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General problem considered

I Given data yo , draw conclusions about properties of its source

I If available, possibly take prior information into account
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Model-based approach

I Set up a model with potential properties θ (parameters)

I See which θ are reasonable given the observed data

Prior information
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Likelihood function

I Measures agreement between θ and the observed data yo

I Probability to generate data y like yo if property θ holds
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Likelihood function

I For discrete random variables:

L(θ) = Pr(y = yo |θ) (1)

I For continuous random variables:

L(θ) = lim
ε→0

Pr(y ∈ Bε(yo)|θ)

Vol(Bε(yo))
(2)
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Performing statistical inference

I If L(θ) is known, the inference problem becomes an
optimisation or sampling problem

I Maximum likelihood estimation

θ̂ = argmaxθ L(θ)

I Bayesian inference

p(θ|yo) ∝ p(θ)× L(θ)

posterior ∝ prior × likelihood

possibly follwed by sampling or optimisation
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Textbook case

I model ≡ family of probability density/mass functions p(y|θ)

I Likelihood function L(θ) = p(yo |θ)

I In simple cases, closed form expressions for the posterior
possible
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Simulator-based models

I Not all models are specified as family of pdfs p(y|θ).

I Here: simulator-based models:

models that are specified by a (stochastic) mechanism for
generating data
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Other names for simulator-based models

I Models specified via a data generating mechanism occur in
multiple and diverse scientific fields.

I Different communities use different names for simulator-based
models:

I Generative models
I Implicit models
I Stochastic simulation models
I Generative (latent-variable) models
I Probabilistic programs
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Examples

I Evolutionary biology:
Simulating evolution

I Neuroscience:
Simulating neural circuits

I Astrophysics:
Simulating the formation of
galaxies, stars, or planets

I Health science:
Simulating the spread of an
infectious disease

I Computer vision:
Simulating facial expressions

I . . .

Simulated neural activity in rat somatosensory cortex

(Figure from https://bbp.epfl.ch/nmc-portal)
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Strengths of simulator-based models

I Direct implementation of hypotheses of how the observed
data were generated.

I Modelling by replicating the mechanisms of nature that
produced the observed/measured data. (“analysis by
synthesis”)

I Neat interface with scientific models (e.g. from physics or
biology).

I Possibility to emulate real-world experiments on the computer
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Weaknesses of simulator-based models

I Generally elude analytical treatment.

I May easily be made more complicated than necessary.

I Statistical inference (parameter learning) is difficult

Main reason: Likelihood function is too expensive to evaluate
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Implicit definition of the likelihood function

I To compute the likelihood function, we needed to compute
the probability that the simulator generates data close to yo ,

Pr (y = yo |θ) or Pr (y ∈ Bε(y
o)|θ)

I Typically no analytical expression available.

I But we can empirically test whether simulated data equals yo

or is in Bε(yo).

I This property will be exploited to perform inference for
simulator-based models.
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Exact inference for discrete random variables

I For discrete random variables, sampling from the exact
posterior is possible without having to evaluate the likelihood
function.

I Two equivalent perspectives:

(1) via conditioning

(2) via rejection sampling
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Exact inference for discrete random variables

Conditioning perspective:

I By definition, the posterior is obtained by conditioning p(θ, y)
on the event y = yo :

p(θ|yo) =
p(θ, yo)

p(yo)
=

p(θ, y = yo)

p(y = yo)
(3)

I Can be used for sampling from the posterior without
evaluating the likelihood function.

I Generate tuples (θi , yi ) ∼ p(θ, y):
I θi ∼ pθ (iid from the prior)
I yi ∼ p(y|θi ) (run the simulator with param θi )

I Condition on y = yo ⇔ retain the tuples where yi = yo

I The θi of the retained tuples (θi , yi ) are samples from the
posterior p(θ|yo).
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Exact inference for discrete random variables

Rejection sampling perspective:

I If you retain (accept) the samples θi ∼ pθ with probability

L(θi )/max L(θ),

the retained samples follow a distribution proportional to
pθ(θ)L(θ).

I Key point: since L(θi ) = Pr(y = yo |θi ) we can implement the
accept/reject step by

I drawing yi ∼ p(y|θi )
I checking whether yi = yo .

I Allows us to sample from the posterior without evaluating the
likelihood function.
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Limitations

I Only applicable to discrete random variables.

I And even for discrete random variables:
Computationally not feasible in higher dimensions

I Reason: The probability of the event yθ = yo becomes smaller
and smaller as the dimension of the data increases.

I Only a small fraction of the simulated tuples will be accepted.
I The small number of accepted samples do not represent the

posterior well.
I Large Monte Carlo errors
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Approximations to make inference feasible

I Settle for approximate yet computationally feasible inference.

I Introduce two types of approximations:

1. Instead of working with the whole data, work with lower
dimensional summary statistics tθ and to ,

tθ = T (yθ) to = T (yo). (4)

2. Instead of requiring tθ = to , require that ∆θ = d(to , tθ) is less
than ε. (d may or may not be a metric)
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Approximation of the likelihood function

Likelihood function:

L(θ) = lim
ε→0

Lε(θ) Lε(θ) =
Pr(y ∈ Bε(yo)|θ)

Vol(Bε(yo))

The two approximations are equivalent to:

1. Replacing Pr (y ∈ Bε(yo) | θ) with Pr (∆θ ≤ ε| θ)

2. Not taking the limit ε→ 0

They define an approximate/surrogate likelihood function L̃ε(θ)

L̃ε(θ) ∝ Pr (∆θ ≤ ε| θ)
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Rejection ABC algorithm

I The two approximations yield the rejection algorithm for
approximate Bayesian computation (ABC).

I Do N times:

1. θi ∼ pθ (iid from the prior)
2. yi ∼ p(y|θi ) (run the simulator with param θi )
3. Compute the discrepancy ∆i = d(T (yo),T (yi ))

Retain the θi with ∆i ≤ ε
I This is the basic ABC algorithm.
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Properties

I Rejection ABC algorithm produces samples θ ∼ p̃ε(θ|yo),

p̃ε(θ|yo) ∝ pθ(θ)L̃ε(θ)

I Inference is approximate due to
I the summary statistics T and distance d
I ε > 0
I the finite number of samples (Monte Carlo error)
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Some current research themes in ABC

I Broad classification into research on
(1) statistical efficiency, (2) computational efficiency, (3)
theoretical analysis of the algorithms

I Choice of summary statistics, distance and threshold
I Using the tuples (θi , yi ) to

I model the summary statistics, discrepancy, or data generative
process conditional on θ (model for the likelihood function)

I model θ|y (model for the posterior)

I Generation of tuples (θi , yi ) that are suitable for the above
(e.g. not sampling θi from the prior but a proposal distribution)

I Theoretical analysis of the nature of the approximations

I Applications to solve inference problems!
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