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Task

Perform Bayesian inference for models where
1. the likelihood function is too costly to compute

2. sampling — simulating data — from the model is possible
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Simulator-based models

» Goal: Inference for models that are specified by a mechanism
for generating data
» e.g. stochastic dynamical systems
» e.g. computer models / simulators of some complex physical or
biological process

» Such models occur in multiple and diverse scientific fields.
» Different communities use different names:

» Simulator-based models
Stochastic simulation models
Implicit models

Generative (latent-variable) models
Probabilistic programs

vV vy vy
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Examples

Simulator-based models are widely used:

» Evolutionary biology: » Ecology:

Simulating evolution Simulating species migration
> Neuroscience: > Health science:

Simulating neural circuits Simulating the spread of an

infectious disease
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Definition of simulator-based models

» Let (2, F,P) be a probability space.
» A simulator-based model is a collection of (measurable)
functions g(., @) parametrised by 6,

weEN— xg=g(w,0)eX (1)

» For any fixed 6, xg = g(.,0) is a random variable.
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Implicit definition of the model pdfs

Parameter value 6

Parameter value 6’

Pr(ze A|0)=P({w:g(w,0) € A})
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Advantages of simulator-based models

» Direct implementation of hypotheses of how the observed
data were generated.

» Neat interface with scientific models (e.g. from physics or
biology).

» Modelling by replicating the mechanisms of nature that
produced the observed/measured data. (“Analysis by
synthesis™)

» Possibility to perform experiments in silico.
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Disadvantages of simulator-based models

» Generally elude analytical treatment.
» Can be easily made more complicated than necessary.

» Statistical inference is difficult.
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Disadvantages of simulator-based models

» Generally elude analytical treatment.
» Can be easily made more complicated than necessary.

» Statistical inference is difficult.

Main reason: Likelihood function is intractable
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The likelihood function L(8)

» Probability that the model generates data like x° when using

parameter value 0

» Generally well defined but intractable for simulator-based /
implicit models

Data space
Data source Observation
Unknown properties —\. .TO
T x|6
Data generation
Model
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Three foundational issues

1. How should we assess whether xg = x°7?
2. How should we compute the probability of the event xg = x°7?

3. For which values of @ should we compute it?

Data space

Data source Observation

A Ny

Unknown properties
x|6

Data generation

M(8)

Model

Likelihood: Probability that the model generates data like x° for parameter value 6
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Approximate Bayesian computation

1. How should we assess whether xg = x°7?
= Check whether || T(xg) — T(x°)|| <€

2. How should we compute the proba of the event xg = x°7
= By counting

3. For which values of @ should we compute it?
= Sample from the prior (or other proposal distributions)
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Approximate Bayesian computation

1. How should we assess whether xg = x°7?
= Check whether || T(xg) — T(x°)|| <€

2. How should we compute the proba of the event xg = x°7
= By counting

3. For which values of @ should we compute it?
= Sample from the prior (or other proposal distributions)

Difficulties:
» Choice of T() and ¢

» Typically high computational cost

For recent review, see: Lintusaari et al (2017) “Fundamentals and recent

developments in approximate Bayesian computation”, Systematic Biology
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Synthetic likelihood

(Simon Wood, Nature, 2010)
1. How should we assess whether xg = x°7

2. How should we compute the proba of the event xg = x°7

= Compute summary statistics tg = T(xg)
= Model their distribution as a Gaussian
= Compute likelihood function with T(x°) as observed data

3. For which values of @ should we compute it?

= Use obtained “synthetic” likelihood function as part of a
Monte Carlo method
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Synthetic likelihood

(Simon Wood, Nature, 2010)
1. How should we assess whether xg = x°7

2. How should we compute the proba of the event xg = x°7

= Compute summary statistics tg = T(xg)
= Model their distribution as a Gaussian
= Compute likelihood function with T(x°) as observed data

3. For which values of @ should we compute it?

= Use obtained “synthetic” likelihood function as part of a
Monte Carlo method

Difficulties:
» Choice of T()
» Gaussianity assumption may not hold

> Typically high computational cost
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Overview of some of my work

1. How should we assess whether xg = x°7
= Use classification (Gutmann et al, 2014, 2017)

N

How should we compute the proba of the event xg = x°7?
3. For which values of @ should we compute it?

= Use Bayesian optimisation (Gutmann and Corander, 2013-2016)
Compared to standard approaches: speed-up by a factor of
1000 more

1. How should we assess whether xg = x°7
2. How should we compute the proba of the event xg = x°7

= Use density ratio estimation (Dutta et al, 2016, arXiv:1611.10242)
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Basic idea

(Dutta et al, 2016, arXiv:1611.10242)

» Frame posterior estimation as ratio estimation problem

p(6]x) = ’W — p(6)r(x.6) 2)
/(x,0) = P/g’(‘)’g) (3)

» Estimating r(x, @) is the difficult part since p(x|@) unknown.

» Estimate 7(x, 8) yields estimate of the likelihood function and
posterior

L(6) o #(x°,0), p(0]x°) = p(9)F(x°,6).  (4)
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Estimating density ratios in general

» Relatively well studied problem (Textbook by Sugiyama et al, 2012)

» Bregman divergence provides general framework
(Gutmann and Hirayama, 2011; Sugiyama et al, 2011)

> Here: density ratio estimation by logistic regression
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Density ratio estimation by logistic regression

» Samples from two data sets

» Probability that a test data point x was sampled from p(1)
1 ()
s Y
1+ vexp(—h(x)) n(1)

P(x ~ pM|x, h) =

. from p() or from p(??

. samples from p(*)

. )
. samples from p(?)
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Density ratio estimation by logistic regression

» Estimate h by minimising

n® n2

7= (S alo vom ()] + S 14 Se (4)

hY = (x“_’l) HP = h (x?) -

n—n® 4 @

» Objective is the re-scaled negated log-likelihood.
» For large n) and n(®
h = argmin,, J(h) = log %

without any constraints on h
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Estimating the posterior

» Property was used to estimate unnormalised models
(Gutmann & Hyvérinen, 2010, 2012)

» It was used to estimate likelihood ratios
(Pham et al, 2014; Cranmer et al, 2015)

» For posterior estimation, we use
» data generating pdf p(x|@) for p(*)
> marginal p(X) for p(2) (Other choices for p(x) possible too)

» sample sizes entirely under our control
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Estimating the posterior

» Logistic regression gives (point-wise in )

h(x,0) — log plg)(()’g) = log r(x, 0) (8)

» Estimated posterior and likelihood function:

p(01x°) = p(6) exp(h(x°.8))  L(6) o exp(h(x°.8)) (9)
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Estimating the posterior

o

[Logistic regression: h = argminy, 7 (h, 6) ]—[log—ratio h(z, 9)]—’[il(l‘0, '9)]
1

\p(em) = p(O)exp (ﬁ(zo,m)’

(Dutta et al, 2016, arXiv:1611.10242)
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Auxiliary model

» We need to specify a model for h.

> For simplicity: linear model

b
h(x) = _ Bii(x) = BT (x) (10)
i=1

where 1;(x) are summary statistics

» More complex models possible
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Exponential family approximation

» Logistic regression yields

h(x;0) = 5(6) "¥(x).  F(x,8) = exp(5(6) ¥(x)) (11)

» Resulting posterior

p(81x°) = p(8) exp(5(6) "v(x)) (12)
» Implicit exponential family approximation of p(x|)
1 B(0)
(x.0) = 270 (13)
p(x(6) = b(x) exp(5(6) " (x)) (14)

» Implicit because p(x) never explicitly constructed.
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Remarks

v

Vector of summary statistics 1/(x) should include a constant
for normalisation of the pdf (log partition function)

v

Normalising constant is estimated via the logistic regression

v

Simple linear model leads to a generalisation of synthetic
likelihood

Ly penalty on 3 for weighing and selecting summary statistics

v
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Application to ARCH model

> Model:
x() = g x(E71) 4 (1) (15)
elt) = ¢(®) \/0_2 + Gp(elt=1)2 (16)

¢ and e(® independent standard normal r.v., x(©) =0
» 100 time points
» Parameters: 6; € (—1,1), 6> € (0,1)

» Uniform prior on 61, 6>
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Application to ARCH model

» Summary statistics:
> auto-correlations with lag one to five
» all (unique) pairwise combinations of them
» a constant
» To check robustness: 50% irrelevant summary statistics
(drawn from standard normal)
» Comparison with synthetic likelihood with equivalent set of
summary statistics (relevant sum. stats. only)
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Example posterior

<' 05

@ true posterior
@ estimated posterior
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6

(a) synthetic likelihood

Michael Gutmann
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(b) proposed method
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Example posterior

<' 0.5 <05
@ true posterior @true posterior
@ estimated posterior @ estimated posterior
0 . . . . 0 . . . .
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
0, 0,
(c) synthetic likelihood (d) proposed method subject to noise

Michael Gutmann Bayesian Inference by Density Ratio Estimation 32/40



Systematic analysis

» Jensen-Shannon div between estimated and true posterior
» Point-wise comparison with synthetic likelihood (100 data sets)

Ajsp = JSD for proposed method—JSD for synthetic likelihood
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Application to Ricker model

» Model
x®O|N® | ¢ ~ Poisson(¢pN()) (17)
log N — log r + log N1 N1 4 pe(D) (18)
t=1,...,50, NO®=p (19)

» Parameters and priors

> log growth rate log r ~ U(3,5)
» scaling parameter ¢ ~ U(5, 15)
» standard deviation o ~ U(0,0.6)
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Application to Ricker model

v

Summary statistics: same as Simon Wood (Nature, 2010)

v

100 inference problems

v

For each problem, relative errors in posterior means were
computed

v

Point-wise comparison with synthetic likelihood
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Results for log r

Avel error = rel error proposed method — rel error synth likelihood
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Results for o

Avel error = rel error proposed method — rel error synth likelihood
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Results for ¢

Avel error = rel error proposed method — rel error synth likelihood

density
N
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Observations

» Compared two auxiliary models: exponential vs Gaussian
family

» For same summary statistics , typically more accurate
inferences for the richer exponential family model

» Robustness to irrelevant summary statistics thanks to L
regularisation
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Conclusions

» Background and previous work on inference with
simulator-based / implicit statistical models

» Qur work on:
» Framing the posterior estimation problem as a density ratio
estimation problem
» Estimating the ratio with logistic regression
» Using regularisation to automatically select summary statistics

» Multitude of research possibilities:
» Choice of the auxiliary model

» Choice of the loss function used to estimate the density ratio

» Combine with Bayesian optimisation framework to reduce
computational cost
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Conclusions

» Background and previous work on inference with
simulator-based / implicit statistical models

» Qur work on:
» Framing the posterior estimation problem as a density ratio
estimation problem
» Estimating the ratio with logistic regression
» Using regularisation to automatically select summary statistics

» Multitude of research possibilities:
» Choice of the auxiliary model

» Choice of the loss function used to estimate the density ratio

» Combine with Bayesian optimisation framework to reduce
computational cost

More results and details in arXiv:1611.10242v1
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