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Likelihood-free inference

Statistical inference for models where

1. the likelihood function is too costly to compute

2. sampling – simulating data – from the model is possible
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Why does it matter?

I Such models occur widely:
I Astrophysics:

Simulating the formation of
galaxies, stars, or planets

I Evolutionary biology:
Simulating the evolution of
life

I Health science:
Simulating the spread of an
infectious disease

I . . .

I Enables inference for models
with complex data generating
mechanisms (e.g. scientific
models)

Dark matter density simulated by the Illustris collaboration

(Figure from http://www.illustris-project.org)
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Likelihood-free inference is an umbrella term

I There are several flavors of likelihood-free inference. In
Bayesian setting e.g.

I Approximate Bayesian computation (ABC)
(for review, see e.g. Marin et al, Statistics and Computing, 2012)

I Synthetic likelihood (Wood, Nature, 2010)

I General idea: Identify the values of the parameters of interest
θ for which simulated data resemble the observed data

I Simulated data resemble the observed data if some
discrepancy measure ∆ ≥ 0 is small.

Here: Focus on ABC, see reference paper for more
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Meta ABC algorithm

I Let yo be the observed data.
I Iterate many many times:

1. Sample θ from a proposal distribution q(θ)
2. Sample y|θ according to the model
3. Compute discrepancy ∆ between yo and y
4. Retain θ if ∆ ≤ ε

I Different choices for q(θ) give different algorithms
I rejection ABC (Tavaré et al, 1997; Pritchard et al, 1999)

I MCMC ABC (Marjoram et al, 2003)

I Population Monte Carlo ABC (Sisson et al, 2007)

I ε: trade-off between statistical and computational
performance

I Produces samples from an approximate posterior
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Two major difficulties

1. How to measure the discrepancy

2. How to handle the computational cost
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Two major difficulties

1. How to measure the discrepancy

→ Use classification
M.U. Gutmann, R. Dutta, S. Kaski, and J. Corander
Statistical Inference of Intractable Generative Models via
Classification

http://arxiv.org/abs/1407.4981

2. How to handle the computational cost

→ Use Bayesian optimization
M.U. Gutmann and J. Corander
Bayesian optimization for likelihood-free inference of
simulator-based statistical models
Journal of Machine Learning Research, in press.

http://arxiv.org/abs/1501.03291
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Example: Bacterial infections in child care centers

I Likelihood intractable for cross-sectional data
I But generating data from the model is possible
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Parameters of interest:

- : rate of infections within a DCC

- : rate of infections from outside

- : competition between the strains

(Numminen et al, 2013)
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Example: Bacterial infections in child care centers

(Numminen et al, 2013)

I Data: Streptococcus pneumoniae colonization for 29 centers

I Inference with Population Monte Carlo ABC

I Reveals strong competition between different bacterial strains

Expensive:

I 4.5 days on a cluster with
200 cores

I More than one million
simulated data sets
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Why is ABC so expensive?

I Let yo be the observed data.
I Building block of several ABC algorithms:

1. Sample θ from a proposal distribution q(θ)
2. Sample y|θ according to the model
3. Compute discrepancy ∆ between yo and y
4. Retain θ if ∆ ≤ ε

I Previous work: focus on choice of proposal distribution

I Key bottleneck: presence of the rejection step

small ε⇒ small acceptance probability Pr(∆ ≤ ε | θ)
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How to make the rejection step disappear ?

I Conditional acceptance probability corresponds to a likelihood
approximation,

L̃(θ) ∝ Pr (∆ ≤ ε | θ)

I The conditional distribution of ∆ determines L̃(θ).

I If we knew the distribution of ∆ we could compute L̃(θ).

I Suggests an approach based on statistical modeling of ∆.
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Proposed approach

1. Model and estimate the distribution of ∆
I Estimated model yields computable approximation L̂(θ)

L̂(θ) ∝ P̂r (∆ ≤ ε | θ)

P̂r is probability under the estimated model.
I Data for estimation by sampling θ from the prior or from some

other proposal distribution

2. Give priority to regions in the parameter space where
discrepancy ∆ tends to be small.

I Prioritize modal regions of the likelihood/posterior
I Use Bayesian optimization to find the regions where ∆ tends

to be small.
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Bayesian optimization

I Set of methods to minimize black-box functions
I Basic idea:

I A probabilistic model of ∆ guides the selection of points θ
where ∆ is next evaluated.

I Observed values of ∆ are used to update the model by Bayes’
theorem.

I When deciding where to evaluate ∆, balance
I points where ∆ is believed to be small (“exploitation”)
I points where we are uncertain about ∆ (“exploration”)
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Bayesian optimization
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Vanilla implementation

I Assume (log) discrepancy follows a Gaussian process model.

I Assume a squared exponential covariance function
cov(∆θ,∆θ′) = k(θ,θ′),

k(θ,θ′) = σ2
f exp

∑
j

1

λ2
j

(θj − θ′j)2

 . (1)

I Use lower confidence bound acquisition function (e.g. Cox and

John, 1992; Srinivas et al, 2012)

At(θ) = µt(θ)︸ ︷︷ ︸
post mean

−
√

η2
t︸︷︷︸

weight

vt(θ)︸ ︷︷ ︸
post var

(2)

I Possibly use stochastic acquisition rule: sample from Gaussian
centered at argminθAt(θ) while respecting boundaries.

Michael Gutmann Fast Likelihood-Free Inference 16 / 23



Recipe for fast likelihood-free inference

1. Estimate a model of the discrepancy using Bayesian
optimization

2. Choose threshold ε to obtain the likelihood approximation

L̂(θ) ∝ P̂r (∆ ≤ ε | θ)

3. MLE or posterior inference with any standard method, using L̂
in place of true likelihood function.
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Example: Bacterial infections in child care centers

I Likelihood intractable for cross-sectional data
I But generating data from the model is possible

Individual

S
tr

a
in

5 10 15 20 25 30 35

5

10

15

20

25

30

Individual

S
tr

a
in

5 10 15 20 25 30 35

5

10

15

20

25

30

Individual

S
tr

a
in

5 10 15 20 25 30 35

5

10

15

20

25

30

Time

Individual

S
tr

a
in

5 10 15 20 25 30 35

5

10

15

20

25

30

Individual

S
tr

a
in

Parameters of interest:

- : rate of infections within a DCC

- : rate of infections from outside

- : competition between the strains

(Numminen et al, 2013)
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Inference results

I Comparison of the proposed approach with a population
Monte Carlo (PMC) ABC approach.

I Roughly equal results using 1000 times fewer simulations.

I The minimizer of the
regression function under
the model does not
involve choosing a
threshold ε.

Posterior means: solid lines with markers,

credibility intervals: shaded areas or dashed lines.
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Inference results

I Comparison of the model-based approach with a population
Monte Carlo (PMC) ABC approach.
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Posterior means are shown as solid lines with markers, credibility intervals as shaded areas or dashed lines.
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Further benefits

I Enables inference for models which were out of reach till now
I model of evolution where simulating a single data set took us

12-24 hours (Marttinen et al, 2015)

I Allowed us to perform far more comprehensive data analysis
than with standard approach (Numminen et al, 2016)

I Estimated L̂(θ) can be used to assess parameter identifiability
for complex models

I model about transmission dynamics of tuberculosis
(Lintusaari et al, 2016)

I For point estimation, minimize Ê(∆|θ)
I no thresholds required
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Some open questions

I Modeling of the discrepancy:
Vanilla GP-model worked surprisingly well but there are likely
more suitable models.

I Exploration/exploitation trade-off:
Can we find strategies which are optimal for parameter
inference?
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Summary

I Problem considered: Computational cost of likelihood-free
inference

I Proposed approach: Combine optimization with modeling of
the discrepancy between simulated and observed data

I Outcome: Approach increases the efficiency of the inference
by several orders of magnitude

I Talk was on approximate Bayesian computation with uniform
kernels. For other kernels and synthetic likelihood see

M.U. Gutmann and J. Corander
Bayesian Optimization for Likelihood-Free Inference of Simulator-Based

Statistical Models, Journal of Machine Learning Research, in press.
http://arxiv.org/abs/1501.03291
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Appendix

Ricker model

Details of the bacterial transmission model
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Application to parameter inference in chaotic systems

I Data: Time series with counts yt (animal population size)

I Simulator-based model: Stochastic version of the Ricker map
followed by an observation model

logNt = log(r) + logNt−1 − Nt−1 + σet , et ∼ N (0, 1)

yt |Nt , ϕ ∼ Poisson(ϕNt)

I Parameters θ:
I log r (growth rate)
I σ (noise var),
I ϕ (scale parameter)
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Example data, θo = (3.8, 0.3, 10).
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Application to parameter inference in chaotic systems

I Speed up: ≈ 600 times fewer evaluations of the distance
function.

I Slight shift in posterior mean towards the data generating
parameter θo (green circle)
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Comparison with results using MCMC (Wood, Nature, 2010)
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Bacterial transmission model (Numminen et al, 2013)

I Latent continuous time Markov chain for the transmissions
inside a center

Pr(I t+h
is = 0|I tis = 1) = h + o(h) (3)

Pr(I t+h
is = 1|I tis′ = 0 ∀s ′) = Rs(t)h + o(h) (4)

Pr(I t+h
is = 1|I tis = 0, ∃s ′ : I tis′ = 1) = θRs(t)h + o(h) (5)

Rs(t) = βEs(t) + ΛPs (6)

I Ps : infections from outside the group (static)

I Es(t) =
∑

i
1

N−1 I
t
is

1
ni (t) : infections from within the group

ni (t) =
∑

s′ I
t
is′ : number of strains that individual i carries

I Observation model: Cross-sectional sampling at random time.
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Distance measure used

I Summary statistics for each center:
I the diversity of the strains present
I the number of different strains present
I the proportion of infected individuals
I the proportion of individuals with more than one strain.

I Distance ≡ Distance between the empirical cumulative
distribution functions (cdfs) of the four summary statistics.
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