
Decision Trees
An Introduction

Seminar paper for the course Artificial Intelligence (KISEM)

Michael Dorner

November 23, 2016

Table of Content Table of Content

Table of Content

1 Introduction 3
1.1 What is a decision tree? . 3
1.2 Taxonomy . 5
1.3 About this paper . 6

2 Theory of Decision Trees 7
2.1 Definitions . 7
2.2 Decision Tree Learning . 9

2.2.1 Splitting Criterion . 10
2.2.2 Stopping Criterion . 13
2.2.3 Tree Pruning . 14

2.3 Selected Algorithms . 16
2.3.1 Chi-squared Automatic Interaction Detector (CHAID) 16
2.3.2 Iterative Dichotomiser 3 (ID3) . 16
2.3.3 Classification And Regression Tree (CART) 17
2.3.4 C4.5 . 17

2.4 Discussion . 17
2.4.1 Advantages . 17
2.4.2 Disadvantages . 18

2.5 Outlook . 18
2.5.1 Complexity & Performance . 18
2.5.2 Missing Attributes . 19
2.5.3 Random Forests . 19

3 Summary & Conclusion 20
3.1 Applications . 20
3.2 Programming Example . 20
3.3 Summary . 21

A Bibliography 22

Title page graphic: Copyright by Benni from The Noun Project

2

1 Introduction

1 Introduction

1.1 What is a decision tree?

A business student with only a very few programming skills shall develop a simple
algorithm for sorting three elements A,B,C. He decides to divide this problem in
smaller subproblems. First he wonders if A is smaller then B. In the second step it is
interesting if B is smaller then C. If A < B and B < C then A < B < C. But if B is not
greater then C, then a third question is relevant: Is A < C?

His head is spinning. Maybe solving this problem graphically is a better idea. He draws
a node for each question and an edge for each answer. All leafs represent the correct
order. Figure 1 shows the resulting graph:

A < B

B < C

A < B < C

yes

A < C

A < C ≤ B

yes

C ≤ A < B

no

no

yes

B < C

A < C

B ≤ A < C

yes

B < C ≤ A

no

yes

C ≤ B ≤ A

no

no

Figure 1: A decision tree for sorting three values.

Without further knowledge the student created his first decision tree.

For a right decision two or three if-statements are necessary. So a Python program could
look like listing 1.

3

1 Introduction 1.1 What is a decision tree?

def sort1(A, B, C):
if (A < B):

if (B < C):
return [A, B, C]

else:
if (A < C):

return [A, C, B]
else:

return [C, A, B]
else:

if (B < C):
if (A < C):

return [B, A, C]
else:

return [B, C, A]
else:

return [C, B, A]

print(sort1(9,-2,0)) # >> [-2, 0, 9]
print(sort1(2,0,0)) # >> [0, 0, 2]

Listing 1: A Python implementation of a decision tree for sorting three elements A,B,C

Remark. The Python if-statement syntax implies the tree structure in a vertical form,
too.

Another way of formatting if-clauses represents a rule set which are first order logical
expressions:

def sort2(A, B, C):
if (A < B) and (B < C) : return [A, B, C]
if (A < B) and not (B < C) and (A < C): return [A, C, B]
if (A < B) and not (B < C) and not (A < C): return [C, A, B]
if not (A < B) and (B < C) and (A < C): return [B, A, C]
if not (A < B) and (B < C) and not (A < C): return [B, C, A]
if not (A < B) and not (B < C) : return [C, B, A]

Listing 2: A Python reimplementation of the decision tree given in listing 1 as a set of
first order logical rules

4

1 Introduction 1.2 Taxonomy

Unsurprisingly, we get six rules for 3! = 6 different combinations and the same results
as in the algorithm sort1.

This introductory example shows four important properties: Decision trees

1. work very well for classification and data mining.

2. are intuitive and self-explanatory.

3. are easy to implement.

4. can be even used by business students.

Remark. Decision trees are used to model all comparison sorts like mergesort or quick-
sort. The reader may notice that the decision tree in figure 1 represents the insertion
sort algorithm [6, p. 208].

1.2 Taxonomy

Before we approach the theory behind decision trees, a small but general overview of
the taxonomy shall be given.

Decision tree classification is very often used in the context of data mining and machine
learning. These keywords are no synonyms – although used as one very often. Machine
learning cannot be seen as a true subset of data mining, as it also contains other fields,
not utilized for data mining (e.g. theory of learning, computational learning theory, and
reinforcement learning).

Figure 2 shows the machine learning context for decision trees.

Machine Learning Algorithms

Unsupervised
Learning

. . .

Supervised Learning

Classification Regression

Decision Tree Artificial
Neural Network

Support Vector
Machines

. . .

Reinforcement
Learning

. . .

Figure 2: The context of decision trees in machine learning with topics visited in this paper.

5

1 Introduction 1.3 About this paper

Remark. The context shown in figure 2 is not intended for being complete, e.g. there
is mixture of unsupervised and supervised learning, so called semi-supervised learning.
Also not every decision tree can handle continuous values for regression analysis as we
will see later.

Decision trees have a sibling, called regression trees. They have a common parent:
prediction trees [10]. The basic idea is to use trees to model functions though each end
point will result in the same predicted value, a constant for that point. Thus a regression
tree is like a classification tree except that the end point will be a predicted function
value rather than a predicted classification.

Although, there is a wide field of applications for regression trees, the focus of this paper
in only on classification trees.

1.3 About this paper

This project work emerges in the context of the course Artificial Intelligence in the winter
semester 2013/2014. Beside this seminar paper, an introductory presentation was con-
ducted and an implementation for decision tree was developed.

In the scope of this seminar paper, a small introduction to theory and application of
decision trees shall be given.

After this short introduction a theoretical consideration shall guide to a practical part,
which shall clarify the theoretical part by examples. The last part shall summarize and
compare the introduced algorithm and shall give a small outlook to not tackled research
fields of decision trees.

On the contrary to the presentation during the seminar, this seminar paper expects a ba-
sic knowledge about graph theory, complexity, and machine learning from the reader. In-
stead of an introduction to these underlying topics, a deeper look inside four decision tree
algorithm families shall be given: CHAID, CART, ID3, and C4.5.

The focus of the introduced Python implementation is on classification. This limitation
is not owed to the insufficient importance of regression calculating, but a wider look
would push the boundaries of this seminar paper.

Remark. Remark boxes like this one shall help to see the bigger pictures. It contains
information that will not be explained any further, but which are a starting point for
further investigations.

6

2 Theory of Decision Trees

2 Theory of Decision Trees

In this section a (computer) scientific base for the informal introduction of decision trees
shall be given. As mentioned in the introduction a basic knowledge in graph theory, ma-
chine learning and computer science in general is assumed.

2.1 Definitions

Definition 1. A tree is a directed, connected graph with one root node. Every other
node has a single predecessor (parent) and no or more successors (children). Nodes
without successors are called leaves. All nodes are connected by edges. The depth of
a node is the number of edges on the path to the root. The height of the whole tree is
the number of edges on the longest path from the root to any leaf.

Remark. This very rough definition focussed on trees shall not hide the fact that graph
theory is complex and enormous mathematical field. For a deeper look e.g. [6] is
recommended.

Definition 2. A decision tree is a tree with following equivalents:

Tree Decision tree equivalent
Root Initial decision node
Node Internal decision node for testing on an attribute
Edge Rule to follow
Leaf Terminal node represents the resulting classification

As mentioned in subsection 1.2, machine learning is a set of algorithms that extract
models representing patterns from data and then evaluate those models. Let us define
four relevant terms, which are important for understanding the following algorithms
descriptions: instance, attribute, class, and dataset:

Definition 3. The input of a machine learning algorithm consists of a set of instances
(e.g. rows, examples or observations). Each instance is described by a fixed number of
attributes (i.e. columns), which are assumed to be either nominal or numeric, and a
label which is called class (in case of a classification task). The set of all instances is
called dataset.

7

2 Theory of Decision Trees 2.1 Definitions

Instance Attribute Class
A < B B < C A < C

1 yes yes yes A < B < C

2 yes yes no A < B < C

3 yes no yes A < C ≤ B

4 yes no no C ≤ A < B

5 no yes yes B ≤ A < C

6 no yes no B < C ≤ A

7 no no yes C ≤ B ≤ A

8 no no no C ≤ B ≤ A

Table 1: Dataset table for the sorting example from subsection 1.1

Following this definition we get a table containing the dataset: Each decision becomes
an attribute (all binary relations), all leaves are classes, while each row represents an
instance of the dataset (see table 1).

Normally, the transformation is vice versa: the data is collected in table form (e.g.
databases) and a decision tree has to be generated.

The reason why there are now eight instead of six classes is simple: it does not matter
for instances 1, 2 and 7, 8, if A < B or not; the result is the same class. This effect of
removing irrelevant branches of a tree is called pruning and is also part of this paper
(see 2.2.3).

8

2 Theory of Decision Trees 2.2 Decision Tree Learning

2.2 Decision Tree Learning

In this subsection the question how to generate a decision tree from a given dataset in
general shall be answered.

A founding idea of tree-based classification is based in the Concept Learning System [19].
All algorithms introduced in the next section are based on a simple but very powerful
algorithm called TDIDT which stands for Top-Down Induction of Decision Trees [19].
This algorithm framework consists of two methods, growing and pruning a decision tree,
which are introduced in the next two pseudocode listings and follows the idea of divide
and conquer [6, p. 33].

Remark. σ is the relational operator for selection. See e.g. [21, p. 145] for further
operators and more detailed information.

Algorithm 1: Tree Growing treeGrowing
Input : Training set X, attribute set A, target feature y
Output: Decision tree

1 Create a new tree T with a single root node.
2 if stoppingCriterion(X) then
3 Mark T as a leaf with the most common value in X as a label.
4 else
5 ∀ai ∈ A find a that obtain the best splittingCriterion(ai, X, y).
6 Label n with a.
7 for each outcome vi of a do
8 Set subtree ti = treeGrowing(σa=viX,A, y).
9 Connect the root node of nt to the subtree ti with an edge that is labelled as vi.

10 return treePruning(S, T, y)

A simplified decision tree 3 created by this algorithmic framework shall clarify how it
works. The colors correspond to the variables in the pseudocode.

This framework gives three positions to adjust the framework: the splitting and the
stopping criterion, as well as the tree is going to be pruned. The following parts shall
give a quick overview of these positions.

9

2 Theory of Decision Trees 2.2 Decision Tree Learning

Algorithm 2: Tree Pruning treePruning
Input : Training set X, tree to be pruned T , target feature y
Output: Decision tree

1 repeat
2 Select a node n in T such that pruning this node n maximally improves some

evaluation criterions.
3 if n 6= ∅ then
4 T = pruned(T, n)

5 until t = ∅;
6 return T

a

t1

v1

t2

v2

. . .

. . .

tn Subtrees

Values of a

Best attribute in A

vn

Figure 3: The basic structure of a decision tree created by the algorithmic framework.

2.2.1 Splitting Criterion

All introduced criterions are based on impurity measure. This defines how well classes
are separated.

Remark. For further information about impurity based criterions [22, p. 53 ff.] is highly
recommended.

Of course, it is not possible to list all criterions and ideas for splitting in the scope of this
short paper. The selected criterions are needed for the presented algorithms in section
2.3.

Comparison of splitting criterions is a frequently visited research topic (e.g. [3], [5],
[16], [8], [26]). Although, there is no extraordinary difference, each splitting criterion
is superior in some cases and inferior in others; a general, scientifically sound statement
which one is “better” is not possible.

For the different node splitting criterions we introduce some notation used throughout
this section.

10

2 Theory of Decision Trees 2.2 Decision Tree Learning

We assume there are total number of C classes denoted by Ω = ω1, ω2, . . . , ωC . Let there
be N training examples represented by(

x(1), y(1)
)
,
(
x(2), y(2)

)
, . . . ,

(
x(N), y(N)

)
(1)

where x(i) is a vector of n attributes and yi ∈ Ω is the class label corresponding to the
input x(i). Of these N examples, Nωk

belong to the class ωk, while
∑

kNωk
= N . The

decision rule splits these examples into P partitions, or P child nodes, each of which has
N (p) examples. The number of examples in a particular partition p is denoted by N (p)

ωk ,
while

∑
kN

(v)
ωk = N (p).

Entropy & Information Gain The idea of the information gain is based on the infor-
mation theory which was introduced by Claude Elwood Shannon in 1948 [25]. For the
computation we need two magnitudes:

Definition 4. The entropy and the information gain are defined as

G(aj) =

(
C∑
k=1

−Nωk

N
log2

Nωk

N

)
−

(
P∑
p

N (p)

N
·

C∑
k=1

−N
(p)
ωk

N (P)
log2

N
(p)
ωk

N (P)

)
(2)

while the first term is the entropy and the second term the weighted entropy of the child
nodes. The difference thus reflects the decrease in entropy or the information gained
from the use of attribute aj.

Remark. There is a detailed example in the presentation slides which should clarify the
application of the formula.

One of the problems that arises is that the information gain criterion as defined in
equation 2 favors large number of partition P . So the an improvement was suggested
by [18], which is now used in the C4.5: instead of the information gain G(aj)/g is used,
where

g =
P∑
p=1

N (p)

N
log2

N (p)

N
(3)

11

2 Theory of Decision Trees 2.2 Decision Tree Learning

Gini Index & Gini Gain

Definition 5. The Gini index measures the divergences between the probability dis-
tributions of the target attributes values and is defined as

D(aj) =
1

N

 C∑
k=1

P∑
p=1

(
N

(p)
ωk

)2
N (p)

−
C∑
k=1

(Nωk
)2

N

 (4)

The goal is to find a node which is the most “pure” one, i.e. has instances of a single
class. Similar to the decrease in entropy and gain information used in the information
gain based criterion, the impurity as given in 5 is used. The chosen attribute is one that
has the largest decrease in impurity.

Twoing Criterion

Definition 6. The binary twoing criterion maximizes the function

P (tL) · P (tR)

4
·

(∑
c∈ai

|P (c|tL)− P (c|tR)|

)2

(5)

for a node t, where P (tL) and P (tR) are the probability of going left or right, respectively,
and P (c|tL) and P (c|tR) are the proportions of data points in tL and tR which belong
to class c.

Figure 4 visualizes the used variables:

t

tL

P (tL)

tR

P (tR)

Figure 4: Twoing criterion is a measure of the difference in probability that a category appears
in the left descendant rather than the right descendant node.

When the target attribute is binary the Gini and twoing criterion are equivalent [26].
The towing rule is more appropriate for data, which has a large number of different
classes. For multi-class problems the twoing criterion prefers attributes with evenly
divided splits [22, p. 57].

12

2 Theory of Decision Trees 2.2 Decision Tree Learning

Chi-Squared Statistic Criterion The chi-squared statistic (χ2) criterion is based on
comparing the obtained values of the frequency of a class because of the split to the a
priori frequency of the class.

Definition 7. The formula for computing the χ2 value is

χ2 =
C∑
k=1

P∑
p=1

(∣∣∣N (p)
ωk

∣∣∣− ∣∣∣Ñ (p)
ωk

∣∣∣)2∣∣∣Ñ (p)
ωk

∣∣∣ (6)

where Ñ (p)
k =

N (p)

N
·Nωk

is the a priori frequency of the samples N in k.

A larger value of χ2 indicates that the split is more homogeneous, i.e. has a greater
frequency of instances from a certain class. The attribute is chosen by the largest value
of χ2.

2.2.2 Stopping Criterion

The growing phase continues until a stopping criterion is triggered. The following con-
ditions are common stopping rules [22, p. 63]:

• All instances in the training set belong to a single value of y.

• The maximum tree depth has been reached.

• The number of cases in the terminal node is less than the minimum number of
cases for parent nodes.

• If the node were split, the number of cases in one or more child nodes would be
less than the minimum number of cases for child nodes.

• The best splitting criterion is not greater than a certain threshold.

Remark. The last stopping criterion is used in the implementation for pruning after
the growing phase.

13

2 Theory of Decision Trees 2.2 Decision Tree Learning

2.2.3 Tree Pruning

Using a tight stopping criterion tends to create small and underfitted decision trees. On
the other hand, using loose stopping criterion tends to generate large decision trees that
are overfitted to the training set.

To avoid both extremes, the idea of pruning was developed: A loose stopping crite-
rion is used and after the growing phase, the overfitted tree is cut back into a smaller
tree by removing sub-branches that are not contributing to the generalization accu-
racy.

Many approaches were developed and even the in the following presented ones have differ-
ent versions with improvements. However, the focus is on the basic ideas.

Reduced Error Pruning Reduced error pruning is a basic pruning approach introduced
by Ross Quinlan in 1987 [20].

Algorithm 3: Reduced Error Pruning
Input : Training set X, attribute set A, target feature y
Output: Pruned decision tree

1 Subdivide X into a training set XT and validation set XV .
2 Build a tree T = treeGrowing(XT , A, y).
3 Pass all of the training examples XV through the tree T and estimate the error rate of

each node n using XV .
4 Convert a node to a leaf if it would have lower estimated error then the sum of the

errors of its children.
5 return T

However the splitting into two sets is not welcome, because it reduces the size of training
set.

Cost-Complexity Pruning Proposed by Leo Breiman in 1984, the pruning method is
also known as weakest link pruning or error-complexity pruning. Contrary to the reduced
error pruning this pruning approach is not straight forward [22, p. 64].

The idea is to consider the size and the estimated error rate of the tree. The total cost
Cα(T) of tree T is defined as

Cα(T) = R(T) + α|T̃ |, α ≥ 0 (7)

where R(T) is the weighted summed error of the leafs of tree T and α is penalty for the
complexity of the tree T̃ (so called complexity parameter), while T̃ stands for all leaves
in the tree T .

14

2 Theory of Decision Trees 2.2 Decision Tree Learning

For a fixed value of α there is a unique smallest minimizing subtree T (α) of the complete
tree Tmax, that fulfills the following two conditions [16]:

l1 Cα (T (α)) = min
T⊆Tmax

Cα(T) (8)

l2 If Cα(T) = Cα (T (α)) then T (α) ⊆ T (9)

The first condition says that there is no subtree of Tmax with lower costs than T (α)
at that α. The second condition says that if more than one tree achieves the same
minimum, the cost-complexity pruning selects the smallest tree. Since Tmax is finite,
there is a finite number of different subtrees T (α) of Tmax. A decreasing sequence of α
for subtrees of Tmax would look like

T1 ⊇ T2 ⊇ T3 ⊇ · · · ⊇ {n}

with n as the root node of T and Tn is the smallest subtree for α ∈ [αn, αn+1).

Error-Based Pruning The goal is to improve the estimate of error on unseen data
using only training set data. Hence if a node does not increase estimated error, we
prune it.

The error estimate for a subtree is the weighted (based on how many instances of each
there are) sum of the error estimates for all its leaves, defined by

ε(T, S) = ε(T, S) + Zα ·

√
ε(T, S) · (1− ε(T, S))

|S|
(10)

where ε(T, S) denotes the misclassification rate of the tree T on the training set S;
Z is the inverse of the standard normal cumulative distribution; and α is the desired
significance level.

Remark. Cost-complexity pruning and reduced error pruning tends to over-pruning,
while error-based pruning tend to under-pruning [22, p.68].

15

2 Theory of Decision Trees 2.3 Selected Algorithms

2.3 Selected Algorithms

Before we immerse in the underlying theory, a small historical background of all shall
be given.

AID

1963

CHAID

1980

CART

1984

ID3

1986

ID4.5

1993

Figure 5: Timeline of four basic algorithm families: CHAID, CART, ID3 and ID4.5

Remark. As in the considered parts of decision tree theory, this is not a complete
summarization of all decision tree algorithms. Instead, basic and popular algorithms
were selected and will be introduced in the following.

2.3.1 Chi-squared Automatic Interaction Detector
(CHAID)

In 1964, the statisticians John A. Sonquist and James N. Morgan introduced a first ver-
sion of tree learning algorithm called Automatic Interaction Detection (AID) [17].

Gordon V. Kass proposed a modification to AID in his paper from 1979 [12] called
Chi-squared Automatic Interaction Detector (CHAID).

The basic improvement was splitting criterion: instead of the variance the χ2-test is
used. Therefore, the partitions need not be a bisection.

CHAID handles missing values by treating them as a separate valid category and does
not perform any pruning. A short introduction to handling missing attribute values will
be given in subsection 2.5.2.

2.3.2 Iterative Dichotomiser 3 (ID3)

The ID3 algorithm was developed by Ross Quinlan in 1986. It uses the information gain
as splitting criterion and it does not apply any pruning procedure nor does it handle
numeric attributes or missing values.

16

2 Theory of Decision Trees 2.4 Discussion

2.3.3 Classification And Regression Tree (CART)

Leo Breiman published his idea of CART in 1984 [22, p. 18]. As the name suggests
CART supports also regression trees. This book provides a strong statistic foundation
and revived the idea of CLS [9, p. 435].

Two splitting criterions can be chosen: the twoing or Gini criterion [26, p. 1]. The
obtained tree is pruned by cost-complexity pruning.

2.3.4 C4.5

C4.5 is the updated version of ID3 by the same author [13]. It uses also the informa-
tion gain, but extends this by the option of handling missing value and continuous values.
This new splitting criterion is called gain ratio (see formula 3).

After the growing phase an error-based pruning is performed.

Remark. There is a commercial successor of C4.5, called C5.0 [13], but it has not
influenced the decision tree learning in the way Quinlan’s two other algorithms did: no
scientific papers about the C5.0 itself are findable.

2.4 Discussion

In this part, the usage of decision trees shall be discussed. The pro and con state-
ments are very general and thus not very precise. There are several approaches to avoid
or at least minimize the disadvantages and maximize the benefits and advantages, as
mentioned in the previous parts.

2.4.1 Advantages

Also a lot of advantages can be recognized [22, p. 73ff.]. Decision trees

• are self-explanatory and can be converted into a set of rules, which is easy and
fast to interpret, understand, and implement: A path from the root to a leaf is
the explanation for the resulting classification which is given by the leaf (terminal
node).

• can handle both nominal and numeric input values.

• are capable of handling data sets with missing values.

• are a nonparametric method, which means that they have no assumptions about
the space distribution and the classifier structure.

17

2 Theory of Decision Trees 2.5 Outlook

2.4.2 Disadvantages

On the other hand, decision trees have disadvantages such as

• an over-sensitivity to the training set, to irrelevant attributes, and to noise.

• a requirement that the target attribute consists only of discrete values (in case e.g.
ID3 or C4.5).

• a tending to perform well if a few highly relevant attributes exist, because decision
trees use the divide and conquer method; but less so if many complex interactions
are present.

2.5 Outlook

This subsection is about what was not part of the considerations of this seminar paper,
but, in the humble opinion of the author, is important or interesting for working with
decision trees.

2.5.1 Complexity & Performance

Like for all computer algorithms the time and space complexity is relevant. [4] gives a
broad overview of the complexity of decision trees in general.

In the following some assumptions contain the wide field of complexity. We sup-
pose that we have n training instances, m attributes, O(n) nodes (up to one leaf
per example), and the tree depth of O(log n). So the complexities are given by table
2.

Building a tree O(m · n log n)

Subtree replacement O(n)

Subtree raising O (n · (n log n)2)

• Every instance may have to
be redistributed at every node
between its leaf and the root

O (n log n)

• Cost for redistribution (on av-
erage)

O (log n)

Total Cost O(m · n log n) +O (n · (n log n)2)

Table 2: Complexity overview of a assumed decision tree

But [27] showed that it is possible with a novel algorithm to achieve a time complexity
of O(m · n).

18

2 Theory of Decision Trees 2.5 Outlook

Due to the fact that there are many improvements for each algorithm, a general state-
ment is not feasible. But several research approaches compare the performances of
decision tree algorithms with each other (e.g. [15], [1], [23]) and decision trees with
other classification approaches (e.g. [11], [7]).

2.5.2 Missing Attributes

It is common, that classification problems have missing attributes during training, during
classification, or both. Consider first training a tree classifier despite the fact that some
training patterns are missing attributes.

There are several approaches to handle missing values. Numerical values can be initial-
ized by a meaningful value (minimum, maximum, average, −1, etc.). For nonnumerical
attributes it might be useful to choose the commonest attribute value.

For a more detailled description of the approaches to handle missing values, e.g. [31]
and [22, p. 59 ff.] are recommended.

2.5.3 Random Forests

A Random forest is a classifier consisting of n decision trees [28]. This method combines
the Bagging (Bootstrap aggregating, [22, p. 105ff.]) method and the random selection
of features [22, p. 87 ff.].

Figure 6 gives a short graphical overview of the data flow and the functional principle
of random forests.

Original Data

Prediction Tree 1

Bootstrap 1

Prediction Tree 2

Bootstrap 2

. . .

. . .

Prediction Tree n

Bootstrap n

Decision Forest

Figure 6: The random forest schematic

19

3 Summary & Conclusion

3 Summary & Conclusion

3.1 Applications

Decision trees have a wide field of applications. In this subsection some examples of the
applications are listed.

Astronomy [24] applied decision tree learning to the task of distinguishing between
stars and cosmic rays in images collected by the Hubble Space Telescope.

Chemistry The relationship between the research on octane (ROC) number and the
molecular substructures were explored in the paper [2].

Medicine In [29] decision trees are applied for the diagnosis of the ovarian cancer.

Economy The results of the research project on decision trees used in stock trading was
published in [30].

Geography [14] used classification trees to predict and correct errors in topographical
and geological data.

3.2 Programming Example

In the programming example a decision tree induction algorithm was implemented in
the programming language Python. The focus during the development was on readability
and understanding, less on performance and software architecture.

Two splitting criterions are implemented: Information and Gini gain (ID3 and CART).
Also a basic pruning algorithm can be used, which uses a threshold for the pruning de-
cision (see subsection for the idea of stopping criterion). The decision tree itself is imple-
mented as binary tree and does not support regression analysis.

Two examples are enclosed: Tuberculosis/pneumonia and fish iris classification. Both
are from real world, while the first example consists of only a handful instances due to
the fact that this example was calculated completely by hand in the presentation. The
second example origins from Matlab demo files.

The code is well commented and has a demo application for each example.

20

3 Summary & Conclusion 3.3 Summary

3.3 Summary

In the scope of this paper, a small introduction to decision trees was given. The introduc-
tory example showed the working principle and advantages of decision trees. An overview
of machine learning approaches helped to see the bigger picture.

The theory part started with some necessary definitions which are used in the following
parts. The basic top-down induction of decision trees algorithm was introduced and the
options for improving this framework were described mathematically.

Four decision tree algorithms were selected and presented to the reader: CHAID, ID3,
CART, and C4.5. All facts from the previous sections were compared and traded off
one against the other. Due to the limited scope of this seminar paper some parts were not
considered in detail, but a small outlook on these interesting topics is given.

The last part shows some examples where decision trees find their application in the real
world and how many-faceted this field is. The programming example with a small code
documentation completes the picture of decision trees.

21

A Bibliography

A Bibliography
[1] Robert E. Banfield et al. “A comparison of decision tree ensemble creation tech-

niques”. In: Pattern Analysis and Machine Intelligence, IEEE Transactions on 29.1
(2007), pp. 173–180.

[2] Edward S. Blurock. “Automatic learning of chemical concepts: Research octane
number and molecular substructures”. In: Computers & chemistry 19.2 (1995),
pp. 91–99.

[3] Leo Breiman. “Technical note: Some properties of splitting criteria”. In: Machine
Learning 24.1 (1996), pp. 41–47.

[4] Harry Buhrman and Ronald De Wolf. “Complexity measures and decision tree
complexity: a survey”. In: Theoretical Computer Science 288.1 (2002), pp. 21–43.

[5] Wray Buntine and Tim Niblett. “A further comparison of splitting rules for decision-
tree induction”. In: Machine Learning 8.1 (1992), pp. 75–85.

[6] Thomas H. Cormen et al. Introduction to algorithms. Vol. 2. MIT Press, 2001.

[7] Stephen P. Curram and John Mingers. “Neural networks, decision tree induction
and discriminant analysis: An empirical comparison”. In: Journal of the Opera-
tional Research Society 45.4 (1994), pp. 440–450.

[8] Chris Drummond and Robert C. Holte. “Exploiting the cost (in) sensitivity of
decision tree splitting criteria”. In: ICML. 2000, pp. 239–246.

[9] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern classification. John
Wiley & Sons, 2012.

[10] Sally Goldman and Yoram Singer. “Self-Pruning Prediction Trees”. In: WiML
(2013). url: http://snowbird.djvuzone.org/2010/abstracts/122.pdf.

[11] Jin Huang, Jingjing Lu, and Charles X. Ling. “Comparing naive Bayes, decision
trees, and SVM with AUC and accuracy”. In: Data Mining, 2003. ICDM 2003.
Third IEEE International Conference on. IEEE. 2003, pp. 553–556.

[12] Gordon V. Kass. “An exploratory technique for investigating large quantities of
categorical data”. In: Applied statistics (1980), pp. 119–127.

[13] Ron Kohavi and J. Ross Quinlan. “Decision Tree Discovery”. In: Handbook of Data
Mining and Knowledge Discovery. University Press, 1999, pp. 267–276.

[14] Philippe Lagacherie and Susan Holmes. “Addressing geographical data errors in a
classification tree for soil unit prediction”. In: International Journal of Geographical
Information Science 11.2 (1997), pp. 183–198.

[15] D. Lavanya and K. Usha Rani. “Performance Evaluation of Decision Tree Classi-
fiers on Medical Datasets”. In: International Journal of Computer Applications 26
(2011).

[16] John Mingers. “An empirical comparison of selection measures for decision-tree
induction”. In: Machine learning 3.4 (1989), pp. 319–342.

22

http://snowbird.djvuzone.org/2010/abstracts/122.pdf

A Bibliography

[17] James N. Morgan and John A. Sonquist. “Problems in the analysis of survey data,
and a proposal”. In: Journal of the American statistical association 58.302 (1963),
pp. 415–434.

[18] J. Ross Quinlan. C4.5: Programs for Machine Learning. C4.5 - programs for ma-
chine learning / J. Ross Quinlan. Morgan Kaufmann Publishers, 1993.

[19] J. Ross Quinlan. “Induction of decision trees”. In: Machine learning 1.1 (1986),
pp. 81–106.

[20] J. Ross Quinlan. “Simplifying decision trees”. In: International journal of man-
machine studies 27.3 (1987), pp. 221–234.

[21] P. Rob, C. Coronel, and K. Crockett. Database Systems: Design, Implementation
& Management. Cengage Learning, 2008.

[22] L. Rokach. Data Mining with Decision Trees: Theory and Applications. Series in
machine perception and artificial intelligence. World Scientific Publishing Com-
pany, Incorporated, 2008.

[23] S. Rasoul Safavian and David Landgrebe. “A survey of decision tree classifier
methodology”. In: IEEE transactions on systems, man, and cybernetics 21.3 (1991),
pp. 660–674.

[24] Steven Salzberg et al. “Decision trees for automated identification of cosmic-ray
hits in Hubble Space Telescope images”. In: Publications of the Astronomical So-
ciety of the Pacific (1995), pp. 279–288.

[25] Claude Elwood Shannon. “A mathematical theory of communication”. In: The Bell
System Technical Journal 27.1 (1948), pp. 379–423, 623–656.

[26] Yu-Shan Shih. “Families of splitting criteria for classification trees”. In: Statistics
and Computing 9.4 (1999), pp. 309–315.

[27] Jiang Su and Harry Zhang. “A fast decision tree learning algorithm”. In: Proceed-
ings of the National Conference on Artificial Intelligence. Vol. 21. 1. AAAI Press;
MIT Press; 1999. 2006, p. 500.

[28] Weida Tong et al. “Decision forest: combining the predictions of multiple indepen-
dent decision tree models”. In: Journal of Chemical Information and Computer
Sciences 43.2 (2003), pp. 525–531.

[29] Antonia Vlahou et al. “Diagnosis of ovarian cancer using decision tree classification
of mass spectral data”. In: BioMed Research International 2003.5 (2003), pp. 308–
314.

[30] Muh-Cherng Wu, Sheng-Yu Lin, and Chia-Hsin Lin. “An effective application of
decision tree to stock trading”. In: Expert Systems with Applications 31.2 (2006),
pp. 270–274.

[31] Shichao Zhang et al. “" Missing is useful": missing values in cost-sensitive decision
trees”. In: Knowledge and Data Engineering, IEEE Transactions on 17.12 (2005),
pp. 1689–1693.

23

	Introduction
	What is a decision tree?
	Taxonomy
	About this paper

	Theory of Decision Trees
	Definitions
	Decision Tree Learning
	Splitting Criterion
	Stopping Criterion
	Tree Pruning

	Selected Algorithms
	Chi-squared Automatic Interaction Detector (CHAID)
	Iterative Dichotomiser 3 (ID3)
	Classification And Regression Tree (CART)
	C4.5

	Discussion
	Advantages
	Disadvantages

	Outlook
	Complexity & Performance
	Missing Attributes
	Random Forests

	Summary & Conclusion
	Applications
	Programming Example
	Summary

	Bibliography

