Bayesian Inference by Density Ratio Estimation

Michael Gutmann

<https://sites.google.com/site/michaelgutmann>

Institute for Adaptive and Neural Computation School of Informatics, University of Edinburgh

20th June 2017

Perform Bayesian inference for models where

- 1. the likelihood function is too costly to compute
- 2. sampling $-$ simulating data $-$ from the model is possible

[Background](#page-3-0)

[Previous work](#page-12-0)

[Proposed approach](#page-18-0)

[Background](#page-3-0)

[Previous work](#page-12-0)

[Proposed approach](#page-18-0)

- \triangleright Goal: Inference for models that are specified by a mechanism for generating data
	- \blacktriangleright e.g. stochastic dynamical systems
	- \triangleright e.g. computer models / simulators of some complex physical or biological process
- \triangleright Such models occur in multiple and diverse scientific fields.
- **I** Different communities use different names:
	- \blacktriangleright Simulator-based models
	- \triangleright Stochastic simulation models
	- \blacktriangleright Implicit models
	- \triangleright Generative (latent-variable) models
	- \blacktriangleright Probabilistic programs

Examples

Simulator-based models are widely used:

- \blacktriangleright Evolutionary biology: Simulating evolution
- **Neuroscience** Simulating neural circuits
- \blacktriangleright Ecology: Simulating species migration
- \blacktriangleright Health science: Simulating the spread of an infectious disease

Definition of simulator-based models

- \blacktriangleright Let $(\Omega, \mathcal{F}, \mathcal{P})$ be a probability space.
- \triangleright A simulator-based model is a collection of (measurable) functions $g(., \theta)$ parametrised by θ ,

$$
\boldsymbol{\omega} \in \Omega \mapsto \mathbf{x}_{\boldsymbol{\theta}} = \mathbf{g}(\boldsymbol{\omega}, \boldsymbol{\theta}) \in \mathcal{X} \tag{1}
$$

For any fixed θ , $\mathbf{x}_{\theta} = g(., \theta)$ is a random variable.

Implicit definition of the model pdfs

- \triangleright Direct implementation of hypotheses of how the observed data were generated.
- \triangleright Neat interface with scientific models (e.g. from physics or biology).
- \triangleright Modelling by replicating the mechanisms of nature that produced the observed/measured data. ("Analysis by synthesis")
- \triangleright Possibility to perform experiments in silico.

Disadvantages of simulator-based models

- \triangleright Generally elude analytical treatment.
- \triangleright Can be easily made more complicated than necessary.
- \triangleright Statistical inference is difficult.

Disadvantages of simulator-based models

- \triangleright Generally elude analytical treatment.
- \triangleright Can be easily made more complicated than necessary.
- \triangleright Statistical inference is difficult.

Main reason: Likelihood function is intractable

The likelihood function L(*θ*)

- **P** Probability that the model generates data like x° when using parameter value *θ*
- \triangleright Generally well defined but intractable for simulator-based / implicit models

[Background](#page-3-0)

[Previous work](#page-12-0)

[Proposed approach](#page-18-0)

Three foundational issues

- 1. How should we assess whether $x_{\theta} \equiv x^{\circ}$?
- 2. How should we compute the probability of the event $x_{\theta} \equiv x^o$?
- 3. For which values of *θ* should we compute it?

Likelihood: Probability that the model generates data like x^o for parameter value θ

Approximate Bayesian computation

- 1. How should we assess whether $x_{\theta} \equiv x^{\circ}$?
	- \Rightarrow Check whether $||T(\bm{x}_{\bm{\theta}}) T(\bm{x}^o)|| \leq \epsilon$
- 2. How should we compute the proba of the event $x_{\theta} \equiv x^o$?
	- \Rightarrow By counting
- 3. For which values of *θ* should we compute it?
	- \Rightarrow Sample from the prior (or other proposal distributions)

Approximate Bayesian computation

1. How should we assess whether $x_{\theta} \equiv x^{\circ}$?

 \Rightarrow Check whether $||T(\bm{x}_{\bm{\theta}}) - T(\bm{x}^o)|| \leq \epsilon$

- 2. How should we compute the proba of the event $x_{\theta} \equiv x^o$?
	- \Rightarrow By counting
- 3. For which values of *θ* should we compute it?

 \Rightarrow Sample from the prior (or other proposal distributions)

Difficulties:

- Choice of $T()$ and ϵ
- \blacktriangleright Typically high computational cost

For recent review, see: Lintusaari et al (2017) "Fundamentals and recent developments in approximate Bayesian computation", Systematic Biology

Synthetic likelihood

(Simon Wood, Nature, 2010)

- 1. How should we assess whether $x_{\theta} \equiv x^{\circ}$?
- 2. How should we compute the proba of the event $x_{\theta} \equiv x^o$?
	- \Rightarrow Compute summary statistics $\boldsymbol{t}_{\boldsymbol{\theta}} = T(\boldsymbol{x}_{\boldsymbol{\theta}})$
	- ⇒ Model their distribution as a Gaussian
	- \Rightarrow Compute likelihood function with $T(\bm{x}^o)$ as observed data
- 3. For which values of *θ* should we compute it?
	- \Rightarrow Use obtained "synthetic" likelihood function as part of a Monte Carlo method

Synthetic likelihood

(Simon Wood, Nature, 2010)

- 1. How should we assess whether $x_{\theta} \equiv x^{\circ}$?
- 2. How should we compute the proba of the event $x_{\theta} \equiv x^o$?
	- \Rightarrow Compute summary statistics $t_{\theta} = T(x_{\theta})$
	- \Rightarrow Model their distribution as a Gaussian
	- \Rightarrow Compute likelihood function with $T(\bm{x}^o)$ as observed data
- 3. For which values of *θ* should we compute it?
	- \Rightarrow Use obtained "synthetic" likelihood function as part of a Monte Carlo method

Difficulties:

- \blacktriangleright Choice of $T()$
- \triangleright Gaussianity assumption may not hold
- \blacktriangleright Typically high computational cost

[Background](#page-3-0)

[Previous work](#page-12-0)

[Proposed approach](#page-18-0)

1. How should we assess whether $x_{\theta} \equiv x^{\circ}$?

 \Rightarrow Use classification (Gutmann et al, 2014, 2017)

- 2. How should we compute the proba of the event $x_{\theta} \equiv x^o$?
- 3. For which values of *θ* should we compute it?
	- \Rightarrow Use Bayesian optimisation (Gutmann and Corander, 2013-2016) Compared to standard approaches: speed-up by a factor of 1000 more
- 1. How should we assess whether $x_{\theta} \equiv x^{\circ}$?
- 2. How should we compute the proba of the event $x_{\theta} \equiv x^o$?
	- \Rightarrow Use density ratio estimation (Dutta et al, 2016, arXiv:1611.10242)

1. How should we assess whether $x_{\theta} \equiv x^{\circ}$?

 \Rightarrow Use classification (Gutmann et al, 2014, 2017)

- 2. How should we compute the proba of the event $x_{\theta} \equiv x^o$?
- 3. For which values of *θ* should we compute it?
	- \Rightarrow Use Bayesian optimisation (Gutmann and Corander, 2013-2016) Compared to standard approaches: speed-up by a factor of 1000 more
- 1. How should we assess whether $x_{\theta} \equiv x^{\circ}$?
- 2. How should we compute the proba of the event $x_{\theta} \equiv x^o$?
	- \Rightarrow Use density ratio estimation (Dutta et al, 2016, arXiv:1611.10242)

(Dutta et al, 2016, arXiv:1611.10242)

 \blacktriangleright Frame posterior estimation as ratio estimation problem

$$
\rho(\theta|\mathbf{x}) = \frac{p(\theta)p(\mathbf{x}|\theta)}{p(\mathbf{x})} = p(\theta)r(\mathbf{x}, \theta)
$$
(2)

$$
r(\mathbf{x}, \theta) = \frac{p(\mathbf{x}|\theta)}{p(\mathbf{x})}
$$
(3)

- **E**stimating $r(x, \theta)$ is the difficult part since $p(x|\theta)$ unknown.
- **E**stimate $\hat{r}(\mathbf{x}, \theta)$ yields estimate of the likelihood function and posterior

$$
\hat{L}(\theta) \propto \hat{r}(\mathbf{x}^{\circ}, \theta), \qquad \hat{p}(\theta | \mathbf{x}^{\circ}) = p(\theta) \hat{r}(\mathbf{x}^{\circ}, \theta). \qquad (4)
$$

Estimating density ratios in general

- \triangleright Relatively well studied problem (Textbook by Sugiyama et al, 2012)
- \triangleright Bregman divergence provides general framework (Gutmann and Hirayama, 2011; Sugiyama et al, 2011)
- \blacktriangleright Here: density ratio estimation by logistic regression

Density ratio estimation by logistic regression

 \blacktriangleright Samples from two data sets

$$
\mathbf{x}_{i}^{(1)} \sim p^{(1)}, \quad i = 1, \ldots, n^{(1)} \tag{5}
$$

$$
\mathbf{x}_{i}^{(2)} \sim p^{(2)}, \quad i = 1, \ldots, n^{(2)} \tag{6}
$$

 \blacktriangleright Probability that a test data point **x** was sampled from $p^{(1)}$

$$
\mathbb{P}(\mathbf{x} \sim p^{(1)}|\mathbf{x}, h) = \frac{1}{1 + \nu \exp(-h(\mathbf{x}))}, \qquad \nu = \frac{n^{(2)}}{n^{(1)}} \tag{7}
$$

Density ratio estimation by logistic regression

Estimate h by minimising

$$
\mathcal{J}(h) = \frac{1}{n} \left\{ \sum_{i=1}^{n^{(1)}} \log \left[1 + \nu \exp \left(-h_i^{(1)} \right) \right] + \sum_{i=1}^{n^{(2)}} \log \left[1 + \frac{1}{\nu} \exp \left(h_i^{(2)} \right) \right] \right\}
$$

$$
h_i^{(1)} = h \left(\mathbf{x}_i^{(1)} \right) \qquad h_i^{(2)} = h \left(\mathbf{x}_i^{(2)} \right)
$$

$$
n = n^{(1)} + n^{(2)}
$$

 \triangleright Objective is the re-scaled negated log-likelihood.

For large
$$
n^{(1)}
$$
 and $n^{(2)}$

$$
\hat{h} = \operatorname{argmin}_{h} \mathcal{J}(h) = \log \frac{p^{(1)}}{p^{(2)}}
$$

without any constraints on h

Estimating the posterior

- \blacktriangleright Property was used to estimate unnormalised models (Gutmann & Hyvärinen, 2010, 2012)
- \blacktriangleright It was used to estimate likelihood ratios (Pham et al, 2014; Cranmer et al, 2015)
- \blacktriangleright For posterior estimation, we use
	- \blacktriangleright data generating pdf $p(\mathbf{x}|\theta)$ for $p^{(1)}$
	- **IF marginal** $p(x)$ **for** $p^{(2)}$
- (Other choices for $p(x)$ possible too)
- \triangleright sample sizes entirely under our control

E Logistic regression gives (point-wise in θ)

$$
\hat{h}(\mathbf{x}, \boldsymbol{\theta}) \rightarrow \log \frac{p(\mathbf{x}|\boldsymbol{\theta})}{p(\mathbf{x})} = \log r(\mathbf{x}, \boldsymbol{\theta})
$$
 (8)

 \blacktriangleright Estimated posterior and likelihood function:

$$
\hat{p}(\theta|\mathbf{x}^o) = p(\theta) \exp(\hat{h}(\mathbf{x}^o, \theta)) \quad \hat{L}(\theta) \propto \exp(\hat{h}(\mathbf{x}^o, \theta)) \quad (9)
$$

Estimating the posterior

(Dutta et al, 2016, arXiv:1611.10242)

- \triangleright We need to specify a model for h.
- \blacktriangleright For simplicity: linear model

$$
h(\mathbf{x}) = \sum_{i=1}^{b} \beta_i \psi_i(\mathbf{x}) = \beta^{\top} \psi(\mathbf{x})
$$
 (10)

where $\psi_i(\mathbf{x})$ are summary statistics

 \blacktriangleright More complex models possible

Exponential family approximation

 \blacktriangleright Logistic regression yields

 $\hat{h}(\mathbf{x};\boldsymbol{\theta}) = \hat{\beta}(\boldsymbol{\theta})^{\top}\psi(\mathbf{x}), \quad \hat{r}(\mathbf{x},\boldsymbol{\theta}) = \exp(\hat{\beta}(\boldsymbol{\theta})^{\top}\psi(\mathbf{x})) \tag{11}$

 \blacktriangleright Resulting posterior

$$
\hat{p}(\theta|\mathbf{x}^{\circ}) = p(\theta) \exp(\hat{\beta}(\theta)^{\top} \psi(\mathbf{x}^{\circ}))
$$
\n(12)

Implicit exponential family approximation of $p(x|\theta)$

$$
\hat{r}(\mathbf{x}, \theta) = \frac{\hat{p}(\mathbf{x}|\theta)}{\hat{p}(\mathbf{x})}
$$
(13)

$$
\hat{p}(\mathbf{x}|\boldsymbol{\theta}) = \hat{p}(\mathbf{x}) \exp(\hat{\beta}(\boldsymbol{\theta})^{\top} \psi(\mathbf{x}))
$$
 (14)

Implicit because $\hat{p}(\mathbf{x})$ never explicitly constructed.

- **I** Vector of summary statistics $\psi(\mathbf{x})$ should include a constant for normalisation of the pdf (log partition function)
- \triangleright Normalising constant is estimated via the logistic regression
- \triangleright Simple linear model leads to a generalisation of synthetic likelihood
- \blacktriangleright L₁ penalty on β for weighing and selecting summary statistics

 \blacktriangleright Model:

$$
x^{(t)} = \theta_1 x^{(t-1)} + e^{(t)} \tag{15}
$$

$$
e^{(t)} = \xi^{(t)}\sqrt{0.2 + \theta_2(e^{(t-1)})^2}
$$
 (16)

 $\xi^{(t)}$ and $e^{(0)}$ independent standard normal r.v., $x^{(0)}=0$

- \blacktriangleright 100 time points
- **►** Parameters: $\theta_1 \in (-1, 1)$, $\theta_2 \in (0, 1)$
- **I** Uniform prior on θ_1, θ_2

\blacktriangleright Summary statistics:

- \triangleright auto-correlations with lag one to five
- \blacktriangleright all (unique) pairwise combinations of them
- a constant
- \blacktriangleright To check robustness: 50% irrelevant summary statistics (drawn from standard normal)
- \triangleright Comparison with synthetic likelihood with equivalent set of summary statistics (relevant sum. stats. only)

Example posterior

Example posterior

Systematic analysis

- \blacktriangleright Jensen-Shannon div between estimated and true posterior
- \triangleright Point-wise comparison with synthetic likelihood (100 data sets)

 $\Delta_{\text{JSD}} =$ JSD for proposed method–JSD for synthetic likelihood

 $M \sim$

$$
x^{(t)}|N^{(t)}, \phi \sim \text{Poisson}(\phi N^{(t)})
$$
\n(17)

$$
\log N^{(t)} = \log r + \log N^{(t-1)} - N^{(t-1)} + \sigma e^{(t)} \tag{18}
$$

$$
t = 1, \ldots, 50, \qquad N^{(0)} = 0 \tag{19}
$$

- \blacktriangleright Parameters and priors
	- ► log growth rate log $r \sim \mathcal{U}(3, 5)$
	- ^I scaling parameter *φ* ∼ U(5*,* 15)
	- \triangleright standard deviation $\sigma \sim \mathcal{U}(0, 0.6)$
- ▶ Summary statistics: same as Simon Wood (Nature, 2010)
- \blacktriangleright 100 inference problems
- \triangleright For each problem, relative errors in posterior means were computed
- \triangleright Point-wise comparison with synthetic likelihood

Results for log r

 $\Delta_{rel\ error}$ = rel error proposed method – rel error synth likelihood

Results for *σ*

 $\Delta_{rel\ error}$ = rel error proposed method – rel error synth likelihood

Results for *φ*

 $\Delta_{rel\ error}$ = rel error proposed method – rel error synth likelihood

- \triangleright Compared two auxiliary models: exponential vs Gaussian family
- \blacktriangleright For same summary statistics, typically more accurate inferences for the richer exponential family model
- \triangleright Robustness to irrelevant summary statistics thanks to L_1 regularisation

Conclusions

- \triangleright Background and previous work on inference with simulator-based / implicit statistical models
- \triangleright Our work on:
	- \triangleright Framing the posterior estimation problem as a density ratio estimation problem
	- \triangleright Estimating the ratio with logistic regression
	- \triangleright Using regularisation to automatically select summary statistics
- \blacktriangleright Multitude of research possibilities:
	- \blacktriangleright Choice of the auxiliary model
	- \triangleright Choice of the loss function used to estimate the density ratio
	- \triangleright Combine with Bayesian optimisation framework to reduce computational cost

Conclusions

- \triangleright Background and previous work on inference with simulator-based / implicit statistical models
- ▶ Our work on:
	- \triangleright Framing the posterior estimation problem as a density ratio estimation problem
	- \triangleright Estimating the ratio with logistic regression
	- \triangleright Using regularisation to automatically select summary statistics
- \blacktriangleright Multitude of research possibilities:
	- \blacktriangleright Choice of the auxiliary model
	- \triangleright Choice of the loss function used to estimate the density ratio
	- \triangleright Combine with Bayesian optimisation framework to reduce computational cost

More results and details in arXiv:1611.10242v1