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Goals of the lecture

Lasso = Least Absolute Shrinkage and Selection Operator
Goal: After the lecture, to understand what these words mean

» Shrinkage: The lasso shrinks / regularizes the least squares
regression coefficients (like ridge regression).

» Selection: The lasso also performs variable selection (unlike
ridge regression).

» Least absolute: Shrinkage and selection are achieved by
penalizing the absolute values of the regression coefficients.
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Linear regression
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» Assumption: linear relation between covariates and response

yi=xif1+ ...+ xpBp + & (1)
=x;B+e (2)

where ¢; is the residual
» Goal: Determine the coefficients 8 = (B1,...,08p) "

Michael Gutmann Short Introduction to the Lasso 3/24



Least squares

» Minimize the residual sum of squares (RSS)
n 5 n T 2
RSS(B) =D e =>_ (vi—x{ B) (3)
i=1 i=1

» In vector notation, with

Y1 X1 X11 .- Xip
y= X=1:1= (4)
Yn X;r Xnpl .- Xnp
we have
RSS(8) = |ly — XBI[3 (5)
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Least squares

» Closed form solution
B° = argmin RSS(8) (6)
B
= (X'X)"'XTy (7)

if p x p matrix X" X is invertible
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Ridge regression

» If XTX is not invertible, regularized inverse can be taken
B = (XTX+ A1) Xy (9)

where 1, is the p x p identity matrix and A > 0 the
regularization parameter.

Al

» This is ridge regression, B is minimizing J"(3)

P
J(B) = lly = XBIB+ 1> 82 (10)

j=1

» As X increases, 3" shrinks to zero (“shrinkage”).
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Benefits of ridge regression
B = (XTX+ )" XTy

» Regularization / shrinkage is useful even if XX is invertible.

» Reason: it can improve prediction accuracy

64
Example: %
S 62
» n = 50 observations, .
p = 10 covariates 80
. B 59
» Orthonormal matrix X: g
Ty 2 58
PR
Al _ 1 T o 1 A0 s —— Least squares
> B =X y=138 -
6 -4 2 0 2 4 6
Penalty A (log 10)
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Limits

of ridge regression

Data were artificially generated with 8* = (3,2,1,0,...,0)"
The vector is sparse: only 3/10 nonzero terms

Ridge regression cannot recover sparse 3.

Ridge regression performs
shrinkage but not variable
selection.

Variable selection:

Some Bj are set to zero;
covariates are omitted from _
the fitted model. 4

Regression coefficients

-2 0 2
Penalty A (log 10)
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Some practical aspects

» Choice of A: via cross-validation

» Ridge solution Br depends on the scale of the covariates.
— Centersothat ./ | yi=> 1 x;=0
— Re-scale so that ) 7, x7 =1

» Assume that the data were preprocessed in this manner.
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Importance of variable selection

> It reduces the complexity of the models.
» The models become easier to interpret.

> It makes prediction cheaper: only covariates with nonzero @
need to be measured.

= x1P1 + ...+ x100051000

!

¥ = x1P1 + xoB2 + x3/03
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Lasso regression

» Lasso regression consists in minimizing JL(3),
L 2 .
JHB) =ly = XBlE+ 2D 15l (11)
j=1
» Similar to the cost function J"(3) for ridge regression,
P
J(B) =ly = XBI+AD_ 57 (12)
j=1

v

A > 0 is the regularization (shrinkage) parameter.

v

Penalty: sum of absolute values instead of sum of squares

v

Difference seems minor but it results in a very different
behavior: it enables shrinkage and selection of covariates.
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Shrinkage and variable selection with the lasso

Lasso coefficient

> The lasso generally lacks an analytical solution.

» Closed form solution when XX =1,

A A
2 2
-

variable selection

. 0 0.5 1 1.5
Least squares coefficient

Michael Gutmann

N[>~

N[>~

e B Py

i3> 5

if B € (-3, %) (13)
if 3o < —3

shrinkageI

1

1+A

Ridge coefficient
o

. 0.5
Least squares coefficient
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Back to the example

» Data were artificially generated with 8* = (3,2,1,0,...,0)"
» The vector is sparse: only 3/10 nonzero terms

» Lasso regression combines shrinkage and variable selection.

64,
:
63| — Lasso regression H
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g 621 '
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Proof
» Assume XX = I,

» We want to show that the shrinkage and selection operator

minimizes J4(3),

p
JHB) = lly = XBI3+ 2D 15l (15)

j=1
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Proof

p
JHB) = [ly — XBIZ+ 2D 18

j=1

P
=(y—XB) (y —XB) + 1> |5l

j=1

P
=y'y—y"XB-B"X"y+BTXTXB+ 1> |5

j=1

P
=y'y-28"X"y+B8" X' XB+1> |5l

I Jj=1

p
=y'y-28"X"y+B8"8+1> |5
~—~—

o j=1
,BD:r J
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Proof

P
B =yTy—28Tr+BTB+ 1> 15 (21)
=1
p p ’ p
=y y=2> Bin+> B+ 2> 15 (22)
j=1 Jj=1 j=1
P
=yly+3 (~280+ 87 + A5 (23)
= f(8)
P
= constant + Z i(5;) (24)
j=1

» For XTX = I,, the optimization problem decomposes into p
independent problems.

» Minimizing each f;(3;) separately will minimize J-(3).
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Proof

» Drop the subscripts for a moment and consider a single f only.

» Problem: derivative at zero not defined

f (for r=1)

6

5

4

f(B) = 5% —2rB + \|B|
:ii
—0‘.5 6 0.5 1 1.‘5 2
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Proof

» Approach: Make a smooth approximation |3| = h.(5)

%—I—iﬁz if B€(—¢, ¢€)

26
1B otherwise (26)

- |

» Do all the work with € > 0 and, at the end, take the limit
e — 0.

H —— absolute value
0.18 ' = approximation
'
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Proof

» Using h.(j3) instead of || gives
F(B) = B —2rB + Ahe(B) (27)
> The derivative of 7() is
F/(B) =28 — 2r + AH/(B) (28)

1 if 6>¢
hé(ﬁ) g if 5 S (_67 E)
-1 if g < —e

-02 -0.15 -0.1 -0.05 [03 0.05 0.1 015 0.2
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Proof

» Setting the derivative of /() to zero gives the condition

28 —2r+ AH(B8)=0 (29)
B+ SH(B) = r (30)

» The left-hand side is a piecewise linear, monotonically
increasing function g.(5): £ is uniquely determined by r.

0.

B+ 3 if B>
g(B)=1B(1+3) fhe(-c e -
B—5  iff< e

' '
0. ' '
02 015 -01 -0.05 [03 0.05 0.1 015 0.2
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Proof

There are three cases

1.r26+% 18
ﬁ—l—%érﬁﬁ:r—%
2. re(—e—%,e—&—%)
2e+ A 1 _ 2er
A 2¢ = B_2e+/\
3 rg—e—%
| A
ﬁff;ré,b’:r+§
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Proof

There are three cases

Lr>e+3 ‘
B—i—%érﬁﬂzr—%
2.r€(767%,6+%)
2e+ A 1 _ 2er
p 2 B_ZE—}—A
3 rg—e—%
A A
,675—I’2>B—f+§
A A
r—s5 ifr>e+3
_ 2¢ : A A
Hence B=qscxr ifre(—e—3, e+3)
A : A
r+§ |fr§*€*§
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Proof

» Taking the limit € — 0 gives
r— if r > %
B=40 if re (=%, 3)
r—+ % if r < —%

N[>~

» With the subscripts, and r; = BA‘-’, we have

which is the lasso solution 5’}-.
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Summary

Lasso = Least Absolute Shrinkage and Selection Operator

» Method to regularize linear regression (like ridge regression)
» Regularization / shrinkage can improve prediction accuracy.
» Method to perform covariate selection (unlike ridge regression)

» Covariate selection reduces the complexity of fitted models;
makes them easier to interpret.

» Combination of shrinkage and selection is achieved by
penalizing the absolute values of the regression coefficients.
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Constrained optimization point of view

Ridge regression: Lasso regression:
min ||y — X813 min ||y — X813
B B
P P
subject to Zﬁf <t subject to Z 1Bl <t
j=1 j=1

Bz ,"/ / 7/ 2
Y/ ) B,
%%S’(ﬁ(ma@o% p
- ( ~_~"lso-contours
o ‘. of the RSS
B, B,
Constraint set

(Based on figures from chapter 6 of Introduction to Statistical Learning)
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