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General problem considered

» Given data y°, draw conclusions about properties of its source

» If available, possibly take prior information into account
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Model-based approach

» Set up a model with potential properties 6 (parameters)

> See which @ are reasonable given the observed data
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Likelihood function

» Measures agreement between 6 and the observed data y°

> Probability to generate data y like y© if property 6 holds
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Likelihood function

» For discrete random variables:
L(8) = Pr(y =y°|0)
» For continuous random variables:

1(6) = lim PTV € B(y°)I6)

—0  Vol(B(y°))
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Performing statistical inference

» If L(0) is known, the inference problem becomes an
optimisation or sampling problem

» Maximum likelihood estimation
6 = argmax, L(6)
» Bayesian inference

p(6]y°)  p(6) x L(6)
posterior o prior x likelihood

possibly follwed by sampling or optimisation
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Textbook case

» model = family of probability density/mass functions p(y|8)
» Likelihood function L(0) = p(y°|0)
» In simple cases, closed form expressions for the posterior
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Simulator-based models

» Not all models are specified as family of pdfs p(y|@).
» Here: simulator-based models:

models that are specified by a (stochastic) mechanism for
generating data
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Other names for simulator-based models

» Models specified via a data generating mechanism occur in
multiple and diverse scientific fields.

» Different communities use different names for simulator-based
models:

Generative models

Implicit models

Stochastic simulation models
Generative (latent-variable) models
Probabilistic programs

vV vy vV VvYy
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Examples

» Evolutionary biology:
Simulating evolution

» Neuroscience:
Simulating neural circuits

» Astrophysics:
Simulating the formation of
galaxies, stars, or planets

» Health science:
Simulating the spread of an
infectious disease

» Computer vision:
Simulating facial expressions

Simulated neural activity in rat somatosensory cortex

(Figure from https://bbp.epfl.ch/nmc-portal)
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Strengths of simulator-based models

» Direct implementation of hypotheses of how the observed
data were generated.

» Modelling by replicating the mechanisms of nature that
produced the observed/measured data. (“analysis by
synthesis”)

» Neat interface with scientific models (e.g. from physics or
biology).

» Possibility to emulate real-world experiments on the computer
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Weaknesses of simulator-based models

» Generally elude analytical treatment.

» May easily be made more complicated than necessary.
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Weaknesses of simulator-based models

» Generally elude analytical treatment.
» May easily be made more complicated than necessary.

» Statistical inference (parameter learning) is difficult

Main reason: Likelihood function is too expensive to evaluate
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Implicit definition of the likelihood function

» To compute the likelihood function, we needed to compute
the probability that the simulator generates data close to y®°,

Pr(y=y°0) or Pr(y€ B(y®)|0)

» Typically no analytical expression available.

» But we can empirically test whether simulated data equals y°

oris in B(y®).
» This property will be exploited to perform inference for
simulator-based models.
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Exact inference for discrete random variables

» For discrete random variables, sampling from the exact
posterior is possible without having to evaluate the likelihood

function.
» Two equivalent perspectives:
(1) via conditioning

(2) via rejection sampling
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Exact inference for discrete random variables

Conditioning perspective:

» By definition, the posterior is obtained by conditioning p(8,y)
on the event y = y°:

oy P(6,¥°)  p(0,y=y°)
PONI =700y = by =) G)

» Can be used for sampling from the posterior without
evaluating the likelihood function.
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evaluating the likelihood function.
» Generate tuples (0;,y;) ~ p(0,y):
» 0, ~ pg (iid from the prior)
>y ~ p(y|6;) (run the simulator with param 6;)

Michael Gutmann ABC Tutorial



Exact inference for discrete random variables

Conditioning perspective:

» By definition, the posterior is obtained by conditioning p(8,y)
on the event y = y°:

p(6,y°) _ p(6,y =y°)
p(Oly®) = ——== = — (3)
p(y°) p(y =y°)
» Can be used for sampling from the posterior without
evaluating the likelihood function.
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>y ~ p(y|6;) (run the simulator with param 6;)
» Condition on y = y° < retain the tuples where y; = y°
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Exact inference for discrete random variables

Conditioning perspective:

» By definition, the posterior is obtained by conditioning p(8,y)
on the event y = y°:

oy P(6,¥°)  p(0,y=y°)
PONI =700y = by =) G)

v

Can be used for sampling from the posterior without
evaluating the likelihood function.

» Generate tuples (0;,y;) ~ p(0,y):
» 0, ~ pg (iid from the prior)
>y ~ p(y|6;) (run the simulator with param 6;)

v

Condition on y = y° < retain the tuples where y; = y°

v

The 0; of the retained tuples (0;,y;) are samples from the
posterior p(6|y°).
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Exact inference for discrete random variables

Rejection sampling perspective:

» If you retain (accept) the samples 8; ~ pg with probability
L(8;)/ max L(8),

the retained samples follow a distribution proportional to
po(0)L(6).
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Exact inference for discrete random variables

Rejection sampling perspective:

» If you retain (accept) the samples 8; ~ pg with probability
L(8;)/ max L(8),

the retained samples follow a distribution proportional to
po(0)L(6).

» Key point: since L(6;) = Pr(y = y°|6;) we can implement the
accept/reject step by

> drawing y; ~ p(y|6;)
» checking whether y; = y°.
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Exact inference for discrete random variables

Rejection sampling perspective:

» If you retain (accept) the samples 8; ~ pg with probability
L(8;)/ max L(8),

the retained samples follow a distribution proportional to
po(0)L(6).
» Key point: since L(6;) = Pr(y = y°|6;) we can implement the
accept/reject step by
> drawing y; ~ p(y|6;)
» checking whether y; = y°.

> Allows us to sample from the posterior without evaluating the
likelihood function.
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Limitations

» Only applicable to discrete random variables.

» And even for discrete random variables:
Computationally not feasible in higher dimensions

» Reason: The probability of the event yg = y° becomes smaller
and smaller as the dimension of the data increases.

» Only a small fraction of the simulated tuples will be accepted.

» The small number of accepted samples do not represent the
posterior well.
» Large Monte Carlo errors
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Approximations to make inference feasible

» Settle for approximate yet computationally feasible inference.

» Introduce two types of approximations:

1. Instead of working with the whole data, work with lower
dimensional summary statistics tg and t°,

to = T(yo) t° = T(y°). (4)

2. Instead of requiring tg = t°, require that Ag = d(t°, tg) is less
than e. (d may or may not be a metric)
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Approximation of the likelihood function

Likelihood function:

(-t L) - T BO0

The two approximations are equivalent to:
1. Replacing Pr(y € B.(y°) | €) with Pr(Ag < ¢| )
2. Not taking the limit ¢ — 0
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Approximation of the likelihood function

Likelihood function:

(-t L) - T BO0

The two approximations are equivalent to:
1. Replacing Pr(y € B.(y°) | €) with Pr(Ag < ¢| )
2. Not taking the limit ¢ — 0

They define an approximate/surrogate likelihood function L(8)

[.(8) x Pr(Ag < €| 6)
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Rejection ABC algorithm

» The two approximations yield the rejection algorithm for
approximate Bayesian computation (ABC).

» Do N times:

1. 6; ~ pe (iid from the prior)
2. yi ~ p(y|0;) (run the simulator with param 6;)
3. Compute the discrepancy A; = d(T(y°), T(y;))

Retain the 6; with A; <€
» This is the basic ABC algorithm.
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Properties

» Rejection ABC algorithm produces samples 8 ~ p.(0]y°),

pe(8ly°) o po(6)Lc(6)

> Inference is approximate due to

» the summary statistics T and distance d
» e>0
» the finite number of samples (Monte Carlo error)
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Some current research themes in ABC

» Broad classification into research on
(1) statistical efficiency, (2) computational efficiency, (3)
theoretical analysis of the algorithms
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Choice of summary statistics, distance and threshold
Using the tuples (0;,y;) to
» model the summary statistics, discrepancy, or data generative
process conditional on @ (model for the likelihood function)
» model 6|y (model for the posterior)

v

v

Generation of tuples (6;,y;) that are suitable for the above
(e.g. not sampling @; from the prior but a proposal distribution)

v

Theoretical analysis of the nature of the approximations
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Some current research themes in ABC

» Broad classification into research on
(1) statistical efficiency, (2) computational efficiency, (3)
theoretical analysis of the algorithms
» Choice of summary statistics, distance and threshold
» Using the tuples (0;,y;) to
» model the summary statistics, discrepancy, or data generative

process conditional on @ (model for the likelihood function)
» model O]y (model for the posterior)

» Generation of tuples (6;,y;) that are suitable for the above
(e.g. not sampling @; from the prior but a proposal distribution)

» Theoretical analysis of the nature of the approximations

» Applications to solve inference problems!
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