Bayesian Inference and Experimental Design for Implicit Models

Michael Gutmann

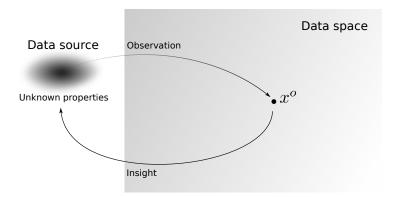
http://homepages.inf.ed.ac.uk/mgutmann

Institute for Adaptive and Neural Computation School of Informatics, University of Edinburgh

7 December 2018

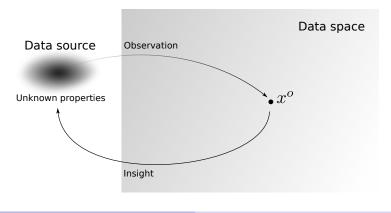
Learning from data

- Goal: Use data x^{o} to learn about properties of its source
- Enables predictions, decision making under uncertainty, ...



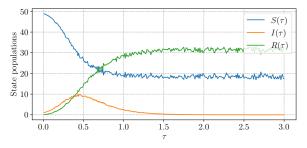
Two fundamental tasks

- Inference task : Given x^o, what can we robustly say about the properties of the source?
- Experimental design task : How to obtain a x^o that is maximally useful for learning about the properties?



Example: stochastic SIR model

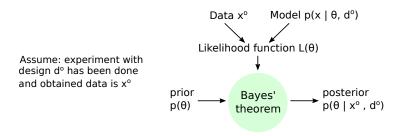
- Stochastic model describing the population of susceptibles $S(\tau)$, infected $I(\tau)$ and recovered $R(\tau)$ as a function of time.
- Parameters θ : rate of infection β and the rate of recovery γ .
- Inference task : determine plausible values of β and γ given some measurements of the population sizes.
- Exp design task : find the optimal times at which to perform the measurements to most accurately estimate β and γ.



(Figure by Steven Kleinegesse)

Bayesian approach

• Learning \equiv Bayesian inference



Exp design ≡ utility optimisation problem e.g. maximise mutual information (MI) between x and θ

$$U(\boldsymbol{d}) = \mathbb{E}_{\boldsymbol{x}|\boldsymbol{d}} \left[\mathsf{KL} \left(\rho(\boldsymbol{\theta}|\boldsymbol{d}, \boldsymbol{x}) \mid\mid \rho(\boldsymbol{\theta}) \right) \right]$$

Expected information gain for an experiment with design d

- Difficulty essentially due to high-dimensional integrals
- One reason for the integrals: unobserved variables z which makes the likelihood function intractable

$$egin{aligned} \mathcal{L}(oldsymbol{ heta}) &\propto \mathcal{p}(oldsymbol{x}^o \,|\, oldsymbol{ heta}, \mathbf{d}) \ &\propto \int \mathcal{p}(oldsymbol{x}^o, oldsymbol{z} \,|\, oldsymbol{ heta}, \mathbf{d}) \mathrm{d}oldsymbol{z} \end{aligned}$$

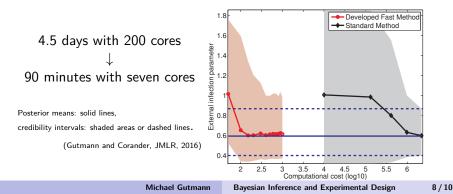
 Makes both Bayesian inference and experimental design very difficult

- 1. Methods development:
 - efficient inference when the likelihood is intractable (e.g. because of unobserved variables)
 - efficient experimental design
- 2. Applications in biomedicine (in collaboration with domain experts)

Main tools: likelihood-free inference and modern machine learning techniques (Bayesian optimisation, neural networks, ratio estimation)

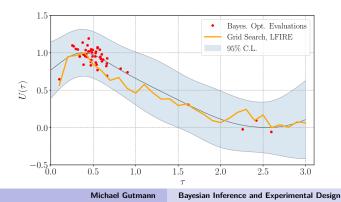
Example research: efficient inference

- We developed a fast inference method for models where the likelihood is intractable but sampling is possible (implicit models).
- Example: infer bacterial transmission dynamics in child care centres.
- ▶ Roughly equal results using 1000 times fewer simulations.



Example research: exp design (Kleinegesse and Gutmann, arXiv:1810.09912)

- SIR model: find optimal measurement time by maximisation of mutual information
- Technical difficulties: (1) approximation of the posterior and the mutual information (2) maximisation
- ► For (1), we use likelihood-free inference by ratio estimation (LFIRE, arXiv:1611.10242). For (2), we use Bayesian optimisation



1. Methods development:

- efficient inference when the likelihood is intractable (e.g. because of unobserved variables)
- efficient experimental design
- 2. Applications in biomedicine (in collaboration with domain experts)

Main tools: modern machine learning techniques (Bayesian optimisation, neural networks, ratio estimation)