Fast Likelihood-Free Inference via Bayesian Optimization

Michael Gutmann

<https://sites.google.com/site/michaelgutmann>

University of Helsinki Aalto University Helsinki Institute for Information Technology

Joint work with Jukka Corander

17 May 2016

For all the details: M.U. Gutmann and J. Corander Bayesian optimization for likelihood-free inference of simulator-based statistical models Journal of Machine Learning Research, in press. <http://arxiv.org/abs/1501.03291>

Early results: Bayesian Optimization for Likelihood-Free Estimation Poster at ABC in Rome, 2013.

Statistical inference for models where

- 1. the likelihood function is too costly to compute
- 2. sampling $-$ simulating data $-$ from the model is possible

Why does it matter?

- \triangleright Such models occur widely:
	- \blacktriangleright Astrophysics: Simulating the formation of galaxies, stars, or planets
	- \blacktriangleright Evolutionary biology: Simulating the evolution of life
	- **Health science:** Simulating the spread of an infectious disease
- \blacktriangleright ... \blacktriangleright Enables inference for models with complex data generating mechanisms (e.g. scientific models)

Dark matter density simulated by the Illustris collaboration (Figure from [http://www.illustris-project.org\)](http://www.illustris-project.org))

Likelihood-free inference is an umbrella term

- \triangleright There are several flavors of likelihood-free inference. In Bayesian setting e.g.
	- \triangleright Approximate Bayesian computation (ABC) (for review, see e.g. Marin et al, Statistics and Computing, 2012)
	- ▶ Synthetic likelihood (Wood, Nature, 2010)
- \triangleright General idea: Identify the values of the parameters of interest θ for which simulated data resemble the observed data
- \triangleright Simulated data resemble the observed data if some discrepancy measure $\Delta > 0$ is small.

Here: Focus on ABC, see reference paper for more

Meta ABC algorithm

- Eet y^o be the observed data.
- \blacktriangleright Iterate many many times:
	- 1. Sample θ from a proposal distribution $q(\theta)$
	- 2. Sample $y|\theta$ according to the model
	- 3. Compute discrepancy Δ between y^o and y
	- 4. Retain θ if $\Delta \leq \epsilon$

Meta ABC algorithm

- Eet y^o be the observed data.
- \blacktriangleright Iterate many many times:
	- 1. Sample θ from a proposal distribution $q(\theta)$
	- 2. Sample $y|\theta$ according to the model
	- 3. Compute discrepancy Δ between y^o and y
	- 4. Retain θ if $\Delta \leq \epsilon$
- \triangleright Different choices for $q(\theta)$ give different algorithms
	- ▶ rejection ABC (Tavaré et al, 1997; Pritchard et al, 1999)
	- ▶ MCMC ABC (Marjoram et al, 2003)
	- ▶ Population Monte Carlo ABC (Sisson et al, 2007)
- \blacktriangleright ϵ : trade-off between statistical and computational performance
- \triangleright Produces samples from an approximate posterior
- 1. How to measure the discrepancy
- 2. How to handle the computational cost

Two major difficulties

- 1. How to measure the discrepancy
	- \rightarrow Use classification

M.U. Gutmann, R. Dutta, S. Kaski, and J. Corander Statistical Inference of Intractable Generative Models via Classification

<http://arxiv.org/abs/1407.4981>

- 2. How to handle the computational cost
	- \rightarrow Use Bayesian optimization

M.U. Gutmann and J. Corander Bayesian optimization for likelihood-free inference of simulator-based statistical models Journal of Machine Learning Research, in press. <http://arxiv.org/abs/1501.03291>

Example: Bacterial infections in child care centers

- \blacktriangleright Likelihood intractable for cross-sectional data
- \triangleright But generating data from the model is possible

Example: Bacterial infections in child care centers

(Numminen et al, 2013)

- \triangleright Data: Streptococcus pneumoniae colonization for 29 centers
- \blacktriangleright Inference with Population Monte Carlo ABC
- \triangleright Reveals strong competition between different bacterial strains

Expensive:

- \blacktriangleright 4.5 days on a cluster with 200 cores
- \blacktriangleright More than one million simulated data sets

- Elet y^o be the observed data.
- \triangleright Building block of several ABC algorithms:
	- 1. Sample θ from a proposal distribution $q(\theta)$
	- 2. Sample $y|\theta$ according to the model
	- 3. Compute discrepancy Δ between y^o and y
	- 4. Retain θ if $\Delta \leq \epsilon$
- \triangleright Previous work: focus on choice of proposal distribution
- \triangleright Key bottleneck: presence of the rejection step

small $\epsilon \Rightarrow$ small acceptance probability $Pr(\Delta \leq \epsilon | \theta)$

 \triangleright Conditional acceptance probability corresponds to a likelihood approximation,

$$
\tilde{\mathsf{L}}(\boldsymbol{\theta}) \propto \mathsf{Pr}\left(\Delta \leq \epsilon \mid \boldsymbol{\theta}\right)
$$

- **►** The conditional distribution of Δ determines $\tilde{L}(\theta)$.
- If we knew the distribution of Δ we could compute $\tilde{L}(\theta)$.
- \triangleright Suggests an approach based on statistical modeling of Δ .

Proposed approach

- 1. Model and estimate the distribution of Δ
	- Estimated model yields computable approximation $\hat{L}(\theta)$

$$
\hat{L}(\boldsymbol{\theta}) \propto \widehat{\Pr}\left(\Delta \leq \epsilon \mid \boldsymbol{\theta}\right)
$$

 \widehat{Pr} is probability under the estimated model.

- \triangleright Data for estimation by sampling θ from the prior or from some other proposal distribution
- 2. Give priority to regions in the parameter space where discrepancy Δ tends to be small.
	- \triangleright Prioritize modal regions of the likelihood/posterior
	- \triangleright Use Bayesian optimization to find the regions where Δ tends to be small.
- \triangleright Set of methods to minimize black-box functions
- \blacktriangleright Basic idea:
	- \triangleright A probabilistic model of Δ guides the selection of points θ where Λ is next evaluated.
	- ► Observed values of Δ are used to update the model by Bayes' theorem.
- \triangleright When deciding where to evaluate Δ , balance
	- \triangleright points where Δ is believed to be small ("exploitation")
	- \triangleright points where we are uncertain about Δ ("exploration")

Bayesian optimization

Vanilla implementation

- \triangleright Assume (log) discrepancy follows a Gaussian process model.
- \triangleright Assume a squared exponential covariance function $cov(\Delta_{\theta}, \Delta_{\theta'}) = k(\theta, \theta'),$

$$
k(\theta, \theta') = \sigma_f^2 \exp\left(\sum_j \frac{1}{\lambda_j^2} (\theta_j - \theta'_j)^2\right).
$$
 (1)

 \triangleright Use lower confidence bound acquisition function (e.g. Cox and John, 1992; Srinivas et al, 2012)

$$
\mathcal{A}_t(\boldsymbol{\theta}) = \underbrace{\mu_t(\boldsymbol{\theta})}_{\text{post mean}} - \sqrt{\frac{\eta_t^2}{\text{weight post var}}} \underbrace{v_t(\boldsymbol{\theta})}_{\text{weight post var}}
$$
(2)

 \triangleright Possibly use stochastic acquisition rule: sample from Gaussian centered at $\arg\min_{\theta} A_t(\theta)$ while respecting boundaries.

- 1. Estimate a model of the discrepancy using Bayesian optimization
- 2. Choose threshold ϵ to obtain the likelihood approximation

$$
\hat{L}(\boldsymbol{\theta}) \propto \widehat{\Pr}\left(\Delta \leq \epsilon \mid \boldsymbol{\theta}\right)
$$

3. MLE or posterior inference with any standard method, using \hat{L} in place of true likelihood function.

Example: Bacterial infections in child care centers

- \blacktriangleright Likelihood intractable for cross-sectional data
- \triangleright But generating data from the model is possible

Inference results

- \triangleright Comparison of the proposed approach with a population Monte Carlo (PMC) ABC approach.
- \triangleright Roughly equal results using 1000 times fewer simulations.
- \blacktriangleright The minimizer of the regression function under the model does not involve choosing a threshold ϵ .

Posterior means: solid lines with markers, credibility intervals: shaded areas or dashed lines.

Inference results

 \triangleright Comparison of the model-based approach with a population Monte Carlo (PMC) ABC approach.

Posterior means are shown as solid lines with markers, credibility intervals as shaded areas or dashed lines.

Further benefits

- \triangleright Enables inference for models which were out of reach till now
	- \triangleright model of evolution where simulating a single data set took us 12-24 hours (Marttinen et al, 2015)
- \triangleright Allowed us to perform far more comprehensive data analysis than with standard approach (Numminen et al, 2016)
- Estimated $\hat{L}(\theta)$ can be used to assess parameter identifiability for complex models
	- \triangleright model about transmission dynamics of tuberculosis (Lintusaari et al, 2016)
- **►** For point estimation, minimize $\hat{E}(\Delta|\theta)$
	- \blacktriangleright no thresholds required
- \blacktriangleright Modeling of the discrepancy: Vanilla GP-model worked surprisingly well but there are likely more suitable models.
- \blacktriangleright Exploration/exploitation trade-off: Can we find strategies which are optimal for parameter inference?
- \triangleright Problem considered: Computational cost of likelihood-free inference
- \triangleright Proposed approach: Combine optimization with modeling of the discrepancy between simulated and observed data
- \triangleright Outcome: Approach increases the efficiency of the inference by several orders of magnitude
- \triangleright Talk was on approximate Bayesian computation with uniform kernels. For other kernels and synthetic likelihood see

M.U. Gutmann and J. Corander Bayesian Optimization for Likelihood-Free Inference of Simulator-Based Statistical Models, Journal of Machine Learning Research, in press. <http://arxiv.org/abs/1501.03291>

[Ricker model](#page-25-0)

[Details of the bacterial transmission model](#page-28-0)

Application to parameter inference in chaotic systems

- \triangleright Data: Time series with counts y_t (animal population size)
- \triangleright Simulator-based model: Stochastic version of the Ricker map followed by an observation model

$$
\log N_t = \log(r) + \log N_{t-1} - N_{t-1} + \sigma e_t, \quad e_t \sim \mathcal{N}(0, 1)
$$

$$
y_t | N_t, \varphi \sim \text{Poisson}(\varphi N_t)
$$

- \blacktriangleright Parameters θ :
	- \blacktriangleright log r (growth rate)
	- \triangleright σ (noise var),
	- $\triangleright \varphi$ (scale parameter)

Example data, $\theta^{\circ} = (3.8, 0.3, 10)$.

Application to parameter inference in chaotic systems

- ► Speed up: \approx 600 times fewer evaluations of the distance function.
- \triangleright Slight shift in posterior mean towards the data generating parameter θ^o (green circle)

Comparison with results using MCMC (Wood, Nature, 2010)

Application to parameter inference in chaotic systems

- ► Speed up: \approx 600 times fewer evaluations of the distance function.
- \triangleright Slight shift in posterior mean towards the data generating parameter θ^o (green circle)

Comparison with results using MCMC (Wood, Nature, 2010)

Bacterial transmission model (Numminen et al, 2013)

 \blacktriangleright Latent continuous time Markov chain for the transmissions inside a center

$$
Pr(I_{is}^{t+h} = 0 | I_{is}^t = 1) = h + o(h)
$$
 (3)

$$
Pr(I_{is}^{t+h} = 1 | I_{is'}^t = 0 \,\forall s') = R_s(t)h + o(h) \qquad (4)
$$

$$
\Pr(I_{is}^{t+h} = 1 | I_{is}^t = 0, \exists s' : I_{is'}^t = 1) = \theta R_s(t) h + o(h) \qquad (5)
$$

$$
R_{s}(t) = \beta E_{s}(t) + \Lambda P_{s} \qquad (6)
$$

- \blacktriangleright P_s : infections from outside the group (static)
- \blacktriangleright $E_{\mathsf{s}}(t) = \sum_i \frac{1}{N-1} I_{i\mathsf{s}}^t \frac{1}{n_i(t)}$ $\frac{1}{n_i(t)}$: infections from within the group $n_i(t)=\sum_{s'} l_{is'}^t$: number of strains that individual i carries
- \triangleright Observation model: Cross-sectional sampling at random time.
- \blacktriangleright Summary statistics for each center:
	- \triangleright the diversity of the strains present
	- \triangleright the number of different strains present
	- \triangleright the proportion of infected individuals
	- \triangleright the proportion of individuals with more than one strain.
- \triangleright Distance \equiv Distance between the empirical cumulative distribution functions (cdfs) of the four summary statistics.