Modelling The Model for Approximate Bayesian Computation

Michael Gutmann

<https://sites.google.com/site/michaelgutmann>

University of Edinburgh

1st March 2017

Overall goal

- Inference: Given data x^o , learn about properties of its source
- \blacktriangleright Enables decision making, predictions, ...

Parametric Inference

- Set up a model with potential properties θ (hypotheses)
- See which θ are in line with the observed data x°

The likelihood function $L(\theta)$

- Measures agreement between θ and the observed data x°
- Probability to generate data like x^o if hypothesis θ holds

- 1. How should we assess whether $x_{\theta} \equiv x^{\circ}$?
- 2. How should we compute the probability of the event $x_{\theta} \equiv x^{\circ}$?
- 3. For which values of θ should we compute it?

1. How should we assess whether $x_{\theta} \equiv x^{\circ}$?

 \Rightarrow Check whether $||T(x_\theta) - T(x^o)|| \leq \epsilon$

- 2. How should we compute the probability of the event $x_{\theta} \equiv x^{\circ}$? \Rightarrow By counting
- 3. For which values of θ should we compute it?
	- \Rightarrow Sample from the prior

1. How should we assess whether $x_{\theta} \equiv x^{\circ}$?

 \Rightarrow Check whether $||T(x_\theta) - T(x^o)|| \leq \epsilon$

- 2. How should we compute the probability of the event $x_{\theta} \equiv x^{\circ}$? \Rightarrow By counting
- 3. For which values of θ should we compute it?
	- \Rightarrow Sample from the prior

Trade-off between computational cost and accuracy of the inference may be poor.

Building models of The Model is a powerful approach to address the three foundational issues and to improve the trade-off between computation and accuracy.

- \triangleright "The Model" is the model of primary interest
	- \triangleright We can sample sample from it
	- \blacktriangleright Likelihood function intractable
- \triangleright Often a "mechanistic model" that emulates nature
- \triangleright "Models of The Model" are auxiliary entities that facilitate the inference
	- \blacktriangleright Auxiliary models used in indirect inference
	- \triangleright Regression models used for regression adjustment
- \blacktriangleright In what follows: "auxiliary models" instead of "models of The Model"
- 1. Brief overview of how auxiliary models are used in ABC
- 2. How we used auxiliary models

Overview

Diverse use of auxiliary models $(1/2)$

\blacktriangleright To define/construct summary statistics

 \blacktriangleright indirect inference

(e.g. Gouriéroux et al, 1993; Smith 1993; Heggland & Frigessi, 2004; Drovandi et al, 2011 & 2015)

- \triangleright semi-automatic approach by Fearnhead and Prangle, 2012
- \blacktriangleright To model the posterior $\theta | x^{\sigma}$
	- \blacktriangleright linear regression adjustment by Beaumont et al, 2002
	- \blacktriangleright flexible nonlinear models

(e.g. Blum & Francois, 2010; Papamakarios & Murray, 2016)

- ▶ To define a "synthetic" likelihood (Wood, 2010; Leuenberger & Wegmann, 2010)
- \triangleright To reduce the number of simulations from the model
	- \triangleright Surrogate models of approximate likelihoods (Wilkinson, 2014; Meeds & Welling, 2014)
	- \triangleright Models of the discrepancy between simulated and observed data (Gutmann & Corander, 2013-2016)
- \blacktriangleright To measure the discrepancy by classification

(Gutmann et al, 2014, 2017)

\triangleright We can e.g.

- \triangleright Construct summary statistics by auxiliary models of the data
- \triangleright Adjust the summary statistics by regression
- \blacktriangleright Reduce computations by surrogate models
- Increase accuracy by (nonlinear) regression adjustments
- \triangleright Which model to use for any given purpose?
	- ⇒ Automated model choice
	- \Rightarrow Taking computational considerations into account

- 1. To model the discrepancy and decide where to run the simulator
- 2. To measure the discrepancy by classification
- 3. To estimate the posterior by penalised logistic regression

- 1. To model the discrepancy and decide where to run the simulator
- 2. To measure the discrepancy by classification
- 3. To estimate the posterior by penalised logistic regression

(Gutmann & Corander, 2013-2016)

- \triangleright Assume that a discrepancy measure d between simulated and observed data has been specified.
- \triangleright Model the conditional distribution of the discrepancy d given θ
- Estimated model yields approximation $\hat{L}(\theta)$ for any choice of ϵ

$$
\hat{L}(\theta) \propto \widehat{\mathbb{P}}\left(d \leq \epsilon \mid \theta\right)
$$

 \widehat{P} is probability under the estimated model.

- \triangleright We used the model of $d|\theta$ to decide for which parameters to simulate the model next.
- Approach also applicable to other kernels and synthetic likelihood.

Bayesian optimisation for likelihood-free inference

Example: Bacterial infections in child care centres

- \blacktriangleright Likelihood intractable for cross-sectional data
- \triangleright But generating data from the model is possible

Example: Bacterial infections in child care centres

- Comparison of the proposed approach with a standard population Monte Carlo ABC approach.
- \triangleright Roughly equal results using 1000 times fewer simulations.

(Gutmann and Corander, 2016)

\blacktriangleright Choice of the model for $d|\theta$

(Some results available here: arXiv:1610.06462, Järvenpää et al, 2016)

\triangleright Choice of the acquisition function

- 1. To model the discrepancy and decide where to run the simulator
- 2. To measure the discrepancy by classification
- 3. To estimate the posterior by penalised logistic regression

Classification accuracy as discrepancy measure

Correctly classifying data into two categories is easier if the two data sets were generated with very different values of θ (left) than with similar values (right).

(Gutmann et al, 2014, 2017)

Classification accuracy as discrepancy measure

(Gutmann et al, 2014, 2017)

- \triangleright Classification accuracy (discriminability) serves as distance measure.
- \triangleright Value of $1/2$: close; Value of 1: far
- \triangleright Complete arsenal of classification methods becomes available to inference.
- \triangleright Choice of discriminative model? Use tools from classification literature.

Example: Bacterial infections in child care centres

- \blacktriangleright The classification-based distance measure does not require domain/expert knowledge.
- \triangleright Performs as well as a distance measure based on domain knowledge (Numminen et, Biometrics, 2013).

(Gutmann et al, 2014, 2017)

- 1. To model the discrepancy and decide where to run the simulator
- 2. To measure the discrepancy by classification
- 3. To estimate the posterior by penalised logistic regression

(Dutta et al, 2016, arXiv:1611.10242)

 \blacktriangleright Frame posterior estimation as ratio estimation problem

$$
\rho(\theta|x) = \frac{\rho(\theta)\rho(x|\theta)}{\rho(x)} = \rho(\theta)r(x,\theta)
$$
\n(1)
\n
$$
r(x,\theta) = \frac{\rho(x|\theta)}{\rho(x)}
$$
\n(2)

- Estimating $r(x, \theta)$ is the difficult part since $p(x|\theta)$ unknown.
- Estimate $\hat{r}(x, \theta)$ yields estimate of the likelihood function and posterior

$$
\hat{L}(\theta) \propto \hat{r}(x^{\circ}, \theta), \qquad \hat{p}(\theta | x^{\circ}) = p(\theta)\hat{r}(x^{\circ}, \theta). \qquad (3)
$$

Estimating density ratios in general

- \triangleright Relatively well studied problem (Textbook by Sugiyama et al, 2012)
- ▶ Bregman divergence provides general framework (Gutmann and Hirayama, 2011; Sugiyama et al, 2011)
- \blacktriangleright Here: density ratio estimation by logistic regression

Density ratio estimation by logistic regression

 \blacktriangleright Samples from two data sets

$$
x_i^{(1)} \sim p^{(1)}, \quad i = 1, \dots, n^{(1)}
$$
 (4)

$$
x_i^{(2)} \sim p^{(2)}, \quad i = 1, \dots, n^{(2)} \tag{5}
$$

Probability that a test data point x was sampled from $p^{(1)}$

$$
\mathbb{P}(x \sim p^{(1)}|x, h) = \frac{1}{1 + \nu \exp(-h(x))}, \qquad \nu = \frac{n^{(2)}}{n^{(1)}} \qquad (6)
$$

Density ratio estimation by logistic regression

Estimate h by minimising

$$
\mathcal{J}(h) = \frac{1}{n} \left\{ \sum_{i=1}^{n^{(1)}} \log \left[1 + \nu \exp \left(-h_i^{(1)} \right) \right] + \sum_{i=1}^{n^{(2)}} \log \left[1 + \frac{1}{\nu} \exp \left(h_i^{(2)} \right) \right] \right\}
$$

$$
h_i^{(1)} = h \left(x_i^{(1)} \right) \qquad h_i^{(2)} = h \left(x_i^{(2)} \right)
$$

$$
n = n^{(1)} + n^{(2)}
$$

 \triangleright Objective is the re-scaled negated log-likelihood.

For large
$$
n^{(1)}
$$
 and $n^{(2)}$

$$
\hat{h} = \operatorname{argmin}_{h} \mathcal{J}(h) = \log \frac{p^{(1)}}{p^{(2)}}
$$

without any constraints on h

Estimating the posterior

 \triangleright Property was used to estimate unnormalised models

(Gutmann & Hyvärinen, 2010, 2012)

- \blacktriangleright For posterior estimation, we use
	- \blacktriangleright data generating pdf $p(x|\theta)$ for $p^{(1)}$
	- **n** marginal $p(x)$ for $p^{(2)}$ (Other choices for $p(x)$ possible too)
	- \triangleright sample sizes entirely under our control
- **Logistic regression gives (point-wise in** θ **)**

$$
\hat{h}(x,\theta) \to \log \frac{p(x|\theta)}{p(x)} = \log r(x,\theta)
$$
 (7)

 \blacktriangleright Estimated posterior and likelihood function:

$$
\hat{p}(\theta | x^{\circ}) = p(\theta) \exp(\hat{h}(x^{\circ}, \theta)) \quad \hat{L}(\theta) \propto \exp(\hat{h}(x^{\circ}, \theta)) \quad (8)
$$

Estimating the posterior

(Dutta et al, 2016, arXiv:1611.10242)

- \triangleright We need to specify a model for h.
- \blacktriangleright For simplicity: linear model

$$
h(x) = \sum_{i=1}^{b} \beta_i \psi_i(x) = \beta^{\top} \psi(x)
$$
 (9)

where $\psi_i(x)$ are summary statistics

 \blacktriangleright More complex models possible

Exponential family approximation

 \blacktriangleright Logistic regression yields

 $\hat{h}(x; \theta) = \hat{\beta}(\theta)^{\top} \psi(x), \quad \hat{r}(x, \theta) = \exp(\hat{\beta}(\theta)^{\top} \psi(x))$ (10)

 \blacktriangleright Resulting posterior

$$
\hat{\rho}(\theta | x^{\circ}) = p(\theta) \exp(\hat{\beta}(\theta)^{\top} \psi(x^{\circ})) \tag{11}
$$

Implicit exponential family approximation of $p(x|\theta)$

$$
\hat{r}(x,\theta) = \frac{\hat{\rho}(x|\theta)}{\hat{\rho}(x)}
$$
\n(12)

$$
\hat{p}(x|\theta) = \hat{p}(x) \exp(\hat{\beta}(\theta)^{\top} \psi(x))
$$
\n(13)

Implicit because $\hat{p}(x)$ never explicitly constructed.

- \triangleright Vector of summary statistics $\psi(x)$ should include a constant for normalisation of the pdf (log partition function)
- \triangleright Normalising constant is estimated via the logistic regression
- \triangleright Simple linear model leads to a generalisation of synthetic likelihood
- \blacktriangleright L₁ penalty on β for weighing and selecting summary statistics

 \blacktriangleright Model:

$$
x^{(t)} = \theta_1 x^{(t-1)} + e^{(t)} \tag{14}
$$

$$
e^{(t)} = \xi^{(t)} \sqrt{0.2 + \theta_2 (e^{(t-1)})^2}
$$
 (15)

 $\xi^{(t)}$ and $e^{(0)}$ independent standard normal r.v., $x^{(0)}=0$

- \blacktriangleright 100 time points
- \blacktriangleright Parameters: $\theta_1 \in (-1,1), \theta_2 \in (0,1)$
- Iniform prior on θ_1, θ_2

\blacktriangleright Summary statistics:

- \triangleright auto-correlations with lag one to five
- \blacktriangleright all (unique) pairwise combinations of them
- a constant
- \blacktriangleright To check robustness: 50% irrelevant summary statistics (drawn from standard normal)
- \triangleright Comparison with synthetic likelihood with equivalent set of summary statistics (relevant sum. stats. only)

Example posterior

Example posterior

Systematic analysis

- \blacktriangleright Jensen-Shannon div between estimated and true posterior
- \triangleright Point-wise comparison with synthetic likelihood (100 data sets)

 $\Delta_{\text{ISD}} =$ JSD for proposed method–JSD for synthetic likelihood

 $M \sim$

$$
x^{(t)}|N^{(t)}, \phi \sim \text{Poisson}(\phi N^{(t)})
$$
\n(16)

$$
\log N^{(t)} = \log r + \log N^{(t-1)} - N^{(t-1)} + \sigma e^{(t)} \qquad (17)
$$

$$
t = 1, \ldots, 50, \qquad N^{(0)} = 0 \tag{18}
$$

- \blacktriangleright Parameters and priors
	- ► log growth rate log $r \sim \mathcal{U}(3, 5)$
	- ► scaling parameter $\phi \sim \mathcal{U}(5, 15)$
	- \triangleright standard deviation $\sigma \sim \mathcal{U}(0, 0.6)$
- ▶ Summary statistics: same as Simon Wood (Nature, 2010)
- \blacktriangleright 100 inference problems
- \blacktriangleright For each problem, relative errors in posterior means were computed
- \triangleright Point-wise comparison with synthetic likelihood

Results for log r

 $\Delta_{rel\ error}$ = rel error proposed method – rel error synth likelihood

Results for σ

 $\Delta_{rel\ error}$ = rel error proposed method – rel error synth likelihood

Results for ϕ

 $\Delta_{rel\ error}$ = rel error proposed method – rel error synth likelihood

- \triangleright Compared two auxiliary models: exponential vs Gaussian family
- \blacktriangleright For same summary statistics, typically more accurate inferences for the richer exponential family model
- \triangleright Robustness to irrelevant summary statistics thanks to L_1 regularisation
- \triangleright Compared two auxiliary models: exponential vs Gaussian family
- \blacktriangleright For same summary statistics, typically more accurate inferences for the richer exponential family model
- \triangleright Robustness to irrelevant summary statistics thanks to L_1 regularisation

More results and details in arXiv:1611.10242v1

- \triangleright Brief overview of how auxiliary models are used in ABC
- \triangleright Our work on
	- \triangleright modelling the discrepancy and using the model to decide for which parameter values to evaluate the model
	- \triangleright discriminative modelling (classification) to measure the discrepancy
	- \triangleright posterior estimation by regularised ratio estimation
- \blacktriangleright Importance of automatically controlling the complexity of the auxiliary model (model selection or regularisation)