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Take-home message

By using classification, we can measure the distance between two
data sets and infer the parameters of intractable generative models.
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Problem statement

I Given:
I Observed data yo

I Intractable generative model, parametrised by θ
I (Possibly) A prior probability density function (pdf) for θ, pθ

I Task: Perform inference about θ
I Maximum likelihood estimate
I Posterior distribution of θ
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Generative model

I Model that specifies a mechanism for generating data y
I e.g. stochastic dynamical system
I computer model / simulator of some complex biological

process

I Such models are widely used
I Evolutionary biology:

Simulating evolution
I Neuroscience:

Simulating neural circuits
I Ecology:

Simulating species migration
I Health science:

Simulating the spread of an
infectious disease

Simulated neural activity in rat somatosensory cortex
(Figure from https://bbp.epfl.ch/nmc-portal)
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Generative model

I Let (Ω,F ,P) be a probability space.
I A generative model is a collection of (measurable) functions

g(.,θ) parametrized by θ,

ω ∈ Ω 7→ y = g(ω,θ) ∈ Y (1)

I For any fixed θ, y = g(.,θ) is a random variable.

Simulation / Sampling
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Intractable generative model

I Generally impossible to write down the pdf p(y|θ) of the
generated data.

I Likelihood function L(θ) = p(yo|θ) not known
well defined, but computation not tractable supplemental

I Exact inference not possible
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Approximate inference for generative models

I Inference is approximate due to approximation of p(yo|θ)
I Rough classification:

I Parametric approximation: e.g. synthetic likelihood
(Wood, Nature, 2010)

I Nonparametric approximation: e.g approximate Bayesian
computation
(Recent review: Gutmann et al, Systematic Biology, 2016)

I General idea: Identify the values of the parameters θ for
which simulated data resemble the observed data
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Meta algorithm for approximate Bayesian computation

I Let yo be the observed data.
I Iterate many times:

1. Sample θ from a proposal distribution q(θ)
2. Sample y|θ according to the model
3. Compute the distance d(y, yo) between simulated and

observed data
4. Retain θ if d(y, yo) ≤ ε

I Different choices for q(θ) give different algorithms
I Produces samples from the (approximate) posterior when the

bandwidth ε is small.
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Two major difficulties

1. How to handle the computational cost?
2. How to measure the distance d between simulated and

observed data?
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Two major difficulties

1. How to handle the computational cost?
→ Use Bayesian optimization

M.U. Gutmann and J. Corander
Bayesian optimization for likelihood-free inference of
simulator-based statistical models
Journal of Machine Learning Research, 17(125): 1–47, 2016

2. How to measure the distance d between simulated and
observed data?
→ Use classification

M.U. Gutmann, R. Dutta, S. Kaski, and J. Corander
Statistical Inference of Intractable Generative Models via
Classification, arXiv:1407.4981
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Using classification to measure the distance

Correctly classifying data into two categories is usually easier if the
two data sets were generated with very different values of θ (left)
than with similar values (right).
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Using classification to measure the distance

I Classification accuracy (discriminability) serves as distance
measure.

I Value of 1/2: close; Value of 1: far
I Complete arsenal of classification methods becomes available

to inference.
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Using the distance for posterior inference

I Approximate Bayesian computation (ABC) with classification
accuracy as distance measure

I Results for toy models:
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binary data (Bernoulli)(a) binary data (Bernoulli)
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Application to epidemiology of infectious diseases

I Data: Colonization states of sampled attendees of 29 child
day care centres (DCCs).

I DCC example: Each square indicates an attendee colonized
with a strain of the bacterium Streptococcus pneumoniae.
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Application to epidemiology of infectious diseases

I Generative model: latent continuous-time Markov chain for
the transmission dynamics in a DCC and an observation
model (Numminen et, Biometrics, 2013).

I The model has three parameters:
I β: rate of infections within a DCC
I Λ: rate of infections outside a DCC
I θ: possibility to be infected with multiple strains

I Likelihood is intractable (data at a single time point are
available only).
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Application to epidemiology of infectious diseases

I Our classification-based distance measure does not use
domain/expert knowledge.

I Performs as well as a distance measure based on domain
knowledge (Numminen et, Biometrics, 2013).
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Summary

I Topic: Inference for generative models where the likelihood
function is intractable

I Inference principle: Find parameter values for which the
distance between simulated and observed data is small

I Showed that, by using classification, we can
I measure the distance between two data sets, and
I infer the parameters of intractable generative models.

I More (results, math, related work, ...) in the reference paper!
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Likelihood function is implicitly defined
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