Noise-contrastive estimation of unnormalised statistical models

Michael Gutmann

https://sites.google.com/site/michaelgutmann

Institute for Adaptive and Neural Computation School of Informatics, University of Edinburgh

11th November 2016

Problem statement

- ▶ Task: Estimate the parameters θ of a parametric model $p(.|\theta)$ of a d dimensional random vector \mathbf{x}
- Given: Data $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ (iid)
- ▶ Given: Unnormalized model $\phi(.|\theta)$

$$\int_{\xi} \phi(\xi; \theta) d\xi = Z(\theta) \neq 1 \qquad p(\mathbf{x}; \theta) = \frac{\phi(\mathbf{x}; \theta)}{Z(\theta)}$$
(1)

Normalizing partition function $Z(\theta)$ not known / computable.

Why does the partition function matter?

- ► Consider $p(x; \theta) = \frac{\phi(x; \theta)}{Z(\theta)} = \frac{\exp\left(-\theta \frac{x^2}{2}\right)}{\sqrt{2\pi/\theta}}$
- ▶ Log-likelihood function for precision $\theta \ge 0$

$$\ell(\theta) = -n \log \sqrt{\frac{2\pi}{\theta}} - \theta \sum_{i=1}^{n} \frac{x_i^2}{2}$$
 (2)

- Data-dependent (blue) and independent part (red) balance each other.
- ▶ If $Z(\theta)$ is intractable, $\ell(\theta)$ is intractable.

Why is the partition function hard to compute?

$$Z(\theta) = \int_{\xi} \phi(\xi; \theta) d\xi$$

- ▶ Integrals can generally not be solved in closed form.
- In low dimensions, $Z(\theta)$ can be approximated to high accuracy.
- Curse of dimensionality: Solutions feasible in low dimensions become quickly computationally prohibitive as the dimension d increases.

Why are unnormalized models important?

- Unnormalized models are widely used.
- Examples:

```
    models of images
    models of text
    models in physics
    (Markov random fields)
    (neural probabilistic language models)
    (Ising model)
```

- **.** . . .
- Advantage: Specifying unnormalized models is often easier than specifying normalized models.
- Disadvantage: Likelihood function is generally intractable.

Program

Noise-contrastive estimation

Intuition and definition Properties

Bregman divergence to estimate unnormalized models

Framework

Noise-contrastive estimation as member of the framework

Program

Noise-contrastive estimation Intuition and definition Properties

Bregman divergence to estimate unnormalized models
Framework
Noise-contrastive estimation as member of the framework

Intuition behind noise-contrastive estimation

- ► Formulate the estimation problem as a classification problem: observed data vs. auxiliary "noise" (with known properties)
- Successful classification ≡ learn the differences between the data and the noise
- ▶ differences + known noise properties ⇒ properties of the data

- Unsupervised learning by supervised learning
- We used (nonlinear) logistic regression for classification

Logistic regression (1/2)

- Let $\mathbf{Y} = (\mathbf{y}_1, \dots \mathbf{y}_m)$ be a sample from a random variable \mathbf{y} with known (auxiliary) distribution $p_{\mathbf{y}}$.
- ▶ Introduce labels and form regression function:

$$P(C = 1|\mathbf{u}; \boldsymbol{\theta}) = \frac{1}{1 + G(\mathbf{u}; \boldsymbol{\theta})} \qquad G(\mathbf{u}; \boldsymbol{\theta}) \ge 0 \qquad (3)$$

- ▶ Determine the parameters θ such that $P(C = 1|\mathbf{u}; \theta)$ is
 - ▶ large for most x_i
 - small for most y_i.

Logistic regression (2/2)

Maximize (rescaled) conditional log-likelihood using the labeled data $\{(\mathbf{x}_1, 1), \dots, (\mathbf{x}_n, 1), (\mathbf{y}_1, 0), \dots, (\mathbf{y}_m, 0)\},\$

$$J_n^{\text{NCE}}(\boldsymbol{\theta}) = \frac{1}{n} \left(\sum_{i=1}^n \log P(C = 1 | \mathbf{x}_i; \boldsymbol{\theta}) + \sum_{i=1}^m \log \left[P(C = 0 | \mathbf{y}_i; \boldsymbol{\theta}) \right] \right)$$

For large sample sizes n and m, $\hat{\theta}$ satisfying

$$G(\mathbf{u}; \hat{\boldsymbol{\theta}}) = \frac{m}{n} \frac{\rho_{\mathbf{y}}(\mathbf{u})}{\rho_{\mathbf{x}}(\mathbf{u})}$$
(4)

is maximizing $J_n^{\text{NCE}}(\theta)$. Without any normalization constraints.

Noise-contrastive estimation

(Gutmann and Hyvärinen, 2010; 2012)

Assume unnormalized model $\phi(.|\theta)$ is parametrized such that its scale can vary freely.

$$\theta \to (\theta; c)$$
 $\phi(\mathbf{u}; \theta) \to \exp(c)\phi(\mathbf{u}; \theta)$ (5)

- Noise-contrastive estimation:
 - 1. Choose p_y
 - 2. Generate auxiliary data Y
 - 3. Estimate heta via logistic regression with

$$G(\mathbf{u};\boldsymbol{\theta}) = \frac{m}{n} \frac{p_{\mathbf{y}}(\mathbf{u})}{\phi(\mathbf{u};\boldsymbol{\theta})}.$$
 (6)

Noise-contrastive estimation

(Gutmann and Hyvärinen, 2010; 2012)

Assume unnormalized model $\phi(.|\theta)$ is parametrized such that its scale can vary freely.

$$\theta \to (\theta; c)$$
 $\phi(\mathbf{u}; \theta) \to \exp(c)\phi(\mathbf{u}; \theta)$ (5)

- Noise-contrastive estimation:
 - 1. Choose p_y
 - 2. Generate auxiliary data Y
 - 3. Estimate heta via logistic regression with

$$G(\mathbf{u}; \boldsymbol{\theta}) = \frac{m}{n} \frac{\rho_{\mathbf{y}}(\mathbf{u})}{\phi(\mathbf{u}; \boldsymbol{\theta})}.$$
 (6)

► $G(\mathbf{u}; \boldsymbol{\theta}) \to \frac{m}{n} \frac{p_{\mathbf{y}}(\mathbf{u})}{p_{\mathbf{x}}(\mathbf{u})}$ \Rightarrow $\phi(\mathbf{u}; \boldsymbol{\theta}) \to p_{\mathbf{x}}(\mathbf{u})$

Example

Unnormalized Gaussian:

$$\phi(u; \boldsymbol{\theta}) = \exp(\theta_2) \exp\left(-\theta_1 \frac{u^2}{2}\right), \quad \theta_1 > 0, \ \theta_2 \in \mathbb{R}, \quad (7)$$

▶ Parameters: θ_1 (precision), $\theta_2 \equiv c$ (scaling parameter)

Contour plot of $J_n^{ ext{NCE}}(oldsymbol{ heta})$:

- Gaussian noise with $\nu = m/n = 10$
- ▶ True precision $\theta_1^{\star} = 1$
- Black: normalized models Green: optimization paths

Statistical properties

(Gutmann and Hyvärinen, 2012)

- Assume $p_x = p(.|\theta^*)$
- ► Consistency: As *n* increases,

$$\hat{\boldsymbol{\theta}}_n = \operatorname{argmax}_{\boldsymbol{\theta}} J_n^{\text{NCE}}(\boldsymbol{\theta}),$$
 (8)

converges in probability to θ^{\star} .

▶ Efficiency: As $\nu = m/n$ increases, for any valid choice of p_y , noise-contrastive estimation tends to "perform as well" as MLE (it is asymptotically Fisher efficient).

Validating the statistical properties with toy data

Let the data follow the ICA model x = As with 4 sources.

$$\log p(\mathbf{x}; \boldsymbol{\theta}^{\star}) = -\sum_{i=1}^{4} \sqrt{2} |\mathbf{b}_{i}^{\star} \mathbf{x}| + c^{\star}$$
 (9)

with $c^* = \log |\det \mathbf{B}^*| - \frac{4}{2} \log 2$ and $\mathbf{B}^* = \mathbf{A}^{-1}$.

▶ To validate the method, estimate the unnormalized model

$$\log \phi(\mathbf{x}; \boldsymbol{\theta}) = -\sum_{i=1}^{4} \sqrt{2} |\mathbf{b}_i \mathbf{x}| + c$$
 (10)

with parameters $\theta = (\mathbf{b}_1, \dots, \mathbf{b}_4, c)$.

Contrastive noise p_y: Gaussian with the same covariance as the data.

Validating the statistical properties with toy data

- ▶ Results for 500 estimation problems with random **A**, for $\nu \in \{0.01, 0.1, 1, 10, 100\}$.
- MLE results: with properly normalized model

Computational aspects

- ▶ The estimation accuracy improves as *m* increases.
- ► Trade-off between computational and statistical performance.
- ▶ Example: ICA model as before but with 10 sources. n=8000, $\nu \in \{1, 2, 5, 10, 20, 50, 100, 200, 400, 1000\}$. Performance for 100 random estimation problems:

Computational aspects

How good is the trade-off? Compare with

 MLE where partition function is evaluated with importance sampling. Maximization of

$$J_{\rm IS}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \log \phi(\mathbf{x}_i; \boldsymbol{\theta}) - \log \left(\frac{1}{m} \sum_{i=1}^{m} \frac{\phi(\mathbf{y}_i; \boldsymbol{\theta})}{\rho_{\mathbf{y}}(\mathbf{y}_i)} \right)$$
(11)

2. Score matching: minimization of

$$J_{\text{SM}}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{10} \frac{1}{2} \Psi_j^2(\mathbf{x}_i; \boldsymbol{\theta}) + \Psi_j'(\mathbf{x}_i; \boldsymbol{\theta})$$
(12)

with
$$\Psi_j(\mathbf{x}; \boldsymbol{\theta}) = \frac{\partial \log \phi(\mathbf{x}; \boldsymbol{\theta})}{\partial x_j}$$
 (here: smoothing needed!)

(see Gutmann and Hyvärinen, 2012, for more comparisons)

Computational aspects

- ▶ NCE is less sensitive to the mismatch of data and noise distribution than importance sampling.
- Score matching does not perform well if the data distribution is not sufficiently smooth.

Application examples

- Models of text: e.g. Mnih and Teh, 2012, A fast and simple algorithm for training neural probabilistic language models
- Models of images: e.g. Gutmann and Hyvärinen, 2013, A three-layer model of natural image statistics
- ► Machine translation: e.g. Zoph et al, 2016, Simple, fast noise-contrastive estimation for large RNN vocabularies
- Product recommendation: e.g. Tschiatschek et al, 2016, Learning probabilistic submodular diversity models via noise contrastive estimation

Program

Noise-contrastive estimation Intuition and definition Properties

Bregman divergence to estimate unnormalized models

Framework

Noise-contrastive estimation as member of the framework

Bregman divergence between two vectors a and b

Bregman divergence between two functions f and g

► Compute $d_{\Psi}(f(\mathbf{u}), g(\mathbf{u}))$ for all \mathbf{u} in their domain; take weighted average

$$\tilde{d}_{\Psi}(f,g) = \int d_{\Psi}(f(\mathbf{u}), g(\mathbf{u})) d\mu(\mathbf{u})$$

$$= \int \Psi(f) - \left[\Psi(g) + \Psi'(g)(f - g)\right] d\mu$$
(13)

- ▶ Zero iff f = g (a.e.); no normalization condition on f or g
- Fix f, omit terms not depending on g,

$$J(g) = \int \left[-\Psi(g) + \Psi'(g)g - \Psi'(g)f \right] \mathrm{d}\mu \qquad (15)$$

Estimation of unnormalized models

$$J(g) = \int \left[-\Psi(g) + \Psi'(g)g - \Psi'(g)f \right] \mathrm{d}\mu$$

- ▶ Idea: Choose f, g, and μ so that we obtain a computable cost function for consistent estimation of unnormalized models.
- ▶ Choose $f = T(p_x)$ and $g = T(\phi)$ such that

$$f = g \Rightarrow p_{\mathbf{x}} = \phi \tag{16}$$

Examples:

- $f = p_{x}, g = \phi$ $f = \frac{p_{x}}{\nu p_{y}}, g = \frac{\phi}{\nu p_{y}}$
- ▶ Choose μ such that the integral can either be computed in closed form or approximated as sample average.

(Gutmann and Hirayama, 2011)

Estimation of unnormalized models

(Gutmann and Hirayama, 2011)

- Several estimation methods for unnormalized models are part of the framework
 - ► Noise-contrastive estimation
 - Poisson-transform (Barthelmé and Chopin, 2015)
 - Score matching (Hyvärinen, 2005)
 - Pseudo-likelihood (Besag, 1975)
 - **.** . . .
- Noise-contrastive estimation:

$$\Psi(u) = u \log u - (1+u) \log(1+u) \tag{17}$$

$$f(\mathbf{u}) = \frac{\nu p_{\mathbf{y}}(\mathbf{u})}{p_{\mathbf{x}}(\mathbf{u})} \qquad \qquad \mathrm{d}\mu(\mathbf{u}) = p_{\mathbf{x}}(\mathbf{u})\mathrm{d}\mathbf{u} \quad (18)$$

Conclusions

- Point estimation for parametric models with intractable partition functions (unnormalized models)
- Noise contrastive estimation
 - Estimate the model by learning to classify between data and noise
 - Consistent estimator, has MLE as limit
 - Applicable to large-scale problems
- Bregman divergence as general framework to estimate unnormalized models.

Appendix

Maximizer of the NCE objective function

Noise-contrastive estimation as member of the Bregman framework

Appendix

Maximizer of the NCE objective function

Noise-contrastive estimation as member of the Bregman framework

Proof of Equation (4)

For large sample sizes n and m, $\hat{\theta}$ satisfying

$$G(\mathbf{u}; \hat{\boldsymbol{\theta}}) = \frac{m}{n} \frac{p_{\mathbf{y}}(\mathbf{u})}{p_{\mathbf{x}}(\mathbf{u})}$$

is maximizing $J_n^{ ext{NCE}}(oldsymbol{ heta})$,

$$J_n^{\text{NCE}}(\boldsymbol{\theta}) = \frac{1}{n} \left(\sum_{i=1}^n \log P(C = 1 | \mathbf{x}_i; \boldsymbol{\theta}) + \sum_{i=1}^m \log \left[P(C = 0 | \mathbf{y}_i; \boldsymbol{\theta}) \right] \right)$$

without any normalization constraints.

Proof of Equation (4)

$$J_n^{\text{NCE}}(\boldsymbol{\theta}) = \frac{1}{n} \left(\sum_{i=1}^n \log P(C = 1 | \mathbf{x}_i; \boldsymbol{\theta}) + \sum_{i=1}^m \log \left[P(C = 0 | \mathbf{y}_i; \boldsymbol{\theta}) \right] \right)$$
$$= \frac{1}{n} \sum_{t=1}^n \log P(C = 1 | \mathbf{x}_i; \boldsymbol{\theta}) + \frac{m}{n} \frac{1}{m} \sum_{t=1}^m \log \left[P(C = 0 | \mathbf{y}_i; \boldsymbol{\theta}) \right]$$

Fix the ratio $m/n = \nu$ and let $n \to \infty$ and $m \to \infty$. By law of large numbers, J_n^{NCE} converges to J^{NCE} ,

$$J^{\text{NCE}}(\boldsymbol{\theta}) = \mathbb{E}_{\mathbf{x}} \left(\log P(C = 1 | \mathbf{x}; \boldsymbol{\theta}) \right) + \nu \mathbb{E}_{\mathbf{y}} \left(\log P(C = 0 | \mathbf{y}; \boldsymbol{\theta}) \right) \tag{19}$$

With
$$P(C = 1|\mathbf{x}; \boldsymbol{\theta}) = \frac{1}{1 + G(\mathbf{x}; \boldsymbol{\theta})}$$
 and $P(C = 0|\mathbf{y}; \boldsymbol{\theta}) = \frac{G(\mathbf{y}; \boldsymbol{\theta})}{1 + G(\mathbf{y}; \boldsymbol{\theta})}$ we have

$$J^{\text{NCE}}(\boldsymbol{\theta}) = -\mathbb{E}_{\mathbf{x}} \log(1 + G(\mathbf{x}; \boldsymbol{\theta})) + \nu \mathbb{E}_{\mathbf{y}} \log G(\mathbf{y}; \boldsymbol{\theta}) - \nu \mathbb{E}_{\mathbf{y}} \log (1 + G(\mathbf{y}; \boldsymbol{\theta}))$$
(20)

Consider the objective $J^{\text{NCE}}(\theta)$ as a function of $H = \log G$ rather than θ ,

$$\begin{split} \mathcal{J}^{\text{NCE}}(H) &= -\mathbb{E}_{\mathbf{x}} \log(1 + \exp H(\mathbf{x})) + \nu \mathbb{E}_{\mathbf{y}} H(\mathbf{y}) - \nu \mathbb{E}_{\mathbf{y}} \log(1 + \exp H(\mathbf{y})) \\ &= -\int p_{\mathbf{x}}(\boldsymbol{\xi}) \log(1 + \exp H(\boldsymbol{\xi})) d\boldsymbol{\xi} + \nu \int p_{\mathbf{y}}(\boldsymbol{\xi}) H(\boldsymbol{\xi}) d\boldsymbol{\xi} \\ &- \nu \int p_{\mathbf{y}}(\boldsymbol{\xi}) \log(1 + \exp H(\boldsymbol{\xi})) d\boldsymbol{\xi} \\ &= -\int (p_{\mathbf{x}}(\boldsymbol{\xi}) + \nu p_{\mathbf{y}}(\boldsymbol{\xi})) \log(1 + \exp H(\boldsymbol{\xi})) d\boldsymbol{\xi} + \\ &\nu \int p_{\mathbf{y}}(\boldsymbol{\xi}) H(\boldsymbol{\xi}) d\boldsymbol{\xi} \end{split}$$

We now expand $\mathcal{J}^{\text{NCE}}(H+\epsilon q)$ around H for an arbitrary function q and a small scalar ϵ .

With

$$\log(1 + \exp[H(\xi) + \epsilon q(\xi)]) = \log(1 + \exp H(\xi)) + \frac{\epsilon q(\xi)}{1 + \exp(-H(\xi))} + \frac{\epsilon^2}{2} \frac{q(\xi)}{1 + \exp(-H(\xi))} \frac{q(\xi)}{1 + \exp(H(\xi))} + O(\epsilon^3)$$

we have

$$\begin{split} \mathcal{J}^{\text{NCE}}(H+\epsilon q) &= -\int \left(p_{\mathbf{x}}(\boldsymbol{\xi}) + \nu p_{\mathbf{y}}(\boldsymbol{\xi})\right) \log(1+\exp H(\boldsymbol{\xi})) d\boldsymbol{\xi} \\ &- \epsilon \int \frac{p_{\mathbf{x}}(\boldsymbol{\xi}) + \nu p_{\mathbf{y}}(\boldsymbol{\xi})}{1+\exp(-H(\boldsymbol{\xi}))} q(\boldsymbol{\xi}) d\boldsymbol{\xi} \\ &- \frac{\epsilon^2}{2} \int \frac{p_{\mathbf{x}}(\boldsymbol{\xi}) + \nu p_{\mathbf{y}}(\boldsymbol{\xi})}{1+\exp(-H(\boldsymbol{\xi}))} \frac{q(\boldsymbol{\xi})^2}{1+\exp(H(\boldsymbol{\xi}))} d\boldsymbol{\xi} \\ &+ \nu \int p_{\mathbf{y}}(\boldsymbol{\xi}) H(\boldsymbol{\xi}) d\boldsymbol{\xi} + \epsilon \nu \int p_{\mathbf{y}}(\boldsymbol{\xi}) q(\boldsymbol{\xi}) d\boldsymbol{\xi} + O(\epsilon^3) \end{split}$$

Collecting terms gives:

$$\mathcal{J}^{\text{NCE}}(H+\epsilon q) = \mathcal{J}^{\text{NCE}}(H) + \epsilon \int \left(\nu p_{\mathbf{y}}(\boldsymbol{\xi}) - \frac{p_{\mathbf{x}}(\boldsymbol{\xi}) + \nu p_{\mathbf{y}}(\boldsymbol{\xi})}{1 + \exp(-H(\boldsymbol{\xi}))}\right) q(\boldsymbol{\xi}) d\boldsymbol{\xi}$$
$$-\frac{\epsilon^2}{2} \int \frac{p_{\mathbf{x}}(\boldsymbol{\xi}) + \nu p_{\mathbf{y}}(\boldsymbol{\xi})}{1 + \exp(-H(\boldsymbol{\xi}))} \frac{q(\boldsymbol{\xi})^2}{1 + \exp(H(\boldsymbol{\xi}))} d\boldsymbol{\xi} + O(\epsilon^3)$$

The second-order term is negative for all (non-trivial) q and H. The first-order term is zero for all q if and only if

$$\nu p_{\mathbf{y}}(\boldsymbol{\xi}) = \frac{p_{\mathbf{x}}(\boldsymbol{\xi}) + \nu p_{\mathbf{y}}(\boldsymbol{\xi})}{1 + \exp(-H^*(\boldsymbol{\xi}))}$$

$$\nu p_{\mathbf{y}}(\boldsymbol{\xi}) + \nu p_{\mathbf{y}}(\boldsymbol{\xi}) \exp(-H^*(\boldsymbol{\xi})) = p_{\mathbf{x}}(\boldsymbol{\xi}) + \nu p_{\mathbf{y}}(\boldsymbol{\xi})$$

$$\exp(-H^*(\boldsymbol{\xi})) = \frac{p_{\mathbf{x}}(\boldsymbol{\xi})}{\nu p_{\mathbf{y}}(\boldsymbol{\xi})}$$

which shows that $\hat{\theta}$ such that $G(\xi; \hat{\theta}) = \exp(H^*(\xi)) = \nu \frac{\rho_y}{\rho_x}$ is maximizing $J^{\text{NCE}}(\theta)$.

back

Appendix

Maximizer of the NCE objective function

Noise-contrastive estimation as member of the Bregman framework

Proof

In noise-contrastive estimation, we maximize

$$J_n^{\text{NCE}}(\boldsymbol{\theta}) = \frac{1}{n} \left(\sum_{i=1}^n \log P(C = 1 | \mathbf{x}_i; \boldsymbol{\theta}) + \sum_{i=1}^m \log \left[P(C = 0 | \mathbf{y}_i; \boldsymbol{\theta}) \right] \right)$$

Sample version of

$$J^{ ext{NCE}}(oldsymbol{ heta}) = \mathbb{E}_{oldsymbol{x}} \left(\log P(oldsymbol{ heta} = 1 | oldsymbol{x}; oldsymbol{ heta})
ight) +
u \mathbb{E}_{oldsymbol{y}} \left(\log P(oldsymbol{ heta} = 0 | oldsymbol{y}; oldsymbol{ heta})
ight)$$

With

$$P(C = 1|\mathbf{u}; \boldsymbol{\theta}) = \frac{1}{1 + G(\mathbf{u}; \boldsymbol{\theta})}$$
 $P(C = 0|\mathbf{u}; \boldsymbol{\theta}) = \frac{1}{1 + 1/G(\mathbf{u}; \boldsymbol{\theta})}$

$$J^{\text{NCE}}(\boldsymbol{\theta}) = -\mathbb{E}_{\mathbf{x}} \log(1 + G(\mathbf{x}; \boldsymbol{\theta})) - \nu \mathbb{E}_{\mathbf{y}} \log(1 + 1/G(\mathbf{y}; \boldsymbol{\theta})) \quad (21)$$

where
$$G(\mathbf{u}; \boldsymbol{\theta}) = \frac{\nu p_{\mathbf{y}}(\mathbf{u})}{\phi(\mathbf{u}; \boldsymbol{\theta})}$$
.

The general cost function in the Bregman framework is

$$J(g) = \int \left[-\Psi(g) + \Psi'(g)g - \Psi'(g)f \right] d\mu \tag{22}$$

With

$$\Psi(g) = g \log(g) - (1+g) \log(1+g)$$
 (23)

$$\Psi'(g) = \log(g) - \log(1+g) \tag{24}$$

we have

$$J(g) = \int \left[-g \log(g) + (1+g) \log(1+g) + \log(g)g - \log(1+g)g - \log(g)f + \log(1+g)f \right] d\mu$$

$$(25)$$

$$J(g) = \int \left[\log(1+g) - \log(g)f + \log(1+g)f \right] d\mu$$

$$= \int \left[\log(1+g) + \log(1+1/g)f \right] d\mu$$
(26)

With

$$f(\mathbf{u}) = \frac{\nu p_{\mathbf{y}}(\mathbf{u})}{p_{\mathbf{x}}(\mathbf{u})} \qquad g(\mathbf{u}) = G(\mathbf{u}; \boldsymbol{\theta}) \qquad \mathrm{d}\mu(\mathbf{u}) = p_{\mathbf{x}}(\mathbf{u})\mathrm{d}\mathbf{u} \qquad (28)$$

we have

$$J(G(.; \boldsymbol{\theta})) = \int p_{\mathbf{x}}(\mathbf{u}) \log(1 + G(\mathbf{u}; \boldsymbol{\theta})) d\mathbf{u}$$
$$+ \nu p_{\mathbf{y}}(\mathbf{u}) \log(1 + 1/G(\mathbf{u}; \boldsymbol{\theta})) d\mathbf{u}$$
(29)
$$= -J^{\text{NCE}}(\boldsymbol{\theta})$$
(30)

