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Problem statement

» Task: Estimate the parameters 0 of a parametric model p(.|0)
of a d dimensional random vector x

» Given: Data X = (x1,...,X,) (iid)

» Given: Unnormalized model ¢(.|0)

/£ HE0)dE=2(0) #1  p(x0) =

Normalizing partition function Z(€) not known / computable.
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Why does the partition function matter?

_ stan) _ P(-0%)
20 = o

> Log-likelihood function for precision 8 > 0

» Consider p(x;6)
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-100 S~o —— Data-dependent term

» Data-dependent (blue) and
independent part (red)
balance each other.

» If Z(0) is intractable, £(0) -
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Why is the partition function hard to compute?

7(0) = [, $(&:6) d¢
> Integrals can generally not be solved in closed form.
> In low dimensions, Z(0) can be approximated to high
accuracy.

» Curse of dimensionality: Solutions feasible in low dimensions
become quickly computationally prohibitive as the dimension
d increases.
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Why are unnormalized models important?

» Unnormalized models are widely used.

> Examples:
» models of images (Markov random fields)
» models of text (neural probabilistic language models)
» models in physics (Ising model)
>

» Advantage: Specifying unnormalized models is often easier

than specifying normalized models.
» Disadvantage: Likelihood function is generally intractable.
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Intuition behind noise-contrastive estimation

» Formulate the estimation problem as a classification problem:
observed data vs. auxiliary “noise” (with known properties)

» Successful classification = learn the differences between the
data and the noise

» differences + known noise properties = properties of the data

Data or noise ?

» Unsupervised learning by [
supervised learning

. Data

» We used (nonlinear) logistic
regression for classification

X
. Noise
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Logistic regression (1/2)

> Let Y = (y1,...¥Ym) be a sample from a random variable y
with known (auxiliary) distribution py.

> Introduce labels and form regression function:

1

PIC=1u6) = TG 9)

G(u;0) >0 (3)

. Class 1 or 07

» Determine the parameters 6
such that P(C = 1|u; 0) is
> large for most x;
» small for most y;.

[ ) ....

. Data: class 1 . Noise: class 0
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Logistic regression (2/2)

» Maximize (rescaled) conditional log-likelihood using the
labeled data {(x1,1),...,(xn,1),(y1,0),...,(ym,0)},

JNCE(9) = % (Z log P(C =1|x;;0) + Z log [P(C = Oly;; 9)])
i=1 i=1

» For large sample sizes n and m, ] satisfying

) X

is maximizing JY°¥(0). Without any normalization
constraints.
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Noise-contrastive estimation

(Gutmann and Hyvérinen, 2010; 2012)

» Assume unnormalized model ¢(.|@) is parametrized such that

its scale can vary freely.

6 — (6;c) ¢(u; 0) — exp(c)p(u; 0)

» Noise-contrastive estimation:

1. Choose py,
2. Generate auxiliary data Y
3. Estimate 0 via logistic regression with

G(u;0) = m py(.u) i
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Noise-contrastive estimation

(Gutmann and Hyvérinen, 2010; 2012)

» Assume unnormalized model ¢(.|@) is parametrized such that
its scale can vary freely.

6 — (6:¢c) ¢(u; 0) — exp(c)p(u; 0) (5)

> Noise-contrastive estimation:
1. Choose py,
2. Generate auxiliary data Y
3. Estimate 0 via logistic regression with

G(u;0) =" ”y(.“) . (6)

=]
-
—~

£
D
~

» G(u;0) — %ggzg = ¢(u;0) — px(u)
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Example

» Unnormalized Gaussian:

2
d(u; 0) = exp (02) exp (—91L;> , 01>0,6,eR, (7)

» Parameters: 6; (precision), 6 = ¢ (scaling parameter)

Contour plot of JY°F(0) :

» Gaussian noise with
v=m/n=10

» True precision 07 =1

Normalizing parameter

» Black: normalized models
Green: optimization paths

Precision
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Statistical properties

(Gutmann and Hyvérinen, 2012)
» Assume py = p(.|0)

» Consistency: As n increases,
6, = argmaxy JY°E(8), (8)

converges in probability to 6*.

» Efficiency: As v = m/n increases, for any valid choice of py,
noise-contrastive estimation tends to “perform as well” as
MLE (it is asymptotically Fisher efficient).

Michael Gutmann Noise-contrastive estimation 13/25



Validating the statistical properties with toy data

» Let the data follow the ICA model x = As with 4 sources.
log p(x; 0*) = Z\f\b*x|+c (9)

with c* = log |detB*| — % log2 and B* = A~1.

» To validate the method, estimate the unnormalized model
log ¢(x; 0) = Z\f\bx|+c (10)

with parameters @ = (by,..., by, ).

» Contrastive noise py: Gaussian with the same covariance as
the data.
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Validating the statistical properties with toy data

» Results for 500 estimation problems with random A, for
v € {0.01,0.1,1,10,100}.

> MLE results: with properly normalized model
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(a) Mixing matrix (b) Normalizing constant
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Computational aspects

» The estimation accuracy improves as m increases.
» Trade-off between computational and statistical performance.

» Example: ICA model as before but with 10 sources. n = 8000,
v e {1,2,5,10,20, 50,100,200, 400, 1000} .
Performance for 100 random estimation problems:

NCE

log10 sqError

3 . . . . . . .
1 15 2 25 3 3.5 4
Time till convergence [log10 s]
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Computational aspects

How good is the trade-off? Compare with

1. MLE where partition function is evaluated with importance
sampling. Maximization of

Jis(8) = %Z log ¢(x;; ) — log (rln 3 Qb[)(Y(i;z)) (11)
i=1 YA

i=1

2. Score matching: minimization of

n 10

1 1
Jsm(6) = — 3 §\u}(x,-; ) + Vi(x;0)  (12)
i=1 j=1
with V;(x; 0) = %ga#;](,x;m (here: smoothing needed!)

(see Gutmann and Hyvérinen, 2012, for more comparisons)
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Computational aspects

» NCE is less sensitive to the mismatch of data and noise

distribution than importance sampling.
» Score matching does not perform well if the data distribution

is not sufficiently smooth.

NCE

- SM
== =MLE

log10 sgError

-3 L i i
0.5 1 1.5 2 25 3 35 4 45
Time till convergence [log10 s]
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Application examples

» Models of text: e.g. Mnih and Teh, 2012,
A fast and simple algorithm for training neural probabilistic language models

» Models of images: e.g. Gutmann and Hyvarinen, 2013,
A three-layer model of natural image statistics

» Machine translation: e.g. Zoph et al, 2016,
Simple, fast noise-contrastive estimation for large RNN vocabularies

» Product recommendation: e.g. Tschiatschek et al, 2016, Learning
probabilistic submodular diversity models via noise contrastive estimation
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Program

Bregman divergence to estimate unnormalized models
Framework
Noise-contrastive estimation as member of the framework
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Bregman divergence between two vectors a and b

ulog(u)—
Bregman divergence between a and b: (1 + u)log(1 + u)
2\ du(a,b) =U(a) = (¥ () + ¥'(b)(a — D))
U : strictly convex function
1.5¢
" —log(u)
05F
°l ulog(u)
U(b) + V'(b)(a—b)
-05
2 15 - -05 0 05 1 1.5 2
dy(a,b) =0 a=>b dy(a,b) >0ifa#b
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Bregman divergence between two functions f and g

» Compute dy(f(u), g(u)) for all u in their domain; take
weighted average

du(f.) = [ du((u). g(u))du(u) (13)
= [wh - W) + V@ - ldn (14

» Zero iff f = g (a.e.); no normalization condition on f or g

» Fix f, omit terms not depending on g,

J(g)= / [—V(g)+V'(g)g —V'(g)f|du  (15)
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Estimation of unnormalized models

Jg)=[[-V(e) +V(g)g — V(g)f]du
> Idea: Choose f, g, and pu so that we obtain a computable cost
function for consistent estimation of unnormalized models.

» Choose f = T(px) and g = T(¢) such that

f=g=p=0 (16)
Examples:
> f=p,8=9¢

> f:yp;y’g:%

> ..

» Choose p such that the integral can either be computed in
closed form or approximated as sample average.

(Gutmann and Hirayama, 2011)
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Estimation of unnormalized models
(Gutmann and Hirayama, 2011)

» Several estimation methods for unnormalized models are part
of the framework
> Noise-contrastive estimation
» Poisson-transform (Barthelmé and Chopin, 2015)
» Score matching (Hyvéarinen, 2005)
» Pseudo-likelihood (Besag, 1975)
S

» Noise-contrastive estimation:

V(u) = ulogu — (1+ u)log(l+ u) (17)
_ vpy(u) _
flu) = 22 dji(u) = p(u)du (18)
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Conclusions

» Point estimation for parametric models with intractable
partition functions (unnormalized models)
> Noise contrastive estimation
» Estimate the model by learning to classify between data and
noise
» Consistent estimator, has MLE as limit
» Applicable to large-scale problems
» Bregman divergence as general framework to estimate
unnormalized models.
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Appendix

Maximizer of the NCE objective function

Noise-contrastive estimation as member of the Bregman framework
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Proof of Equation (4)

For large sample sizes n and m, ] satisfying

Gl 8) = 20

is maximizing JY<F(0),

INCE(g) = % <Z log P(C = 1]x;;0) + Z log [P(C = 0ly;; 0)])
i=1 i=1

without any normalization constraints.
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Proof of Equation (4)

JNCE(9) = % (Z log P(C = 1|x;;0) + Z log [P(C = Oly;; 0)])
i=1 i=1

1< ml <&
22108 P(C = 10xi6) + 1203 T log [P(C = 1y O]

Fix the ratio m/n = v and let n — co and m — co. By law of
large numbers, JY°F converges to JN°F,

JNCE(0) = Ex (log P(C = 1|x; 8)) + vEy (log P(C = 0ly; 8)) (19)

and P(C =0|y; 0) = S0 e

With P(C = 1|x; 0) = e

have

1
1+G(x;0)

JNCE(0) = — Exlog(1 + G(x; 0)) + vEy log G(y; 0)—
vEy log (1 + G(y; 9)) (20)
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Consider the objective JY°F(0) as a function of H = log G rather
than 0,

TNE(H) = — Exlog(1 + exp H(x)) + vEyH(y) — vEy log (1 + exp H(y))

—— [ pu(€)10g(1 + exp H(ENdE + v [ m(©)H(E)dE
v [ p©)og(1 + exp H(E))de

— [ () + vr () loB(1 + exp H(E)E:+
v [ mi©H(E)de

We now expand JN“F(H + eq) around H for an arbitrary function
g and a small scalar e.
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With

log(1 + exp [H(§) + €q(&)]) = log(1 + exp H(E)) +

(
N q(¢) q(§)
2 1+exp(—H(E)) 1+ exp(H(E))
+0(e%)

we have

TXE(H + cq) =~ [ (pxl€) + vpy(€)) log(1 + exp H(€))de

px(§) +vpy(§)
- / el g 1%
/ ) + VPy(E q(¢)?
1+ exp(— )1+ exp(H(£))

GE (£)d£ e [ m(©ale)de + O(e)

d§
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Collecting terms gives:

T H+ ca) =) + ¢ [ (vmyte) - PLOEIBE) teyae

+upy(§)  q(€)?
_/1—|—exp 4 1+exp(H(£))d€+O(€3)

The second-order term is negative for all (non-trivial) g and H.
The first-order term is zero for all g if and only if

SRV
) = T (6]
vpy(€) + vy (€) exp(—H (€)) = pul€) + vy (€)
exol—H'(€) = 28

which shows that 8 such that G(&; 8) = exp(H*(£)) = v is
maximizing JY®(0).
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Maximizer of the NCE objective function
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Proof

In noise-contrastive estimation, we maximize

J’l;rcE(H) = % (Z |og P(C = 1\x;; 9) + Z |og [P(C = 0|y,-; 0)])
i=1 i=1

Sample version of
JNCE(0) = Ex (log P(C = 1]x; 0)) + vE, (log P(C = 0ly; 8))
With
1 1

PE=w0 =15 6we PO M= 10 1cwe)

JNCE(0) = —Exlog(1+ G(x;0)) — vEylog(1+ 1/G(y; 0)) (21)

where G(u;0) = Z)’E’l’;(gg
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The general cost function in the Bregman framework is

J(g) = / [~ V(g) +V'(g)g — V'(g)f]dpu (22)
With
V(g) = glog(g) — (1 +g)log(1 + &) (23)
V'(g) = log(g) — log(1 + g) (24)
we have

J(g) =/ [ —glog(g) + (1+g)log(1+g)

+log(g)g — log(1 + g)g
— log(g)f + log(1 + g)f]du (25)

Michael Gutmann Noise-contrastive estimation 10/11



J(g) = / [log(1 + g) — log(g)f + log(1 + g)f]du

= / [Iog(l +g)+ log(1+ 1/g)f]d,u

With
f )”p’f(fj‘)) g(u) = G(u;0)  du(u) = py(u)du
we have

J(6(:6)) = [ px(u) og(1 + G(u; ) du

+ vpy(u) log(1+1/G(u; 0))du
_ JNCE(O)
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