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Overall goal

I Inference: Given data yo , learn about properties of its source

I Enables decision making, predictions, . . .
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Approach

I Set up a model with potential properties θ (hypotheses)

I See which θ are in line with the observed data yo
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The likelihood function L(θ)

I Measures agreement between θ and the observed data yo

I Probability to generate data like yo if hypothesis θ holds
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Performing statistical inference

I If L(θ) is known, theory tells us what to do

I Maximum likelihood estimation

θ̂ = argmaxθ L(θ)

I Bayesian inference

p(θ|y) ∝ p(θ) × L(θ)

posterior ∝ prior× likelihood

Allows us to learn from data by updating probabilities
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Problem statement

Likelihood-free inference:

Perform statistical inference for models where

1. the likelihood function is too costly to evaluate

2. sampling – simulating data – from the model is possible
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Importance of likelihood-free inference

One reason: Such models occur widely

I Evolutionary biology:
Simulating the evolution of life

I Neuroscience:
Simulating neural circuits

I Astrophysics:
Simulating the formation of
galaxies, stars, or planets

I Computer vision:
Simulating naturalistic scenes

I Health science:
Simulating the spread of an
infectious disease

I . . .

Simulated neural activity in rat somatosensory cortex

(Figure from https://bbp.epfl.ch/nmc-portal)
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Simulator-based models

I We call such models “simulator-based models”
I Different communities use different names:

I Stochastic simulation models
I Generative models
I Implicit models
I Probabilistic programs
I . . .

I Allow us to perform experiments in silico

I Allow us to propagate uncertainty
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Flavors of likelihood-free inference

I There are several flavors of likelihood-free inference. In
Bayesian setting e.g.

I Approximate Bayesian computation (ABC)
I Synthetic likelihood (Wood, Nature, 2010)

I General idea: Identify the values of the parameters of interest
θ for which simulated data resemble the observed data

I Simulated data resemble the observed data if some distance
measure d ≥ 0 is small.

Here: Focus on ABC, see

reference paper for synthetic likelihood
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Meta ABC algorithm

I Let yo be the observed data.
I Iterate many times:

1. Sample θ from a proposal distribution q(θ)
2. Sample y |θ according to the model
3. Compute distance d(y , yo) between simulated and observed

data
4. Retain θ if d(y , yo) ≤ ε

I Different choices for q(θ) give different algorithms

I Produces samples from the (approximate) posterior when ε is
small

Michael Gutmann Fast Inference for Generative Models 11 / 24



Implicit likelihood approximation

Likelihood: Probability to generate data like yo if hypothesis θ holds

yo

ε

Data spaceyθ
(1)

yθ
(2)

yθ
(3)

yθ
(4)

yθ
(5)

yθ
(6)

Model

M(θ)

 Likelihood L(θ) 
           ≈
   proportion of 
green outcomes

L(θ) ≈ 1
N

∑N
i=1 1

(
d(y

(i)
θ , y

o) ≤ ε
)

Michael Gutmann Fast Inference for Generative Models 12 / 24



Example: Bacterial infections in child care centers

I Likelihood intractable for cross-sectional data
I But generating data from the model is possible
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Parameters of interest:
- rate of infections within a center
- rate of infections from outside
- competition between the strains

(Numminen et al, 2013)
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Example: Bacterial infections in child care centers

I Data: Streptococcus pneumoniae colonization for 29 centers

I Inference with Population Monte Carlo ABC

I Reveals strong competition between different bacterial strains

Expensive:

I 4.5 days on a cluster with
200 cores

I More than one million
simulated data sets
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Why is the ABC algorithm so expensive?

1. It rejects most samples when ε is small
2. It does not make assumptions about the shape of L(θ)
3. It does not use all information available
4. It aims at equal accuracy for all parameters
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Proposed solution

(Gutmann and Corander, 2016)

1. It rejects most samples when ε is small
⇒ Don’t reject samples – learn from them

2. It does not make assumptions about the shape of L(θ)
⇒ Model the distances, assume average distance is smooth

3. It does not use all information available
⇒ Use Bayes’ theorem to update the model

4. It aims at equal accuracy for all parameters
⇒ Prioritize parameter regions with small distances

equivalent strategy applies to
inference with synthetic likelihood
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Modeling (points 1 & 2)

I Data are tuples (θi , di ), where di = d(y
(i)
θ , yo)

I Model the conditional distribution of d given θ

I Estimated model yields approximation L̂(θ) for any choice of ε

L̂(θ) ∝ P̂r (d ≤ ε | θ)

P̂r is probability under the estimated model.
I Here: Use (log) Gaussian process as model (with squared

exponential covariance function)

I Approach not restricted to Gaussian processes.
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Data acquisition (points 3 & 4)

I Samples of θ could be obtained by sampling from the prior or
some adaptively constructed proposal distribution

I Give priority to regions in the parameter space where distance
d tends to be small.

I Use Bayesian optimization to find such regions
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Bayesian optimization for likelihood-free inference
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Example: Bacterial infections in child care centers

I Comparison of the proposed approach with a standard
population Monte Carlo ABC approach.

I Roughly equal results using 1000 times fewer simulations.

4.5 days with 200 cores
↓

90 minutes with seven cores

Posterior means: solid lines,

credibility intervals: shaded areas or dashed lines.
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(Gutmann and Corander, 2016)
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Example: Bacterial infections in child care centers

I Comparison of the proposed approach with a standard
population Monte Carlo ABC approach.

I Roughly equal results using 1000 times fewer simulations.
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Posterior means are shown as solid lines, credibility intervals as shaded areas or dashed lines.
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Further benefits

I The proposed method makes the inference more efficient.

I Allowed us to perform far more comprehensive data analysis
than with standard approach (Numminen et al, 2016)

I Enables inference for models which were out of reach till now

I model of evolution where simulating a single data set took us
12-24 hours (Marttinen et al, 2015)

I Enables easier assessment of parameter identifiability for
complex models

I model about transmission dynamics of tuberculosis
(Lintusaari et al, 2016)
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Open questions

I Model: How to best model the distance between simulated
and observed data?

I Acquisition function: Can we find strategies which are optimal
for parameter inference?

I Efficient high-dimensional inference: Can we use the approach
to infer the joint distribution of 1000 variables?

see reference paper for a discussion

for first answers: http://homepages.inf.ed.ac.uk/mgutmann
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Summary

I Topic: Inference for models where the likelihood is intractable
but sampling is possible

I Inference principle: Find parameter values for which the
distance between simulated and observed data is small

I Problem considered: Computational cost

I Proposed approach: Combine statistical modeling of the
distance with decision making under uncertainty (Bayesian
optimization)

I Outcome: Approach increases the efficiency of the inference
by several orders of magnitude
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