A Short Introduction to the Lasso Methodology

Michael Gutmann

sites.google.com/site/michaelgutmann

University of Helsinki Aalto University Helsinki Institute for Information Technology

March 9, 2016

Lasso \equiv Least Absolute Shrinkage and Selection Operator

Goal: After the lecture, to understand what these words mean

- Shrinkage: The lasso shrinks / regularizes the least squares regression coefficients (like ridge regression).
- Selection: The lasso also performs variable selection (unlike ridge regression).
- Least absolute: Shrinkage and selection are achieved by penalizing the absolute values of the regression coefficients.

Linear regression

Assumption: linear relation between covariates and response

$$y_i = x_{i1}\beta_1 + \ldots + x_{ip}\beta_p + e_i \tag{1}$$

$$= \mathbf{x}_i^\top \boldsymbol{\beta} + \boldsymbol{e}_i \tag{2}$$

where e_i is the residual

• Goal: Determine the coefficients $\boldsymbol{\beta} = (\beta_1, \dots, \beta_p)^\top$

Least squares

Minimize the residual sum of squares (RSS)

$$\mathsf{RSS}(\beta) = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} \left(y_i - \mathbf{x}_i^\top \beta \right)^2 \tag{3}$$

In vector notation, with

$$\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \qquad \mathbf{X} = \begin{pmatrix} \mathbf{x}_1^\top \\ \vdots \\ \mathbf{x}_n^\top \end{pmatrix} = \begin{pmatrix} x_{11} & \dots & x_{1p} \\ \vdots & \vdots & \vdots \\ x_{n1} & \dots & x_{np} \end{pmatrix} \qquad (4)$$

we have

$$\mathsf{RSS}(\beta) = ||\boldsymbol{y} - \boldsymbol{X}\beta||_2^2 \tag{5}$$

Closed form solution

$$\hat{\boldsymbol{\beta}}^{o} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \operatorname{RSS}(\boldsymbol{\beta}) \tag{6}$$
$$= (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y} \tag{7}$$

if
$$p \times p$$
 matrix $\mathbf{X}^{\top} \mathbf{X}$ is invertible

 Prediction given a test covariate vector x

(8)
$$\hat{y} = \mathbf{x}^{\top} \hat{\boldsymbol{\beta}}^{\boldsymbol{o}}$$

 \blacktriangleright If ${\bf X}^{\top}{\bf X}$ is not invertible, regularized inverse can be taken

$$\hat{\boldsymbol{\beta}}^{r} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{p})^{-1}\mathbf{X}^{\top}\boldsymbol{y}$$
(9)

where \mathbf{I}_p is the $p \times p$ identity matrix and $\lambda \ge 0$ the regularization parameter.

• This is ridge regression, $\hat{\beta}^r$ is minimizing $J^r(\beta)$

$$J'(\boldsymbol{\beta}) = ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}||_2^2 + \lambda \sum_{j=1}^p \beta_j^2$$
(10)

• As λ increases, $\hat{\boldsymbol{\beta}}^r$ shrinks to zero ("shrinkage").

$$\hat{\boldsymbol{\beta}}^{r} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{p})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

- ▶ Regularization / shrinkage is useful even if **X**^T**X** is invertible.
- Reason: it can improve prediction accuracy

Example:

- n = 50 observations,
 p = 10 covariates
- Orthonormal matrix X:
 X^TX = I_p

$$\boldsymbol{\flat} \ \boldsymbol{\hat{\beta}}^{r} = \frac{1}{1+\lambda} \boldsymbol{\mathsf{X}}^{\top} \boldsymbol{y} = \frac{1}{1+\lambda} \boldsymbol{\hat{\beta}}^{c}$$

Limits of ridge regression

 $\hat{oldsymbol{eta}}^r = rac{1}{1+\lambda} \hat{oldsymbol{eta}}^o$

- ▶ Data were artificially generated with $\beta^* = (3, 2, 1, 0, ..., 0)^ op$
- The vector is sparse: only 3/10 nonzero terms
- Ridge regression cannot recover sparse β.
- Ridge regression performs shrinkage but not variable selection.
- Variable selection:
 Some β̂_j are set to zero;
 covariates are omitted from the fitted model.

- Choice of \u03c6: via cross-validation
- Ridge solution $\hat{\beta}'$ depends on the scale of the covariates.
 - ightarrow Center so that $\sum_{i=1}^n y_i = \sum_{i=1}^n x_{ij} = 0$
 - ightarrow Re-scale so that $\sum_{i=1}^n x_{ij}^2 = 1$

Assume that the data were preprocessed in this manner.

Importance of variable selection

- It reduces the complexity of the models.
- The models become easier to interpret.
- It makes prediction cheaper: only covariates with nonzero β_j need to be measured.

$$\hat{y} = x_1 \hat{\beta}_1 + \ldots + x_{1000} \hat{\beta}_{1000}$$

$$\downarrow$$

$$\hat{y} = x_1 \hat{\beta}_1 + x_2 \hat{\beta}_2 + x_3 \hat{\beta}_3$$

Lasso regression

• Lasso regression consists in minimizing $J^{L}(\beta)$,

$$J^{L}(\boldsymbol{\beta}) = ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}||_{2}^{2} + \lambda \sum_{j=1}^{p} |\beta_{j}|$$
(11)

• Similar to the cost function $J^r(\beta)$ for ridge regression,

$$J^{r}(\boldsymbol{\beta}) = ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}||_{2}^{2} + \lambda \sum_{j=1}^{p} \beta_{j}^{2}$$
(12)

- $\lambda \ge 0$ is the regularization (shrinkage) parameter.
- Penalty: sum of absolute values instead of sum of squares
- Difference seems minor but it results in a very different behavior: it enables *shrinkage* and *selection* of covariates.

Shrinkage and variable selection with the lasso

- The lasso generally lacks an analytical solution.
- Closed form solution when $\mathbf{X}^{\top}\mathbf{X} = \mathbf{I}_{p}$

$$\hat{\beta}_{j}^{L} = \begin{cases} \hat{\beta}^{o} - \frac{\lambda}{2} & \text{if } \hat{\beta}^{o} \ge \frac{\lambda}{2} \\ 0 & \text{if } \hat{\beta}^{o} \in \left(-\frac{\lambda}{2}, \frac{\lambda}{2}\right) \\ \hat{\beta}^{o} + \frac{\lambda}{2} & \text{if } \hat{\beta}^{o} \le -\frac{\lambda}{2} \end{cases}$$
(13)

Michael Gutmann

Back to the example

- Data were artificially generated with $\beta^* = (3, 2, 1, 0, \dots, 0)^{\top}$
- The vector is sparse: only 3/10 nonzero terms
- Lasso regression combines shrinkage and variable selection.

• Assume $\mathbf{X}^{\top}\mathbf{X} = \mathbf{I}_{p}$

We want to show that the shrinkage and selection operator

$$\hat{\beta}_{j}^{L} = \begin{cases} \hat{\beta}^{o} - \frac{\lambda}{2} & \text{if } \hat{\beta}^{o} \ge \frac{\lambda}{2} \\ 0 & \text{if } \hat{\beta}^{o} \in \left(-\frac{\lambda}{2}, \frac{\lambda}{2}\right) \\ \hat{\beta}^{o} + \frac{\lambda}{2} & \text{if } \hat{\beta}^{o} \le -\frac{\lambda}{2} \end{cases}$$
(14)

minimizes $J^{L}(\beta)$,

$$J^{L}(\boldsymbol{\beta}) = ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}||_{2}^{2} + \lambda \sum_{j=1}^{p} |\beta_{j}|$$
(15)

$$J^{L}(\beta) = ||\mathbf{y} - \mathbf{X}\beta||_{2}^{2} + \lambda \sum_{j=1}^{p} |\beta_{j}|$$
(16)
$$= (\mathbf{y} - \mathbf{X}\beta)^{\top} (\mathbf{y} - \mathbf{X}\beta) + \lambda \sum_{j=1}^{p} |\beta_{j}|$$
(17)
$$= \mathbf{y}^{\top} \mathbf{y} - \mathbf{y}^{\top} \mathbf{X}\beta - \beta^{\top} \mathbf{X}^{\top} \mathbf{y} + \beta^{\top} \mathbf{X}^{\top} \mathbf{X}\beta + \lambda \sum_{j=1}^{p} |\beta_{j}|$$
(18)
$$= \mathbf{y}^{\top} \mathbf{y} - 2\beta^{\top} \mathbf{X}^{\top} \mathbf{y} + \beta^{\top} \underbrace{\mathbf{X}}_{\mathbf{I}_{p}}^{\top} \beta + \lambda \sum_{j=1}^{p} |\beta_{j}|$$
(19)
$$= \mathbf{y}^{\top} \mathbf{y} - 2\beta^{\top} \underbrace{\mathbf{X}}_{\hat{\beta}^{\circ} = \mathbf{r}}^{\top} \mathbf{y} + \beta^{\top} \beta + \lambda \sum_{j=1}^{p} |\beta_{j}|$$
(20)

$$J^{L}(\boldsymbol{\beta}) = \boldsymbol{y}^{\top} \boldsymbol{y} - 2\boldsymbol{\beta}^{\top} \boldsymbol{r} + \boldsymbol{\beta}^{\top} \boldsymbol{\beta} + \lambda \sum_{j=1}^{p} |\beta_{j}|$$
(21)

$$= \mathbf{y}^{\top} \mathbf{y} - 2 \sum_{j=1}^{p} \beta_{j} r_{j} + \sum_{j=1}^{p} \beta_{j}^{2} + \lambda \sum_{j=1}^{p} |\beta_{j}| \qquad (22)$$
$$= \mathbf{y}^{\top} \mathbf{y} + \sum_{j=1}^{p} \underbrace{\left(-2\beta_{j} r_{j} + \beta_{j}^{2} + \lambda |\beta_{j}|\right)}_{f_{j}(\beta_{j})} \qquad (23)$$

$$= \text{constant} + \sum_{j=1}^{p} f_j(\beta_j)$$
(24)

- For X[⊤]X = I_p, the optimization problem decomposes into p independent problems.
- Minimizing each $f_j(\beta_j)$ separately will minimize $J^L(\beta)$.

Drop the subscripts for a moment and consider a single f only.

$$f(\beta) = \beta^2 - 2r\beta + \lambda|\beta|$$
(25)

Problem: derivative at zero not defined

• Approach: Make a smooth approximation $|\beta| \approx h_{\epsilon}(\beta)$

$$h_{\epsilon}(\beta) = \begin{cases} \frac{\epsilon}{2} + \frac{1}{2\epsilon}\beta^2 & \text{if } \beta \in (-\epsilon, \epsilon) \\ |\beta| & \text{otherwise} \end{cases}$$
(26)

▶ Do all the work with $\epsilon > 0$ and, at the end, take the limit $\epsilon \rightarrow 0$.

• Using $h_{\epsilon}(\beta)$ instead of $|\beta|$ gives

$$\tilde{f}(\beta) = \beta^2 - 2r\beta + \lambda h_{\epsilon}(\beta)$$
 (27)

• The derivative of $\tilde{f}(\beta)$ is

$$\tilde{f}'(\beta) = 2\beta - 2r + \lambda h'_{\epsilon}(\beta)$$
 (28)

Setting the derivative of *f*['](β) to zero gives the condition

$$2\beta - 2r + \lambda h'_{\epsilon}(\beta) = 0$$
⁽²⁹⁾

$$\beta + \frac{\lambda}{2} h'_{\epsilon}(\beta) = r \tag{30}$$

The left-hand side is a piecewise linear, monotonically increasing function g_ε(β): β is uniquely determined by r.

There are three cases

There are three cases

1.
$$r \ge \epsilon + \frac{\lambda}{2}$$

 $\beta + \frac{\lambda}{2} \stackrel{!}{=} r \Rightarrow \beta = r - \frac{\lambda}{2}$

2. $r \in (-\epsilon - \frac{\lambda}{2}, \epsilon + \frac{\lambda}{2})$
 $\beta \frac{2\epsilon + \lambda}{2\epsilon} \stackrel{!}{=} r \Rightarrow \beta = \frac{2\epsilon r}{2\epsilon + \lambda}$

3. $r \le -\epsilon - \frac{\lambda}{2}$

 $\beta - \frac{\lambda}{2} \stackrel{!}{=} r \Rightarrow \beta = r + \frac{\lambda}{2}$

Hence

 $\beta = \begin{cases} r - \frac{\lambda}{2} & \text{if } r \ge \epsilon + \frac{\lambda}{2} \\ \frac{2\epsilon}{\epsilon + \lambda}r & \text{if } r \in (-\epsilon - \frac{\lambda}{2}, \epsilon + \frac{\lambda}{2}) \\ r + \frac{\lambda}{2} & \text{if } r \le -\epsilon - \frac{\lambda}{2} \end{cases}$

• Taking the limit $\epsilon \rightarrow 0$ gives

$$\hat{\beta} = \begin{cases} r - \frac{\lambda}{2} & \text{if } r \ge \frac{\lambda}{2} \\ 0 & \text{if } r \in \left(-\frac{\lambda}{2}, \frac{\lambda}{2}\right) \\ r + \frac{\lambda}{2} & \text{if } r \le -\frac{\lambda}{2} \end{cases}$$
(31)

• With the subscripts, and $r_j = \hat{\beta}_j^o$, we have

$$\hat{\beta}_{j} = \begin{cases} \hat{\beta}_{j}^{o} - \frac{\lambda}{2} & \text{if } \hat{\beta}_{j}^{o} \ge \frac{\lambda}{2} \\ 0 & \text{if } \hat{\beta}_{j}^{o} \in \left(-\frac{\lambda}{2}, \frac{\lambda}{2}\right) \\ \hat{\beta}_{j}^{o} + \frac{\lambda}{2} & \text{if } \hat{\beta}_{j}^{o} \le -\frac{\lambda}{2} \end{cases}$$
(32)

which is the lasso solution $\hat{\beta}_{i}^{L}$.

 $\textit{Lasso} \equiv \textit{Least Absolute Shrinkage and Selection Operator}$

- Method to regularize linear regression (like ridge regression)
- ▶ Regularization / *shrinkage* can improve prediction accuracy.
- Method to perform covariate selection (unlike ridge regression)
- Covariate selection reduces the complexity of fitted models; makes them easier to interpret.
- Combination of shrinkage and selection is achieved by penalizing the *absolute* values of the regression coefficients.

Appendix

Constrained optimization point of view

(Based on figures from chapter 6 of Introduction to Statistical Learning)

Michael Gutmann	Short Introduction to the Lasso
-----------------	---------------------------------