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Progress in data science

> In the 60's, data analysis was no picnic.
» Today it's easier. We have

» databases to store and access large amounts of data
» high-performance computing
» sound data analysis principles from probability & statistics

Michael Gutmann Machine Learning for Complex Data Analysis 11/25



Progress in data science

> In the 60's, data analysis was no picnic.
» Today it's easier. We have

» databases to store and access large amounts of data
» high-performance computing
» sound data analysis principles from probability & statistics

» Challenge to further progress:

» The basic principles do not consider the computational cost

» For complex problems, exact solutions are computationally
impossible

» Textbook approximate methods too slow or too approximate

Michael Gutmann Machine Learning for Complex Data Analysis 11/25



Progress in data science

v
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Challenge to further progress:

» The basic principles do not consider the computational cost

» For complex problems, exact solutions are computationally
impossible

» Textbook approximate methods too slow or too approximate
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Need for new data analysis methods with a good trade-off
between speed and accuracy
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Message of the talk

Al and machine learning greatly improve the trade-off between
speed and accuracy in data analysis.
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Overall goal of data analysis

» Use observed data x° to learn about their source

» Enables decision making, predictions, ...

Data space
Data source Observation
Unknown properties . CUO
Insight
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General approach

» Set up a model with potential properties 8 (parameters)

» See which @ are in line with the observed data x°

Data space
Data source Observation
UnknownTproperties \. xO
Model Inference
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General approach

» Set up a model with potential properties 8 (parameters)

» See which 0 are in line with the observed data x°

Data space
Data source Observation

Unknown properties \. ;UO
T
M(O)

Model Inference

Prior information
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Simulator-based models

» Models specified by a data generating mechanism
» e.g. emulators / simulators of some complex physical or

biological process
> aka: generative models, implicit models

> Widely used in science &
engineering

» Neuroscience:
Simulating neural activity

» Evolutionary biology:
Simulating evolution

> Robotics:
Simulating actions

Simulated neural activity in rat somatosensory cortex
(Figure from https://bbp.epfl.ch/nmc-portal)

Michael Gutmann Machine Learning for Complex Data Analysis 16 /25
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Example: Bacterial transmissions in child care centres

> Model: latent continuous-time Markov chain for the
transmission dynamics and an observation model
» What can we say about the parameters of interest?

Parameters of interest:

- rate of transmission from outside
° - rate of transmission within a center
10 - competition between the strains
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The likelihood function

> Measures agreement between 6 and the observed data x°

» Probability to generate data like x° if hypothesis 6 holds

Data space
Data source Observation
Unknown properties \. .T,'O
T x|6
Data generation
Model
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Research question

» For child care centre and other simulator-based models:
likelihood function is too expensive to evaluate.

» Research question:

How to efficiently perform (Bayesian) inference when

» the likelihood function cannot be evaluated
» but sampling from the model is possible
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How to efficiently perform (Bayesian) inference when

» the likelihood function cannot be evaluated
» but sampling from the model is possible

» Area of research called “likelihood-free inference” or
“approximate Bayesian computation”

Michael Gutmann Machine Learning for Complex Data Analysis

19/25



Simple approach: approximate by counting

Likelihood: Probability to generate data like x° for parameter value 6

Data space
Model
M(©)
Likelihood L(8)

proportion of
green outcomes

'-,_‘.
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Example: Bacterial transmissions in child care centres

» Data: Streptococcus pneumoniae colonisation for 29 centres

> Inference with a smarter version of the counting-based
approach (Markov chain Monte Carlo ABC)

» Reveals strong competition between different bacterial strains
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Fast Bayesian inference using machine learning

» We developed a fast inference algorithm using machine
learning (Bayesian optimisation).

» Roughly equal results using 1000 times fewer simulations.

—o— Developed Fast Method
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(Gutmann and Corander, JMLR, 2016)
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Simple approach: approximate by counting

Likelihood: Probability to generate data like x° for parameter value 6
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Robust Bayesian inference using machine learning

» Traditionally, expert knowledge is used to judge whether the

simulated and observed data are close
» But experts make mistakes too
» Robustify using machine learning (Gutmann et al, 2014, 2017)
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Conclusions

» Complex data analysis problems in science and engineering

» Inference for models where the likelihood is intractable but
sampling is possible (likelihood-free inference)

» Machine learning to accelerate and robustify the inference

= Improved trade-off between speed and accuracy
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» Inference for models where the likelihood is intractable but
sampling is possible (likelihood-free inference)

» Machine learning to accelerate and robustify the inference

= Improved trade-off between speed and accuracy

Further information:
» Review paper: Lintusaari et al, Systematic Biology, 2017
» My homepage: http://homepages.inf.ed.ac.uk/mgutmann

» Software: ELFI — Engine for Likelihood-Free Inference
http://elfi.readthedocs.io
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