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Content

Two parts:

1. The basics of approximate Bayesian computation (ABC)

2. Computational and statistical efficiency

What is ABC?

A set of methods for approximate Bayesian inference which

can be used whenever sampling from the model is possible.
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Part I

Basic ABC



Program

Preliminaries
Statistical inference
Simulator-based models
Likelihood function

Inference for simulator-based models
Exact inference
Approximate inference
Rejection ABC algorithm
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Preliminaries
Inference for simulator-based models

Statistical inference
Simulator-based models
Likelihood function

Big picture of statistical inference

I Given data yo , draw conclusions about properties of its source
I If available, possibly take prior information into account

yo

Data space

Observation

Inference

Data source

Unknown properties

Prior information
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Preliminaries
Inference for simulator-based models

Statistical inference
Simulator-based models
Likelihood function

General approach

I Set up a model with potential properties θ (parameters)
I See which θ are reasonable given the observed data

Prior information

yo

Data space

Observation

Inference

Data source

Unknown properties

Model

M(θ)
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Preliminaries
Inference for simulator-based models

Statistical inference
Simulator-based models
Likelihood function

Likelihood function

I Measures agreement between θ and the observed data yo

I Probability to see data y like yo if property θ holds

yo

Data space

ObservationData source

Unknown properties

Model

M(θ)
Data generation

y|θ
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Preliminaries
Inference for simulator-based models

Statistical inference
Simulator-based models
Likelihood function

Likelihood function

I Measures agreement between θ and the observed data yo

I Probability to see data y like yo if property θ holds

yo

Data space

ObservationData source

Unknown properties

Model

M(θ)
Data generation
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Preliminaries
Inference for simulator-based models

Statistical inference
Simulator-based models
Likelihood function

Likelihood function

I For discrete random variables:

L(θ) = Pr(y = yo |θ) (1)

I For continuous random variables:

L(θ) = lim
ε→0

Pr(y ∈ Bε(yo)|θ)

Vol(Bε(yo))
(2)
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Preliminaries
Inference for simulator-based models

Statistical inference
Simulator-based models
Likelihood function

Performing statistical inference

I If L(θ) is known, inference boils down to solving an
optimization/sampling problem

I Maximum likelihood estimation

θ̂ = argmaxθ L(θ)

I Bayesian inference

p(θ|yo) ∝ p(θ)× L(θ)

posterior ∝ prior × likelihood
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Preliminaries
Inference for simulator-based models

Statistical inference
Simulator-based models
Likelihood function

Textbook case

I model ≡ family of probability density/mass functions p(y|θ)

I Likelihood function L(θ) = p(yo |θ)

I Closed form solutions are possible.
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Preliminaries
Inference for simulator-based models

Statistical inference
Simulator-based models
Likelihood function

Simulator-based models

I Not all models are specified as family of pdfs p(y|θ).

I Here: simulator-based models:

models which are specified via a mechanism (rule) for
generating data
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Preliminaries
Inference for simulator-based models

Statistical inference
Simulator-based models
Likelihood function

Toy example

I Let y |θ ∼ N (θ, 1)

I Family of pdfs as model:

p(y |θ) =
1√
2π

exp

(
−(y − θ)2

2

)
(3)

I Simulator-based model:

y = z + θ z ∼ N (0, 1) (4)

or

y = z + θ z =
√
−2 log(ω) cos(2πν) (5)

where ω and ν are independent random variables uniformly
distributed on (0, 1)
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Preliminaries
Inference for simulator-based models

Statistical inference
Simulator-based models
Likelihood function

Formal definition of a simulator-based model

I Let (Ω,F ,P) be a probability space.
I A simulator-based model is a collection of (measurable)

functions g(.,θ) parametrized by θ,

ω ∈ Ω 7→ y = g(ω,θ) ∈ Y (6)

I The functions g(.,θ) are typically not available in closed form.

Simulation / Sampling
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Preliminaries
Inference for simulator-based models

Statistical inference
Simulator-based models
Likelihood function

Other names for simulator-based models

I Models specified via a data generating mechanism occur in
multiple and diverse scientific fields.

I Different communities use different names for simulator-based
models:

I Generative models
I Implicit models
I Stochastic simulation models
I Probabilistic programs

Michael Gutmann ABC Tutorial 16 / 65



Preliminaries
Inference for simulator-based models

Statistical inference
Simulator-based models
Likelihood function

Examples

I Astrophysics:
Simulating the formation of
galaxies, stars, or planets

I Evolutionary biology:
Simulating evolution

I Neuroscience:
Simulating neural circuits

I Ecology:
Simulating species migration

I Health science:
Simulating the spread of an
infectious disease

I . . .

Simulated neural activity in rat somatosensory cortex

(Figure from https://bbp.epfl.ch/nmc-portal)
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Example (health science)

I Simulating bacterial transmissions in child day care centers
(Numminen et al, 2013)
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Preliminaries
Inference for simulator-based models

Statistical inference
Simulator-based models
Likelihood function

Advantages of simulator-based models

I Direct implementation of hypotheses of how the observed
data were generated.

I Neat interface with physical or biological models of data.

I Modeling by replicating the mechanisms of nature which
produced the observed/measured data. (“Analysis by
synthesis”)

I Possibility to perform experiments in silico.
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Preliminaries
Inference for simulator-based models

Statistical inference
Simulator-based models
Likelihood function

Disadvantages of simulator-based models

I Generally elude analytical treatment.

I Can be easily made more complicated than necessary.

I Statistical inference is difficult . . . but possible!
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Preliminaries
Inference for simulator-based models

Statistical inference
Simulator-based models
Likelihood function

Family of pdfs induced by the simulator

I For any fixed θ, the output of the simulator yθ = g(.,θ) is a
random variable.

I No closed-form formulae available for p(y|θ).

I Simulator defines the model pdfs p(y|θ) implicitly.
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Implicit definition of the model pdfs

A

A
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Implicit definition of the likelihood function

For discrete random variables:
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Implicit definition of the likelihood function

For continuous random variables: L(θ) = limε→0 Lε(θ)
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Preliminaries
Inference for simulator-based models

Statistical inference
Simulator-based models
Likelihood function

Implicit definition of the likelihood function

I To compute the likelihood function, we need to compute the
probability that the simulator generates data close to yo ,

Pr (y = yo |θ) or Pr (y ∈ Bε(yo)|θ)

I No analytical expression available.

I But we can empirically test whether simulated data equals yo

or is in Bε(yo).

I This property will be exploited to perform inference for
simulator-based models.
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Program

Preliminaries
Statistical inference
Simulator-based models
Likelihood function

Inference for simulator-based models
Exact inference
Approximate inference
Rejection ABC algorithm
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Preliminaries
Inference for simulator-based models

Exact inference
Approximate inference
Rejection ABC algorithm

Exact inference for discrete random variables

I For discrete random variables, we can perform exact Bayesian
inference without knowing the likelihood function.

I By definition, the posterior is obtained by conditioning p(θ, y)
on the event y = yo :

p(θ|yo) =
p(θ, yo)

p(yo)
=

p(θ, y = yo)

p(y = yo)
(7)
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Preliminaries
Inference for simulator-based models

Exact inference
Approximate inference
Rejection ABC algorithm

Exact inference for discrete random variables

I Generate tuples (θi , yi ):

1. θi ∼ pθ (iid from the prior)
2. ωi ∼ P (by running the simulator)
3. yi = g(ωi ,θi ) (by running the simulator)

I Condition on y = yo ⇔ Retain only the tuples with yi = yo

I The θi from the retained tuples are samples from the
posterior p(θ|yo).
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Preliminaries
Inference for simulator-based models

Exact inference
Approximate inference
Rejection ABC algorithm

Example

I Posterior inference of the success probability θ in a Bernoulli
trial.

I Data: yo = 1

I Prior: pθ = 1 on (0, 1)
I Generate tuples (θi , yi )

1. θi ∼ pθ

2. ωi ∼ U(0, 1)

3. yi =

{
1 if ωi < θi

0 otherwise

I Retain those θi for which yi = yo .

Michael Gutmann ABC Tutorial 29 / 65



Preliminaries
Inference for simulator-based models

Exact inference
Approximate inference
Rejection ABC algorithm

Example

I The method produces samples from the posterior.

I Monte Carlo error when summarizing the samples as an
empirical distribution or computing expectations via sample
averages.

I Histogram for N simulated tuples (θi , yi )

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

Success probability

p
d
f

 

 
Estimated posterior pdf

True posterior pdf

Prior pdf

N = 1000

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Success probability

p
d
f

 

 
Estimated posterior pdf

True posterior pdf

Prior pdf

N = 10, 000

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Success probability

p
d
f

 

 
Estimated posterior pdf

True posterior pdf

Prior pdf

N = 100, 000

Michael Gutmann ABC Tutorial 30 / 65



Preliminaries
Inference for simulator-based models

Exact inference
Approximate inference
Rejection ABC algorithm

Limitations

I Only applicable to discrete random variables.

I And even for discrete random variables:
Computationally not feasible in higher dimensions

I Reason: The probability of the event yθ = yo becomes smaller
and smaller as the dimension of the data increases.

I Out of N simulated tuples only a small fraction will be
accepted.

I The small number of accepted samples do not represent the
posterior well.

I Large Monte Carlo errors
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Preliminaries
Inference for simulator-based models

Exact inference
Approximate inference
Rejection ABC algorithm

Approximations to make inference feasible

I Settle for approximate yet computationally feasible inference.
I Introduce two types of approximations:

1. Instead of working with the whole data, work with lower
dimensional summary statistics tθ and to ,

tθ = T (yθ) to = T (yo). (8)

2. Instead of checking tθ = to , check whether ∆θ = d(to , tθ) is
less than ε. (d may or may not be a metric)
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Preliminaries
Inference for simulator-based models

Exact inference
Approximate inference
Rejection ABC algorithm

Approximation of the likelihood function

L(θ) = limε→0 Lε(θ) Lε(θ) = Pr(y∈Bε(yo)|θ)
Vol(Bε(yo))

I Approximations are equivalent to:

1. Replacing Pr (y ∈ Bε′(yo) | θ) with Pr (∆θ ≤ ε| θ)
2. Not taking the limit ε→ 0

I Defines an approximate likelihood function L̃ε(θ),

L̃ε(θ) ∝ Pr (∆θ ≤ ε | θ) (9)

I Discrepancy ∆θ is a (non-negative) random variable

∆θ = d(to , tθ) = d (T (yo),T (yθ))
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Preliminaries
Inference for simulator-based models

Exact inference
Approximate inference
Rejection ABC algorithm

Rejection ABC algorithm

I The two approximations made yield the rejection algorithm for
approximate Bayesian computation (ABC):

1. Sample θi ∼ pθ

2. Simulate a data set yi by running the simulator with θi
(yi = g(ωi ,θi ))

3. Compute the discrepancy ∆i = d(T (yo),T (yi ))
4. Retain θi if ∆i ≤ ε

I This is the basic ABC algorithm.
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Preliminaries
Inference for simulator-based models

Exact inference
Approximate inference
Rejection ABC algorithm

Properties

I Rejection ABC algorithm produces samples θ ∼ p̃ε(θ|yo),

p̃ε(θ|yo) ∝ pθ(θ)L̃ε(θ) (10)

L̃ε(θ) ∝ Pr
(
d(T (yo),T (y))︸ ︷︷ ︸

∆θ

≤ ε | θ
)

(11)

I Inference is approximate due to
I the summary statistics T and distance d
I ε > 0
I the finite number of samples (Monte Carlo error)
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Part II

Computational and statistical efficiency



Brief recap

I Simulator-based models: Models which are specified by a data
generating mechanism.

I By construction, we can sample from simulator-based models.
Likelihood function can generally not be written down.

I Rejection ABC: Trial and error scheme to find parameter
values which produce simulated data resembling the observed
data.

I Simulated data resemble the observed data if some
discrepancy measure is small.
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Efficiency of ABC

1. Computational efficiency: How to efficiently find the
parameter values which yield a small discrepancy?

2. Statistical efficiency: How to measure the discrepancy
between the simulated and observed data?
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Program

Computational efficiency
Difficulties
Solutions
Recent work

Statistical efficiency
Difficulties
Solutions
Recent work
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Computational efficiency
Statistical efficiency

Difficulties
Solutions
Recent work

Example

I Inference of the mean θ of a
Gaussian of variance one.

I Pr(y = yo |θ) = 0.

I Discrepancy ∆θ:

∆θ = (µ̂o − µ̂θ)2,

µ̂o =
1

n

n∑
i=1

yo
i ,

µ̂θ =
1

n

n∑
i=1

yi ,

yi ∼ N (θ, 1)
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Computational efficiency
Statistical efficiency

Difficulties
Solutions
Recent work

Example

Probability that ∆θ is below some threshold ε approximates the

likelihood function.
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Computational efficiency
Statistical efficiency

Difficulties
Solutions
Recent work

Example

I Here, T (y) = 1
n

∑n
i=1 yi is a sufficient statistics for inference

of the mean θ

I The only approximation is ε > 0.

I In general, the summary statistics will not be sufficient.
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Computational efficiency
Statistical efficiency

Difficulties
Solutions
Recent work

Example

I In the Gaussian example, the probability for ∆θ ≤ ε can be
computed in closed form ∆θ = (µ̂o − µ̂θ)2

Pr(∆θ ≤ ε) = Φ
(√

n(µ̂o − θ) +
√

nε
)
−Φ

(√
n(µ̂o − θ)−

√
nε
)

Φ(x) =
∫ x
−∞

1√
2π

exp
(
− 1

2
u2
)
du

I For nε small: L̃ε(θ) ∝ Pr(∆θ ≤ ε) ∝
√
εL(θ)

I For small ε good approximation of
the likelihood function.

I But for small ε, Pr(∆θ ≤ ε) ≈ 0:
Very few samples will be accepted
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Computational efficiency
Statistical efficiency

Difficulties
Solutions
Recent work

Two widely used algorithms

I Two widely used algorithms which improve computationally
upon rejection ABC:

1. Regression ABC (Beaumont et al, 2002)

2. Sequential Monte Carlo ABC (Sisson et al, 2007)

I Both use rejection ABC as a building block.

I Sequential Monte Carlo (SMC) ABC is also known as
Population Monte Carlo (PMC) ABC.
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Computational efficiency
Statistical efficiency

Difficulties
Solutions
Recent work

Two widely used algorithms

I Regression ABC consists in running rejection ABC with a
relatively large ε and then adjusting the obtained samples so
that they are closer to samples from the true posterior.

I Sequential Monte Carlo ABC consists in sampling θ from an
adaptively constructed proposal distribution φ(θ) rather than
from the prior in order to avoid simulating many data sets
which are not accepted.
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Computational efficiency
Statistical efficiency

Difficulties
Solutions
Recent work

Basic idea of regression ABC

I The summary statistics tθ = T (yθ) and θ have a joint
distribution.

I Let ti be the summary statistics for simulated data
yi = g(ωi ,θi ).

I We can learn a regression model between the summary
statistics (covariates) and the parameters (response variables)

θi = f (ti ) + ξi (12)

where ξi is the error term (zero mean random variable).

I The training data for the regression are typically tuples (θi , ti )
produced by rejection-ABC with some sufficiently large ε.
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Computational efficiency
Statistical efficiency

Difficulties
Solutions
Recent work

Basic idea of regression ABC

I Fitting the regression model to the training data (θi , ti ) yields
an estimated regression function f̂ and the residuals ξ̂i ,

ξ̂i = θi − f̂ (ti ) (13)

I Regression ABC consists in replacing θi with θ∗i ,

θ∗i = f̂ (to) + ξ̂i = f̂ (to) + θi − f̂ (ti ) (14)

I Corresponds to an adjustment of θi .

I If the relation between t and θ is learned correctly, the θ∗i
correspond to samples from an approximation with ε = 0.
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Computational efficiency
Statistical efficiency

Difficulties
Solutions
Recent work

Basic idea of sequential Monte Carlo ABC

I We may modify the rejection ABC algorithm and use φ(θ)
instead of the prior pθ.

1. Sample θi ∼ φ(θ)
2. Simulate a data set yi by running the simulator with θi

(yi = g(ωi ,θi ))
3. Compute the discrepancy ∆i = d(T (yo),T (yi ))
4. Retain θi if ∆i ≤ ε

I The retained samples follow a distribution proportional to
φ(θ)L̃ε(θ)
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Computational efficiency
Statistical efficiency

Difficulties
Solutions
Recent work

Basic idea of sequential Monte Carlo ABC

I Parameters θi weighted with wi ,

wi =
pθ(θi )

φ(θi )
, (15)

follow a distribution proportional to pθ(θ)L̃ε(θ).
I Can be used to iteratively morph the prior into a posterior:

I Use a sequence of shrinking thresholds εt
I Run rejection ABC with ε0.
I Define φt at iteration t based on the weighted samples from

the previous iteration (e.g Gaussian mixture with means equal
to the θi from the previous iteration).
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Basic idea of sequential Monte Carlo ABC
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Computational efficiency
Statistical efficiency

Difficulties
Solutions
Recent work

Learning a model of the discrepancy

L̃ε(θ) ∝ Pr (∆θ ≤ ε | θ)

I The approximate likelihood function L̃ε(θ) is determined by
the distribution of the discrepancy ∆θ

I If we knew the distribution of ∆θ we could compute L̃ε(θ).

I We proposed to learn a model of ∆θ and to approximate
L̃ε(θ) by L̂ε(θ),

L̃ε(θ) ∝ P̂r (∆θ ≤ ε | θ) (16)

I Model is learned more accurately in regions where ∆θ tends
to be small to make further computational savings.

(Gutmann and Corander, Journal of Machine Learning Research, in press)
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Example: Bacterial infections in child care centers

I Likelihood intractable for cross-sectional data
I But generating data from the model is possible
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Parameters of interest:
- rate of infections within a center
- rate of infections from outside
- competition between the strains

(Numminen et al, 2013)
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Computational efficiency
Statistical efficiency

Difficulties
Solutions
Recent work

Example: Bacterial infections in child care centers

I Comparison of the proposed approach with a standard
population Monte Carlo ABC approach.

I Roughly equal results using 1000 times fewer simulations.

4.5 days with 200 cores
↓

90 minutes with seven cores

Posterior means: solid lines,

credibility intervals: shaded areas or dashed lines.
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Computational efficiency
Statistical efficiency

Difficulties
Solutions
Recent work

Example: Bacterial infections in child care centers

I Comparison of the proposed approach with a standard
population Monte Carlo ABC approach.

I Roughly equal results using 1000 times fewer simulations.
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Posterior means are shown as solid lines, credibility intervals as shaded areas or dashed lines.
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Program

Computational efficiency
Difficulties
Solutions
Recent work

Statistical efficiency
Difficulties
Solutions
Recent work
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Computational efficiency
Statistical efficiency

Difficulties
Solutions
Recent work

I Discrepancy measure affects the accuracy of the estimates

I Bad discrepancy: estimated posterior = prior

I Bad discrepancy: vanishingly small acceptance probability

I Good discrepancy: good trade-off between loss of information
and increase in acceptance probability
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Computational efficiency
Statistical efficiency

Difficulties
Solutions
Recent work

How to choose the discrepancy measure?

I Manually
I Use expert knowledge about yo to define summary statistics T .
I Use Euclidean distance for d .

∆θ = ||T (yo)− T (yθ)||
I Semi-automatic

I Simulate pairs (θi , yi )
I Define a large number of summary statistics T̃
I Define T as a smaller number of (linear) combinations of

them, automatically learned from the simulated pairs.
I Use Euclidean distance for d .

I Combinations are typically determined via regression with the
T̃ (yθ) as covariates and parameters θ as reponse variables.
e.g. Nunes and Balding, 2010; Fearnhead and Prangle, 2012; Aeschbacher et al,

2012; Blum et al, 2013

Michael Gutmann ABC Tutorial 58 / 65



Computational efficiency
Statistical efficiency

Difficulties
Solutions
Recent work

Discrepancy measurement via classification

(Gutmann et al, 2014)

I Classification accuracy (discriminability) as discrepancy
measure ∆θ.

I Discriminability of 100% indicates maximally different data
sets; 50% indicates similar data sets.
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Example: Bacterial infections in child care centers

I Likelihood intractable for cross-sectional data
I But generating data from the model is possible
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Parameters of interest:
- rate of infections within a center
- rate of infections from outside
- competition between the strains

(Numminen et al, 2013)
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Example: Bacterial infections in child care centers

(Gutmann et al, 2014)

I Our classification-based distance measure does not use
domain/expert knowledge.

I Performs as well as a distance measure based on domain
knowledge (Numminen et, 2013).
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Example: Bacterial infections in child care centers

(Gutmann et al, 2014)

I Robustness is a concern when relying on expert knowledge
I Classification-based distance can automatically compensate

errors in the expert input.
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Summary

I The topic was Bayesian inference for models specified via a
simulator (implicit / generative models).

I Introduced approximate Bayesian computation (ABC).

I Principle of ABC: Find parameter values which yield simulated
data resembling the observed data.

I Covered three classical algorithms:

1. Rejection ABC
2. Regression ABC
3. Sequential Monte Carlo ABC

I Choice of discrepancy measure between simulated and
observed data

I Recent work of mine
I Combining modeling of the discrepancy and optimization to

increase computational efficiency
I Using classification to measure the discrepancy
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