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Goals of the lecture

Lasso ≡ Least Absolute Shrinkage and Selection Operator

Goal: After the lecture, to understand what these words mean

I Shrinkage: The lasso shrinks / regularizes the least squares
regression coefficients (like ridge regression).

I Selection: The lasso also performs variable selection (unlike
ridge regression).

I Least absolute: Shrinkage and selection are achieved by
penalizing the absolute values of the regression coefficients.
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Linear regression

I Data: {(x1, y1), . . . , (xn, yn)}
I n observations of pairs (x i , yi)
I x i ∈ Rp: covariates
I yi ∈ R: response
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I Assumption: linear relation between covariates and response

yi = xi1β1 + . . .+ xipβp + ei (1)
= x>i β + ei (2)

where ei is the residual
I Goal: Determine the coefficients β = (β1, . . . , βp)

>
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Least squares

I Minimize the residual sum of squares (RSS)

RSS(β) =
n∑

i=1
e2i =

n∑
i=1

(
yi − x>i β

)2
(3)

I In vector notation, with

y =

y1
...

yn

 X =

x>1
...

x>n

 =

x11 . . . x1p
...

...
...

xn1 . . . xnp

 (4)

we have

RSS(β) = ||y − Xβ||22 (5)
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Least squares

I Closed form solution

β̂
o
= argmin

β
RSS(β) (6)

= (X>X)−1X>y (7)

if p × p matrix X>X is invertible

I Prediction given a test
covariate vector x

ŷ = x>β̂
o(8)
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Ridge regression

I If X>X is not invertible, regularized inverse can be taken

β̂
r
= (X>X + λIp)

−1X>y (9)

where Ip is the p × p identity matrix and λ ≥ 0 the
regularization parameter.

I This is ridge regression, β̂
r is minimizing J r (β)

J r (β) = ||y − Xβ||22 + λ
p∑

j=1
β2j (10)

I As λ increases, β̂
r shrinks to zero (“shrinkage”).
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Benefits of ridge regression

β̂
r
= (X>X + λIp)−1X>y

I Regularization / shrinkage is useful even if X>X is invertible.
I Reason: it can improve prediction accuracy

Example:
I n = 50 observations,

p = 10 covariates
I Orthonormal matrix X:

X>X = Ip

I β̂
r
= 1

1+λX>y = 1
1+λ β̂

o
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Limits of ridge regression

β̂
r
= 1

1+λ
β̂

o

I Data were artificially generated with β∗ = (3, 2, 1, 0, . . . , 0)>

I The vector is sparse: only 3/10 nonzero terms
I Ridge regression cannot recover sparse β.

I Ridge regression performs
shrinkage but not variable
selection.

I Variable selection:
Some β̂j are set to zero;
covariates are omitted from
the fitted model.
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Some practical aspects

I Choice of λ: via cross-validation
I Ridge solution β̂

r depends on the scale of the covariates.
→ Center so that

∑n
i=1 yi =

∑n
i=1 xij = 0

→ Re-scale so that
∑n

i=1 x2
ij = 1

I Assume that the data were preprocessed in this manner.
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Importance of variable selection

I It reduces the complexity of the models.
I The models become easier to interpret.
I It makes prediction cheaper: only covariates with nonzero β̂j

need to be measured.

ŷ = x1β̂1 + . . .+ x1000β̂1000y
ŷ = x1β̂1 + x2β̂2 + x3β̂3
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Lasso regression

I Lasso regression consists in minimizing JL(β),

JL(β) = ||y − Xβ||22 + λ
p∑

j=1
|βj | (11)

I Similar to the cost function J r (β) for ridge regression,

J r (β) = ||y − Xβ||22 + λ
p∑

j=1
β2j (12)

I λ ≥ 0 is the regularization (shrinkage) parameter.
I Penalty: sum of absolute values instead of sum of squares
I Difference seems minor but it results in a very different

behavior: it enables shrinkage and selection of covariates.
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Shrinkage and variable selection with the lasso

I The lasso generally lacks an analytical solution.
I Closed form solution when X>X = Ip

β̂L
j =


β̂o − λ

2 if β̂o ≥ λ
2

0 if β̂o ∈ (−λ
2 ,

λ
2 )

β̂o + λ
2 if β̂o ≤ −λ

2

(13)
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Back to the example

I Data were artificially generated with β∗ = (3, 2, 1, 0, . . . , 0)>

I The vector is sparse: only 3/10 nonzero terms
I Lasso regression combines shrinkage and variable selection.

-6 -4 -2 0 2 4 6
55

56

57

58

59

60

61

62

63

64

M
e

a
n

 s
q

u
a

re
d

 p
re

d
ic

ti
o

n
 e

rr
o

r

Penalty λ (log 10)

 

 

Lasso regression

Least squares

-6 -4 -2 0 2 4 6
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Penalty λ (log 10)

R
e

g
re

s
s
io

n
 c

o
e

ff
ic

ie
n

ts

Michael Gutmann Short Introduction to the Lasso 13 / 24



Proof

I Assume X>X = Ip
I We want to show that the shrinkage and selection operator

β̂L
j =


β̂o − λ

2 if β̂o ≥ λ
2

0 if β̂o ∈ (−λ
2 ,

λ
2 )

β̂o + λ
2 if β̂o ≤ −λ

2

(14)

minimizes JL(β),

JL(β) = ||y − Xβ||22 + λ
p∑

j=1
|βj | (15)
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Proof

JL(β) = ||y − Xβ||22 + λ
p∑

j=1
|βj | (16)

= (y − Xβ)>(y − Xβ) + λ
p∑

j=1
|βj | (17)

= y>y − y>Xβ − β>X>y + β>X>Xβ + λ
p∑

j=1
|βj | (18)

= y>y − 2β>X>y + β>X>X︸ ︷︷ ︸
Ip

β + λ
p∑

j=1
|βj | (19)

= y>y − 2β>X>y︸ ︷︷ ︸
β̂

o
=r

+β>β + λ
p∑

j=1
|βj | (20)
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Proof

JL(β) = y>y − 2β>r + β>β + λ
p∑

j=1
|βj | (21)

= y>y − 2
p∑

j=1
βj rj +

p∑
j=1

β2j + λ
p∑

j=1
|βj | (22)

= y>y +
p∑

j=1

(
−2βj rj + β2j + λ|βj |

)
︸ ︷︷ ︸

fj (βj )

(23)

= constant+
p∑

j=1
fj(βj) (24)

I For X>X = Ip, the optimization problem decomposes into p
independent problems.

I Minimizing each fj(βj) separately will minimize JL(β).
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Proof

I Drop the subscripts for a moment and consider a single f only.

f (β) = β2 − 2rβ + λ|β| (25)

I Problem: derivative at zero not defined
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Proof

I Approach: Make a smooth approximation |β| ≈ hε(β)

hε(β) =

{
ε
2 +

1
2εβ

2 if β ∈ (−ε, ε)
|β| otherwise

(26)

I Do all the work with ε > 0 and, at the end, take the limit
ε→ 0.
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Proof

I Using hε(β) instead of |β| gives

f̃ (β) = β2 − 2rβ + λhε(β) (27)

I The derivative of f̃ (β) is

f̃ ′(β) = 2β − 2r + λh′ε(β) (28)

h′ε(β) =


1 if β ≥ ε
β
ε if β ∈ (−ε, ε)
−1 if β ≤ −ε
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Proof

I Setting the derivative of f̃ ′(β) to zero gives the condition

2β − 2r + λh′ε(β) = 0 (29)

β +
λ

2h′ε(β) = r (30)

I The left-hand side is a piecewise linear, monotonically
increasing function gε(β): β is uniquely determined by r .

gε(β) =


β + λ

2 if β ≥ ε
β(1+ λ

2ε) if β ∈ (−ε, ε)
β − λ

2 if β ≤ −ε
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Proof

There are three cases
1. r ≥ ε+ λ

2

β +
λ

2
!
= r ⇒ β = r − λ

2

2. r ∈
(
−ε− λ

2 , ε+
λ
2

)
β

2ε+ λ

2ε
!
= r ⇒ β =

2εr
2ε+ λ

3. r ≤ −ε− λ
2

β − λ

2
!
= r ⇒ β = r + λ

2
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Proof

There are three cases
1. r ≥ ε+ λ
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β +
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2
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2. r ∈
(
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2 , ε+
λ
2

)
β
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!
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3. r ≤ −ε− λ
2
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2
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Hence β =


r − λ

2 if r ≥ ε+ λ
2

2ε
2ε+λ r if r ∈ (−ε− λ

2 , ε+
λ
2 )

r + λ
2 if r ≤ −ε− λ

2
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Proof

I Taking the limit ε→ 0 gives

β̂ =


r − λ

2 if r ≥ λ
2

0 if r ∈ (−λ
2 ,

λ
2 )

r + λ
2 if r ≤ −λ

2

(31)

I With the subscripts, and rj = β̂o
j , we have

β̂j =


β̂o

j − λ
2 if β̂o

j ≥ λ
2

0 if β̂o
j ∈ (−λ

2 ,
λ
2 )

β̂o
j + λ

2 if β̂o
j ≤ −λ

2

(32)

which is the lasso solution β̂L
j .
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Summary

Lasso ≡ Least Absolute Shrinkage and Selection Operator

I Method to regularize linear regression (like ridge regression)
I Regularization / shrinkage can improve prediction accuracy.
I Method to perform covariate selection (unlike ridge regression)
I Covariate selection reduces the complexity of fitted models;

makes them easier to interpret.
I Combination of shrinkage and selection is achieved by

penalizing the absolute values of the regression coefficients.
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Appendix



Constrained optimization point of view

Ridge regression:

min
β
||y − Xβ||22

subject to
p∑

j=1
β2j ≤ t

Constraint set

RSS increases

Lasso regression:

min
β
||y − Xβ||22

subject to
p∑

j=1
|βj | ≤ t

Iso-contours
of the RSS

(Based on figures from chapter 6 of Introduction to Statistical Learning)

Michael Gutmann Short Introduction to the Lasso 2 / 2


	Appendix
	Appendix

