Tutorial on Approximate Bayesian Computation

Michael Gutmann

<https://sites.google.com/site/michaelgutmann>

University of Helsinki Aalto University Helsinki Institute for Information Technology

16 May 2016

Two parts:

- 1. The basics of approximate Bayesian computation (ABC)
- 2. Computational and statistical efficiency

What is ABC?

A set of methods for approximate Bayesian inference which can be used whenever sampling from the model is possible.

Part I

[Basic ABC](#page-2-0)

Program

[Preliminaries](#page-4-0)

[Statistical inference](#page-5-0) [Simulator-based models](#page-12-0) [Likelihood function](#page-20-0)

[Inference for simulator-based models](#page-25-0)

[Exact inference](#page-26-0) [Approximate inference](#page-31-0) [Rejection ABC algorithm](#page-33-0)

Program

[Preliminaries](#page-4-0)

[Statistical inference](#page-5-0) [Simulator-based models](#page-12-0) [Likelihood function](#page-20-0)

[Inference for simulator-based models](#page-25-0)

[Exact inference](#page-26-0) [Approximate inference](#page-31-0) [Rejection ABC algorithm](#page-33-0)

Big picture of statistical inference

- \blacktriangleright Given data y^o , draw conclusions about properties of its source
- \blacktriangleright If available, possibly take prior information into account

General approach

- Set up a model with potential properties θ (parameters)
- See which θ are reasonable given the observed data

Likelihood function

- \blacktriangleright Measures agreement between θ and the observed data \mathbf{y}°
- Probability to see data **y** like y° if property θ holds

Likelihood function

- \blacktriangleright Measures agreement between θ and the observed data \mathbf{y}°
- Probability to see data **y** like y° if property θ holds

[Preliminaries](#page-4-0) [Inference for simulator-based models](#page-25-0) [Statistical inference](#page-5-0) [Simulator-based models](#page-12-0) [Likelihood function](#page-20-0)

Likelihood function

 \blacktriangleright For discrete random variables:

$$
L(\theta) = \Pr(\mathbf{y} = \mathbf{y}^o | \theta)
$$
 (1)

 \blacktriangleright For continuous random variables:

$$
L(\boldsymbol{\theta}) = \lim_{\epsilon \to 0} \frac{\Pr(\mathbf{y} \in B_{\epsilon}(\mathbf{y}^o) | \boldsymbol{\theta})}{\text{Vol}(B_{\epsilon}(\mathbf{y}^o))}
$$
(2)

Performing statistical inference

- If $L(\theta)$ is known, inference boils down to solving an optimization/sampling problem
- \blacktriangleright Maximum likelihood estimation

$$
\hat{\pmb{\theta}} = \mathop{\mathrm{argmax}}_{\pmb{\theta}} L(\pmb{\theta})
$$

 \blacktriangleright Bayesian inference

 $p(\theta | \mathbf{y}^{\mathcal{O}}) \propto p(\theta) \times L(\theta)$ posterior \propto prior \times likelihood

Textbook case

- \triangleright model \equiv family of probability density/mass functions $p(\mathbf{y}|\boldsymbol{\theta})$
- **I** Likelihood function $L(\theta) = p(\mathbf{y}^o | \theta)$
- \triangleright Closed form solutions are possible.

Simulator-based models

 \triangleright Not all models are specified as family of pdfs $p(\mathbf{y}|\boldsymbol{\theta})$.

 \blacktriangleright Here: simulator-based models: models which are specified via a mechanism (rule) for generating data

[Preliminaries](#page-4-0) [Inference for simulator-based models](#page-25-0) [Statistical inference](#page-5-0) [Simulator-based models](#page-12-0) [Likelihood function](#page-20-0)

Toy example

- \blacktriangleright Let y|θ ~ N(θ, 1)
- \blacktriangleright Family of pdfs as model:

$$
p(y|\theta) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(y-\theta)^2}{2}\right) \tag{3}
$$

 \blacktriangleright Simulator-based model:

$$
y = z + \theta \qquad z \sim \mathcal{N}(0, 1) \qquad (4)
$$

or

$$
y = z + \theta \qquad \qquad z = \sqrt{-2\log(\omega)}\cos(2\pi\nu) \qquad (5)
$$

where ω and ν are independent random variables uniformly distributed on (0, 1)

[Preliminaries](#page-4-0) [Inference for simulator-based models](#page-25-0) [Statistical inference](#page-5-0) [Simulator-based models](#page-12-0) [Likelihood function](#page-20-0)

Formal definition of a simulator-based model

- \blacktriangleright Let $(Ω, F, P)$ be a probability space.
- \triangleright A simulator-based model is a collection of (measurable) functions $g(., \theta)$ parametrized by θ ,

$$
\boldsymbol{\omega} \in \Omega \mapsto \mathbf{y} = g(\boldsymbol{\omega}, \boldsymbol{\theta}) \in \mathcal{Y} \tag{6}
$$

 \blacktriangleright The functions $g(., \theta)$ are typically not available in closed form.

Other names for simulator-based models

- \triangleright Models specified via a data generating mechanism occur in multiple and diverse scientific fields.
- \triangleright Different communities use different names for simulator-based models:
	- \blacktriangleright Generative models
	- \blacktriangleright Implicit models
	- \triangleright Stochastic simulation models
	- \blacktriangleright Probabilistic programs

[Preliminaries](#page-4-0) [Inference for simulator-based models](#page-25-0) [Statistical inference](#page-5-0) [Simulator-based models](#page-12-0) [Likelihood function](#page-20-0)

Examples

- \blacktriangleright Astrophysics: Simulating the formation of galaxies, stars, or planets
- \blacktriangleright Evolutionary biology: Simulating evolution
- \blacktriangleright Neuroscience: Simulating neural circuits
- \blacktriangleright Ecology: Simulating species migration
- \blacktriangleright Health science: Simulating the spread of an infectious disease

Simulated neural activity in rat somatosensory cortex (Figure from <https://bbp.epfl.ch/nmc-portal>)

 \blacktriangleright . . .

Example (health science)

 \triangleright Simulating bacterial transmissions in child day care centers (Numminen et al, 2013)

Advantages of simulator-based models

- \triangleright Direct implementation of hypotheses of how the observed data were generated.
- \triangleright Neat interface with physical or biological models of data.
- \triangleright Modeling by replicating the mechanisms of nature which produced the observed/measured data. ("Analysis by synthesis")
- \triangleright Possibility to perform experiments in silico.

[Preliminaries](#page-4-0) [Inference for simulator-based models](#page-25-0) [Statistical inference](#page-5-0) [Simulator-based models](#page-12-0) [Likelihood function](#page-20-0)

Disadvantages of simulator-based models

- \triangleright Generally elude analytical treatment.
- \triangleright Can be easily made more complicated than necessary.
- \triangleright Statistical inference is difficult ... but possible!

Family of pdfs induced by the simulator

- ► For any fixed θ , the output of the simulator $y_{\theta} = g(., \theta)$ is a random variable.
- \triangleright No closed-form formulae available for $p(\mathbf{y}|\boldsymbol{\theta})$.
- Simulator defines the model pdfs $p(y|\theta)$ implicitly.

Implicit definition of the model pdfs

Implicit definition of the likelihood function

For discrete random variables:

$$
L(\theta) = \Pr(y = y^o \mid \theta) = \mathcal{P}(\{\omega : g(\omega, \theta) = y^o\})
$$

Implicit definition of the likelihood function

For continuous random variables: $L(\theta) = \lim_{\epsilon \to 0} L_{\epsilon}(\theta)$

Implicit definition of the likelihood function

 \blacktriangleright To compute the likelihood function, we need to compute the probability that the simulator generates data close to y^o ,

$$
\mathsf{Pr}(\mathbf{y} = \mathbf{y}^o | \boldsymbol{\theta}) \quad \text{or} \quad \mathsf{Pr}(\mathbf{y} \in B_{\epsilon}(\mathbf{y}^o) | \boldsymbol{\theta})
$$

- \triangleright No analytical expression available.
- But we can empirically test whether simulated data equals y° or is in $B_{\epsilon}(\mathbf{y}^o)$.
- \blacktriangleright This property will be exploited to perform inference for simulator-based models.

Program

[Preliminaries](#page-4-0)

[Statistical inference](#page-5-0) [Simulator-based models](#page-12-0) [Likelihood function](#page-20-0)

[Inference for simulator-based models](#page-25-0)

[Exact inference](#page-26-0) [Approximate inference](#page-31-0) [Rejection ABC algorithm](#page-33-0)

Exact inference for discrete random variables

- \triangleright For discrete random variables, we can perform exact Bayesian inference without knowing the likelihood function.
- By definition, the posterior is obtained by conditioning $p(\theta, y)$ on the event $y = y^o$:

$$
p(\theta | \mathbf{y}^{\circ}) = \frac{p(\theta, \mathbf{y}^{\circ})}{p(\mathbf{y}^{\circ})} = \frac{p(\theta, \mathbf{y} = \mathbf{y}^{\circ})}{p(\mathbf{y} = \mathbf{y}^{\circ})}
$$
(7)

[Preliminaries](#page-4-0) [Inference for simulator-based models](#page-25-0) [Exact inference](#page-26-0) [Approximate inference](#page-31-0) [Rejection ABC algorithm](#page-33-0)

Exact inference for discrete random variables

- Generate tuples $(\boldsymbol{\theta}_i, \mathbf{y}_i)$:
	- 1. $\theta_i \sim p_\theta$ (iid from the prior) 2. $\omega_i \sim \mathcal{P}$ (by running the simulator) 3. $\mathbf{v}_i = g(\boldsymbol{\omega}_i, \boldsymbol{\theta}_i)$ (by running the simulator)
- ► Condition on $y = y^o \Leftrightarrow$ Retain only the tuples with $y_i = y^o$
- \blacktriangleright The θ_i from the retained tuples are samples from the posterior $p(\theta | y^{\circ}).$

[Preliminaries](#page-4-0) [Inference for simulator-based models](#page-25-0) [Exact inference](#page-26-0) [Approximate inference](#page-31-0) [Rejection ABC algorithm](#page-33-0)

Example

- **Posterior inference of the success probability** θ **in a Bernoulli** trial.
- Data: $y^o = 1$
- Prior: $p_\theta = 1$ on $(0, 1)$
- Generate tuples (θ_i, y_i)

1.
$$
\theta_i \sim p_\theta
$$

\n2. $\omega_i \sim U(0, 1)$
\n3. $y_i = \begin{cases} 1 & \text{if } \omega_i < \theta_i \\ 0 & \text{otherwise} \end{cases}$

```
% Observed data
vohs = 1:
% Number of samples to generate from the posterior
N = 10000:
% Sample from prior, uniform on (0.1)
theta = rand(1.N):
% Run the "simulator"
omega = rand(1, N):
vsim = \text{omega}-theta;
% Check for simulated data which are equal to observed data
index = (vsim=vols):% Samples from the posterior
thetaPost = theta(int):
```
Retain those θ_i for which $y_i = y^o$.

[Exact inference](#page-26-0) [Approximate inference](#page-31-0) [Rejection ABC algorithm](#page-33-0)

Example

- \triangleright The method produces samples from the posterior.
- \triangleright Monte Carlo error when summarizing the samples as an empirical distribution or computing expectations via sample averages.
- \blacktriangleright Histogram for N simulated tuples (θ_i, y_i)

[Exact inference](#page-26-0) [Approximate inference](#page-31-0) [Rejection ABC algorithm](#page-33-0)

Limitations

- \triangleright Only applicable to discrete random variables.
- \triangleright And even for discrete random variables: Computationally not feasible in higher dimensions
- Reason: The probability of the event $y_{\theta} = y^{\circ}$ becomes smaller and smaller as the dimension of the data increases.
- \triangleright Out of N simulated tuples only a small fraction will be accepted.
	- \triangleright The small number of accepted samples do not represent the posterior well.
	- ► Large Monte Carlo errors

Approximations to make inference feasible

- \triangleright Settle for approximate yet computationally feasible inference.
- Introduce two types of approximations:
	- 1. Instead of working with the whole data, work with lower dimensional summary statistics \mathbf{t}_{θ} and \mathbf{t}^o ,

$$
\mathbf{t}_{\theta} = \mathcal{T}(\mathbf{y}_{\theta}) \qquad \mathbf{t}^{\circ} = \mathcal{T}(\mathbf{y}^{\circ}). \tag{8}
$$

2. Instead of checking $\mathbf{t}_{\theta} = \mathbf{t}^o$, check whether $\Delta_{\theta} = d(\mathbf{t}^o, \mathbf{t}_{\theta})$ is less than ϵ . (d may or may not be a metric)

Approximation of the likelihood function

$$
L(\theta) = \lim_{\epsilon \to 0} L_{\epsilon}(\theta) \qquad L_{\epsilon}(\theta) = \frac{\Pr(\mathbf{y} \in B_{\epsilon}(\mathbf{y}^{\circ}) | \theta)}{\text{Vol}(B_{\epsilon}(\mathbf{y}^{\circ}))}
$$

- \blacktriangleright Approximations are equivalent to:
	- 1. Replacing Pr $(\mathsf{y}\in B_{\epsilon'}(\mathsf{y}^o) \mid \pmb{\theta})$ with Pr $(\Delta_{\pmb{\theta}}\leq \epsilon\vert\ \pmb{\theta})$
	- 2. Not taking the limit $\epsilon \to 0$
- \blacktriangleright Defines an approximate likelihood function $\widetilde{L}_\epsilon(\bm{\theta}),$

$$
\widetilde{L}_{\epsilon}(\boldsymbol{\theta}) \propto \Pr\left(\Delta_{\boldsymbol{\theta}} \leq \epsilon \mid \boldsymbol{\theta}\right) \tag{9}
$$

Discrepancy Δ_{θ} is a (non-negative) random variable

$$
\Delta_{\theta} = d(\mathbf{t}^{\circ}, \mathbf{t}_{\theta}) = d(\mathcal{T}(\mathbf{y}^{\circ}), \mathcal{T}(\mathbf{y}_{\theta}))
$$

[Exact inference](#page-26-0) [Approximate inference](#page-31-0) [Rejection ABC algorithm](#page-33-0)

Rejection ABC algorithm

- \triangleright The two approximations made yield the rejection algorithm for approximate Bayesian computation (ABC):
	- 1. Sample $\theta_i \sim p_{\theta}$
	- 2. Simulate a data set v_i by running the simulator with θ_i $(\mathsf{y}_i = g(\boldsymbol{\omega}_i, \boldsymbol{\theta}_i))$
	- 3. Compute the discrepancy $\Delta_i = d(T(y^o), T(y_i))$
	- 4. Retain $\boldsymbol{\theta}_i$ if $\Delta_i \leq \epsilon$
- \blacktriangleright This is the basic ABC algorithm.

[Exact inference](#page-26-0) [Approximate inference](#page-31-0) [Rejection ABC algorithm](#page-33-0)

Properties

► Rejection ABC algorithm produces samples $\boldsymbol{\theta} \sim \widetilde{p}_\epsilon(\boldsymbol{\theta}|\mathbf{y}^o),$

$$
\widetilde{\rho}_{\epsilon}(\theta|\mathbf{y}^o) \propto \rho_{\theta}(\theta)\widetilde{L}_{\epsilon}(\theta)
$$
\n
$$
\widetilde{L}_{\epsilon}(\theta) \propto \Pr(\underbrace{d(\mathcal{T}(\mathbf{y}^o), \mathcal{T}(\mathbf{y}))}_{\Delta_{\theta}}) \leq \epsilon \mid \theta)
$$
\n(11)

- \blacktriangleright Inference is approximate due to
	- \triangleright the summary statistics T and distance d
	- \blacktriangleright $\epsilon > 0$
	- \triangleright the finite number of samples (Monte Carlo error)

Part II

[Computational and statistical efficiency](#page-35-0)

- \triangleright Simulator-based models: Models which are specified by a data generating mechanism.
- \triangleright By construction, we can sample from simulator-based models. Likelihood function can generally not be written down.
- \triangleright Rejection ABC: Trial and error scheme to find parameter values which produce simulated data resembling the observed data.
- \triangleright Simulated data resemble the observed data if some discrepancy measure is small.
- 1. Computational efficiency: How to efficiently find the parameter values which yield a small discrepancy?
- 2. Statistical efficiency: How to measure the discrepancy between the simulated and observed data?

Program

[Computational efficiency](#page-39-0)

[Difficulties](#page-40-0) [Solutions](#page-44-0) [Recent work](#page-51-0)

[Statistical efficiency](#page-55-0)

[Difficulties](#page-56-0) [Solutions](#page-57-0) [Recent work](#page-58-0)

Program

[Computational efficiency](#page-39-0)

[Difficulties](#page-40-0) [Solutions](#page-44-0) [Recent work](#page-51-0)

[Statistical efficiency](#page-55-0)

[Difficulties](#page-56-0) [Solutions](#page-57-0) [Recent work](#page-58-0)

[Difficulties](#page-40-0) [Solutions](#page-44-0) [Recent work](#page-51-0)

Example

- Inference of the mean θ of a Gaussian of variance one.
- \blacktriangleright Pr(y = y^o| θ) = 0.
- \blacktriangleright Discrepancy Δ_{θ} :

$$
\Delta_{\theta} = (\hat{\mu}^{\circ} - \hat{\mu}_{\theta})^2,
$$

$$
\hat{\mu}^{\circ} = \frac{1}{n} \sum_{i=1}^{n} y_i^{\circ},
$$

$$
\hat{\mu}_{\theta} = \frac{1}{n} \sum_{i=1}^{n} y_i,
$$

$$
y_i \sim \mathcal{N}(\theta, 1)
$$

Discrepancy Δ_{θ} is a random variable.

[Difficulties](#page-40-0) [Solutions](#page-44-0) [Recent work](#page-51-0)

Example

Probability that Δ_{θ} is below some threshold ϵ approximates the likelihood function.

[Difficulties](#page-40-0) [Solutions](#page-44-0) [Recent work](#page-51-0)

Example

- \blacktriangleright Here, $\mathcal{T}(\mathsf{y}) = \frac{1}{n} \sum_{i=1}^{n} y_i$ is a sufficient statistics for inference of the mean θ
- \blacktriangleright The only approximation is $\epsilon > 0$.
- \blacktriangleright In general, the summary statistics will not be sufficient.

[Difficulties](#page-40-0) [Solutions](#page-44-0) [Recent work](#page-51-0)

Example

 \triangleright In the Gaussian example, the probability for $\Delta_{\theta} \leq \epsilon$ can be computed in closed form $\hat{p}^{\circ} - \hat{\mu}_{\theta}$)²

$$
\Pr(\Delta_{\theta} \leq \epsilon) = \Phi\left(\sqrt{n}(\hat{\mu}^{\circ} - \theta) + \sqrt{n\epsilon}\right) - \Phi\left(\sqrt{n}(\hat{\mu}^{\circ} - \theta) - \sqrt{n\epsilon}\right)
$$

 $\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}u^2\right) du$ For ne small: $\tilde{L}_{\epsilon}(\theta) \propto Pr(\Delta_{\theta} \leq \epsilon) \propto \sqrt{\epsilon}L(\theta)$

- For small ϵ good approximation of the likelihood function.
- **IF** But for small ϵ , Pr(Δ A ϵ) ≈ 0: Very few samples will be accepted

[Difficulties](#page-40-0) [Solutions](#page-44-0) [Recent work](#page-51-0)

Two widely used algorithms

- \triangleright Two widely used algorithms which improve computationally upon rejection ABC:
	- 1. Regression ABC (Beaumont et al, 2002)
	- 2. Sequential Monte Carlo ABC (Sisson et al, 2007)
- \triangleright Both use rejection ABC as a building block.
- ▶ Sequential Monte Carlo (SMC) ABC is also known as Population Monte Carlo (PMC) ABC.

[Difficulties](#page-40-0) [Solutions](#page-44-0) [Recent work](#page-51-0)

Two widely used algorithms

- \triangleright Regression ABC consists in running rejection ABC with a relatively large ϵ and then adjusting the obtained samples so that they are closer to samples from the true posterior.
- \triangleright Sequential Monte Carlo ABC consists in sampling θ from an adaptively constructed proposal distribution $\phi(\theta)$ rather than from the prior in order to avoid simulating many data sets which are not accepted.

[Difficulties](#page-40-0) [Solutions](#page-44-0) [Recent work](#page-51-0)

Basic idea of regression ABC

- **I** The summary statistics $t_{\theta} = T(y_{\theta})$ and θ have a joint distribution.
- \blacktriangleright Let \mathbf{t}_i be the summary statistics for simulated data $y_i = g(\boldsymbol{\omega}_i, \boldsymbol{\theta}_i).$
- \triangleright We can learn a regression model between the summary statistics (covariates) and the parameters (response variables)

$$
\boldsymbol{\theta}_i = f(\mathbf{t}_i) + \boldsymbol{\xi}_i \tag{12}
$$

where $\boldsymbol{\xi}_i$ is the error term (zero mean random variable).

 \blacktriangleright The training data for the regression are typically tuples $(\bm{\theta}_i, \mathbf{t}_i)$ produced by rejection-ABC with some sufficiently large ϵ .

[Difficulties](#page-40-0) [Solutions](#page-44-0) [Recent work](#page-51-0)

Basic idea of regression ABC

 \blacktriangleright Fitting the regression model to the training data $(\bm{\theta}_i, \mathbf{t}_i)$ yields an estimated regression function \hat{f} and the residuals $\hat{\xi}_i$,

$$
\hat{\xi}_i = \theta_i - \hat{f}(\mathbf{t}_i) \tag{13}
$$

► Regression ABC consists in replacing θ_i with θ_i^* ,

$$
\theta_i^* = \hat{f}(\mathbf{t}^\circ) + \hat{\xi}_i = \hat{f}(\mathbf{t}^\circ) + \theta_i - \hat{f}(\mathbf{t}_i)
$$
(14)

- \blacktriangleright Corresponds to an adjustment of θ_i .
- ► If the relation between **t** and θ is learned correctly, the θ_i^* correspond to samples from an approximation with $\epsilon = 0$.

Basic idea of sequential Monte Carlo ABC

- \blacktriangleright We may modify the rejection ABC algorithm and use $\phi(\theta)$ instead of the prior p_{θ} .
	- 1. Sample $\theta_i \sim \phi(\theta)$
	- 2. Simulate a data set y_i by running the simulator with θ_i $(\mathsf{y}_i = \mathcal{g}(\boldsymbol{\omega}_i, \boldsymbol{\theta}_i))$
	- 3. Compute the discrepancy $\Delta_i = d(T(y^o), T(y_i))$
	- 4. Retain $\boldsymbol{\theta}_i$ if $\Delta_i \leq \epsilon$
- \triangleright The retained samples follow a distribution proportional to $\phi(\boldsymbol{\theta}) \tilde{L}_{\epsilon}(\boldsymbol{\theta})$

[Difficulties](#page-40-0) [Solutions](#page-44-0) [Recent work](#page-51-0)

Basic idea of sequential Monte Carlo ABC

 \blacktriangleright Parameters θ_i weighted with w_i ,

$$
w_i = \frac{p_{\theta}(\theta_i)}{\phi(\theta_i)},
$$
\n(15)

follow a distribution proportional to $p_{\boldsymbol \theta}(\boldsymbol \theta) \widetilde L_\epsilon(\boldsymbol \theta).$

 \triangleright Can be used to iteratively morph the prior into a posterior:

- In Use a sequence of shrinking thresholds ϵ_t
- Run rejection ABC with ϵ_0 .
- \triangleright Define ϕ_t at iteration t based on the weighted samples from the previous iteration (e.g Gaussian mixture with means equal to the θ_i from the previous iteration).

Basic idea of sequential Monte Carlo ABC

Learning a model of the discrepancy

 $\tilde{L}_{\epsilon}(\theta) \propto \Pr(\Delta_{\theta} \leq \epsilon \mid \theta)$

- \blacktriangleright The approximate likelihood function $\widetilde{L}_\epsilon(\theta)$ is determined by the distribution of the discrepancy Δ_{θ}
- ► If we knew the distribution of $\Delta_{\boldsymbol{\theta}}$ we could compute $\widetilde{L}_\epsilon(\boldsymbol{\theta}).$
- \triangleright We proposed to learn a model of Δ_{θ} and to approximate $\widetilde{L}_{\epsilon}(\boldsymbol{\theta})$ by $\widehat{L}_{\epsilon}(\boldsymbol{\theta}),$

$$
\tilde{L}_{\epsilon}(\theta) \propto \hat{\Pr}(\Delta_{\theta} \leq \epsilon \mid \theta)
$$
 (16)

 \triangleright Model is learned more accurately in regions where Δ_{θ} tends to be small to make further computational savings.

(Gutmann and Corander, Journal of Machine Learning Research, in press)

Example: Bacterial infections in child care centers

- \blacktriangleright Likelihood intractable for cross-sectional data
- \triangleright But generating data from the model is possible

Example: Bacterial infections in child care centers

- Comparison of the proposed approach with a standard population Monte Carlo ABC approach.
- \triangleright Roughly equal results using 1000 times fewer simulations.

Michael Gutmann **[ABC Tutorial](#page-0-0) 54 / 65** AM 54 / 65

[Difficulties](#page-40-0) [Solutions](#page-44-0) [Recent work](#page-51-0)

Example: Bacterial infections in child care centers

- Comparison of the proposed approach with a standard population Monte Carlo ABC approach.
- \triangleright Roughly equal results using 1000 times fewer simulations.

Posterior means are shown as solid lines, credibility intervals as shaded areas or dashed lines.

Program

[Computational efficiency](#page-39-0)

[Difficulties](#page-40-0) [Solutions](#page-44-0) [Recent work](#page-51-0)

[Statistical efficiency](#page-55-0)

[Difficulties](#page-56-0) [Solutions](#page-57-0) [Recent work](#page-58-0)

- \triangleright Discrepancy measure affects the accuracy of the estimates
- Bad discrepancy: estimated posterior $=$ prior
- \triangleright Bad discrepancy: vanishingly small acceptance probability
- \triangleright Good discrepancy: good trade-off between loss of information and increase in acceptance probability

[Difficulties](#page-56-0) [Solutions](#page-57-0) [Recent work](#page-58-0)

How to choose the discrepancy measure?

- \blacktriangleright Manually
	- \blacktriangleright Use expert knowledge about y° to define summary statistics T.
	- I Use Euclidean distance for d .

$$
\Delta_{\theta} = || \mathcal{T}(\mathbf{y}^o) - \mathcal{T}(\mathbf{y}_{\theta}) ||
$$

- \blacktriangleright Semi-automatic
	- \blacktriangleright Simulate pairs $(\boldsymbol{\theta}_i, \mathsf{y}_i)$
	- \triangleright Define a large number of summary statistics \tilde{T}
	- \triangleright Define T as a smaller number of (linear) combinations of them, automatically learned from the simulated pairs.
	- I Use Euclidean distance for d .
- \triangleright Combinations are typically determined via regression with the $\tilde{T}(\mathsf{v}_\theta)$ as covariates and parameters θ as reponse variables. e.g. Nunes and Balding, 2010; Fearnhead and Prangle, 2012; Aeschbacher et al, 2012; Blum et al, 2013

[Difficulties](#page-56-0) [Solutions](#page-57-0) [Recent work](#page-58-0)

Discrepancy measurement via classification

(Gutmann et al, 2014)

- \triangleright Classification accuracy (discriminability) as discrepancy measure Δ *e*.
- \triangleright Discriminability of 100% indicates maximally different data sets; 50% indicates similar data sets.

Example: Bacterial infections in child care centers

- \blacktriangleright Likelihood intractable for cross-sectional data
- \triangleright But generating data from the model is possible

Example: Bacterial infections in child care centers

(Gutmann et al, 2014)

- \triangleright Our classification-based distance measure does not use domain/expert knowledge.
- \triangleright Performs as well as a distance measure based on domain knowledge (Numminen et, 2013).

[Difficulties](#page-56-0) [Solutions](#page-57-0) [Recent work](#page-58-0)

Example: Bacterial infections in child care centers

(Gutmann et al, 2014)

- \triangleright Robustness is a concern when relying on expert knowledge
- \triangleright Classification-based distance can automatically compensate errors in the expert input.

- \triangleright The topic was Bayesian inference for models specified via a simulator (implicit / generative models).
- Introduced approximate Bayesian computation (ABC) .
- \triangleright Principle of ABC: Find parameter values which yield simulated data resembling the observed data.

- \triangleright The topic was Bayesian inference for models specified via a simulator (implicit / generative models).
- Introduced approximate Bayesian computation (ABC) .
- \triangleright Principle of ABC: Find parameter values which yield simulated data resembling the observed data.
- \triangleright Covered three classical algorithms:
	- 1. Rejection ABC
	- 2. Regression ABC
	- 3. Sequential Monte Carlo ABC

- \triangleright The topic was Bayesian inference for models specified via a simulator (implicit / generative models).
- Introduced approximate Bayesian computation (ABC) .
- \triangleright Principle of ABC: Find parameter values which yield simulated data resembling the observed data.
- \triangleright Covered three classical algorithms:
	- 1. Rejection ABC
	- 2. Regression ABC
	- 3. Sequential Monte Carlo ABC
- \triangleright Choice of discrepancy measure between simulated and observed data

- \triangleright The topic was Bayesian inference for models specified via a simulator (implicit / generative models).
- Introduced approximate Bayesian computation (ABC) .
- \triangleright Principle of ABC: Find parameter values which yield simulated data resembling the observed data.
- \triangleright Covered three classical algorithms:
	- 1. Rejection ABC
	- 2. Regression ABC
	- 3. Sequential Monte Carlo ABC
- \triangleright Choice of discrepancy measure between simulated and observed data
- \blacktriangleright Recent work of mine
	- \triangleright Combining modeling of the discrepancy and optimization to increase computational efficiency
	- \triangleright Using classification to measure the discrepancy

References

My papers: <https://sites.google.com/site/michaelgutmann/publications>

- ▶ Numminen et al. Estimating the Transmission Dynamics of Streptococcus pneumoniae from Strain Prevalence Data. Biometrics, 2013.
- \triangleright Beaumont et al. Approximate Bayesian Computation in Population Genetics. Genetics, 2002.
- ▶ Sisson et al. Sequential Monte Carlo without likelihoods. *PNAS*, 2007.
- \blacktriangleright Nunes and Balding. On optimal selection of summary statistics for approximate Bayesian computation. Statistical Applications in Genetics and Molecular Biology, 2010.
- **In Fearnhead and Prangle. Constructing summary statistics for approximate** Bayesian computation: semi-automatic approximate Bayesian computation. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2012.
- Aeschbacher et al. A novel approach for choosing summary statistics in approximate Bayesian computation. Genetics, 2012.
- ▶ Blum et al. A Comparative Review of Dimension Reduction Methods in Approximate Bayesian Computation. Statistical Science, 2013.
- ▶ Beaumont. Approximate Bayesian Computation in Evolution and Ecology. Annual Review of Ecology, Evolution, and Systematics, 2010.
- \blacktriangleright Hartig et al. Statistical inference for stochastic simulation models – theory and application. Ecology Letters, 2011.
- \triangleright Marin et al. Approximate Bayesian computational methods. Statistics and Computing, 2012.
- \triangleright Sunnaker et al. Approximate Bayesian Computation. PLoS Computational Biology, 2013.