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Progress in data science

I In the 60’s, data analysis was no picnic.
I Today it’s easier. We have

I databases to store and access large amounts of data
I high-performance computing
I sound data analysis principles from probability & statistics

I Challenge to further progress:
I The basic principles do not consider the computational cost
I For complex problems, exact solutions are computationally

impossible
I Textbook approximate methods too slow or too approximate

I Need for new data analysis methods with a good trade-off
between speed and accuracy
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Message of the talk

AI and machine learning greatly improve the trade-off between
speed and accuracy in data analysis.
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Overall goal of data analysis

I Use observed data xo to learn about their source
I Enables decision making, predictions, . . .
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General approach

I Set up a model with potential properties θ (parameters)
I See which θ are in line with the observed data xo
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General approach
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Simulator-based models

I Models specified by a data generating mechanism
I e.g. emulators / simulators of some complex physical or

biological process
I aka: generative models, implicit models

I Widely used in science &
engineering

I Neuroscience:
Simulating neural activity

I Evolutionary biology:
Simulating evolution

I Robotics:
Simulating actions

I . . .

Simulated neural activity in rat somatosensory cortex
(Figure from https://bbp.epfl.ch/nmc-portal)
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Example: Bacterial transmissions in child care centres

I Model: latent continuous-time Markov chain for the
transmission dynamics and an observation model

I What can we say about the parameters of interest?
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Parameters of interest:
- rate of transmission from outside
- rate of transmission within a center
- competition between the strains
 

(Numminen et al, 2013)
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The likelihood function

I Measures agreement between θ and the observed data xo

I Probability to generate data like xo if hypothesis θ holds
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Research question

I For child care centre and other simulator-based models:
likelihood function is too expensive to evaluate.

I Research question:
How to efficiently perform (Bayesian) inference when

I the likelihood function cannot be evaluated
I but sampling from the model is possible

I Area of research called “likelihood-free inference” or
“approximate Bayesian computation”
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Simple approach: approximate by counting

Likelihood: Probability to generate data like xo for parameter value θ
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Example: Bacterial transmissions in child care centres

I Data: Streptococcus pneumoniae colonisation for 29 centres
I Inference with a smarter version of the counting-based

approach (Markov chain Monte Carlo ABC)
I Reveals strong competition between different bacterial strains

Expensive:
I 4.5 days on a cluster with

200 cores
I More than one million

simulated data sets
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Fast Bayesian inference using machine learning

I We developed a fast inference algorithm using machine
learning (Bayesian optimisation).

I Roughly equal results using 1000 times fewer simulations.

4.5 days with 200 cores
↓

90 minutes with seven cores

Posterior means: solid lines,

credibility intervals: shaded areas or dashed lines.
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(Gutmann and Corander, JMLR, 2016)
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Simple approach: approximate by counting

Likelihood: Probability to generate data like xo for parameter value θ
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Robust Bayesian inference using machine learning

I Traditionally, expert knowledge is used to judge whether the
simulated and observed data are close

I But experts make mistakes too
I Robustify using machine learning (Gutmann et al, 2014, 2017)
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Conclusions

I Complex data analysis problems in science and engineering
I Inference for models where the likelihood is intractable but

sampling is possible (likelihood-free inference)
I Machine learning to accelerate and robustify the inference

⇒ Improved trade-off between speed and accuracy

Further information:
I Review paper: Lintusaari et al, Systematic Biology, 2017
I My homepage: http://homepages.inf.ed.ac.uk/mgutmann

I Software: ELFI – Engine for Likelihood-Free Inference
http://elfi.readthedocs.io
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