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Learning from data

I Goal: Using observed data xo, learn about their source
I Enables decision making, predictions, . . .
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General approach

I Set up a model with potential properties θ (parameters)
I See which θ are in line with the observed data xo
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General approach

I Set up a model with potential properties θ (parameters)
I See which θ are in line with the observed data xo
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Example: Bacterial infections in child care centres

I Data: Colonization states of sampled attendees in 29 child
day care centres (DCCs).

I Each square indicates a child colonized with a strain of the
bacterium Streptococcus pneumoniae.
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Example: Bacterial infections in child care centres

I Model: latent continuous-time Markov chain for the
transmission dynamics in a DCC and an observation model

I What can we say about the parameters of interest?
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Parameters of interest:
- rate of infections within a center
- rate of infections from outside
- competition between the strains
 

(Numminen et al, 2013)
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The likelihood function

I Measures agreement between θ and the observed data xo

I Probability to generate data like xo if hypothesis θ holds
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Difficulty

I For the child care centre model and other (individual-based)
models: likelihood function is too expensive to compute.

I General computer science/statistics research question:
How to efficiently perform (Bayesian) inference when

I the likelihood function cannot be evaluated
I but sampling from the model is possible

I Research area called “likelihood-free inference” or
“approximate Bayesian computation”
(recent review article: Lintusaari et al, Systematic Biology, 2017)
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Simple approach: approximate by counting

Likelihood: Probability to generate data like xo for parameter value θ
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Example: Bacterial infections in child care centers

I Data: Streptococcus pneumoniae colonization for 29 centers
I Inference with a smarter version of the counting-based

approach (population Monte Carlo ABC)
I Reveals strong competition between different bacterial strains

Expensive:
I 4.5 days on a cluster with

200 cores
I More than one million

simulated data sets
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Fast Bayesian inference using machine learning

I We developed a fast inference algorithm using machine
learning (Bayesian optimisation).

I Roughly equal results using 1000 times fewer simulations.

4.5 days with 200 cores
↓

90 minutes with seven cores

Posterior means: solid lines,

credibility intervals: shaded areas or dashed lines.

2 2.5 3 3.5 4 4.5 5 5.5 6

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Computational cost (log10)

C
o

m
p

e
ti
ti
o

n
 p

a
ra

m
e

te
r

 

 
Developed Fast Method

Standard Method

(Gutmann and Corander, JMLR, 2016)
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Standard approach: approximate by counting

Likelihood: Probability to generate data like xo for parameter value θ
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Robust Bayesian inference using machine learning

I Traditionally, expert knowledge is used to judge whether the
simulated and observed data are close

I But experts make mistakes too
I Robustify using machine learning (Gutmann et al, 2014, 2017)
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Conclusions

I Inference for models where the likelihood is intractable but
sampling is possible (likelihood-free inference)

I Relevant for complex infectious disease models with many
unobserved variables

I Machine learning to accelerate and robustify the inference

Further information:
I My homepage: http://homepages.inf.ed.ac.uk/mgutmann

I Review paper: Lintusaari et al, Systematic Biology, 2017
I Software: ELFI – Engine for Likelihood-Free Inference

http://elfi.readthedocs.io
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