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Content

Two parts:
1. The basics of approximate Bayesian computation (ABC)

2. Computational and statistical efficiency

What is ABC?

A set of methods for approximate Bayesian inference which

can be used whenever sampling from the model is possible.
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Statistical inference
Simulator-based models
Likelihood function

Preliminaries
Inference for simulator-based models

Big picture of statistical inference

» Given data y°, draw conclusions about properties of its source
> If available, possibly take prior information into account

Data space
Data source Observation
) (0]
Unknown properties .y
Inference

Prior information
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Statistical inference
Simulator-based models
Likelihood function

Preliminaries
Inference for simulator-based models

General approach

» Set up a model with potential properties 6 (parameters)
» See which @ are reasonable given the observed data

Data space
Data source Observation

Unknown properties \. yO
T
M(8)

Model Inference

Prior information
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Statistical inference
Simulator-based models
Likelihood function

Preliminaries
Inference for simulator-based models

Likelihood function

» Measures agreement between 6 and the observed data y°

» Probability to see data y like y° if property 8 holds

Data space

Data source Observation

Unknown properties

!
M(8)

Model

Data generation
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Statistical inference
Simulator-based models
Likelihood function

Preliminaries
Inference for simulator-based models

Likelihood function

» Measures agreement between 6 and the observed data y°

» Probability to see data y like y° if property 8 holds

Data space
Data source Observation

Unknown properties

!
M(8)

Model

Data generation y
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Statistical inference
Simulator-based models
Likelihood function

Preliminaries
Inference for simulator-based models

Likelihood function

» For discrete random variables:

L(6) = Pr(y =y°|0) (1)
» For continuous random variables:

- Pr(y € B(y°)|6)
L) = im —ei(B.(y*)) @
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Statistical inference
Simulator-based models
Likelihood function

Preliminaries
Inference for simulator-based models

Performing statistical inference

» If L(0) is known, inference boils down to solving an
optimization/sampling problem
» Maximum likelihood estimation

6 = argmax, L(6)

» Bayesian inference

p(6]y°)  p(6) x L(6)
posterior o prior x likelihood
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Statistical inference
Simulator-based models
Likelihood function

Preliminaries
Inference for simulator-based models

Textbook case

» model = family of probability density/mass functions p(y|@)
» Likelihood function L(0) = p(y°|0)

» Closed form solutions are possible.
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Statistical inference
Simulator-based models
Likelihood function

Preliminaries
Inference for simulator-based models

Simulator-based models

» Not all models are specified as family of pdfs p(y|8).
> Here: simulator-based models:

models which are specified via a mechanism (rule) for
generating data
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Statistical inference
Simulator-based models
Likelihood function

Preliminaries
Inference for simulator-based models

Toy example

> Let y|6 ~ N(6,1)

» Family of pdfs as model:

ply|6) = jz?

» Simulator-based model:
y=z+6 z~N(0,1) (4)
or
y=z+10 z = y/—2log(w) cos(27v) (5)

where w and v are independent random variables uniformly
distributed on (0, 1)
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A o Statistical inference
Preliminaries 5
a Simulator-based models
Inference for simulator-based models o .
Likelihood function

Formal definition of a simulator-based model

> Let (2, F,P) be a probability space.
» A simulator-based model is a collection of (measurable)

functions g(., @) parametrized by 6,

weER—y=gw0) ey (6)
» The functions g(., 8) are typically not available in closed form.
g(w, 0)

A

L —
w \
[ )
( J
[ J

| >

Y

>

Simulation / Sampling
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Statistical inference
Simulator-based models
Likelihood function

Preliminaries
Inference for simulator-based models

Other names for simulator-based models

» Models specified via a data generating mechanism occur in
multiple and diverse scientific fields.

» Different communities use different names for simulator-based
models:

Generative models

Implicit models

Stochastic simulation models

Probabilistic programs

vV vYyVvVvyy
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Statistical inference
Simulator-based models
Likelihood function

Preliminaries
Inference for simulator-based models

Examples

>

Astrophysics:

Simulating the formation of
galaxies, stars, or planets
Evolutionary biology:
Simulating evolution
Neuroscience:

Simulating neural circuits
Ecology:

Simulating species migration

Health science:
Simulating the spread of an
infectious disease

Simulated neural activity in rat somatosensory cortex
(Figure from https://bbp.epfl.ch/nmc-portal)
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Example (health science)

» Simulating bacterial transmissions in child day care centers

(Numminen et al, 2013)

E
h
o Pr(Ih =01, =1) = h+o(h)
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Statistical inference
Simulator-based models
Likelihood function

Preliminaries
Inference for simulator-based models

Advantages of simulator-based models

» Direct implementation of hypotheses of how the observed
data were generated.

» Neat interface with physical or biological models of data.

» Modeling by replicating the mechanisms of nature which
produced the observed/measured data. (“Analysis by
synthesis”)

» Possibility to perform experiments in silico.
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Statistical inference
Simulator-based models
Likelihood function

Preliminaries
Inference for simulator-based models

Disadvantages of simulator-based models

» Generally elude analytical treatment.
» Can be easily made more complicated than necessary.

» Statistical inference is difficult . .. but possible!
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Statistical inference
Simulator-based models
Likelihood function

Preliminaries
Inference for simulator-based models

Family of pdfs induced by the simulator

» For any fixed 6, the output of the simulator yg = g(.,0) is a
random variable.

» No closed-form formulae available for p(y|6).

» Simulator defines the model pdfs p(y|@) implicitly.
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Implicit definition of the model pdfs

Parameter value 6

Parameter value 6’

Priye A|0) =P ({w:g(w,0) € A})

@

g9(.,0)

—

N A

=

-

|

g(w, ")
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Implicit definition of the likelihood function

For discrete random variables:
LO)=Pr(y=y°|0) =P ({w:g(w,0) =y°})

g(-,0)

g(.,0")
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Implicit definition of the likelihood function

For continuous random variables: L(€) = lim._o L.(0)
Pr(yeB:(y°) | 0 P({w:g(w,0)€Be(y°
Lc(0) = (ye e(y)l ) P({w:g( ‘/)ee (¥}
g9(.,0)
—
\ ¥\6.
yO
Bc(y°)
Yy
9(.,0")
—
yO
Bc(y°)
0 Y
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Statistical inference
Simulator-based models
Likelihood function

Preliminaries
Inference for simulator-based models

Implicit definition of the likelihood function

» To compute the likelihood function, we need to compute the
probability that the simulator generates data close to y°,

Pr(y=y°(0) or Pr(ye B(y°)0)

» No analytical expression available.

» But we can empirically test whether simulated data equals y°
oris in Bc(y®).

» This property will be exploited to perform inference for
simulator-based models.
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Program

Inference for simulator-based models
Exact inference
Approximate inference
Rejection ABC algorithm
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Exact inference
Approximate inference
Rejection ABC algorithm

Preliminaries
e for simulator-based del.

Exact inference for discrete random variables

» For discrete random variables, we can perform exact Bayesian
inference without knowing the likelihood function.

» By definition, the posterior is obtained by conditioning p(8,y)
on the event y = y°:

on _ P(0,¥°) p(0,y =y°)
PO = ") = ply =v9) ")
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Exact inference
Approximate inference
Rejection ABC algorithm

Preliminaries
e for simulator-based del.

Exact inference for discrete random variables

» Generate tuples (0;,y;):

1. 8; ~ pe (iid from the prior)
2. wi~7P (by running the simulator)
3.y =g(w;, 6)) (by running the simulator)

» Condition on y = y° < Retain only the tuples with y; = y°

» The 8; from the retained tuples are samples from the
posterior p(0]y°).
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Preliminaries
e for simulator-based del.

Example

v

v

v

v

Exact inference
Approximate inference
Rejection ABC algorithm

Posterior inference of the success probability 6 in a Bernoulli

trial.
Data: y° =1
Prior: pp =1 on (0,1)
Generate tuples (6}, yi)
1. 0; ~ pg
2. wi~ U(0,1)
1 ifw; <6

3. yi =
Y 0 otherwise

% Observed data
yobs = 1;

% Number of samples to generate from the posterior
N = 10000;

% Sample from prior, uniform on (0,1)
theta = rand(1,N);

% Run the "simulator™
omega = rand(1,N);
ysim = omega<theta;

% Check for simulated data which are equal to observed data
index = (ysim==yobs);

% Samples from the posterior
thetaPost = theta(index):

Retain those 6; for which y; = y°.
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Exact inference
Approximate inference
Rejection ABC algorithm

Preliminaries
e for simulator-based del.

Example

v

The method produces samples from the posterior.

v

Monte Carlo error when summarizing the samples as an
empirical distribution or computing expectations via sample
averages.

v

Histogram for N simulated tuples (6;, y;)

0 02 [0 06 08 ] 02 04 06 08 1 02 [ [ 08 1
‘Success probabilty Success probabilty Success probabilty

N = 1000 N = 10,000 N = 100, 000
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Exact inference
Approximate inference
Rejection ABC algorithm

Preliminaries
e for simulator-based del.

Limitations

» Only applicable to discrete random variables.

» And even for discrete random variables:
Computationally not feasible in higher dimensions

» Reason: The probability of the event yg = y° becomes smaller
and smaller as the dimension of the data increases.

» Out of N simulated tuples only a small fraction will be
accepted.

» The small number of accepted samples do not represent the
posterior well.
» Large Monte Carlo errors
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Exact inference
Approximate inference
Rejection ABC algorithm

Preliminaries
e for simulator-based del.

Approximations to make inference feasible

> Settle for approximate yet computationally feasible inference.
» Introduce two types of approximations:

1. Instead of working with the whole data, work with lower
dimensional summary statistics tg and t°,

to = T(ye) t° = T(y°). (8)

2. Instead of checking tg = t°, check whether Ag = d(t°, tg) is
less than €. (d may or may not be a metric)
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Exact inference
Approximate inference
Rejection ABC algorithm

Preliminaries
e for simulator-based del.

Approximation of the likelihood function

L(0) =lim o L(6)  L(0) = PHeBLI0)
» Approximations are equivalent to:

1. Replacing Pr(y € B.(y°) | 8) with Pr(Ag < ¢| 0)
2. Not taking the limit e — 0

» Defines an approximate likelihood function L.(8),
[.(6) xPr(Ag <€) (9)
» Discrepancy Ag is a (non-negative) random variable

Do = d(t° tg) = d (T(y°), T(ye))
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Exact inference
Approximate inference
Rejection ABC algorithm

Preliminaries
e for simulator-based del.

Rejection ABC algorithm

» The two approximations made yield the rejection algorithm for
approximate Bayesian computation (ABC):
1. Sample 8; ~ pg
2. Simulate a data set y; by running the simulator with 6;
(yi = g(wi, 6)))
3. Compute the discrepancy A; = d(T(y°), T(yi))
4. Retain 0; if A; <e

» This is the basic ABC algorithm.
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Exact inference
Approximate inference
Rejection ABC algorithm

Preliminaries
e for simulator-based del.

Properties

» Rejection ABC algorithm produces samples 6 ~ p.(0]y°),

pe(6y°) o< po(8)L(6) (10)
L(6) o< Pr(d(T(y°), T(y)) < €| 0) (11)
Ag

» Inference is approximate due to

> the summary statistics T and distance d
» >0
» the finite number of samples (Monte Carlo error)
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Computational and statistical efficiency



Brief recap

» Simulator-based models: Models which are specified by a data
generating mechanism.

» By construction, we can sample from simulator-based models.
Likelihood function can generally not be written down.

» Rejection ABC: Trial and error scheme to find parameter
values which produce simulated data resembling the observed
data.

» Simulated data resemble the observed data if some
discrepancy measure is small.
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Efficiency of ABC

1. Computational efficiency: How to efficiently find the
parameter values which yield a small discrepancy?

2. Statistical efficiency: How to measure the discrepancy
between the simulated and observed data?

Michael Gutmann ABC Tutorial
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Program

Computational efficiency
Difficulties
Solutions
Recent work

Statistical efficiency
Difficulties
Solutions
Recent work
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Program

Computational efficiency
Difficulties
Solutions
Recent work
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Difficulties
Solutions
Recent work

Computational efficiency
Statistical efficiency

Example

» Inference of the mean 0 of a

Gaussian of variance one. 16® :
| 0.1, 0.9 quantiles
[y ——mean
> Pr(y = yO ’0) = 0 148 = = = realization of stochastic process|
A o realizations at &

» Discrepancy Agy:
AVES (ﬁo - ﬂ9)27
1 n
//’\Lo = E Zy/o7
i=1
L 1¢
Mo = ; Zl}/ia
1=

Vi NN(@, 1)

discrepancy

Discrepancy Ay is a random variable.
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Difficulties
Solutions
Recent work

Computational efficiency
Statistical efficiency

Example

Probability that Ay is below some threshold € approximates the
likelihood function.

— T —

0.1, 0.9 quantiles
——mean

——threshold (0.1)
____approximate likelihood

0.8f (rescaled) f
_ _true likelihood
(rescaled)
0.6f ]
0.4+ 1
0.2r 1
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Difficulties
Solutions
Recent work

Computational efficiency
Statistical efficiency

Example

> Here, T(y) = 1377 | y; is a sufficient statistics for inference
of the mean 6
> The only approximation is € > 0.

» In general, the summary statistics will not be sufficient.
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Difficulties
Solutions
Recent work

Computational efficiency
Statistical efficiency

Example

» In the Gaussian example, the probability for Ag < € can be

computed in closed form Ap = (A° — po)?
Pr(Ag <e)=¢ (ﬁ(ﬂo —0)+ \/E)—CD (ﬁ(ﬂo —0)— \/E)
=/ T2z &P (-3 u2) du

» For ne small: L(0) x Pr(Ag <€) x ﬁL( )

0.1, 0.9 quantiles
. . :tmhre:snhu\d(ﬂi‘{( hood
» For small € good approximation of od — gpproxmate oo
kel ; - Geachiod)
the likelihood function. 8
» But for small €, Pr(Ay <€) =~ 0: 00 ;
Very few samples will be accepted 02 i
O—J" \¥
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Difficulties
Solutions
Recent work

Computational efficiency
Statistical efficiency

Two widely used algorithms

» Two widely used algorithms which improve computationally
upon rejection ABC:

1. Regression ABC (Beaumont et al, 2002)
2. Sequential Monte Carlo ABC (Sisson et al, 2007)

» Both use rejection ABC as a building block.

» Sequential Monte Carlo (SMC) ABC is also known as
Population Monte Carlo (PMC) ABC.
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Difficulties
Solutions
Recent work

Computational efficiency
Statistical efficiency

Two widely used algorithms

» Regression ABC consists in running rejection ABC with a
relatively large € and then adjusting the obtained samples so
that they are closer to samples from the true posterior.

» Sequential Monte Carlo ABC consists in sampling 8 from an
adaptively constructed proposal distribution ¢(0) rather than
from the prior in order to avoid simulating many data sets
which are not accepted.
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Difficulties
Solutions
Recent work

Computational efficiency
Statistical efficiency

Basic idea of regression ABC

» The summary statistics tg = T(yg) and 0 have a joint
distribution.

> Let t; be the summary statistics for simulated data
yi = g(wi, 0;).

» We can learn a regression model between the summary
statistics (covariates) and the parameters (response variables)

0; = f(t;)+¢&; (12)

where &; is the error term (zero mean random variable).

» The training data for the regression are typically tuples (6, t;)
produced by rejection-ABC with some sufficiently large e.
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Difficulties
Solutions
Recent work

Computational efficiency
Statistical efficiency

Basic idea of regression ABC

» Fitting the regression model to the training data (9,,t ) yields
an estimated regression function f and the residuals E,,

A

& =0, —1(t) (13)
» Regression ABC consists in replacing 8; with 67,
07 = F(t°) + & = F(t°) + 0, — F(t)) (14)

» Corresponds to an adjustment of 9;.

» If the relation between t and 0 is learned correctly, the 87
correspond to samples from an approximation with ¢ = 0.
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Difficulties
Solutions
Recent work

Computational efficiency
Statistical efficiency

Basic idea of sequential Monte Carlo ABC

» We may modify the rejection ABC algorithm and use ¢(0)
instead of the prior pg.
1. Sample 6; ~ ¢(0)
2. Simulate a data set y; by running the simulator with 6;
(yi = g(wi, 0)))
3. Compute the discrepancy A; = d(T(y°), T(y;))
4. Retain 0; if A; <e
» The retained samples follow a distribution proportional to

$(0)Lc(6)
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- 9-A Difficulti
Computational efficiency S(I)It::ili):ll:s
Statistical efficiency Recent work

Basic idea of sequential Monte Carlo ABC

» Parameters 6; weighted with w;,

_ po(6)
w; = 507 (15)

follow a distribution proportional to pg(0)L.(0).
» Can be used to iteratively morph the prior into a posterior:

» Use a sequence of shrinking thresholds ¢,

» Run rejection ABC with €.

» Define ¢ at iteration t based on the weighted samples from
the previous iteration (e.g Gaussian mixture with means equal

to the 6; from the previous iteration).
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Basic idea of sequential Monte Carlo ABC

Construction of proposal distribution

3.5
true posterior t=t+1
3l
€
25}
P
proposal t=3
15F

2 proposal t=2

O'S/J 1 priort=1
4 *—o- ° :
0 T 04 * 08 1.2
. . ) e
. . .. Simulator . . .
...... »
TR PP »| M@©,9) |- .
......... »

Michael Gutmann ABC Tutorial 51/65



Difficulties
Solutions
Recent work

Computational efficiency
Statistical efficiency

Learning a model of the discrepancy

Lc(6) x Pr(Ag < €| 8)
» The approximate likelihood function L.(6) is determined by
the distribution of the discrepancy Ag

> If we knew the distribution of Ag we could compute L(6).

» We proposed to learn a model of Ag and to approximate
L(6) by L(6),

L(0) x Pr(Ag <€|8) (16)

» Model is learned more accurately in regions where Ag tends
to be small to make further computational savings.

(Gutmann and Corander, Journal of Machine Learning Research, in press)
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Example: Bacterial infections in child care centers

> Likelihood intractable for cross-sectional data
» But generating data from the model is possible

i Parameters of interest:
Y - rate of infections within a center
‘© - rate of infections from outside
o " - competition between the strains
25
a0
§) | |
5 10 15 20 25 30 35 | |
Individual 10
L |
5 n u
10] u
" L |
LI [
1z 10
[ ] n [ ]
'S o5
L g L [ .
5 4 N - 20)
ﬂ; 8 " s m
) _.'.\1/ - . L.
%

(Numminen et al, 2013) T m m B W
ndividual
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Computational efficiency
Statistical efficiency

Difficulties
Solutions
Recent work

Example: Bacterial infections in child care centers

» Comparison of the proposed approach with a standard
population Monte Carlo ABC approach.
» Roughly equal results using 1000 times fewer simulations.

—e— Developed Fast Method
0.4 —4—Standard Method
H 0.35
4.5 days with 200 cores 5
g 03
3 &
. . 8025
90 minutes with seven cores <
£ 02
Q
g (028 £ e S
Posterior means: solid lines, o
credibility intervals: shaded areas or dashed lines. 01 I o
(U0 15] e
2 25 3 3.5 4 4.5 5 55 6
Computational cost (log10)
(Gutmann and Corander, 2015)
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Difficulties
Solutions
Recent work

Computational efficiency
Statistical efficiency

Example: Bacterial infections in child care centers

» Comparison of the proposed approach with a standard
population Monte Carlo ABC approach.
» Roughly equal results using 1000 times fewer simulations.

—e— Developed Fast Method| 18 —e—Developed Fast Method
—4—Standard Method —4—Standard Method

10
9 1.6
3 o]
2 g 2
% g 1.4
g7 g
1.2
s s
8 Bheememmeeeeee e N g 8 4
£ 15
T 4 B CEG LR CE R R PP PR ST
H o-o-S-otcan 3 0.8
o PSR (SR R SRR S =
2 0.6
1
04F == e
2 25 3 3.5 4 4.5 5 5.5 6 2 25 3 3. 4 45 5 55 6
Computational cost (log10) Computational cost (log10)

Posterior means are shown as solid lines, credibility intervals as shaded areas or dashed lines.
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Program

Statistical efficiency
Difficulties
Solutions
Recent work
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v

v

v

Difficulties
Solutions
Recent work

Computational efficiency
Statistical efficiency

Discrepancy measure affects the accuracy of the estimates
Bad discrepancy: estimated posterior = prior
Bad discrepancy: vanishingly small acceptance probability

Good discrepancy: good trade-off between loss of information
and increase in acceptance probability

Michael Gutmann ABC Tutorial
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Difficulties
Solutions
Recent work

Computational efficiency
Statistical efficiency

How to choose the discrepancy measure?

» Manually

» Use expert knowledge about y° to define summary statistics T.
» Use Euclidean distance for d.

Do =|IT(y°) — T(yo)ll
» Semi-automatic
» Simulate pairs (0;,y;) y
> Define a large number of summary statistics T
» Define T as a smaller number of (linear) combinations of

them, automatically learned from the simulated pairs.
» Use Euclidean distance for d.

» Combinations are typically determined via regression with the
T(yg) as covariates and parameters 6 as reponse variables.
e.g. Nunes and Balding, 2010; Fearnhead and Prangle, 2012; Aeschbacher et al,

2012; Blum et al, 2013
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Difficulties
Solutions
Recent work

Computational efficiency
Statistical efficiency

Discrepancy measurement via classification

(Gutmann et al, 2014)

» Classification accuracy (discriminability) as discrepancy
measure Ag.

» Discriminability of 100% indicates maximally different data
sets; 50% indicates similar data sets.

/
gl
7

O Observed data
Simulated data, mean (6,0)

O Observed data
+ Simulated data, mean (1/2,0)

y-coordinate
y-coordinate

2 4 2 4
x-coordinate x-coordinate
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Example: Bacterial infections in child care centers

> Likelihood intractable for cross-sectional data
» But generating data from the model is possible

i Parameters of interest:
Y - rate of infections within a center
‘© - rate of infections from outside
o " - competition between the strains
25
a0
§) | |
5 10 15 20 25 30 35 | |
Individual 10
L |
5 n u
10] u
" L |
LI [
1z 10
[ ] n [ ]
'S o5
L g L [ .
5 4 N - 20)
ﬂ; 8 " s m
) _.'.\1/ - . L.
%

(Numminen et al, 2013) T m m B W
ndividual
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Difficulties
Solutions
Recent work

Computational efficiency
Statistical efficiency

Example: Bacterial infections in child care centers

(Gutmann et al, 2014)
» Our classification-based distance measure does not use
domain/expert knowledge.

» Performs as well as a distance measure based on domain
knowledge (Numminen et, 2013).

1 3 — Expert
16 —e—Classifier]
09
08 9
07
06
1.5
05 o
04
1 6|
03
4
02
2|

o1

2 25 3 35 4 45 04 06 08 1 12 0.05 01 0.15 02

(a) Posterior pdf for 3 (b) Posterior pdf for A (c) Posterior pdf for 6
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Example: Bacterial infections in child care centers

» Robustness is a concern when relying on expert knowledge
» Classification-based distance can automatically compensate

Difficulties
Solutions
Recent work

Computational efficiency
Statistical efficiency

(Gutmann et al, 2014)

errors in the expert input.

Posterior probability density

Compensation

)

o

0.5

—O— Developed Robust Method
—— Standard Method
—A— Reference

0.4 0.6 0.8 1 1.2
External infection parameter
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Summary

» The topic was Bayesian inference for models specified via a
simulator (implicit / generative models).

» Introduced approximate Bayesian computation (ABC).

» Principle of ABC: Find parameter values which yield simulated
data resembling the observed data.
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Summary

» The topic was Bayesian inference for models specified via a
simulator (implicit / generative models).

» Introduced approximate Bayesian computation (ABC).

» Principle of ABC: Find parameter values which yield simulated
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Summary

» The topic was Bayesian inference for models specified via a
simulator (implicit / generative models).

» Introduced approximate Bayesian computation (ABC).
» Principle of ABC: Find parameter values which yield simulated
data resembling the observed data.

» Covered three classical algorithms:
1. Rejection ABC
2. Regression ABC
3. Sequential Monte Carlo ABC
» Choice of discrepancy measure between simulated and
observed data
» Recent work of mine

» Combining modeling of the discrepancy and optimization to
increase computational efficiency
» Using classification to measure the discrepancy
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