# Modelling The Model for Approximate Bayesian Computation

Michael Gutmann

https://sites.google.com/site/michaelgutmann

University of Edinburgh

1st March 2017

# Overall goal

- ▶ Inference: Given data x<sup>o</sup>, learn about properties of its source
- Enables decision making, predictions, ...



# Parametric Inference

- Set up a model with potential properties  $\theta$  (hypotheses)
- See which  $\theta$  are in line with the observed data  $x^o$



# The likelihood function $L(\theta)$

- Measures agreement between  $\theta$  and the observed data  $x^o$
- Probability to generate data like  $x^o$  if hypothesis  $\theta$  holds



- 1. How should we assess whether  $x_{\theta} \equiv x^{o}$ ?
- 2. How should we compute the probability of the event  $x_{\theta} \equiv x^{o}$ ?
- 3. For which values of  $\theta$  should we compute it?

- 1. How should we assess whether  $x_{\theta} \equiv x^{o}$ ?  $\Rightarrow$  Check whether  $||T(x_{\theta}) - T(x^{o})|| \leq \epsilon$
- 2. How should we compute the probability of the event  $x_{\theta} \equiv x^{o}$ ?  $\Rightarrow$  By counting
- 3. For which values of  $\theta$  should we compute it?
  - $\Rightarrow$  Sample from the prior

- 1. How should we assess whether  $x_{\theta} \equiv x^{o}$ ?  $\Rightarrow$  Check whether  $||T(x_{\theta}) - T(x^{o})|| \leq \epsilon$
- 2. How should we compute the probability of the event  $x_{\theta} \equiv x^{o}$ ?  $\Rightarrow$  By counting
- 3. For which values of  $\theta$  should we compute it?
  - $\Rightarrow$  Sample from the prior

Trade-off between computational cost and accuracy of the inference may be poor.

Building models of The Model is a powerful approach to address the three foundational issues and to improve the trade-off between computation and accuracy.

# Models of The Model?

- "The Model" is the model of primary interest
  - We can sample sample from it
  - Likelihood function intractable
- Often a "mechanistic model" that emulates nature
- "Models of The Model" are auxiliary entities that facilitate the inference
  - Auxiliary models used in indirect inference
  - Regression models used for regression adjustment
- In what follows: "auxiliary models" instead of "models of The Model"

- 1. Brief overview of how auxiliary models are used in ABC
- 2. How we used auxiliary models

#### Overview

# Diverse use of auxiliary models (1/2)

#### To define/construct summary statistics

indirect inference

(e.g. Gouriéroux et al, 1993; Smith 1993; Heggland & Frigessi, 2004; Drovandi et al, 2011 & 2015)

- semi-automatic approach by Fearnhead and Prangle, 2012
- To model the posterior  $\theta | x^o$ 
  - Inear regression adjustment by Beaumont et al, 2002
  - flexible nonlinear models

(e.g. Blum & Francois, 2010; Papamakarios & Murray, 2016)

- ► To define a "synthetic" likelihood (Wood, 2010; Leuenberger & Wegmann, 2010)
- To reduce the number of simulations from the model
  - Surrogate models of approximate likelihoods (Wilkinson, 2014; Meeds & Welling, 2014)
  - Models of the discrepancy between simulated and observed data (Gutmann & Corander, 2013-2016)
- To measure the discrepancy by classification

(Gutmann et al, 2014, 2017)

#### We can e.g.

- Construct summary statistics by auxiliary models of the data
- Adjust the summary statistics by regression
- Reduce computations by surrogate models
- Increase accuracy by (nonlinear) regression adjustments
- Which model to use for any given purpose?
  - $\Rightarrow$  Automated model choice
  - $\Rightarrow$  Taking computational considerations into account

- 1. To model the discrepancy and decide where to run the simulator
- 2. To measure the discrepancy by classification
- 3. To estimate the posterior by penalised logistic regression

- 1. To model the discrepancy and decide where to run the simulator
- 2. To measure the discrepancy by classification
- 3. To estimate the posterior by penalised logistic regression

(Gutmann & Corander, 2013-2016)

- Assume that a discrepancy measure d between simulated and observed data has been specified.
- Model the conditional distribution of the discrepancy d given  $\theta$
- Estimated model yields approximation  $\hat{L}(\theta)$  for any choice of  $\epsilon$

$$\widehat{L}( heta) \propto \widehat{\mathbb{P}} \left( d \leq \epsilon \mid heta 
ight)$$

 $\widehat{\mathbb{P}}$  is probability under the estimated model.

- We used the model of  $d|\theta$  to decide for which parameters to simulate the model next.
- Approach also applicable to other kernels and synthetic likelihood.

### Bayesian optimisation for likelihood-free inference



Michael Gutmann

#### Auxiliary Models for ABC

# Example: Bacterial infections in child care centres

- Likelihood intractable for cross-sectional data
- But generating data from the model is possible



### Example: Bacterial infections in child care centres

- Comparison of the proposed approach with a standard population Monte Carlo ABC approach.
- ▶ Roughly equal results using 1000 times fewer simulations.



(Gutmann and Corander, 2016)

#### • Choice of the model for $d|\theta$

(Some results available here: arXiv:1610.06462, Järvenpää et al, 2016)

#### Choice of the acquisition function

- 1. To model the discrepancy and decide where to run the simulator
- 2. To measure the discrepancy by classification
- 3. To estimate the posterior by penalised logistic regression

### Classification accuracy as discrepancy measure

Correctly classifying data into two categories is easier if the two data sets were generated with very different values of  $\theta$  (left) than with similar values (right).



(Gutmann et al, 2014, 2017)

# Classification accuracy as discrepancy measure

(Gutmann et al, 2014, 2017)

- Classification accuracy (discriminability) serves as distance measure.
- Value of 1/2: close; Value of 1: far
- Complete arsenal of classification methods becomes available to inference.
- Choice of discriminative model? Use tools from classification literature.

### Example: Bacterial infections in child care centres

- The classification-based distance measure does not require domain/expert knowledge.
- Performs as well as a distance measure based on domain knowledge (Numminen et, Biometrics, 2013).



(Gutmann et al, 2014, 2017)

- 1. To model the discrepancy and decide where to run the simulator
- 2. To measure the discrepancy by classification
- 3. To estimate the posterior by penalised logistic regression

(Dutta et al, 2016, arXiv:1611.10242)

Frame posterior estimation as ratio estimation problem

$$p(\theta|x) = \frac{p(\theta)p(x|\theta)}{p(x)} = p(\theta)r(x,\theta)$$
(1)  
$$r(x,\theta) = \frac{p(x|\theta)}{p(x)}$$
(2)

- Estimating  $r(x, \theta)$  is the difficult part since  $p(x|\theta)$  unknown.
- Estimate r̂(x, θ) yields estimate of the likelihood function and posterior

$$\hat{L}(\theta) \propto \hat{r}(x^{o}, \theta), \qquad \hat{p}(\theta|x^{o}) = p(\theta)\hat{r}(x^{o}, \theta).$$
 (3)

# Estimating density ratios in general

- ► Relatively well studied problem (Textbook by Sugiyama et al, 2012)
- Bregman divergence provides general framework
   (Gutmann and Hirayama, 2011; Sugiyama et al, 2011)
- Here: density ratio estimation by logistic regression

### Density ratio estimation by logistic regression

Samples from two data sets

$$x_i^{(1)} \sim p^{(1)}, \quad i = 1, \dots, n^{(1)}$$
 (4)

$$x_i^{(2)} \sim p^{(2)}, \quad i = 1, \dots, n^{(2)}$$
 (5)

• Probability that a test data point x was sampled from  $p^{(1)}$ 

$$\mathbb{P}(x \sim p^{(1)}|x,h) = \frac{1}{1 + \nu \exp(-h(x))}, \qquad \nu = \frac{n^{(2)}}{n^{(1)}} \qquad (6)$$



# Density ratio estimation by logistic regression

Estimate h by minimising

$$\mathcal{J}(h) = \frac{1}{n} \left\{ \sum_{i=1}^{n^{(1)}} \log \left[ 1 + \nu \exp\left(-h_i^{(1)}\right) \right] + \sum_{i=1}^{n^{(2)}} \log \left[ 1 + \frac{1}{\nu} \exp\left(h_i^{(2)}\right) \right] \right\}$$
$$h_i^{(1)} = h\left(x_i^{(1)}\right) \qquad h_i^{(2)} = h\left(x_i^{(2)}\right)$$
$$n = n^{(1)} + n^{(2)}$$

Objective is the re-scaled negated log-likelihood.

For large 
$$n^{(1)}$$
 and  $n^{(2)}$ 

$$\hat{h} = \operatorname{argmin}_h \mathcal{J}(h) = \log \frac{p^{(1)}}{p^{(2)}}$$

without any constraints on h

### Estimating the posterior

Property was used to estimate unnormalised models

(Gutmann & Hyvärinen, 2010, 2012)

- For posterior estimation, we use
  - data generating pdf  $p(x|\theta)$  for  $p^{(1)}$
  - marginal p(x) for  $p^{(2)}$  (Other choices for p(x) possible too)
  - sample sizes entirely under our control
- Logistic regression gives (point-wise in  $\theta$ )

$$\hat{h}(x,\theta) \to \log \frac{p(x|\theta)}{p(x)} = \log r(x,\theta)$$
 (7)

Estimated posterior and likelihood function:

$$\hat{p}(\theta|x^{o}) = p(\theta) \exp(\hat{h}(x^{o},\theta)) \qquad \hat{L}(\theta) \propto \exp(\hat{h}(x^{o},\theta)) \qquad (8)$$

### Estimating the posterior



(Dutta et al, 2016, arXiv:1611.10242)

- We need to specify a model for *h*.
- For simplicity: linear model

$$h(x) = \sum_{i=1}^{b} \beta_i \psi_i(x) = \beta^{\top} \psi(x)$$
(9)

where  $\psi_i(x)$  are summary statistics

More complex models possible

# Exponential family approximation

Logistic regression yields

 $\hat{h}(x;\theta) = \hat{\beta}(\theta)^{\top} \psi(x), \quad \hat{r}(x,\theta) = \exp(\hat{\beta}(\theta)^{\top} \psi(x))$  (10)

Resulting posterior

$$\hat{p}(\theta|x^{o}) = p(\theta) \exp(\hat{\beta}(\theta)^{\top} \psi(x^{o}))$$
(11)

• Implicit exponential family approximation of  $p(x|\theta)$ 

$$\hat{r}(x,\theta) = \frac{\hat{\rho}(x|\theta)}{\hat{\rho}(x)}$$
(12)

$$\hat{\rho}(x|\theta) = \hat{\rho}(x) \exp(\hat{\beta}(\theta)^{\top} \psi(x))$$
(13)

• Implicit because  $\hat{p}(x)$  never explicitly constructed.

- ► Vector of summary statistics ψ(x) should include a constant for normalisation of the pdf (log partition function)
- Normalising constant is estimated via the logistic regression
- Simple linear model leads to a generalisation of synthetic likelihood
- $L_1$  penalty on  $\beta$  for weighing and selecting summary statistics

Model:

$$x^{(t)} = \theta_1 x^{(t-1)} + e^{(t)} \tag{14}$$

$$e^{(t)} = \xi^{(t)} \sqrt{0.2 + \theta_2 (e^{(t-1)})^2}$$
(15)

 $\xi^{(t)}$  and  $e^{(0)}$  independent standard normal r.v.,  $x^{(0)}=0$ 

- 100 time points
- ▶ Parameters:  $heta_1 \in (-1,1), \quad heta_2 \in (0,1)$
- Uniform prior on  $\theta_1, \theta_2$

#### Summary statistics:

- auto-correlations with lag one to five
- all (unique) pairwise combinations of them
- a constant
- To check robustness: 50% irrelevant summary statistics (drawn from standard normal)
- Comparison with synthetic likelihood with equivalent set of summary statistics (relevant sum. stats. only)

# Example posterior



# Example posterior



# Systematic analysis

- Jensen-Shannon div between estimated and true posterior
- Point-wise comparison with synthetic likelihood (100 data sets)

 $\Delta_{JSD}=JSD$  for proposed method–JSD for synthetic likelihood



Model

$$x^{(t)}|\mathcal{N}^{(t)}, \phi \sim \operatorname{Poisson}(\phi \mathcal{N}^{(t)})$$
 (16)

$$\log N^{(t)} = \log r + \log N^{(t-1)} - N^{(t-1)} + \sigma e^{(t)}$$
(17)

$$t = 1, \dots, 50, \qquad N^{(0)} = 0$$
 (18)

- Parameters and priors
  - log growth rate log  $r \sim \mathcal{U}(3,5)$
  - scaling parameter  $\phi \sim \mathcal{U}(5, 15)$
  - standard deviation  $\sigma \sim \mathcal{U}(0, 0.6)$

- Summary statistics: same as Simon Wood (Nature, 2010)
- 100 inference problems
- For each problem, relative errors in posterior means were computed
- Point-wise comparison with synthetic likelihood

### Results for $\log r$

 $\Delta_{\text{rel error}} = \text{rel error proposed method} - \text{rel error synth likelihood}$ 



#### Results for $\sigma$

 $\Delta_{\text{rel error}} = \text{rel error proposed method} - \text{rel error synth likelihood}$ 



#### Results for $\phi$

 $\Delta_{rel \ error} = rel \ error \ proposed \ method - rel \ error \ synth \ likelihood$ 



- Compared two auxiliary models: exponential vs Gaussian family
- ► For same summary statistics , typically more accurate inferences for the richer exponential family model
- Robustness to irrelevant summary statistics thanks to L<sub>1</sub> regularisation

- Compared two auxiliary models: exponential vs Gaussian family
- ► For same summary statistics , typically more accurate inferences for the richer exponential family model
- Robustness to irrelevant summary statistics thanks to L<sub>1</sub> regularisation

More results and details in arXiv:1611.10242v1

- Brief overview of how auxiliary models are used in ABC
- Our work on
  - modelling the discrepancy and using the model to decide for which parameter values to evaluate the model
  - discriminative modelling (classification) to measure the discrepancy
  - posterior estimation by regularised ratio estimation
- Importance of automatically controlling the complexity of the auxiliary model (model selection or regularisation)