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Problem statement

Likelihood-free inference:

Perform statistical inference for models where
1. the likelihood function is too costly to evaluate
2. sampling – simulating data – from the model is possible
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Importance

Such models and inference problems occur widely

I Neuroscience:
Simulating neural circuits

I Evolutionary biology:
Simulating evolution

I Computer vision:
Simulating naturalistic scenes

I Health science:
Simulating the spread of an
infectious disease
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(Figure from Gutmann et al, 2014, 2017)
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Assumptions on the models

I Only assumption: sampling – simulating data – from the
model is possible

I Models specified by a data generating mechanism
I e.g. stochastic nonlinear dynamical systems
I e.g. computer models / simulators of some complex physical or

biological process
I Different communities use different names:

I Simulator-based models
I Stochastic simulation models
I Implicit models
I Generative (latent-variable) models
I Probabilistic programs
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Definition of simulator-based models (SBMs)

I Let (Ω,F ,P) be a probability space.
I A simulator-based model is a collection of (measurable)

functions g(.,θ) parametrised by θ,

ω ∈ Ω 7→ xθ = g(ω,θ) ∈ X (1)

I For any fixed θ, xθ = g(.,θ) is a random variable.
I g(.,θ) typically not available in closed form

Simulation / Sampling
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Strengths of SBMs

I Direct implementation of hypotheses of how the observed
data were generated.

I Neat interface with scientific models (e.g. from physics or
biology).

I Modelling by replicating the mechanisms of nature that
produced the observed/measured data. (“Analysis by
synthesis”)

I Possibility to perform experiments in silico.
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Weaknesses of SBMs

I Generally elude analytical treatment.
I Can be easily made more complicated than necessary.
I Statistical inference is difficult.

Main reason: Likelihood function is too expensive to evaluate
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The likelihood function L(θ)

I Well defined but generally intractable for SBMs
I Probability that the model generates data like xo when using

parameter value θ

Data space

ObservationData source

Unknown properties

Model

M(θ)
Data generation
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Three foundational issues

1. How should we assess whether xθ ≡ xo?
2. How should we compute the probability of the event xθ ≡ xo?
3. For which values of θ should we compute it?

Data space

ObservationData source

Unknown properties

Model

M(θ)
Data generation

Likelihood: Probability that the model generates data like xo for parameter value θ
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Approximate Bayesian computation

For recent review, see: Lintusaari et al (2017) “Fundamentals and recent
developments in approximate Bayesian computation”, Systematic Biology

1. How should we assess whether xθ ≡ xo?
⇒ Check whether ||T (xθ)− T (xo)|| ≤ ε

2. How should we compute the proba of the event xθ ≡ xo?
⇒ By counting

3. For which values of θ should we compute it?
⇒ Sample from the prior (or other proposal distributions)

Difficulties:
I Choice of T () and ε
I Typically high computational cost
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Implicit likelihood approximation
Likelihood: Probability to generate data like xo for parameter value θ
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Synthetic likelihood

(Simon Wood, Nature, 2010)

1. How should we assess whether xθ ≡ xo?
2. How should we compute the proba of the event xθ ≡ xo?

⇒ Compute summary statistics tθ = T (xθ)
⇒ Model their distribution as a Gaussian
⇒ Compute likelihood function with T (xo) as observed data

3. For which values of θ should we compute it?
⇒ Use obtained “synthetic” likelihood function as part of a

Monte Carlo method

Difficulties:
I Choice of T ()
I Gaussianity assumption may not hold
I Typically high computational cost
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Overview of some of my work

1. How should we assess whether xθ ≡ xo?
⇒ Use classification (Gutmann et al, 2014, 2017)

1. How should we assess whether xθ ≡ xo?
2. How should we compute the proba of the event xθ ≡ xo?

⇒ Use density ratio estimation (Dutta et al, 2016, arXiv:1611.10242)

2. How should we compute the proba of the event xθ ≡ xo?
3. For which values of θ should we compute it?

⇒ Use Bayesian optimisation (Gutmann and Corander, 2013-2016)
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Overview of some of my work

1. How should we assess whether xθ ≡ xo?
⇒ Use classification (Gutmann et al, 2014, 2017)

I Basic idea: Classification accuracy (discriminability) serves as
distance measure

I Value of 1: far; Value of 1/2: close
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Overview of some of my work

1. How should we assess whether xθ ≡ xo?
2. How should we compute the proba of the event xθ ≡ xo?

⇒ Use density ratio estimation (Dutta et al, 2016, arXiv:1611.10242)

I Basic idea: frame posterior estimation as ratio estimation
problem

p(θ|x) = p(x|θ)p(θ)
p(x) = r(x,θ)p(θ) (2)

I Estimate r̂(x,θ) yields estimate of the likelihood function and
posterior

L̂(θ) ∝ r̂(xo,θ), p̂(θ|xo) = r̂(xo,θ)p(θ). (3)
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Why is the ABC algorithm so expensive?

1. It rejects most samples when ε is small
2. It does not make assumptions about the shape of L(θ)
3. It does not use all information available
4. It aims at equal accuracy for all parameters
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Proposed solution

(Gutmann and Corander, JMLR, 2016)

1. It rejects most samples when ε is small
⇒ Don’t reject samples – learn from them

2. It does not make assumptions about the shape of L(θ)
⇒ Model the distances, assume average distance is smooth

3. It does not use all information available
⇒ Use Bayes’ theorem to update the model

4. It aims at equal accuracy for all parameters
⇒ Prioritize parameter regions with small distances

equivalent strategy applies to
inference with synthetic likelihood
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Modelling (points 1 & 2)

I Data are tuples (θi , di ), where di = d(x(i)
θ , xo)

I Model the conditional distribution of d given θ
I Estimated model yields approximation L̂(θ) for any choice of ε

L̂(θ) ∝ P̂ (d ≤ ε | θ)

P̂ is probability under the estimated model.
I Here: Use (log) Gaussian process with squared exponential

covariance function as model
I Approach not restricted to this model or Gaussian processes

(comparison of different GP models: Järvenpää et al, 2016, arXiv:1610.06462)

Michael Gutmann Efficient Likelihood-Free Inference 24 / 32



Data acquisition (points 3 & 4)

I Samples of θ could be obtained by sampling from the prior or
some adaptively constructed proposal distribution

I Give priority to regions in the parameter space where distance
d tends to be small.

I Use Bayesian optimization to find such regions
I Here: Use lower confidence bound acquisition function (e.g. Cox

and John, 1992; Srinivas et al, 2012)

At(θ) = µt(θ)︸ ︷︷ ︸
post mean

−
√√√√ η2t︸︷︷︸

weight

vt(θ)︸ ︷︷ ︸
post var

(4)

t: number of samples acquired so far
I Approach not restricted to this acquisition function.

(new acquisition function: Järvenpää et al, 2017, arXiv:1704.00520)
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Bayesian optimization for likelihood-free inference

0 0.05 0.1 0.15 0.2
-15

-10

-5

0

5

Competition parameter

Model based on 2 data points

Acquisition function

20%

10%

5%

80%

90%

95%

0 0.05 0.1 0.15 0.2
-3

-2

-1

0

1

2

3

4

5

6

Competition parameter

Model based on 3 data points

0 0.05 0.1 0.15 0.2
-1

0

1

2

3

4

5

6

Competition parameter

Model based on 4 data points

Next parameter
to try

DataModel

Exploration vs exploitation

Bayes' theorem

d
is

ta
n
ce

d
is

ta
n
ce

50%
mean

Michael Gutmann Efficient Likelihood-Free Inference 26 / 32



Example: Bacterial infections in child care centers

I Likelihood intractable for cross-sectional data
I But generating data from the model is possible
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- rate of infections within a center
- rate of infections from outside
- competition between the strains
 

(Numminen et al, 2013)
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Example: Bacterial infections in child care centers

I Comparison of the proposed approach with a standard
population Monte Carlo ABC approach.

I Roughly equal results using 1000 times fewer simulations.

4.5 days with 200 cores
↓

90 minutes with seven cores

Posterior means: solid lines,

credibility intervals: shaded areas or dashed lines.
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(Gutmann and Corander, JMLR, 2016)
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Posterior means are shown as solid lines, credibility intervals as shaded areas or dashed lines.
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Benefits

I The proposed method makes the inference more efficient.
I allowed us to perform far more comprehensive data analysis

than with standard approach (Numminen et al, 2016)

I Enables inference for models which were out of reach till now
I model of evolution where simulating a single data set took us

12-24 hours (Marttinen et al, 2015)

I Enables easier assessment of parameter identifiability for
complex models

I model about transmission dynamics of tuberculosis
(Lintusaari et al, 2016)
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Open questions

I Model: How to best model the distance between simulated
and observed data?

I Acquisition function: Can we find strategies which are optimal
for parameter inference?

I Efficient high-dimensional inference: Can we use the approach
to infer the joint distribution of 1000 variables?
see Gutmann and Corander, JMLR, 2016 for a discussion
for first answers: http://homepages.inf.ed.ac.uk/mgutmann
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Summary

I Topic: Inference for models where the likelihood is intractable
but sampling is possible

I Inference principle: Find parameter values for which the
distance between simulated and observed data is small

I Problem considered: Computational cost
I Proposed approach: Combine statistical modeling of the

distance with decision making under uncertainty (Bayesian
optimization)

I Outcome: Approach increases the efficiency of the inference
by several orders of magnitude

Michael Gutmann Efficient Likelihood-Free Inference 32 / 32


	Background
	Previous work
	Our approach

