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Learning from data

I Goal: Using observed data xo, learn about their source
I Enables decision making, predictions, . . .

Data space

Observation

Insight

Data source

Unknown properties

Michael Gutmann My Research on LFI 6 / 26



General approach

I Set up a model with potential properties θ (parameters)
I See which θ are in line with the observed data xo
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General approach

I Set up a model with potential properties θ (parameters)
I See which θ are in line with the observed data xo
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The likelihood function

I Measures agreement between θ and the observed data xo

I Probability to generate data like xo if hypothesis θ holds
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Performing statistical inference

I If L(θ) is known, inference is straightforward
I Maximum likelihood estimation

θ̂ = argmaxθ L(θ)

I Bayesian inference

p(θ|xo) ∝ p(θ) × L(θ)
posterior ∝ prior× likelihood

Allows us to learn from data by updating probabilities
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Model specification

I Textbook: model ≡ family of probability density functions
I Probability density functions (pdfs) p(x |θ) satisfy

p(x |θ) ≥ 0︸ ︷︷ ︸
non-negativity

∫
p(x |θ)dx = 1︸ ︷︷ ︸
normalization

I Likelihood function L(θ) = p(xo|θ)
I Closed form solutions are possible
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Models with intractable likelihoods

I Not all models are specified as family of pdfs p(x |θ).
I I worked on

1. Simulator-based models
2. Unnormalised models

I The models are rather different, common point:
Multiple integrals needed to be computed to represent the
models in terms of pdfs p(x |θ).

I Solving the integrals exactly is computationally impossible.
(curse of dimensionality)

⇒ No model pdfs p(x |θ)
⇒ No likelihood function L(θ) = p(xo|θ)
⇒ No exact inference
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General research question

How to efficiently perform (Bayesian) inference when the likelihood
function is too expensive too compute?

Efficiency ≡ good trade-off between speed and accuracy.
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Unnormalised models

I Used for modelling
I images (Markov random fields)
I social networks (exponential random graphs)
I ferro-magnetism (Ising model)
I . . .

I Specified via a non-negative function q(x |θ) ∝ p(x |θ),∫
· · ·
∫

q(x |θ)dx = Z (θ) 6= 1 p(x |θ) = q(x |θ)
Z (θ)

I Advantage: Specifying unnormalised models is often easier
than specifying normalized models

I Disadvantage: Integral defining Z (θ) can generally not be
computed. Likelihood function is intractable.
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Simulator-based models

I Models which specify a mechanism for generating data
I e.g. stochastic dynamical systems
I computer models / simulators of some complex physical

process
I Occur in multiple and diverse scientific fields.
I Different communities use different names:

I Generative (latent-variable) models
I Implicit models
I Stochastic simulation models
I Probabilistic programs
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Simulator-based models are widely used

Examples:
I Evolutionary biology:

Simulating evolution
I Neuroscience:

Simulating neural circuits
I Ecology:

Simulating species migration
I Health science:

Simulating the spread of an
infectious disease

I Physics:
Simulating quantum systems (?) Simulated neural activity in rat somatosensory cortex

(Figure from https://bbp.epfl.ch/nmc-portal)
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Pros and Cons

I Advantage: detailed and realistic modelling
I Disadvantage: likelihood function is generally intractable due

to unobserved variables.
I To compute p(x |θ) one has to take into account all possible

states of the unobserved variables

p(x |θ) =
∫
· · ·
∫

p(x , z |θ)dz

I This is generally computationally impossible.
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The likelihood function

I Measures agreement between θ and the observed data xo

I Probability to generate data like xo if hypothesis θ holds
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Three foundational issues

1. How should we assess whether xθ ≡ xo?
2. How should we compute the probability of the event xθ ≡ xo?
3. For which values of θ should we compute it?
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Traditional approach
Likelihood: Probability to generate data like xo if hypothesis θ holds
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Traditional approach

1. How should we assess whether xθ ≡ xo?
⇒ Check whether ||T (xθ)− T (xo)|| ≤ ε

2. How should we compute the probability of the event xθ ≡ xo?
⇒ By counting

3. For which values of θ should we compute it?
⇒ Sample from the prior

I Corresponds to a traditional version of a method called
approximate Bayesian computation.

I Trade-off between computational cost and accuracy of the
inference may be poor.
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Some of my work

1. How should we assess whether xθ ≡ xo?
⇒ Use classification (Gutmann et al, 2014, 2017)

1. How should we assess whether xθ ≡ xo?
2. How should we compute the probability of the event xθ ≡ xo?
⇒ Use density ratio estimation (Dutta et al, 2016, arXiv:1611.10242)

2. How should we compute the probability of the event xθ ≡ xo?
3. For which values of θ should we compute it?
⇒ Use Bayesian optimisation (Gutmann and Corander, 2013-2016)
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Example: Bacterial infections in child care centres

I Comparison of the Bayesian optimisation approach with a
standard population Monte Carlo ABC approach.

I Roughly equal results using 1000 times fewer simulations.

4.5 days with 200 cores
↓

90 minutes with seven cores

Posterior means: solid lines,

credibility intervals: shaded areas or dashed lines.
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(Gutmann and Corander, 2016)
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