Tutorial on Approximate Bayesian Computation

Michael Gutmann

http://homepages.inf.ed.ac.uk/mgutmann

School of Informatics, University of Edinburgh

24th June 2018

General problem considered

- ► Given data **y**^o, draw conclusions about properties of its source
- If available, possibly take prior information into account

Model-based approach

- Set up a model with potential properties θ (parameters)
- See which θ are reasonable given the observed data

Likelihood function

- Measures agreement between heta and the observed data \mathbf{y}^o
- > Probability to generate data \mathbf{y} like \mathbf{y}^o if property $\boldsymbol{\theta}$ holds

For discrete random variables:

$$L(\boldsymbol{\theta}) = \Pr(\mathbf{y} = \mathbf{y}^{o} | \boldsymbol{\theta})$$
(1)

For continuous random variables:

$$L(\boldsymbol{\theta}) = \lim_{\epsilon \to 0} \frac{\Pr(\mathbf{y} \in B_{\epsilon}(\mathbf{y}^{o}) | \boldsymbol{\theta})}{\operatorname{Vol}(B_{\epsilon}(\mathbf{y}^{o}))}$$
(2)

Performing statistical inference

- ► If L(θ) is known, the inference problem becomes an optimisation or sampling problem
- Maximum likelihood estimation

$$\hat{\boldsymbol{\theta}} = \operatorname{argmax}_{\boldsymbol{\theta}} \boldsymbol{L}(\boldsymbol{\theta})$$

Bayesian inference

 $p(\theta | \mathbf{y}^{o}) \propto p(\theta) \times L(\theta)$ posterior \propto prior \times likelihood

possibly follwed by sampling or optimisation

Textbook case

- model \equiv family of probability density/mass functions $p(\mathbf{y}|\boldsymbol{\theta})$
- Likelihood function $L(\theta) = p(\mathbf{y}^o | \theta)$
- In simple cases, closed form expressions for the posterior possible

- Not all models are specified as family of pdfs $p(\mathbf{y}|\boldsymbol{\theta})$.
- Here: simulator-based models: models that are specified by a (stochastic) mechanism for generating data

- Models specified via a data generating mechanism occur in multiple and diverse scientific fields.
- Different communities use different names for simulator-based models:
 - Generative models
 - Implicit models
 - Stochastic simulation models
 - Generative (latent-variable) models
 - Probabilistic programs

Examples

- Evolutionary biology: Simulating evolution
- Neuroscience: Simulating neural circuits
- Astrophysics: Simulating the formation of galaxies, stars, or planets
- Health science: Simulating the spread of an infectious disease
- Computer vision: Simulating facial expressions

Simulated neural activity in rat somatosensory cortex (Figure from https://bbp.epfl.ch/nmc-portal)

- Direct implementation of hypotheses of how the observed data were generated.
- Modelling by replicating the mechanisms of nature that produced the observed/measured data. ("analysis by synthesis")
- Neat interface with scientific models (e.g. from physics or biology).
- Possibility to emulate real-world experiments on the computer

Weaknesses of simulator-based models

- Generally elude analytical treatment.
- May easily be made more complicated than necessary.

- Generally elude analytical treatment.
- May easily be made more complicated than necessary.
- Statistical inference (parameter learning) is difficult

- Generally elude analytical treatment.
- May easily be made more complicated than necessary.
- Statistical inference (parameter learning) is difficult

Main reason: Likelihood function is too expensive to evaluate

Implicit definition of the likelihood function

To compute the likelihood function, we needed to compute the probability that the simulator generates data close to y^o,

$$\Pr\left(\mathbf{y} = \mathbf{y}^{o} | oldsymbol{ heta}
ight) \quad ext{or} \quad \Pr\left(\mathbf{y} \in B_{\epsilon}(\mathbf{y}^{o}) | oldsymbol{ heta}
ight)$$

- Typically no analytical expression available.
- ► But we can empirically test whether simulated data equals y^o or is in B_e(y^o).
- This property will be exploited to perform inference for simulator-based models.

- For discrete random variables, sampling from the exact posterior is possible without having to evaluate the likelihood function.
- Two equivalent perspectives:
 - (1) via conditioning
 - (2) via rejection sampling

Conditioning perspective:

By definition, the posterior is obtained by conditioning p(θ, y) on the event y = y^o:

$$p(\boldsymbol{\theta}|\mathbf{y}^{o}) = \frac{p(\boldsymbol{\theta}, \mathbf{y}^{o})}{p(\mathbf{y}^{o})} = \frac{p(\boldsymbol{\theta}, \mathbf{y} = \mathbf{y}^{o})}{p(\mathbf{y} = \mathbf{y}^{o})}$$
(3)

Can be used for sampling from the posterior without evaluating the likelihood function.

Conditioning perspective:

By definition, the posterior is obtained by conditioning p(θ, y) on the event y = y^o:

$$p(\boldsymbol{\theta}|\mathbf{y}^{o}) = \frac{p(\boldsymbol{\theta}, \mathbf{y}^{o})}{p(\mathbf{y}^{o})} = \frac{p(\boldsymbol{\theta}, \mathbf{y} = \mathbf{y}^{o})}{p(\mathbf{y} = \mathbf{y}^{o})}$$
(3)

- Can be used for sampling from the posterior without evaluating the likelihood function.
- Generate tuples $(\boldsymbol{\theta}_i, \mathbf{y}_i) \sim p(\boldsymbol{\theta}, \mathbf{y})$:
 - $\begin{array}{l} \bullet \ \theta_i \sim p_{\theta} & (\text{iid from the prior}) \\ \bullet \ \mathbf{y}_i \sim p(\mathbf{y}|\theta_i) & (\text{run the simulator with param } \theta_i) \end{array}$

Conditioning perspective:

By definition, the posterior is obtained by conditioning p(θ, y) on the event y = y^o:

$$p(\boldsymbol{\theta}|\mathbf{y}^{o}) = \frac{p(\boldsymbol{\theta}, \mathbf{y}^{o})}{p(\mathbf{y}^{o})} = \frac{p(\boldsymbol{\theta}, \mathbf{y} = \mathbf{y}^{o})}{p(\mathbf{y} = \mathbf{y}^{o})}$$
(3)

- Can be used for sampling from the posterior without evaluating the likelihood function.
- Generate tuples $(\boldsymbol{\theta}_i, \mathbf{y}_i) \sim p(\boldsymbol{\theta}, \mathbf{y})$:
- Condition on $\mathbf{y} = \mathbf{y}^o \Leftrightarrow$ retain the tuples where $\mathbf{y}_i = \mathbf{y}^o$

Conditioning perspective:

By definition, the posterior is obtained by conditioning p(θ, y) on the event y = y^o:

$$p(\boldsymbol{\theta}|\mathbf{y}^{o}) = \frac{p(\boldsymbol{\theta}, \mathbf{y}^{o})}{p(\mathbf{y}^{o})} = \frac{p(\boldsymbol{\theta}, \mathbf{y} = \mathbf{y}^{o})}{p(\mathbf{y} = \mathbf{y}^{o})}$$
(3)

 Can be used for sampling from the posterior without evaluating the likelihood function.

• Generate tuples
$$(\boldsymbol{\theta}_i, \mathbf{y}_i) \sim p(\boldsymbol{\theta}, \mathbf{y})$$
:

- Condition on $\mathbf{y} = \mathbf{y}^o \Leftrightarrow$ retain the tuples where $\mathbf{y}_i = \mathbf{y}^o$
- The θ_i of the retained tuples (θ_i, y_i) are samples from the posterior p(θ|y^o).

Rejection sampling perspective:

▶ If you retain (accept) the samples $\theta_i \sim p_{\theta}$ with probability

 $L(\boldsymbol{\theta}_i)/\max L(\boldsymbol{\theta}),$

Rejection sampling perspective:

▶ If you retain (accept) the samples $\theta_i \sim p_{\theta}$ with probability

 $L(\boldsymbol{\theta}_i)/\max L(\boldsymbol{\theta}),$

Rejection sampling perspective:

▶ If you retain (accept) the samples $\theta_i \sim p_{\theta}$ with probability

 $L(\boldsymbol{\theta}_i)/\max L(\boldsymbol{\theta}),$

- Key point: since L(θ_i) = Pr(y = y^o|θ_i) we can implement the accept/reject step by
 - drawing $\mathbf{y}_i \sim p(\mathbf{y}|\boldsymbol{\theta}_i)$
 - checking whether $\mathbf{y}_i = \mathbf{y}^o$.

Rejection sampling perspective:

▶ If you retain (accept) the samples $\theta_i \sim p_{\theta}$ with probability

 $L(\boldsymbol{\theta}_i)/\max L(\boldsymbol{\theta}),$

- Key point: since L(θ_i) = Pr(y = y^o|θ_i) we can implement the accept/reject step by
 - drawing $\mathbf{y}_i \sim p(\mathbf{y}|\boldsymbol{\theta}_i)$
 - checking whether $\mathbf{y}_i = \mathbf{y}^o$.
- Allows us to sample from the posterior without evaluating the likelihood function.

- Only applicable to discrete random variables.
- And even for discrete random variables: Computationally not feasible in higher dimensions
- Reason: The probability of the event y_θ = y^o becomes smaller and smaller as the dimension of the data increases.
- Only a small fraction of the simulated tuples will be accepted.
 - The small number of accepted samples do not represent the posterior well.
 - Large Monte Carlo errors

Approximations to make inference feasible

- Settle for approximate yet computationally feasible inference.
- Introduce two types of approximations:
 - 1. Instead of working with the whole data, work with lower dimensional summary statistics t_{θ} and t^{o} ,

$$\mathbf{t}_{\boldsymbol{\theta}} = T(\mathbf{y}_{\boldsymbol{\theta}}) \qquad \mathbf{t}^{o} = T(\mathbf{y}^{o}). \tag{4}$$

2. Instead of requiring $\mathbf{t}_{\theta} = \mathbf{t}^{o}$, require that $\Delta_{\theta} = d(\mathbf{t}^{o}, \mathbf{t}_{\theta})$ is less than ϵ . (*d* may or may not be a metric)

Approximation of the likelihood function

Likelihood function:

$$L(\boldsymbol{\theta}) = \lim_{\epsilon \to 0} L_{\epsilon}(\boldsymbol{\theta}) \qquad \quad L_{\epsilon}(\boldsymbol{\theta}) = \frac{\Pr(\mathbf{y} \in B_{\epsilon}(\mathbf{y}^{\circ}) | \boldsymbol{\theta})}{\operatorname{Vol}(B_{\epsilon}(\mathbf{y}^{\circ}))}$$

The two approximations are equivalent to:

- 1. Replacing $\Pr(\mathbf{y} \in B_{\epsilon}(\mathbf{y}^{o}) \mid \boldsymbol{\theta})$ with $\Pr(\Delta_{\boldsymbol{\theta}} \leq \epsilon \mid \boldsymbol{\theta})$
- 2. Not taking the limit $\epsilon \rightarrow 0$

Approximation of the likelihood function

Likelihood function:

$$L(\boldsymbol{\theta}) = \lim_{\epsilon \to 0} L_{\epsilon}(\boldsymbol{\theta}) \qquad \quad L_{\epsilon}(\boldsymbol{\theta}) = \frac{\Pr(\mathbf{y} \in B_{\epsilon}(\mathbf{y}^{\circ}) | \boldsymbol{\theta})}{\operatorname{Vol}(B_{\epsilon}(\mathbf{y}^{\circ}))}$$

The two approximations are equivalent to:

- 1. Replacing $\Pr(\mathbf{y} \in B_{\epsilon}(\mathbf{y}^{o}) \mid \boldsymbol{\theta})$ with $\Pr(\Delta_{\boldsymbol{\theta}} \leq \epsilon \mid \boldsymbol{\theta})$
- 2. Not taking the limit $\epsilon \rightarrow 0$

They define an approximate/surrogate likelihood function $\tilde{L}_{\epsilon}(\boldsymbol{\theta})$

$$ilde{\mathcal{L}}_{\epsilon}(oldsymbol{ heta}) \propto \mathsf{Pr}\left(\Delta_{oldsymbol{ heta}} \leq \epsilon ert oldsymbol{ heta}
ight)$$

- The two approximations yield the rejection algorithm for approximate Bayesian computation (ABC).
- Do N times:
 - 1. $\theta_i \sim p_{\theta}$ (iid from the prior) 2. $\mathbf{y}_i \sim p(\mathbf{y}|\theta_i)$ (run the simulator with param θ_i) 3. Compute the discrepancy $\Delta_i = d(T(\mathbf{y}^o), T(\mathbf{y}_i))$ Retain the θ_i with $\Delta_i \leq \epsilon$
- This is the basic ABC algorithm.

► Rejection ABC algorithm produces samples $m{ heta} \sim ilde{m{
ho}}_\epsilon(m{ heta}|m{y}^o)$,

$$ilde{p}_{\epsilon}(oldsymbol{ heta}|\mathbf{y}^{o}) \propto p_{oldsymbol{ heta}}(oldsymbol{ heta}) ilde{\mathcal{L}}_{\epsilon}(oldsymbol{ heta})$$

- Inference is approximate due to
 - the summary statistics T and distance d
 - ► $\epsilon > 0$
 - the finite number of samples (Monte Carlo error)

Broad classification into research on
 (1) statistical efficiency, (2) computational efficiency, (3) theoretical analysis of the algorithms

- Broad classification into research on
 (1) statistical efficiency, (2) computational efficiency, (3) theoretical analysis of the algorithms
- Choice of summary statistics, distance and threshold

- Broad classification into research on
 (1) statistical efficiency, (2) computational efficiency, (3) theoretical analysis of the algorithms
- Choice of summary statistics, distance and threshold
- Using the tuples $(\boldsymbol{\theta}_i, \mathbf{y}_i)$ to

- Broad classification into research on
 (1) statistical efficiency, (2) computational efficiency, (3) theoretical analysis of the algorithms
- Choice of summary statistics, distance and threshold
- Using the tuples $(\boldsymbol{\theta}_i, \mathbf{y}_i)$ to
 - model the summary statistics, discrepancy, or data generative process conditional on θ (model for the likelihood function)

- Broad classification into research on
 (1) statistical efficiency, (2) computational efficiency, (3) theoretical analysis of the algorithms
- Choice of summary statistics, distance and threshold
- Using the tuples $(\boldsymbol{\theta}_i, \mathbf{y}_i)$ to
 - model the summary statistics, discrepancy, or data generative process conditional on θ (model for the likelihood function)
 - model $\theta | \mathbf{y}$ (model for the posterior)

- Broad classification into research on
 (1) statistical efficiency, (2) computational efficiency, (3) theoretical analysis of the algorithms
- Choice of summary statistics, distance and threshold
- Using the tuples $(\boldsymbol{\theta}_i, \mathbf{y}_i)$ to
 - model the summary statistics, discrepancy, or data generative process conditional on θ (model for the likelihood function)
 - model $\theta | \mathbf{y}$ (model for the posterior)
- Generation of tuples (θ_i, y_i) that are suitable for the above (e.g. not sampling θ_i from the prior but a proposal distribution)

- Broad classification into research on
 (1) statistical efficiency, (2) computational efficiency, (3) theoretical analysis of the algorithms
- Choice of summary statistics, distance and threshold
- Using the tuples $(\boldsymbol{\theta}_i, \mathbf{y}_i)$ to
 - model the summary statistics, discrepancy, or data generative process conditional on θ (model for the likelihood function)
 - model $\theta | \mathbf{y}$ (model for the posterior)
- Generation of tuples (θ_i, y_i) that are suitable for the above (e.g. not sampling θ_i from the prior but a proposal distribution)
- Theoretical analysis of the nature of the approximations

- Broad classification into research on
 (1) statistical efficiency, (2) computational efficiency, (3) theoretical analysis of the algorithms
- Choice of summary statistics, distance and threshold
- Using the tuples $(\boldsymbol{\theta}_i, \mathbf{y}_i)$ to
 - model the summary statistics, discrepancy, or data generative process conditional on θ (model for the likelihood function)
 - model $\theta | \mathbf{y}$ (model for the posterior)
- Generation of tuples (θ_i, y_i) that are suitable for the above (e.g. not sampling θ_i from the prior but a proposal distribution)
- Theoretical analysis of the nature of the approximations
- Applications to solve inference problems!

References

Longer tutorial: https://michaelgutmann.github.io/assets/slides/Gutmann-2016-05-16.pdf

Review papers:

- Lintusaari et al. Fundamentals and Recent Developments in Approximate Bayesian Computation. Systematic Biology 2017.
- Sunnaker et al. Approximate Bayesian Computation. PLoS Computational Biology, 2013.
- Marin et al. Approximate Bayesian computational methods. Statistics and Computing, 2012.
- Hartig et al. Statistical inference for stochastic simulation models theory and application. *Ecology Letters*, 2011.
- Beaumont. Approximate Bayesian Computation in Evolution and Ecology. Annual Review of Ecology, Evolution, and Systematics, 2010.