Tutorial on Approximate Bayesian Computation

Michael Gutmann

<http://homepages.inf.ed.ac.uk/mgutmann> School of Informatics, University of Edinburgh

24th June 2018

General problem considered

- \blacktriangleright Given data y^o , draw conclusions about properties of its source
- \blacktriangleright If available, possibly take prior information into account

Model-based approach

- Set up a model with potential properties θ (parameters)
- \triangleright See which θ are reasonable given the observed data

Likelihood function

- \blacktriangleright Measures agreement between θ and the observed data \mathbf{y}°
- \blacktriangleright Probability to generate data **y** like y^o if property θ holds

 \blacktriangleright For discrete random variables:

$$
L(\theta) = \Pr(\mathbf{y} = \mathbf{y}^{\circ}|\theta)
$$
 (1)

 \blacktriangleright For continuous random variables:

$$
L(\boldsymbol{\theta}) = \lim_{\epsilon \to 0} \frac{\Pr(\mathbf{y} \in B_{\epsilon}(\mathbf{y}^o) | \boldsymbol{\theta})}{\text{Vol}(B_{\epsilon}(\mathbf{y}^o))}
$$
(2)

Performing statistical inference

- If $L(\theta)$ is known, the inference problem becomes an optimisation or sampling problem
- \blacktriangleright Maximum likelihood estimation

$$
\hat{\boldsymbol{\theta}} = \mathop{\mathrm{argmax}}_{\boldsymbol{\theta}} L(\boldsymbol{\theta})
$$

 \blacktriangleright Bayesian inference

 $p(\theta | \mathbf{y}^{\mathcal{O}}) \propto p(\theta) \times L(\theta)$ posterior \propto prior \times likelihood

possibly follwed by sampling or optimisation

Textbook case

- \triangleright model \equiv family of probability density/mass functions $p(\mathbf{y}|\boldsymbol{\theta})$
- **I** Likelihood function $L(\theta) = p(\mathbf{y}^o | \theta)$
- \blacktriangleright In simple cases, closed form expressions for the posterior possible

- \triangleright Not all models are specified as family of pdfs $p(\mathbf{y}|\boldsymbol{\theta})$.
- \blacktriangleright Here: simulator-based models: models that are specified by a (stochastic) mechanism for generating data
- ▶ Models specified via a data generating mechanism occur in multiple and diverse scientific fields.
- \triangleright Different communities use different names for simulator-based models:
	- \blacktriangleright Generative models
	- \blacktriangleright Implicit models
	- \triangleright Stochastic simulation models
	- \triangleright Generative (latent-variable) models
	- \blacktriangleright Probabilistic programs

Examples

 \blacktriangleright . . .

- \blacktriangleright Evolutionary biology: Simulating evolution
- **Neuroscience:** Simulating neural circuits
- \blacktriangleright Astrophysics: Simulating the formation of galaxies, stars, or planets
- \blacktriangleright Health science: Simulating the spread of an infectious disease
- \blacktriangleright Computer vision: Simulating facial expressions

Simulated neural activity in rat somatosensory cortex (Figure from <https://bbp.epfl.ch/nmc-portal>)

- \triangleright Direct implementation of hypotheses of how the observed data were generated.
- \triangleright Modelling by replicating the mechanisms of nature that produced the observed/measured data. ("analysis by synthesis")
- \triangleright Neat interface with scientific models (e.g. from physics or biology).
- \triangleright Possibility to emulate real-world experiments on the computer

Weaknesses of simulator-based models

- \triangleright Generally elude analytical treatment.
- \triangleright May easily be made more complicated than necessary.

Weaknesses of simulator-based models

- \triangleright Generally elude analytical treatment.
- \triangleright May easily be made more complicated than necessary.
- \triangleright Statistical inference (parameter learning) is difficult
- \triangleright Generally elude analytical treatment.
- \triangleright May easily be made more complicated than necessary.
- \triangleright Statistical inference (parameter learning) is difficult

Main reason: Likelihood function is too expensive to evaluate

Implicit definition of the likelihood function

 \blacktriangleright To compute the likelihood function, we needed to compute the probability that the simulator generates data close to y^o ,

$$
\text{Pr}(\mathbf{y} = \mathbf{y}^o | \boldsymbol{\theta}) \quad \text{or} \quad \text{Pr}(\mathbf{y} \in B_{\epsilon}(\mathbf{y}^o) | \boldsymbol{\theta})
$$

- \blacktriangleright Typically no analytical expression available.
- \blacktriangleright But we can empirically test whether simulated data equals y° or is in $B_{\epsilon}(\mathbf{y}^{\circ}).$
- \blacktriangleright This property will be exploited to perform inference for simulator-based models.

- \triangleright For discrete random variables, sampling from the exact posterior is possible without having to evaluate the likelihood function.
- \blacktriangleright Two equivalent perspectives:
	- (1) via conditioning
	- (2) via rejection sampling

Conditioning perspective:

By definition, the posterior is obtained by conditioning $p(\theta, y)$ on the event $y = y^o$:

$$
p(\theta | \mathbf{y}^{\circ}) = \frac{p(\theta, \mathbf{y}^{\circ})}{p(\mathbf{y}^{\circ})} = \frac{p(\theta, \mathbf{y} = \mathbf{y}^{\circ})}{p(\mathbf{y} = \mathbf{y}^{\circ})}
$$
(3)

 \triangleright Can be used for sampling from the posterior without evaluating the likelihood function.

Conditioning perspective:

 \triangleright By definition, the posterior is obtained by conditioning $p(\theta, \mathbf{y})$ on the event $y = y^o$:

$$
p(\theta | \mathbf{y}^{\circ}) = \frac{p(\theta, \mathbf{y}^{\circ})}{p(\mathbf{y}^{\circ})} = \frac{p(\theta, \mathbf{y} = \mathbf{y}^{\circ})}{p(\mathbf{y} = \mathbf{y}^{\circ})}
$$
(3)

- \triangleright Can be used for sampling from the posterior without evaluating the likelihood function.
- ► Generate tuples $(\boldsymbol{\theta}_i, \mathbf{y}_i) \sim p(\boldsymbol{\theta}, \mathbf{y})$:
	- $\theta_i \sim p_\theta$ (iid from the prior) \triangleright y_i ~ $p(\mathsf{y}|\theta_i)$ (run the simulator with param θ_i)

Conditioning perspective:

 \triangleright By definition, the posterior is obtained by conditioning $p(\theta, \mathbf{y})$ on the event $y = y^o$:

$$
p(\theta | \mathbf{y}^{\circ}) = \frac{p(\theta, \mathbf{y}^{\circ})}{p(\mathbf{y}^{\circ})} = \frac{p(\theta, \mathbf{y} = \mathbf{y}^{\circ})}{p(\mathbf{y} = \mathbf{y}^{\circ})}
$$
(3)

 \triangleright Can be used for sampling from the posterior without evaluating the likelihood function.

• Generate tuples
$$
(\theta_i, \mathbf{y}_i) \sim p(\theta, \mathbf{y})
$$
:

- $\theta_i \sim p_\theta$ (iid from the prior) \triangleright y_i ~ $p(\mathbf{y}|\theta_i)$ (run the simulator with param θ_i)
- ► Condition on $y = y^o \Leftrightarrow$ retain the tuples where $y_i = y^o$

Conditioning perspective:

► By definition, the posterior is obtained by conditioning $p(\theta, \mathbf{y})$ on the event $y = y^o$:

$$
p(\theta | \mathbf{y}^{\circ}) = \frac{p(\theta, \mathbf{y}^{\circ})}{p(\mathbf{y}^{\circ})} = \frac{p(\theta, \mathbf{y} = \mathbf{y}^{\circ})}{p(\mathbf{y} = \mathbf{y}^{\circ})}
$$
(3)

 \triangleright Can be used for sampling from the posterior without evaluating the likelihood function.

• Generate tuples
$$
(\theta_i, \mathbf{y}_i) \sim p(\theta, \mathbf{y})
$$
:

- $\theta_i \sim p_\theta$ (iid from the prior) \triangleright y_i ~ $p(\mathbf{y}|\theta_i)$ (run the simulator with param θ_i)
- ► Condition on $y = y^o \Leftrightarrow$ retain the tuples where $y_i = y^o$
- \blacktriangleright The $\bm{\theta}_i$ of the retained tuples $(\bm{\theta}_i, \textbf{y}_i)$ are samples from the posterior $p(\theta | y^{\circ}).$

Rejection sampling perspective:

► If you retain (accept) the samples $\theta_i \sim p_\theta$ with probability

 $L(\theta_i)/\max L(\theta),$

Rejection sampling perspective:

► If you retain (accept) the samples $\theta_i \sim p_\theta$ with probability

 $L(\theta_i)/\max L(\theta),$

Rejection sampling perspective:

► If you retain (accept) the samples $\theta_i \sim p_\theta$ with probability

 $L(\theta_i)/\max L(\theta),$

- \blacktriangleright Key point: since $L(\theta_i) = \Pr(\mathbf{y} = \mathbf{y}^o | \theta_i)$ we can implement the accept/reject step by
	- ► drawing $y_i \sim p(y|\theta_i)$
	- checking whether $y_i = y^o$.

Rejection sampling perspective:

► If you retain (accept) the samples $\theta_i \sim p_\theta$ with probability

 $L(\theta_i)/\max L(\theta),$

- \blacktriangleright Key point: since $L(\theta_i) = \Pr(\mathbf{y} = \mathbf{y}^o | \theta_i)$ we can implement the accept/reject step by
	- ► drawing $y_i \sim p(y|\theta_i)$
	- checking whether $y_i = y^o$.
- \triangleright Allows us to sample from the posterior without evaluating the likelihood function.
- \triangleright Only applicable to discrete random variables.
- \triangleright And even for discrete random variables: Computationally not feasible in higher dimensions
- Reason: The probability of the event $y_{\theta} = y^{\circ}$ becomes smaller and smaller as the dimension of the data increases.
- \triangleright Only a small fraction of the simulated tuples will be accepted.
	- \triangleright The small number of accepted samples do not represent the posterior well.
	- \blacktriangleright Large Monte Carlo errors

Approximations to make inference feasible

- \triangleright Settle for approximate yet computationally feasible inference.
- Introduce two types of approximations:
	- 1. Instead of working with the whole data, work with lower dimensional summary statistics \mathbf{t}_{θ} and \mathbf{t}^o ,

$$
\mathbf{t}_{\theta} = \mathcal{T}(\mathbf{y}_{\theta}) \qquad \qquad \mathbf{t}^{\circ} = \mathcal{T}(\mathbf{y}^{\circ}). \tag{4}
$$

2. Instead of requiring $\mathbf{t}_{\theta} = \mathbf{t}^o$, require that $\Delta_{\theta} = d(\mathbf{t}^o, \mathbf{t}_{\theta})$ is less than ϵ . (d may or may not be a metric)

Approximation of the likelihood function

Likelihood function:

$$
L(\theta) = \lim_{\epsilon \to 0} L_{\epsilon}(\theta) \qquad \qquad L_{\epsilon}(\theta) = \frac{\Pr(\mathbf{y} \in B_{\epsilon}(\mathbf{y}^o) | \theta)}{\text{Vol}(B_{\epsilon}(\mathbf{y}^o))}
$$

The two approximations are equivalent to:

- 1. Replacing Pr $(\mathsf{y}\in B_\epsilon(\mathsf{y}^\mathsf{o})\mid \theta)$ with Pr $(\Delta_\theta\leq \epsilon\mid \theta)$
- 2. Not taking the limit $\epsilon \to 0$

Approximation of the likelihood function

Likelihood function:

$$
L(\theta) = \lim_{\epsilon \to 0} L_{\epsilon}(\theta) \qquad \qquad L_{\epsilon}(\theta) = \frac{\Pr(\mathbf{y} \in B_{\epsilon}(\mathbf{y}^o) | \theta)}{\text{Vol}(B_{\epsilon}(\mathbf{y}^o))}
$$

The two approximations are equivalent to:

- 1. Replacing Pr $(\mathsf{y}\in B_\epsilon(\mathsf{y}^\mathsf{o})\mid \theta)$ with Pr $(\Delta_\theta\leq \epsilon\mid \theta)$
- 2. Not taking the limit $\epsilon \to 0$

They define an approximate/surrogate likelihood function $\tilde{L}_{\epsilon}(\boldsymbol{\theta})$

$$
\widetilde{\mathcal{L}}_{\epsilon}(\boldsymbol{\theta}) \propto \Pr\left(\Delta_{\boldsymbol{\theta}} \leq \epsilon \vert \ \boldsymbol{\theta}\right)
$$

- \blacktriangleright The two approximations yield the rejection algorithm for approximate Bayesian computation (ABC).
- \triangleright Do N times:
	- 1. $\theta_i \sim p_\theta$ (iid from the prior) 2. $y_i \sim p(y|\theta_i)$ (run the simulator with param θ_i) 3. Compute the discrepancy $\Delta_i = d(T(y^o), T(y_i))$ Retain the θ_i with $\Delta_i \leq \epsilon$
- \blacktriangleright This is the basic ABC algorithm.
- ► Rejection ABC algorithm produces samples $\boldsymbol{\theta} \sim \tilde{p}_\epsilon(\boldsymbol{\theta}|\mathbf{y}^o),$ $\tilde{\rho}_\epsilon(\theta|{\mathsf y}^o) \propto \rho_\theta(\theta) \tilde{{\mathsf L}}_\epsilon(\theta)$
- \blacktriangleright Inference is approximate due to
	- \triangleright the summary statistics T and distance d
	- \blacktriangleright $\epsilon > 0$
	- \triangleright the finite number of samples (Monte Carlo error)

 \triangleright Broad classification into research on (1) statistical efficiency, (2) computational efficiency, (3) theoretical analysis of the algorithms

- \triangleright Broad classification into research on (1) statistical efficiency, (2) computational efficiency, (3) theoretical analysis of the algorithms
- \triangleright Choice of summary statistics, distance and threshold

- \triangleright Broad classification into research on (1) statistical efficiency, (2) computational efficiency, (3) theoretical analysis of the algorithms
- \triangleright Choice of summary statistics, distance and threshold
- \blacktriangleright Using the tuples $(\boldsymbol{\theta}_i, \mathbf{y}_i)$ to

- \triangleright Broad classification into research on (1) statistical efficiency, (2) computational efficiency, (3) theoretical analysis of the algorithms
- \triangleright Choice of summary statistics, distance and threshold
- \blacktriangleright Using the tuples $(\boldsymbol{\theta}_i, \mathbf{y}_i)$ to
	- \triangleright model the summary statistics, discrepancy, or data generative process conditional on θ (model for the likelihood function)

- \triangleright Broad classification into research on (1) statistical efficiency, (2) computational efficiency, (3) theoretical analysis of the algorithms
- \triangleright Choice of summary statistics, distance and threshold
- \blacktriangleright Using the tuples $(\boldsymbol{\theta}_i, \mathbf{y}_i)$ to
	- \triangleright model the summary statistics, discrepancy, or data generative process conditional on θ (model for the likelihood function)
	- **If** model θ |**y** (model for the posterior)

- \triangleright Broad classification into research on (1) statistical efficiency, (2) computational efficiency, (3) theoretical analysis of the algorithms
- \triangleright Choice of summary statistics, distance and threshold
- \blacktriangleright Using the tuples $(\boldsymbol{\theta}_i, \mathbf{y}_i)$ to
	- \triangleright model the summary statistics, discrepancy, or data generative process conditional on θ (model for the likelihood function)
	- **If** model θ |**y** (model for the posterior)
- \blacktriangleright Generation of tuples $(\boldsymbol{\theta}_i, \mathbf{y}_i)$ that are suitable for the above (e.g. not sampling θ_i from the prior but a proposal distribution)

- \triangleright Broad classification into research on (1) statistical efficiency, (2) computational efficiency, (3) theoretical analysis of the algorithms
- \triangleright Choice of summary statistics, distance and threshold
- \blacktriangleright Using the tuples $(\boldsymbol{\theta}_i, \mathbf{y}_i)$ to
	- \triangleright model the summary statistics, discrepancy, or data generative process conditional on θ (model for the likelihood function)
	- **If** model θ |**y** (model for the posterior)
- \blacktriangleright Generation of tuples $(\boldsymbol{\theta}_i, \mathbf{y}_i)$ that are suitable for the above (e.g. not sampling θ_i from the prior but a proposal distribution)
- \triangleright Theoretical analysis of the nature of the approximations

- \triangleright Broad classification into research on (1) statistical efficiency, (2) computational efficiency, (3) theoretical analysis of the algorithms
- \triangleright Choice of summary statistics, distance and threshold
- \blacktriangleright Using the tuples $(\boldsymbol{\theta}_i, \mathbf{y}_i)$ to
	- \triangleright model the summary statistics, discrepancy, or data generative process conditional on θ (model for the likelihood function)
	- **If** model θ |**y** (model for the posterior)
- \blacktriangleright Generation of tuples $(\boldsymbol{\theta}_i, \mathbf{y}_i)$ that are suitable for the above (e.g. not sampling θ_i from the prior but a proposal distribution)
- \triangleright Theoretical analysis of the nature of the approximations
- \triangleright Applications to solve inference problems!

References

Longer tutorial: <https://michaelgutmann.github.io/assets/slides/Gutmann-2016-05-16.pdf>

Review papers:

- \blacktriangleright Lintusaari et al. Fundamentals and Recent Developments in Approximate Bayesian Computation. Systematic Biology 2017.
- ▶ Sunnaker et al. Approximate Bayesian Computation. PLoS Computational Biology, 2013.
- \triangleright Marin et al. Approximate Bayesian computational methods. Statistics and Computing, 2012.
- \blacktriangleright Hartig et al. Statistical inference for stochastic simulation models theory and application.Ecology Letters, 2011.
- ▶ Beaumont. Approximate Bayesian Computation in Evolution and Ecology. Annual Review of Ecology, Evolution, and Systematics, 2010.