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Overall goal

I Goal: Understand properties of a data source of interest
I Enables predictions, decision making under uncertainty, . . .
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Two fundamental tasks

I Inference task : Given xo, what can we robustly say about the
properties of the source?

I Experimental design task : How to obtain a xo that is
maximally useful for learning about the properties?
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Using models to learn from data

I Set up a model with properties that the unknown data source
might have.

I The potential properties are the parameters θ of the model.

Prior information
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Implicit models

(Diggle and Gratton, JRSS, 1982)

I Models specified by a data generating mechanism
I e.g. stochastic nonlinear dynamical systems
I e.g. computer models / simulators of some complex physical or

biological process
I Only assumption: sampling – simulating data – from the

model is possible
I No closed form expression for probability density functions

p(x|θ).
I Different communities use different names:

I Simulator-based models
I Stochastic simulation models
I Implicit models
I Generative (latent-variable) models
I Probabilistic programs
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Implicit models are widely used

I Evolutionary biology:
Simulating evolution

I Neuroscience:
Simulating neural circuits

I Health science:
Simulating the spread of an
infectious disease

I Computer vision:
Simulating naturalistic scenes

I Robotics:
Simulating the outcome of an
action

I . . .

Simulated neural activity in rat somatosensory cortex
(Figure from https://bbp.epfl.ch/nmc-portal)
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Strengths of implicit models

I Direct implementation of hypotheses of how the observed
data were generated.

I Neat interface with scientific models (e.g. from physics or
biology).

I Modelling by replicating the mechanisms of nature that
produced the observed/measured data. (“Analysis by
synthesis”)

I Possibility to perform experiments in silico.
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Weaknesses of implicit models

I Generally elude analytical treatment.
I Hard to assess identifiability.
I Principled inference and experimental design is difficult.

Main reason: Likelihood function is too expensive to evaluate
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This talk considers two tasks

1. Learning the parameters of implicit models
2. Performing experimental design for implicit models
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Bayesian approach to learning

I Learning ≡ probabilistic inference
I Assume data xo has been collected in an experiment with

setup (design) do.

Bayes'
theorem
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Bayesian approach to experimental design

I Experimental design ≡ utility optimisation problem
I Utility depends on the goal (parameter estimation, model

comparison, prediction)
I For parameter estimation:

maximise expected information gain (change of our belief)
when an experiment with design d is performed

U(d) = Ex|d [KL (p(θ|x,d) || p(θ))] (1)

I Same as maximising mutual information between x and θ

I Functional of the posterior (and hence the likelihood function)
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Principled but computationally hard for implicit models

I Difficulty essentially due to high-dimensional integrals
I One reason for the integrals: unobserved variables z which

makes the likelihood function intractable

L(θ) ∝ p(xo |θ,d) (2)

∝
∫

p(xo, z |θ,d)dz (3)

I Makes both Bayesian inference and experimental design
computationally very difficult
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The likelihood function L(θ)

I Probability that the model generates data like xo when using
parameter value θ

I Well defined but generally intractable for implicit models
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Three foundational issues in likelihood-free inference (LFI)

1. How should we assess whether xθ ≡ xo?
2. How should we compute the probability of the event xθ ≡ xo?
3. For which values of θ should we compute it?

 

  

 

Data space

 

ObservationData source

Unknown properties

Model

M(θ)
Data generation

Likelihood: Probability that the model generates data like xo for parameter value θ
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LFI via synthetic likelihood

(Simon Wood, Nature, 2010)

1. How should we assess whether xθ ≡ xo?
⇒ Compute summary statistics tθ = ψ(xθ)
⇒ Model their distribution as a Gaussian with mean µθ and

covariance Σθ.
2. How should we compute the proba of the event xθ ≡ xo?

⇒ Compute likelihood function with ψ(xo) as observed data
3. For which values of θ should we compute it?

⇒ Use obtained “synthetic” likelihood function as part of a
Monte Carlo method

Difficulties:
I Choice of ψ
I Gaussianity assumption may not hold
I Typically high computational cost
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LFI via approximate Bayesian computation

1. How should we assess whether xθ ≡ xo?
⇒ Check whether ||ψ(xθ)− ψ(xo)|| ≤ ε

2. How should we compute the proba of the event xθ ≡ xo?
⇒ By counting

3. For which values of θ should we compute it?
⇒ Sample from the prior (or other proposal distributions)

Difficulties:
I Choice of ψ() and ε
I Typically high computational cost

Recent review: Lintusaari et al (2017) “Fundamentals and recent developments in
approximate Bayesian computation”, Systematic Biology
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Overview of some of my work

1. How should we assess whether xθ ≡ xo?
⇒ Use classification (Gutmann et al, 2014, 2018)

2. How should we compute the proba of the event xθ ≡ xo?
3. For which values of θ should we compute it?

⇒ Use Bayesian optimisation (Gutmann and Corander, 2013, 2016)
⇒ Decision making under uncertainty (Järvenpää, 2018a, 2018b)

Compared to standard approaches: speed-up by a factor of
1000 or more

1. How should we assess whether xθ ≡ xo?
2. How should we compute the proba of the event xθ ≡ xo?

⇒ Use density ratio estimation (Thomas et al, 2016, Dinev and
Gutmann, 2018)

⇒ Combine strengths of two classical approaches: regression ABC
and sequential ABC (Chen and Gutmann, AISTATS, 2019)
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Basic idea

(Thomas et al, 2016, arXiv:1611.10242)

I Frame posterior estimation as ratio estimation problem

log p(θ|x) = log
[p(θ)p(x|θ)

p(x)

]
= log p(θ) + h(x,θ) (4)

h(x,θ) = log
[p(x|θ)

p(x)

]
(5)

I Estimating h(x,θ) is the difficult part since p(x|θ) unknown.
I Estimate ĥ(x,θ) yields estimate of the likelihood function and

posterior

L̂(θ) ∝ exp
[
ĥ(xo,θ)

]
p̂(θ|xo) = p(θ) exp

[
ĥ(xo,θ)

]
(6)

I We call this approach LFIRE: Likelihood-Free Inference by
Ratio Estimation
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Estimating density ratios

I For implicit models, we do not know

p(x|θ) p(x) =
∫

p(x|θ)p(θ)dθ (7)

but we can draw samples from them.
I There are several methods available to estimate the log-ratio

h(x,θ) from the samples

xθ
i ∼ p(x|θ) i = 1, . . . , nθ (8)

xm
i ∼ p(x) i = 1, . . . , nm (9)

(see e.g. textbook by Sugiyama et al, 2012)

I Bregman divergence provides general framework
(Gutmann and Hirayama, 2011; Sugiyama et al, 2011)

I Here: density ratio estimation by logistic regression details
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Estimating the posterior by LFIRE

p(θ) θ x0

θ1 θ2 . . . θnm

Model : p(x|θ)

xm
1 xm

2
. . . xm

nm xθ
1 xθ

2
. . . xθ

nθ

Xm Xθ

Logistic regression: ĥ = argminh J (h, θ) ĥ(x0, θ)

p̂(θ|x0) = p(θ) exp
(
ĥ(x0, θ)

)

log-ratio ĥ(x, θ)

(Thomas et al, 2016, arXiv:1611.10242)
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Solving other inference tasks by ratio estimation

I Ratio estimation was used to estimate unnormalised models
(Gutmann & Hyvärinen, 2010, 2012)

I Related to classification approach to judge whether xθ ≡ xo

(Gutmann et al, 2014, 2018)

I Can be used to train generative adversarial networks
(see e.g. review by Mohamed and Lakshminarayanan, 2017)

I It was used to estimate likelihood ratios
(Pham et al, 2014; Cranmer et al, 2015)
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Auxiliary model

I We need to specify a model for the log-ratio h.
I For simplicity: linear model

h(x) =
b∑

i=1
βiψi(x) = β>ψ(x) (10)

where ψi(x) are summary statistics (feature extractors)
I L1 penalty on β for weighing and selecting summary statistics
I Features can be learned: e.g. convolutional neural networks

for time series (Dinev and Gutmann, 2018, arXiv:1810.09899)
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Key properties

1. Already the linear model generalises the synthetic likelihood
approach.

2. Supports learning/selection of summary statistics
3. “Amortised inference”: Learned model of the ratio can be

re-used for different observed data sets xo
k without new

computations:

p̂(θ|xo
k) = p(θ) exp

[
ĥ(xo

k ,θ)
]

(11)
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Example: application to ARCH model

I Model:

x (t) = θ1x (t−1) + e(t) (12)

e(t) = ξ(t)
√
0.2 + θ2(e(t−1))2 (13)

ξ(t) and e(0) independent standard normal r.v., x (0) = 0
I 100 time points
I Parameters: θ1 ∈ (−1, 1), θ2 ∈ (0, 1)
I Uniform prior on θ1, θ2
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Example: application to ARCH model

I Summary statistics:
I auto-correlations with lag one to five
I all (unique) pairwise combinations of them
I a constant

I To check robustness: 50% irrelevant summary statistics
(drawn from standard normal)

I Comparison with synthetic likelihood with equivalent set of
summary statistics (relevant sum. stats. only)
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Example: generalisation of the synthetic likelihood

(Thomas et al, 2016, arXiv:1611.10242)
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Example: selection of summary statistics

(Thomas et al, 2016, arXiv:1611.10242)
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Example: “amortised inference”
p̂(θ|xo

k) = p(θ) exp
[
ĥ(xo

k , θ)
]
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Two fundamental tasks

I Inference task: Given xo, what can we robustly say about the
properties of the source?

I Experimental design task : How to obtain a xo that is
maximally useful for learning about the properties?
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Example: stochastic SIR model

I Stochastic epidemiological model describing the population of
susceptibles S(τ), infected I(τ) and recovered R(τ) as a
function of time.

I Parameters θ: rate of infection β and the rate of recovery γ.
I Exp design task : find the optimal times at which to perform

the measurements to most accurately estimate β and γ.
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(Figure by Steven Kleinegesse)
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Experimental design by mutual information maximisation

I Utility to maximise

U(d) = Ex|d [KL (p(θ|x,d) || p(θ))] (14)

d : for example a sequence of measurement times,
d = (τ1, . . . , τn).

I Pro: Does not make a Gaussianity or unimodality assumption
of the posterior

I Con: Two major difficulties:
1. Hard to compute
2. Hard to maximise (since typically no gradient or closed-form

expression available)
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Difficulty 1—approximate the mutual information

Two steps:
1. Approximate the expectation with a sample average

U(d) = Ex|d [KL (p(θ|x,d) || p(θ))] (15)

=
∫

p(x|d)
∫

p(θ|x,d) log p(θ|x,d)
p(θ) dθ dx (16)

=
∫

p(x,θ|d) log p(θ|x,d)
p(θ) dθdx (17)

≈ 1
N

N∑
i=1

log
[

p(θ(i)|x(i),d)
p(θ(i))

]
, (18)

where θ(i) ∼ p(θ) and x(i) ∼ p(x|d ,θ(i)).
2. Estimate p(θ|x,d) using LFIRE
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Difficulty 1—make use of LFIRE

I From LFIRE (for each fixed design d)

p̂(θ|x,d) = p(θ) exp
[
ĥd (x,θ)

]
(19)

I Hence:

log p(θ|x,d)
p(θ) ≈ ĥd (x,θ) (20)

and

Û(d) = 1
N

N∑
i=1

ĥd (x(i),θ(i)) (21)

θ(i) ∼ p(θ) x(i) ∼ p(x|d ,θ(i))
I Benefit of amortisation property of LFIRE: one run of LFIRE

required for each d .
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Difficulty 2—use BO to maximise the utility

I We can approximate the utility pointwise for each d

Û(d) = 1
N

N∑
i=1

ĥd (x(i),θ(i)) (22)

Deals with first difficulty.
I Second technical difficulty: How to maximise Û(d)?

I Computing Û(d) is relatively costly and no gradient
information is available.

I Û(d) is noisy due to approximation
I Use Bayesian optimisation (BO) to determine argmaxd Û(d)

I Builds a surrogate model of Û(d) smoothing out noise
introduced by the sample average approximation.

I Trade-off between exploration (improve the model) and
exploitation (find optimum according to the model)
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Example: stochastic SIR model

I S(τ): susceptibles; I(τ): infected: R(τ): recovered
I Parameters θ: rate of infection β and the rate of recovery γ.
I Exp design task : find the optimal times at which to perform

the measurements to most accurately estimate β and γ.
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Results: one measurement
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Grid Search, LFIRE

95% C.L.

I Optimal measurement time: τ∗ = 0.365
I Convergence after ∼ 10 evaluations

(Kleinegesse and Gutmann, AISTATS 2019)
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Results: one measurement
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I Prior: Uniform
distribution on [0, 0.5] for
both parameters

I One observation already
provides reasonable
information

I Estimation of recovery
rate γ better than
infection rate β for one
observation

(Kleinegesse and Gutmann, AISTATS 2019)
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Results: multiple measurements

I Design of multiple measurements:

d = [τ1, τ2, . . . , τ8]> with τ1 < · · · < τ8
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I Convergence after ∼ 15 evaluations for 8 dimensions
(Kleinegesse and Gutmann, AISTATS 2019)
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Conclusions

I Three topics:
1. Implicit models
2. Inference for implicit models—likelihood-free inference (LFI)
3. Experimental design for implicit models by mutual information

maximisation
I Likelihood-free inference by ratio estimation (LFIRE)

I LFIRE to estimate both posteriors and the mutual information

I Bayesian optimisation to maximise the mutual information
I “Methods talk” with simple examples but:

I We have applied the LFI methods in multiple domains in
collaboration with domain experts (e.g. genetics, epidemiology
of infectious diseases, robotics)

I First steps towards more challenging experimental design
applications.
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Density ratio estimation by logistic regression

I Samples from two data sets

x(1)
i ∼ p(1), i = 1, . . . , n(1) (23)

x(2)
i ∼ p(2), i = 1, . . . , n(2) (24)

I Probability that a test data point x was sampled from p(1)

P(x ∼ p(1)|x, h) = 1
1 + ν exp(−h(x)) , ν = n(2)

n(1) (25)
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Density ratio estimation by logistic regression

I Estimate h by minimising

J (h) = 1
n


n(1)∑
i=1

log
[
1 + ν exp

(
−h(1)

i

)]
+

n(2)∑
i=1

log
[
1 + 1

ν
exp

(
h(2)

i

)]
h(1)

i = h
(

x(1)
i

)
h(2)

i = h
(

x(2)
i

)
n = n(1) + n(2)

I Objective is the re-scaled negated log-likelihood.
I For large n(1) and n(2)

ĥ = argminh J (h) = log p(1)

p(2)

without any constraints on h
back
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