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Learning from data

» Goal: Using observed data x°, learn about their source

» Enables decision making, predictions, ...
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General approach

» Set up a model with potential properties 6 (parameters)

» See which 0 are in line with the observed data x°
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General approach

» Set up a model with potential properties 6 (parameters)

» See which @ are in line with the observed data x°
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The likelihood function

> Measures agreement between 6 and the observed data x°

> Probability to generate data like x° if hypothesis 6 holds
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Performing statistical inference

» If L(0) is known, inference is straightforward

» Maximum likelihood estimation
0 = argmax, L(0)
» Bayesian inference

p(0]x°) o< p(0) x L(0)
posterior  prior x likelihood

Allows us to learn from data by updating probabilities
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Model specification

» Textbook: model = family of probability density functions
» Probability density functions (pdfs) p(x|6) satisfy

p(x|0) >0 /p(x|9)dx =1
—————
non-negativity S

normalization

» Likelihood function L(0) = p(x°|0)

» Closed form solutions are possible
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Models with intractable likelihoods

v

Not all models are specified as family of pdfs p(x|0).

| worked on

v

1. Simulator-based models

2. Unnormalised models
» The models are rather different, common point:

Multiple integrals needed to be computed to represent the
models in terms of pdfs p(x|6).

» Solving the integrals exactly is computationally impossible.

(curse of dimensionality)

= No model pdfs p(x|6)
= No likelihood function L(0) = p(x°|0)
= No exact inference
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General research question

How to efficiently perform (Bayesian) inference when the likelihood
function is too expensive too compute?
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General research question

How to efficiently perform (Bayesian) inference when the likelihood
function is too expensive too compute?

Efficiency = good trade-off between speed and accuracy.
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Unnormalised models

» Used for modelling
> images (Markov random fields)
» social networks (exponential random graphs)
» ferro-magnetism (Ising model)
>

v

Specified via a non-negative function g(x|#) x p(x|6),

// q(x|0)dx = Z(0) # 1 p(x|0) = qé)((f))

v

Advantage: Specifying unnormalised models is often easier
than specifying normalized models

v

Disadvantage: Integral defining Z(60) can generally not be
computed. Likelihood function is intractable.
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Simulator-based models

» Models which specify a mechanism for generating data

> e.g. stochastic dynamical systems
» computer models / simulators of some complex physical
process

» Occur in multiple and diverse scientific fields.

» Different communities use different names:

» Generative (latent-variable) models
> Implicit models

» Stochastic simulation models

» Probabilistic programs
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Simulator-based models are widely used

Examples:
» Evolutionary biology:
Simulating evolution

» Neuroscience:
Simulating neural circuits
> Ecology:
Simulating species migration

» Health science:
Simulating the spread of an
infectious disease

» Physics:
Simulating quantum systems (?)

Simulated neural activity in rat somatosensory cortex

(Figure from https://bbp.epfl.ch/nmc-portal)
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https://bbp.epfl.ch/nmc-portal

Pros and Cons

v

Advantage: detailed and realistic modelling

v

Disadvantage: likelihood function is generally intractable due
to unobserved variables.

v

To compute p(x|@) one has to take into account all possible
states of the unobserved variables

pixl) = [+ [ p(x,zI6)dz

v

This is generally computationally impossible.
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The likelihood function

> Measures agreement between 6 and the observed data x°

> Probability to generate data like x° if hypothesis 6 holds
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Three foundational issues

1. How should we assess whether xp = x°7?
2. How should we compute the probability of the event xy = x°7?

3. For which values of 8 should we compute it?
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Traditional approach

Likelihood: Probability to generate data like x° if hypothesis 6 holds

Data space
Model
M(O)
Likelihood L(8)

u_‘.

proportion of
green outcomes

L(0) = %Z,Nﬂ 1 (d(x(gi)7x°) < e)
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Traditional approach

1. How should we assess whether xp = x°7
= Check whether || T(xp) — T(x°)|| <€

2. How should we compute the probability of the event xy = x°7?
= By counting

3. For which values of 8 should we compute it?
=- Sample from the prior
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Traditional approach

1. How should we assess whether xp = x°7
= Check whether || T(xp) — T(x°)|| <€

2. How should we compute the probability of the event xy = x°7?
= By counting

3. For which values of 8 should we compute it?
=- Sample from the prior

» Corresponds to a traditional version of a method called
approximate Bayesian computation.

» Trade-off between computational cost and accuracy of the
inference may be poor.
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Some of my work

1. How should we assess whether xy = x°7
= Use classification (Gutmann et al, 2014, 2017)

1. How should we assess whether xy = x°7
2. How should we compute the probability of the event xy = x°7?
= Use density ratio estimation (Dutta et al, 2016, arXiv:1611.10242)

2. How should we compute the probability of the event xy = x°7?

3. For which values of 6 should we compute it?
= Use Bayesian optimisation (Gutmann and Corander, 2013-2016)
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Example: Bacterial infections in child care centres

» Comparison of the Bayesian optimisation approach with a
standard population Monte Carlo ABC approach.

» Roughly equal results using 1000 times fewer simulations.
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Summary

Learning from data

Metr'10ds
Approximate inference
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Unnormalised

Simulator-
models
based models
Importance

Difficulty of performing inference

Solutions using classification,
density ratio estimation,
and Bayesian optimimisation
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