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Progress in data science

I In the 60’s, data science was very difficult.
I Today it’s easier.

We have
I databases to store and access large amounts of data
I clusters to parallelise the computing
I the framework of statistical modelling and inference to provide

the basic principles for analysing data.
I Challenge to further progress:

I The basic principles do not take computational cost into
account.

I For complex data and models, exact inference is
computationally impossible.

I Good approximate solutions are needed.
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Message of the talk

We can use machine learning to perform highly efficient
approximate inference for intractable models.
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Introduction to statistical inference
Likelihood function
Case of exact inference

Models where exact inference is intractable
Unnormalised models
Generative models

Inference for unnormalised models
Solution via logistic regression
Application in unsupervised deep learning

Inference for generative models
General overview
Solution via logistic regression
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Goal of statistical inference

I Goal: Given data xo, learn about properties of its source
I Enables decision making, predictions, . . .

Data space

Observation

Inference

Data source

Unknown properties
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General approach

I Set up a model with potential properties θ (hypotheses)
I See which θ are in line with the observed data xo

Data space

Observation

Inference

Data source

Unknown properties

Model

M(θ)
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The likelihood function L(θ)

I Measures agreement between θ and the observed data xo

I Probability to generate data like xo if hypothesis θ holds

Data space

ObservationData source

Unknown properties

Model

M(θ)
Data generation
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Performing statistical inference

I If L(θ) is known, inference is straightforward
I Maximum likelihood estimation

θ̂ = argmaxθ L(θ) (1)

I Bayesian inference

p(θ|xo) ∝ p(θ)× L(θ) (2)
posterior ∝ prior × likelihood

Allows us to learn from data by updating probabilities
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Model specification

I Textbook: model ≡ family of probability density functions
I Probability density functions (pdfs) p(x|θ) satisfy

p(x|θ) ≥ 0︸ ︷︷ ︸
non-negativity

∫
p(x|θ)dx = 1︸ ︷︷ ︸
normalisation

(3)

I Likelihood function L(θ) ∝ p(xo|θ)
I Closed form solutions are possible
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Intractable models I worked on

I Not all models are specified as family of pdfs p(x|θ).
I I worked on

1. Unnormalised models
2. Generative models with unobserved variables

I The models are rather different, common point:
Multiple integrals needed to be computed to represent the
models in terms of pdfs p(x|θ).

I Solving the integrals exactly is computationally impossible.
(curse of dimensionality)

⇒ No model pdfs p(x|θ)
⇒ No likelihood function L(θ) ∝ p(xo|θ)
⇒ No exact inference
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Unnormalised models

I Used for modelling
I images (Markov random fields)
I text (neural probabilistic language models)
I social networks (exponential random graphs)
I . . .

I Specified via a non-negative function φ(x|θ) ∝ p(x|θ),∫
· · ·
∫
φ(x|θ)dx = Z (θ) 6= 1 p(x|θ) = φ(x|θ)

Z (θ) (4)

I Advantage: Specifying unnormalised models is often easier
than specifying normalised models

I Disadvantage: Integral defining Z (θ), called the partition
function, can generally not be computed.
⇒ Likelihood function is intractable.
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Intractable partition function implies intractable likelihood

I Consider p(x ; θ) = φ(x ;θ)
Z(θ) =

exp
(
−θ x2

2

)
√

2π/θ
I Log-likelihood function for precision θ ≥ 0

`(θ) = −n log

√
2π
θ
−θ

n∑
i=1

x2i
2 (5)

I Data-dependent (blue) and
independent part (red)
balance each other.

I If Z (θ) is intractable, `(θ)
is intractable.
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Generative models

I Models which specify a mechanism for generating data xo

I e.g. stochastic dynamical systems
I computer models / simulators of some complex biological

process
I aka: simulator-based models, implicit models, probabilistic

programs

I Widely used
I Evolutionary biology:

Simulating evolution
I Neuroscience:

Simulating neural circuits
I Health science:

Simulating the spread of an
infectious disease

Simulated neural activity in rat somatosensory cortex
(Figure from https://bbp.epfl.ch/nmc-portal)
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Generative models

I Advantage: detailed and realistic modelling
I Disadvantage: likelihood function is generally intractable due

to unobserved variables.
I To compute p(x|θ) one has to take into account all possible

states of the unobserved variables (marginalisation)

p(x|θ) =
∫
· · ·
∫

p(x, z|θ)dz (6)

I This is generally computationally impossible.
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Problem statement

I Task: Estimate the parameters θ of a parametric model p(.|θ)
of a d dimensional random vector x

I Given: Data X = (x1, . . . , xn) (iid)
I Given: Unnormalised model φ(.|θ)∫

ξ
φ(ξ|θ) dξ = Z (θ) 6= 1 p(x|θ) = φ(x|θ)

Z (θ) (7)

Normalising partition function Z (θ) not known / computable.
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Basic idea

I Formulate the estimation problem as a classification problem:
observed data vs. auxiliary “noise” (with known properties)

I Successful classification ≡ learn the differences between the
data and the noise

I differences + known noise properties ⇒ properties of the data

I Unsupervised learning by
supervised learning

I We used (nonlinear) logistic
regression for classification

Data Noise

Data or noise ?
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Logistic regression (1/2)

I Let Y = (y1, . . . ym) be a sample from a random variable y
with known (auxiliary) distribution pnoise.

I Introduce labels and form regression function:

P(C = 1|u; θ) = 1
1 + G(u; θ) G(u; θ) ≥ 0 (8)

I Determine the parameters θ
such that P(C = 1|u; θ) is

I large for most xi
I small for most yi .

Data: class 1 Noise: class 0

Class 1 or 0?
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Logistic regression (2/2)

I Maximise (rescaled) conditional log-likelihood using the
labelled data {(x1, 1), . . . , (xn, 1), (y1, 0), . . . , (ym, 0)},

JNCE
n (θ) = 1

n

( n∑
i=1

logP(C = 1|xi ; θ) +
m∑

i=1
log [P(C = 0|yi ; θ)]

)

I For large sample sizes n and m, θ̂ satisfying

G(u; θ̂) = m
n
pnoise(u)
pdata(u) (9)

is maximising JNCE
n (θ). Without any normalisation

constraints. proof
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Noise-contrastive estimation

(Gutmann and Hyvärinen, 2010; 2012)
(Gutmann and Hirayama, 2011)

I Assume unnormalised model φ(.|θ) is parametrised such that
its scale can vary freely.

θ → (θ; c) φ(u|θ)→ exp(c)φ(u|θ) (10)

I Noise-contrastive estimation:
1. Choose pnoise
2. Generate auxiliary data Y
3. Estimate θ via logistic regression with

G(u; θ) = m
n
pnoise(u)
φ(u|θ) . (11)

I G(u; θ)→ m
n

pnoise(u)
pdata(u) ⇒ φ(u|θ)→ pdata(u)
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Example

I Unnormalised Gaussian:

φ(x ; θ) = exp (θ2) exp
(
−θ1

x2
2

)
, θ1 > 0, θ2 ∈ R, (12)

I Parameters: θ1 (precision), θ2 ≡ c (scaling parameter)

Contour plot of JNCE
n (θ) :

I Gaussian noise with
ν = m/n = 10

I True precision θ?1 = 1
I Black: normalised models

Green: optimisation paths
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Statistical properties

(Gutmann and Hyvärinen, 2012)

I Assume pdata = p(.|θ?)
I Consistency: As n increases,

θ̂n = argmaxθJNCE
n (θ), (13)

converges in probability to θ?.
I Efficiency: As ν = m/n increases, for any valid choice of

pnoise, noise-contrastive estimation tends to “perform as well”
as MLE (it is asymptotically Fisher efficient).
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Application examples

I Models of text: e.g. Mnih and Teh, 2012,
A fast and simple algorithm for training neural probabilistic language models

I Models of images: e.g. Gutmann and Hyvärinen, 2013,
A three-layer model of natural image statistics

I Machine translation: e.g. Zoph et al, 2016,
Simple, fast noise-contrastive estimation for large RNN vocabularies

I Product recommendation: e.g. Tschiatschek et al, 2016, Learning
probabilistic submodular diversity models via noise contrastive estimation
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Unsupervised deep learning on natural images

I Natural images ≡ images which we see in our environment
I Understanding their properties is important

I for modern image processing
I for understanding biological visual systems
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Unsupervised deep learning on natural images

I Rapid object recognition by
feedforward processing

I Computations in middle
layers poorly understood

I Our approach: learn the
computations from data

I Idea: the units indicate how
probable an input image is.
(up to normalisation)

? ? ?

? ? ?

???

????

??

??

(Adapted from Koh and Poggio, 
Neural Computation, 2008)

High-level
vision

Simple 
features
(edges, ...)

Faces,
objects, ... 

Low-level
vision

(Gutmann and Hyvärinen, 2013)
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Image data

Consider two kinds of image data:

1. Image patches of size 32 by 32, extracted from larger images
(left).

2. “Tiny images” dataset, converted to grey scale: complete
scenes downsampled to 32 by 32 images (right)
(Torralba et al, TPAMI 2008)
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Multi-layer model

I Let I be a vectorised image. Processing layers:

x = gain control (I)

y (1)
i = max

(
w(1)

i · x, 0
)
, i = 1 . . . 600

y (2)
i = log

(
w(2)

i · (y(1))2 + 1
)
, i = 1 . . . 100

z(2) = gain control
(

y(2)
)

y (3)
i = max

(
w(3)

i · z(2), 0
)
, i = 1 . . . 50

Gain control: centring, normalising the norm after whitening,
possibly dimension reduction

I The outputs y (3)
i define how probable an input image is.

(up to normalisation ⇒ unnormalised model)
I The weights are the parameters to be learned (> 2 · 105 parameters)
I Only constraint: w (2)

ki ≥ 0.
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Learned features

I 1st layer: ≈ local Fourier transform (Gabor filters)
I 2nd layer: local max-pooling
I 3rd layer: emergence of units sensitive to curvature, longer

contours, and texture
I Close link to neural processing in the visual cortex

Curvature Contours Texture

Response
to local 
gratings

Strongly
activating
inputs

(Gutmann and Hyvärinen, 2013)
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Problem statement

Perform Bayesian inference for models where
1. the likelihood function is too costly to compute
2. sampling – simulating data – from the model is possible

Michael Gutmann Inference for Intractable Models 43 / 60



The likelihood function L(θ)

I Probability that the model generates data like xo when using
parameter value θ

I Generally well defined but intractable for simulator-based
models

Data space

ObservationData source

Unknown properties

Model

M(θ)
Data generation
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Three foundational issues

1. How should we assess whether xθ ≡ xo?
2. How should we compute the probability of the event xθ ≡ xo?
3. For which values of θ should we compute it?

Data space

ObservationData source

Unknown properties

Model

M(θ)
Data generation

Likelihood: Probability that the model generates data like xo for parameter value θ
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Approximate Bayesian computation

Recent review: Lintusaari et al (2017) “Fundamentals and recent
developments in approximate Bayesian computation”, Systematic Biology

1. How should we assess whether xθ ≡ xo?
⇒ Check whether ||T (xθ)− T (xo)|| ≤ ε

2. How should we compute the proba of the event xθ ≡ xo?
⇒ By counting

3. For which values of θ should we compute it?
⇒ Sample from the prior (or other proposal distributions)

Difficulties:
I Choice of summary statistics T () and threshold ε
I Typically high computational cost
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Synthetic likelihood

(Simon Wood, Nature, 2010)

1. How should we assess whether xθ ≡ xo?
2. How should we compute the proba of the event xθ ≡ xo?

⇒ Compute summary statistics tθ = T (xθ)
⇒ Model their distribution as a Gaussian
⇒ Compute likelihood function with T (xo) as observed data

3. For which values of θ should we compute it?
⇒ Use obtained “synthetic” likelihood function as part of a

Monte Carlo method

Difficulties:
I Choice of summary statistics T ()
I Gaussianity assumption may not hold
I Typically high computational cost
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Overview of some of my work

1. How should we assess whether xθ ≡ xo?
⇒ Use classification (Gutmann et al, 2014, 2017)

2. How should we compute the proba of the event xθ ≡ xo?
3. For which values of θ should we compute it?

⇒ Use Bayesian optimisation (Gutmann and Corander, 2013-2016)
Compared to standard approaches: speed-up by a factor of
1000 more

1. How should we assess whether xθ ≡ xo?
2. How should we compute the proba of the event xθ ≡ xo?

⇒ Use density ratio estimation / logistic regression
(Dutta et al, 2016, arXiv:1611.10242)
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Basic idea

(Dutta et al, 2016, arXiv:1611.10242)

I Frame posterior estimation as ratio estimation problem

p(θ|x) = p(θ)p(x|θ)
p(x) = p(θ)r(x,θ), r(x,θ) = p(x|θ)

p(x)

I Estimating r(x,θ) is the difficult part since p(x|θ) unknown.
I Estimate r̂(x,θ) yields estimate of the likelihood function and

posterior

L̂(θ) ∝ r̂(xo,θ), p̂(θ|xo) = p(θ)r̂(xo,θ). (14)

I Often more practical to estimate log-ratio h(x,θ) = log r(x,θ)

L̂(θ) ∝ exp(ĥ(xo,θ)), p̂(θ|xo) = p(θ) exp(ĥ(xo,θ)) (15)
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Estimating the posterior

I From theory of noise-contrastive estimation: ratio r(x,θ), or
log-ratio h(x,θ) can be estimated by logistic regression

I Formulate classification problem with
I one class: data sampled from p(x|θ)
I other class: data sampled from marginal p(x)

I Logistic regression gives (point-wise in θ)

ĥ(x,θ)→ log p(x|θ)
p(x) = log r(x,θ) (16)

I We operate on synthetic data only; can generate as much
data as we wish
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Estimating the posterior

p(θ) θ x0

θ1 θ2 . . . θnm

Model : p(x|θ)

xm
1 xm

2
. . . xm

nm xθ
1 xθ

2
. . . xθ

nθ

Xm Xθ

Logistic regression: ĥ = argminh J (h, θ) ĥ(x0, θ)

p̂(θ|x0) = p(θ) exp
(
ĥ(x0, θ)

)

log-ratio ĥ(x, θ)

(Dutta et al, 2016, arXiv:1611.10242)
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Auxiliary model

I We need to specify a model for h.
I For simplicity: linear model

h(x) =
b∑

i=1
βiψi (x) = β>ψ(x) (17)

where ψi (x) are summary statistics
I More complex models possible
I Simple linear model leads to a generalisation of synthetic

likelihood (Dutta et al, 2016, arXiv:1611.10242)

I L1 penalty on β for weighing and selecting summary statistics
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Application to ARCH model

I Model:

x (t) = θ1x (t−1) + e(t) (18)

e(t) = ξ(t)
√
0.2 + θ2(e(t−1))2 (19)

ξ(t) and e(0) independent standard normal r.v., x (0) = 0
I 100 time points
I Parameters: θ1 ∈ (−1, 1), θ2 ∈ (0, 1)
I Uniform prior on θ1, θ2
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Application to ARCH model

I Summary statistics ψi (x):
I auto-correlations with lag one to five
I all (unique) pairwise combinations of them
I a constant

I To check robustness: 50% irrelevant summary statistics
(drawn from standard normal)

I Comparison with synthetic likelihood with equivalent set of
summary statistics (relevant sum. stats. only)
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Example posterior
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Example posterior
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(c) synthetic likelihood
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Systematic analysis

I Symmetrised Kullback-Leibler divergence between estimated
and true posterior

I Point-wise comparison with synthetic likelihood (100 data sets)

∆sKL = SKL for proposed method−SKL for synthetic likelihood
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Key results

For details, see arXiv:1611.10242v1

I Frame the problem of Bayesian inference with intractable
generative models as ratio estimation problem

I Use logistic regression to solve the problem
I Approach includes synthetic likelihood as special case
I For same summary statistics, typically more accurate

inferences than the synthetic likelihood
I Robustness to irrelevant summary statistics thanks to

regularisation
I Enables selection of relevant summary statistics
I No threshold to choose (unlike in ABC)
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Conclusions

I Statistical modelling and inference are part of the foundations
of data science.

I They are not concerned with computational cost.
I Exact inference is impossible for complex models.

I Unnormalised models
I Noise-contrastive estimation
I Formulated the inference problem as a classification problem

I Generative models
I General overview
I Formulated the inference problem as a classification problem

By re-framing inference problems,
we can use machine learning to perform highly efficient

approximate inference for intractable models.
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Proof of Equation (9)

For large sample sizes n and m, θ̂ satisfying

G(u; θ̂) = m
n
pnoise(u)
pdata(u)

is maximising JNCE
n (θ),

JNCE
n (θ) = 1

n

( n∑
i=1

logP(C = 1|xi ; θ) +
m∑

i=1
log [P(C = 0|yi ; θ)]

)

without any normalisation constraints.
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Proof of Equation (9)

JNCE
n (θ) = 1

n

( n∑
i=1

logP(C = 1|xi ; θ) +
m∑

i=1
log [P(C = 0|yi ; θ)]

)

= 1
n

n∑
t=1

logP(C = 1|xi ; θ) + m
n

1
m

m∑
t=1

log [P(C = 0|yi ; θ)]

Fix the ratio m/n = ν and let n→∞ and m→∞. By law of
large numbers, JNCE

n converges to JNCE,

JNCE(θ) = Ex (logP(C = 1|x; θ)) + ν Ey (logP(C = 0|y; θ)) (20)

With P(C = 1|x; θ) = 1
1+G(x;θ) and P(C = 0|y; θ) = G(y;θ)

1+G(y;θ) we
have

JNCE(θ) =− Ex log(1 + G(x; θ)) + ν Ey logG(y; θ)−
ν Ey log (1 + G(y; θ)) (21)
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Consider the objective JNCE(θ) as a function of H = logG rather
than θ,

J NCE(H) =− Ex log(1 + expH(x)) + ν Ey H(y)− ν Ey log (1 + expH(y))

=−
∫

pdata(ξ) log(1 + expH(ξ))dξ + ν

∫
pnoise(ξ)H(ξ)dξ

− ν
∫

pnoise(ξ) log(1 + expH(ξ))dξ

=−
∫

(pdata(ξ) + νpnoise(ξ)) log(1 + expH(ξ))dξ+

ν

∫
pnoise(ξ)H(ξ)dξ

We now expand J NCE(H + εq) around H for an arbitrary function
q and a small scalar ε.
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With

log(1 + exp [H(ξ) + εq(ξ)]) = log(1 + expH(ξ)) + εq(ξ)
1 + exp(−H(ξ))

+ ε2

2
q(ξ)

1 + exp(−H(ξ))
q(ξ)

1 + exp(H(ξ))
+ O(ε3)

we have

J NCE(H + εq) =−
∫

(pdata(ξ) + νpnoise(ξ)) log(1 + expH(ξ))dξ

− ε
∫ pdata(ξ) + νpnoise(ξ)

1 + exp(−H(ξ)) q(ξ)dξ

− ε2

2

∫ pdata(ξ) + νpnoise(ξ)
1 + exp(−H(ξ))

q(ξ)2
1 + exp(H(ξ))dξ

+ ν

∫
pnoise(ξ)H(ξ)dξ + εν

∫
pnoise(ξ)q(ξ)dξ + O(ε3)
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Collecting terms gives:

J NCE(H + εq) =J NCE(H)+

ε

∫ (
νpnoise(ξ)− pdata(ξ) + νpnoise(ξ)

1 + exp(−H(ξ))

)
q(ξ)dξ

− ε2

2

∫ pdata(ξ) + νpnoise(ξ)
1 + exp(−H(ξ))

q(ξ)2
1 + exp(H(ξ))dξ + O(ε3)

The second-order term is negative for all (non-trivial) q and H.
The first-order term is zero for all q if and only if

νpnoise(ξ) = pdata(ξ) + νpnoise(ξ)
1 + exp(−H∗(ξ))

νpnoise(ξ) + νpnoise(ξ) exp(−H∗(ξ)) = pdata(ξ) + νpnoise(ξ)

exp(−H∗(ξ)) = pdata(ξ)
νpnoise(ξ)

which shows that θ̂ such that G(ξ; θ̂) = exp(H∗(ξ)) = ν pnoise
pdata is

maximising JNCE(θ). back
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