
Bayesian Inference and Experimental Design for
Implicit Models

Michael Gutmann

http://homepages.inf.ed.ac.uk/mgutmann

Institute for Adaptive and Neural Computation
School of Informatics, University of Edinburgh

7 December 2018

http://homepages.inf.ed.ac.uk/mgutmann


Learning from data

I Goal: Use data xo to learn about properties of its source
I Enables predictions, decision making under uncertainty, . . .
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Two fundamental tasks

I Inference task : Given xo, what can we robustly say about the
properties of the source?

I Experimental design task : How to obtain a xo that is
maximally useful for learning about the properties?
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Example: stochastic SIR model

I Stochastic model describing the population of susceptibles
S(τ), infected I(τ) and recovered R(τ) as a function of time.

I Parameters θ: rate of infection β and the rate of recovery γ.
I Inference task : determine plausible values of β and γ given

some measurements of the population sizes.
I Exp design task : find the optimal times at which to perform

the measurements to most accurately estimate β and γ.
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(Figure by Steven Kleinegesse)
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Bayesian approach

I Learning ≡ Bayesian inference

Data xo
 

 

prior
p(θ)

Bayes'
theorem

posterior 
p(θ | xo , do)

Model p(x | θ, do) 
 

Likelihood function L(θ)
 Assume: experiment with

design do has been done
and obtained data is xo

I Exp design ≡ utility optimisation problem
e.g. maximise mutual information (MI) between x and θ

U(d) = Ex|d [KL (p(θ|d , x) || p(θ))]

Expected information gain for an experiment with design d
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Principled but very difficult

I Difficulty essentially due to high-dimensional integrals
I One reason for the integrals: unobserved variables z which

makes the likelihood function intractable

L(θ) ∝ p(xo |θ,d)

∝
∫

p(xo, z |θ,d)dz

I Makes both Bayesian inference and experimental design very
difficult
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Research interests

1. Methods development:
I efficient inference when the likelihood is intractable

(e.g. because of unobserved variables)
I efficient experimental design

2. Applications in biomedicine
(in collaboration with domain experts)

Main tools: likelihood-free inference and modern machine learning
techniques (Bayesian optimisation, neural networks, ratio
estimation)
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Example research: efficient inference

I We developed a fast inference method for models where the
likelihood is intractable but sampling is possible (implicit
models).

I Example: infer bacterial transmission dynamics in child care
centres.

I Roughly equal results using 1000 times fewer simulations.

4.5 days with 200 cores
↓

90 minutes with seven cores

Posterior means: solid lines,

credibility intervals: shaded areas or dashed lines.
(Gutmann and Corander, JMLR, 2016)
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Example research: exp design (Kleinegesse and Gutmann, arXiv:1810.09912)

I SIR model: find optimal measurement time by maximisation
of mutual information

I Technical difficulties: (1) approximation of the posterior and
the mutual information (2) maximisation

I For (1), we use likelihood-free inference by ratio estimation
(LFIRE, arXiv:1611.10242). For (2), we use Bayesian optimisation
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