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Task

Perform Bayesian inference for models where
1. the likelihood function is too costly to compute
2. sampling – simulating data – from the model is possible
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Simulator-based models

I Goal: Inference for models that are specified by a mechanism
for generating data

I e.g. stochastic dynamical systems
I e.g. computer models / simulators of some complex physical or

biological process
I Such models occur in multiple and diverse scientific fields.
I Different communities use different names:

I Simulator-based models
I Stochastic simulation models
I Implicit models
I Generative (latent-variable) models
I Probabilistic programs
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Examples

Simulator-based models are widely used:

I Evolutionary biology:
Simulating evolution

I Neuroscience:
Simulating neural circuits

I Ecology:
Simulating species migration

I Health science:
Simulating the spread of an
infectious disease
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(Figure from Gutmann et al, 2014, 2017)
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Definition of simulator-based models

I Let (Ω,F ,P) be a probability space.
I A simulator-based model is a collection of (measurable)

functions g(.,θ) parametrised by θ,

ω ∈ Ω 7→ xθ = g(ω,θ) ∈ X (1)

I For any fixed θ, xθ = g(.,θ) is a random variable.

Simulation / Sampling
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Implicit definition of the model pdfs

A

A
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Advantages of simulator-based models

I Direct implementation of hypotheses of how the observed
data were generated.

I Neat interface with scientific models (e.g. from physics or
biology).

I Modelling by replicating the mechanisms of nature that
produced the observed/measured data. (“Analysis by
synthesis”)

I Possibility to perform experiments in silico.
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Disadvantages of simulator-based models

I Generally elude analytical treatment.
I Can be easily made more complicated than necessary.
I Statistical inference is difficult.

Main reason: Likelihood function is intractable
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The likelihood function L(θ)

I Probability that the model generates data like xo when using
parameter value θ

I Generally well defined but intractable for simulator-based /
implicit models

Data space

ObservationData source

Unknown properties

Model

M(θ)
Data generation
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Three foundational issues

1. How should we assess whether xθ ≡ xo?
2. How should we compute the probability of the event xθ ≡ xo?
3. For which values of θ should we compute it?

Data space

ObservationData source

Unknown properties

Model

M(θ)
Data generation

Likelihood: Probability that the model generates data like xo for parameter value θ
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Approximate Bayesian computation

1. How should we assess whether xθ ≡ xo?
⇒ Check whether ||T (xθ)− T (xo)|| ≤ ε

2. How should we compute the proba of the event xθ ≡ xo?
⇒ By counting

3. For which values of θ should we compute it?
⇒ Sample from the prior (or other proposal distributions)

Difficulties:
I Choice of T () and ε
I Typically high computational cost

For recent review, see: Lintusaari et al (2017) “Fundamentals and recent
developments in approximate Bayesian computation”, Systematic Biology
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Synthetic likelihood

(Simon Wood, Nature, 2010)

1. How should we assess whether xθ ≡ xo?
2. How should we compute the proba of the event xθ ≡ xo?

⇒ Compute summary statistics tθ = T (xθ)
⇒ Model their distribution as a Gaussian
⇒ Compute likelihood function with T (xo) as observed data

3. For which values of θ should we compute it?
⇒ Use obtained “synthetic” likelihood function as part of a

Monte Carlo method

Difficulties:
I Choice of T ()
I Gaussianity assumption may not hold
I Typically high computational cost
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Overview of some of my work

1. How should we assess whether xθ ≡ xo?
⇒ Use classification (Gutmann et al, 2014, 2017)

2. How should we compute the proba of the event xθ ≡ xo?
3. For which values of θ should we compute it?

⇒ Use Bayesian optimisation (Gutmann and Corander, 2013-2016)
Compared to standard approaches: speed-up by a factor of
1000 more

1. How should we assess whether xθ ≡ xo?
2. How should we compute the proba of the event xθ ≡ xo?

⇒ Use density ratio estimation (Dutta et al, 2016, arXiv:1611.10242)
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Basic idea

(Dutta et al, 2016, arXiv:1611.10242)

I Frame posterior estimation as ratio estimation problem

p(θ|x) = p(θ)p(x|θ)
p(x) = p(θ)r(x,θ) (2)

r(x,θ) = p(x|θ)
p(x) (3)

I Estimating r(x,θ) is the difficult part since p(x|θ) unknown.
I Estimate r̂(x,θ) yields estimate of the likelihood function and

posterior

L̂(θ) ∝ r̂(xo,θ), p̂(θ|xo) = p(θ)r̂(xo,θ). (4)
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Estimating density ratios in general

I Relatively well studied problem (Textbook by Sugiyama et al, 2012)

I Bregman divergence provides general framework
(Gutmann and Hirayama, 2011; Sugiyama et al, 2011)

I Here: density ratio estimation by logistic regression
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Density ratio estimation by logistic regression

I Samples from two data sets

x(1)
i ∼ p(1), i = 1, . . . , n(1) (5)

x(2)
i ∼ p(2), i = 1, . . . , n(2) (6)

I Probability that a test data point x was sampled from p(1)

P(x ∼ p(1)|x, h) = 1
1 + ν exp(−h(x)) , ν = n(2)

n(1) (7)
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Density ratio estimation by logistic regression

I Estimate h by minimising

J (h) = 1
n


n(1)∑
i=1

log
[
1 + ν exp

(
−h(1)

i

)]
+

n(2)∑
i=1

log
[
1 + 1

ν
exp

(
h(2)

i

)]
h(1)

i = h
(

x(1)
i

)
h(2)

i = h
(

x(2)
i

)
n = n(1) + n(2)

I Objective is the re-scaled negated log-likelihood.
I For large n(1) and n(2)

ĥ = argminh J (h) = log p(1)

p(2)

without any constraints on h
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Estimating the posterior

I Property was used to estimate unnormalised models
(Gutmann & Hyvärinen, 2010, 2012)

I It was used to estimate likelihood ratios
(Pham et al, 2014; Cranmer et al, 2015)

I For posterior estimation, we use
I data generating pdf p(x|θ) for p(1)

I marginal p(x) for p(2) (Other choices for p(x) possible too)

I sample sizes entirely under our control
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Estimating the posterior

I Logistic regression gives (point-wise in θ)

ĥ(x,θ)→ log p(x|θ)
p(x) = log r(x,θ) (8)

I Estimated posterior and likelihood function:

p̂(θ|xo) = p(θ) exp(ĥ(xo,θ)) L̂(θ) ∝ exp(ĥ(xo,θ)) (9)
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Estimating the posterior

p(θ) θ x0

θ1 θ2 . . . θnm

Model : p(x|θ)

xm
1 xm

2
. . . xm

nm xθ
1 xθ

2
. . . xθ

nθ

Xm Xθ

Logistic regression: ĥ = argminh J (h, θ) ĥ(x0, θ)

p̂(θ|x0) = p(θ) exp
(
ĥ(x0, θ)

)

log-ratio ĥ(x, θ)

(Dutta et al, 2016, arXiv:1611.10242)
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Auxiliary model

I We need to specify a model for h.
I For simplicity: linear model

h(x) =
b∑

i=1
βiψi (x) = β>ψ(x) (10)

where ψi (x) are summary statistics
I More complex models possible
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Exponential family approximation

I Logistic regression yields

ĥ(x;θ) = β̂(θ)>ψ(x), r̂(x,θ) = exp(β̂(θ)>ψ(x)) (11)

I Resulting posterior

p̂(θ|xo) = p(θ) exp(β̂(θ)>ψ(xo)) (12)

I Implicit exponential family approximation of p(x|θ)

r̂(x,θ) = p̂(x|θ)
p̂(x) (13)

p̂(x|θ) = p̂(x) exp(β̂(θ)>ψ(x)) (14)

I Implicit because p̂(x) never explicitly constructed.
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Remarks

I Vector of summary statistics ψ(x) should include a constant
for normalisation of the pdf (log partition function)

I Normalising constant is estimated via the logistic regression
I Simple linear model leads to a generalisation of synthetic

likelihood
I L1 penalty on β for weighing and selecting summary statistics
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Application to ARCH model

I Model:

x (t) = θ1x (t−1) + e(t) (15)

e(t) = ξ(t)
√
0.2 + θ2(e(t−1))2 (16)

ξ(t) and e(0) independent standard normal r.v., x (0) = 0
I 100 time points
I Parameters: θ1 ∈ (−1, 1), θ2 ∈ (0, 1)
I Uniform prior on θ1, θ2
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Application to ARCH model

I Summary statistics:
I auto-correlations with lag one to five
I all (unique) pairwise combinations of them
I a constant

I To check robustness: 50% irrelevant summary statistics
(drawn from standard normal)

I Comparison with synthetic likelihood with equivalent set of
summary statistics (relevant sum. stats. only)
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Example posterior
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Example posterior
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Systematic analysis

I Jensen-Shannon div between estimated and true posterior
I Point-wise comparison with synthetic likelihood (100 data sets)

∆JSD = JSD for proposed method−JSD for synthetic likelihood
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Application to Ricker model

I Model

x (t)|N(t), φ ∼ Poisson(φN(t)) (17)
logN(t) = log r + logN(t−1) − N(t−1) + σe(t) (18)

t = 1, . . . , 50, N(0) = 0 (19)

I Parameters and priors
I log growth rate log r ∼ U(3, 5)
I scaling parameter φ ∼ U(5, 15)
I standard deviation σ ∼ U(0, 0.6)
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Application to Ricker model

I Summary statistics: same as Simon Wood (Nature, 2010)
I 100 inference problems
I For each problem, relative errors in posterior means were

computed
I Point-wise comparison with synthetic likelihood
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Results for log r

∆rel error = rel error proposed method− rel error synth likelihood
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Results for σ

∆rel error = rel error proposed method− rel error synth likelihood
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Results for φ

∆rel error = rel error proposed method− rel error synth likelihood
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Observations

I Compared two auxiliary models: exponential vs Gaussian
family

I For same summary statistics , typically more accurate
inferences for the richer exponential family model

I Robustness to irrelevant summary statistics thanks to L1
regularisation
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Conclusions

I Background and previous work on inference with
simulator-based / implicit statistical models

I Our work on:
I Framing the posterior estimation problem as a density ratio

estimation problem
I Estimating the ratio with logistic regression
I Using regularisation to automatically select summary statistics

I Multitude of research possibilities:
I Choice of the auxiliary model
I Choice of the loss function used to estimate the density ratio
I Combine with Bayesian optimisation framework to reduce

computational cost

More results and details in arXiv:1611.10242v1
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