Likelihood-Free Inference — An Introduction to My Research —

Michael Gutmann

https://sites.google.com/site/michaelgutmann

Institute for Adaptive and Neural Computation School of Informatics, University of Edinburgh

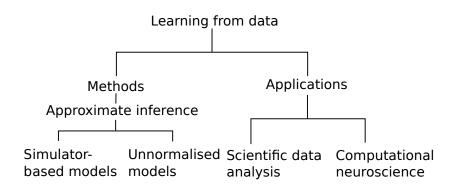
April 2017

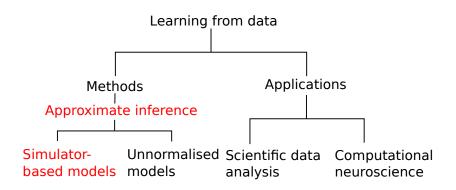
Overview of my research interests

Efficient inference for simulator-based models

Overview of my research interests

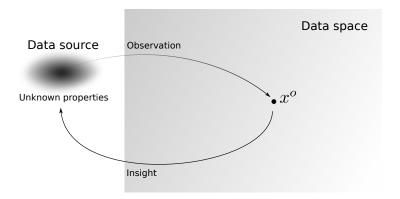
Efficient inference for simulator-based models





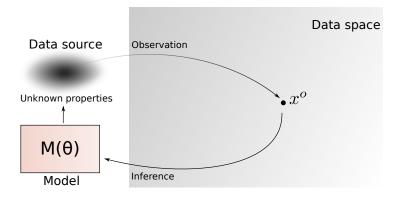
Learning from data

- Goal: Using observed data x^o , learn about their source
- Enables decision making, predictions, ...



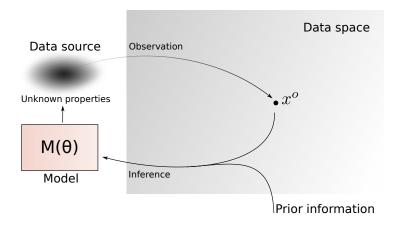
General approach

- Set up a model with potential properties θ (parameters)
- See which θ are in line with the observed data x^o



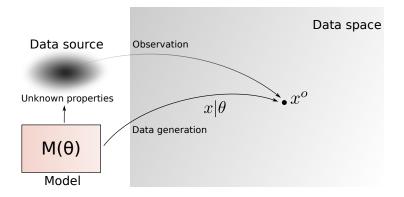
General approach

- Set up a model with potential properties θ (parameters)
- See which θ are in line with the observed data x^o



The likelihood function

- Measures agreement between θ and the observed data x^o
- Probability to generate data like x^o if hypothesis θ holds



Performing statistical inference

- If $L(\theta)$ is known, inference is straightforward
- Maximum likelihood estimation

$$\hat{\theta} = \operatorname{argmax}_{\theta} L(\theta)$$

Bayesian inference

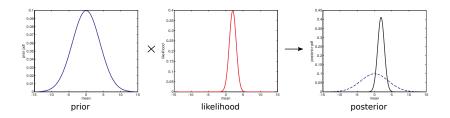
 $p(\theta|x^{o}) \propto p(\theta) \times L(\theta)$ posterior \propto prior \times likelihood

Allows us to learn from data by updating probabilities

Model specification

- ► Textbook: model ≡ family of probability density functions
- Probability density functions (pdfs) $p(x|\theta)$ satisfy

- Likelihood function $L(\theta) = p(x^o|\theta)$
- Closed form solutions are possible



Models with intractable likelihoods

- Not all models are specified as family of pdfs $p(x|\theta)$.
- I worked on
 - 1. Simulator-based models
 - 2. Unnormalised models
- ► The models are rather different, common point:

Multiple integrals needed to be computed to represent the models in terms of pdfs $p(x|\theta)$.

 Solving the integrals exactly is computationally impossible. (curse of dimensionality)

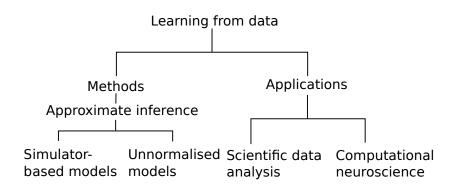
> ⇒ No model pdfs $p(x|\theta)$ ⇒ No likelihood function $L(\theta) = p(x^o|\theta)$

 \Rightarrow No exact inference

How to efficiently perform (Bayesian) inference when the likelihood function is too expensive too compute?

How to efficiently perform (Bayesian) inference when the likelihood function is too expensive too compute?

Efficiency \equiv good trade-off between speed and accuracy.



Unnormalised models

▶ ...

- Used for modelling
 - images (Markov random fields)
 social networks (exponential random graphs)
 ferro-magnetism (Ising model)
- Specified via a non-negative function $q(x|\theta) \propto p(x|\theta)$,

$$\int \cdots \int q(x|\theta) dx = Z(\theta) \neq 1$$
 $p(x|\theta) = \frac{q(x|\theta)}{Z(\theta)}$

- Advantage: Specifying unnormalised models is often easier than specifying normalized models
- Disadvantage: Integral defining Z(θ) can generally not be computed. Likelihood function is intractable.

- Models which specify a mechanism for generating data
 - e.g. stochastic dynamical systems
 - computer models / simulators of some complex physical process
- Occur in multiple and diverse scientific fields.
- Different communities use different names:
 - Generative (latent-variable) models
 - Implicit models
 - Stochastic simulation models
 - Probabilistic programs

Simulator-based models are widely used

Examples:

- Evolutionary biology: Simulating evolution
- Neuroscience: Simulating neural circuits
- Ecology: Simulating species migration
- Health science: Simulating the spread of an infectious disease
- Physics:

Simulating quantum systems (?)

Simulated neural activity in rat somatosensory cortex (Figure from https://bbp.epfl.ch/nmc-portal)

- Advantage: detailed and realistic modelling
- Disadvantage: likelihood function is generally intractable due to unobserved variables.
- ► To compute p(x|θ) one has to take into account all possible states of the unobserved variables

$$p(x|\theta) = \int \cdots \int p(x, z|\theta) dz$$

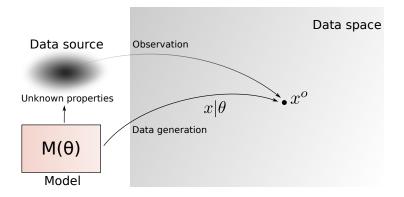
This is generally computationally impossible.

Overview of my research interests

Efficient inference for simulator-based models

The likelihood function

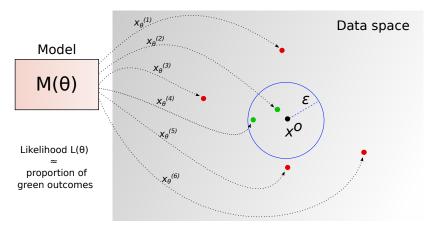
- Measures agreement between θ and the observed data x^o
- Probability to generate data like x^o if hypothesis θ holds



- 1. How should we assess whether $x_{\theta} \equiv x^{o}$?
- 2. How should we compute the probability of the event $x_{\theta} \equiv x^{o}$?
- 3. For which values of θ should we compute it?

Traditional approach

Likelihood: Probability to generate data like x^o if hypothesis θ holds



$$L(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}\left(d(x_{\theta}^{(i)}, x^{o}) \leq \epsilon\right)$$

Traditional approach

- 1. How should we assess whether $x_{\theta} \equiv x^{o}$? \Rightarrow Check whether $||T(x_{\theta}) - T(x^{o})|| \leq \epsilon$
- 2. How should we compute the probability of the event $x_{\theta} \equiv x^{\circ}$? \Rightarrow By counting
- 3. For which values of θ should we compute it?
 - \Rightarrow Sample from the prior

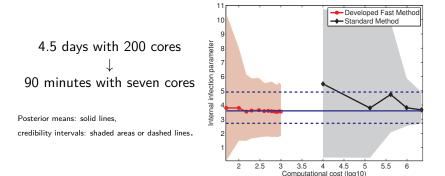
Traditional approach

- 1. How should we assess whether $x_{\theta} \equiv x^{o}$? \Rightarrow Check whether $||T(x_{\theta}) - T(x^{o})|| \leq \epsilon$
- 2. How should we compute the probability of the event $x_{\theta} \equiv x^{\circ}$? \Rightarrow By counting
- 3. For which values of θ should we compute it? \Rightarrow Sample from the prior
- Corresponds to a traditional version of a method called approximate Bayesian computation.
- Trade-off between computational cost and accuracy of the inference may be poor.

- 1. How should we assess whether $x_{\theta} \equiv x^{o}$? \Rightarrow Use classification (Gutmann et al, 2014, 2017)
- 1. How should we assess whether $x_{\theta} \equiv x^{o}$?
- 2. How should we compute the probability of the event $x_{\theta} \equiv x^{\circ}$? \Rightarrow Use density ratio estimation (Dutta et al, 2016, arXiv:1611.10242)
- 2. How should we compute the probability of the event $x_{\theta} \equiv x^{o}$?
- 3. For which values of θ should we compute it?
 - \Rightarrow Use Bayesian optimisation (Gutmann and Corander, 2013-2016)

Example: Bacterial infections in child care centres

- Comparison of the Bayesian optimisation approach with a standard population Monte Carlo ABC approach.
- Roughly equal results using 1000 times fewer simulations.



(Gutmann and Corander, 2016)

