1UDT, 1UDU, 1UHO, 1XOZ, 1XP0, 2H42, 

2H44, 2XSS, 3B2R, 3BJC, 3SHY, 3SHZ, 3SIE, 3TGE, 3TGG, 4G2W, 

4G2Y, 4I9Z, 4IA0, 4MD6, 4OEW, 4OEX, 5JO3, 5ZZ2, 6ACB, 6IWI, 

6L6E, 6VBI; 

Appendix 11 – PDB structures for PTP1B: 

1AAX, 1BZC, 1BZH, 1BZJ, 1C83, 1C84, 1C85, 1C86, 1C87, 1C88, 

1ECV, 1EEN, 1EEO, 1G1F, 1G1G, 1G1H, 1G7F, 1G7G, 1GFY, 1JF7, 

1KAK, 1KAV, 1L8G, 1LQF, 1NL9, 1NNY, 1NO6, 1NWL, 1ONY, 1ONZ, 

1PH0, 1PTT, 1PTU, 1PTV,1 PTY, 1PXH, 1PYN, 1Q1M, 1Q6J, 1Q6M, 

1Q6N, 1Q6P, 1Q6S, 1Q6T, 1QXK, 1T48, 1T49, 1T4J, 1WAX, 1XBO, 

2AZR, 2B07, 2BGD, 2BGE, 2CM7, 2CM8, 2CMA, 2CMB, 2CMC, 2CNE, 

2CNF, 2CNG, 2CNH, 2CNI, 2F6T, 2F6V, 2F6W, 2F6Y, 2F6Z, 2F70, 

2F71, 2FJM, 2FJN, 2H4G, 2H4K, 2HB1, 2NT7, 2NTA, 2QBP, 2QBQ, 

2QBR, 2QBS, 2VEU, 2VEV, 2VEW, 2VEX, 2VEY, 2ZMM, 2ZN7, 3CWE, 

3D9C, 3EAX, 3EB1, 4BJO, 4I8N, 4QAH, 4QAP, 4QBW, 4Y14, 4ZRT, 

5K9W, 5T19; 
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Appendix 12 – PDB structures for SEH: 

1VJ5, 1ZD2, 1ZD3, 1ZD4, 1ZD5, 3ANS, 3ANT, 3I1Y, 3I28, 3KOO, 

3OTQ, 3PDC, 3WK4, 3WK5, 3WK6, 3WK7, 3WK8, 3WK9, 3WKA, 3WKB, 

3WKC, 3WKD, 3WKE, 4C4X, 4C4Y, 4C4Z, 4HAI, 4J03, 4JNC, 4OCZ, 

4OD0, 4X6X, 4X6Y, 4Y2J, 4Y2P, 4Y2Q, 4Y2R, 4Y2S, 4Y2T, 4Y2U, 

4Y2V, 4Y2X, 4Y2Y, 5AI0, 5AI4, 5AI5, 5AI6, 5AI8, 5AI9, 5AIA, 

5AIB, 5AIC, 5AK3, 5AK4, 5AK5, 5AK6, 5AKE, 5AKG, 5AKH, 5AKI, 

5AKJ, 5AKK, 5AKL, 5AKX, 5AKY, 5AKZ, 5ALD, 5ALE, 5ALF, 5ALG, 

5ALH, 5ALI, 5ALJ, 5ALK, 5ALL, 5ALM, 5ALN, 5ALO, 5ALP, 5ALQ, 

5ALR, 5ALS, 5ALT, 5ALU, 5ALV, 5ALW, 5ALX, 5ALY, 5ALZ, 5AM0, 

5AM1, 5AM2, 5AM3, 5AM4, 5AM5, 5FP0, 5MWA, 6AUM, 6FR2, 6HGV, 

6HGW, 6HGX, 6I5G, 6YL4; 

 

 


