Variational noise-contrastive estimation of unnormalised latent variable models

Michael Gutmann

<michael.gutmann@ed.ac.uk>

Institute for Adaptive and Neural Computation School of Informatics, University of Edinburgh

11th June 2019

B. Rhodes and M.U. Gutmann Variational Noise-Contrastive Estimation In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) 2019 <http://proceedings.mlr.press/v89/rhodes19a>

- Given observed data $\{x_1, \ldots, x_n\}$ estimate parameters θ of a statistical model $p(\mathbf{x}; \theta)$.
- \triangleright We assume that $p(x; \theta)$ is not directly available but specified in terms of an unnormalised latent variable model.
- \triangleright Classical example: restricted Boltzmann machine
- \blacktriangleright Importance: such models are highly flexible and widely applicable

Latent variable models

- In Latent variables $=$ variables z in the model for which we do not have observed data
- In Latent variable model: we model the joint behaviour of (x, z) and specify $p(x, z; \theta)$, rather than $p(x; \theta)$.
- \triangleright Obtain model for the observables x by marginalising out z

$$
p(\mathbf{x}; \boldsymbol{\theta}) = \int p(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta}) \, d\mathbf{z}
$$
 (1)

but integral often too expensive to compute/approximate

Latent variable models are important

- \triangleright Modelling tool: explain structure (dependencies) in observed data in terms of unobserved explanatory factors
	- \triangleright PCA, ICA, factor analysis, HMMs, topic models, variational autoencoders, ...
- \blacktriangleright Probabilistic treatment of missing data
	- \triangleright model missing values **X** as unobserved (latent) random variables

$$
\text{data matrix} = \begin{pmatrix} \checkmark & \checkmark & \checkmark & \dots & \checkmark \\ \checkmark & \checkmark & \checkmark & \dots & \checkmark \\ \checkmark & \checkmark & \checkmark & \dots & \checkmark \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \checkmark & \checkmark & \checkmark & \dots & \checkmark \end{pmatrix}
$$

Unnormalised models

 \blacktriangleright Model $p(\mathbf{x}; \theta)$ must satisfy for all parameter values θ

$$
\int p(\mathbf{x};\theta) \, \mathrm{d}\mathbf{x} = 1 \tag{2}
$$

- ► Unnormalised models $\phi(\mathbf{x}; \theta) \propto p(\mathbf{x}; \theta)$ do not impose this constraint.
- \triangleright Obtain $p(\mathbf{x}; \theta)$ by dividing by the partition function $Z(\theta)$.

$$
p(\mathbf{x}; \boldsymbol{\theta}) = \frac{\phi(\mathbf{x}; \boldsymbol{\theta})}{\int \phi(\mathbf{x}; \boldsymbol{\theta}) \, \mathrm{d}\mathbf{x}} \tag{3}
$$

but integral often too expensive to compute/approximate

Unnormalised models are important

- \triangleright Removing normalisation constraint gives more flexibility in model specification ("energy-based modelling")
- \blacktriangleright Widely used:

 \blacktriangleright ...

- \blacktriangleright Large class of undirected graphical models (e.g. Markov networks) are typically unnormalised.
- \triangleright Unsupervised representation learning (including word and graph embeddings)
- \blacktriangleright Machine translation (e.g. Zoph et al, 2016¹)
- \blacktriangleright Product recommendation: (e.g. Tschiatschek et al, 2016²)

 1 Simple, fast noise-contrastive estimation for large RNN vocabularies

 2 Learning probabilistic submodular diversity models via noise contrastive estimation

Unnormalised latent variable models

► Unnormalised latent variable models $\phi(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta})$ are latent variable models that are unnormalised

$$
\int \phi(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta}) \, d\mathbf{z} \, d\mathbf{x} = Z(\boldsymbol{\theta}) \neq 1 \tag{4}
$$

- \blacktriangleright They are important:
	- \triangleright estimation of unnormalised models from data with missing values
	- \triangleright increased modelling flexibility (e.g. latent variable models do not need to satisfy normalisation constraint)

Can we use maximum likelihood estimation? sometimes

Since model pdf $p(x; \theta)$ is defined via integrals, (log) likelihood evaluations are expensive/intractable

$$
p(\mathbf{x};\boldsymbol{\theta}) = \frac{\int \phi(\mathbf{x}, \mathbf{z};\boldsymbol{\theta}) d\mathbf{z}}{\int \phi(\mathbf{x}, \mathbf{z};\boldsymbol{\theta}) d\mathbf{z} d\mathbf{x}} \quad \ell(\boldsymbol{\theta}) = \sum_{i=1}^{n} \log p(\mathbf{x}_i;\boldsymbol{\theta}) \quad (5)
$$

► Gradient $\nabla_{\theta} \ell(\theta)$ can be expressed as

$$
\nabla_{\theta} \ell(\theta) = \sum_{i=1}^{n} \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z}|\mathbf{x}_i;\theta)} [\nabla_{\theta} \log \phi(\mathbf{x}_i, \mathbf{z}; \theta)] -
$$

$$
\mathbb{E}_{\mathbf{x}, \mathbf{z} \sim p(\mathbf{x}, \mathbf{z}; \theta)} [\nabla_{\theta} \log \phi(\mathbf{x}, \mathbf{z}; \theta)] \tag{6}
$$

 \triangleright Enables gradient ascent on the log-likelihood IF computing the expectations (e.g. via sampling) is reasonably efficient.

Alternative: variational noise-contrastive estimation

(Rhodes and Gutmann, AISTATS, 2019)

- \triangleright New method for learning parameters of unnormalised latent variable models.
- \triangleright Variational theory for noise-contrastive estimation (NCE), which is an estimation framework for unnormalised models.

Noise-contrastive estimation (for unnormalised models)

(Gutmann and Hyvärinen, 2010, 2012)

- \triangleright Formulates the estimation problem as a classification problem: observed data vs. auxiliary "noise" (reference data with known properties)
- \triangleright Successful classification \equiv learn the differences between the data and the noise
- \triangleright differences + known noise properties \Rightarrow properties of the data

- \blacktriangleright Unsupervised learning by supervised learning
- \triangleright We used (nonlinear) logistic regression for classification

(Gutmann and Hyvärinen, 2010, 2012)

\triangleright NCE procedure:

- 1. Choose auxiliary noise distribution $p_{\mathbf{v}}$
- 2. Generate auxiliary data $\{y_1, \ldots, y_m\}$, $y_i \sim p_v$
- 3. Estimate θ by maximising

$$
J_{\text{NCE}}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \log \frac{\phi(\mathbf{x}_i; \theta)}{\phi(\mathbf{x}_i; \theta) + \nu p_{\mathbf{y}}(\mathbf{x}_i)} + \nu \frac{1}{m} \sum_{i=1}^{m} \log \frac{\nu p_{\mathbf{y}}(\mathbf{y}_i)}{\phi(\mathbf{y}_i; \theta) + \nu p_{\mathbf{y}}(\mathbf{y}_i)}
$$
(7)

where $\nu = m/n$

 \triangleright Nonlinear logistic regression (classification) to learn the differences between the observed data $\{x_1, \ldots, x_n\}$ and the auxiliary data $\{v_1, \ldots, v_m\}$.

Noise-contrastive estimation (for unnormalised models)

- lacktriangleright Choice of p_v :
	- \triangleright simple distributions (e.g. uniform, Gaussian) work surprisingly well
	- \triangleright can be adaptively chosen to make classification harder or we can take the model learned in the previous iteration (Gutmann and Hyvärinen, 2010), \rightsquigarrow GANs
	- \triangleright can be chosen dependent on the observed data (Ciwan and Gutmann, ICML, 2018)
	- \blacktriangleright ...
- \triangleright NCE has provable convergence guarantees, including MLE as limit for $\nu \to \infty$

(Gutmann and Hyvärinen, 2012; Riou-Durand and Chopin, 2018)

NCE for latent variables?

$$
J_{\text{NCE}}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \log \frac{\phi(\mathbf{x}_i; \theta)}{\phi(\mathbf{x}_i; \theta) + \nu p_y(\mathbf{x}_i)} + \nu \frac{1}{m} \sum_{i=1}^{m} \log \frac{\nu p_y(\mathbf{y}_i)}{\phi(\mathbf{y}_i; \theta) + \nu p_y(\mathbf{y}_i)}
$$

 \triangleright NCE cannot be used for latent variables models $\phi(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta})$. Issue:

$$
\phi(\mathbf{u}; \boldsymbol{\theta}) = \int \phi(\mathbf{u}, \mathbf{z}; \boldsymbol{\theta}) \, d\mathbf{z}
$$
 (8)

generally intractable

• Approach: derive a variational lower bound $J_{\text{VNEE}}(\theta, q)$ on $J_{\text{NCE}}(\theta)$ such that

$$
J_{\text{NCE}}(\boldsymbol{\theta}) = \max_{\boldsymbol{q}} J_{\text{VNCE}}(\boldsymbol{\theta}, \boldsymbol{q}), \qquad (9)
$$

where J_{VNCE} is computable and defined in terms of $\phi(\mathbf{x}, \mathbf{z}; \theta)$. \blacktriangleright q(z|x) is a variational distribution

Variational noise-contrastive estimation (VNCE)

(Rhodes and Gutmann, 2019)

- \triangleright (Skipping lots of details) Derivation of the bound based on Jensen's inequality, analogue to but not the same as standard variational inference with the log likelihood.
- \blacktriangleright The variational lower bound is

$$
J_{\text{VNCE}}(\theta, q) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{z \sim q(z|x_i)} \log \left(\frac{\phi(\mathbf{x}_i, z; \theta)}{\phi(\mathbf{x}_i, z; \theta) + \nu q(z | \mathbf{x}_i) p_{\mathbf{y}}(\mathbf{x}_i)} \right) + \nu \frac{1}{m} \sum_{i=1}^{m} \log \left(\frac{\nu p_{\mathbf{y}}(\mathbf{y}_i)}{\nu p_{\mathbf{y}}(\mathbf{y}_i) + \mathbb{E}_{z \sim q(z | \mathbf{y}_i)} \left[\frac{\phi(\mathbf{y}_i, z; \theta)}{q(z | \mathbf{y}_i)} \right]} \right).
$$
(10)

where $y_i \sim p_v$ as in NCE.

Variational noise-contrastive estimation (VNCE)

(Rhodes and Gutmann, 2019)

- \blacktriangleright Key properties of VNCE:
	- 1. Parameter estimation for unnormalised latent variable models

$$
\max_{\boldsymbol{\theta}} J_{\text{NCE}}(\boldsymbol{\theta}) = \max_{\boldsymbol{\theta}, q} J_{\text{VNCE}}(\boldsymbol{\theta}, q)
$$
(11)

2. Posterior estimation: optimal q is the true posterior

$$
p(\mathbf{z} \mid \mathbf{x}; \boldsymbol{\theta}) = \argmax_{q} J_{\text{VNCE}}(\boldsymbol{\theta}, q)
$$
 (12)

- \triangleright Results parallel to those for standard variational inference (VI) for normalised models (see paper for details)
- \triangleright Significance: Allows us to apply the tricks and tools from standard VI to the unnormalised setting (e.g. EM algorithm, VAEs, etc)

Application: Structure learning with missing data

- \triangleright Lin et al. (2016) learn undirected graphs for gene expressions in RNAseq data.
- \triangleright Unnormalised model (truncated normal):

$$
\phi(\mathbf{x}; \mathbf{K}, c) = \exp\left(-\frac{1}{2}\mathbf{x}^{\top}\mathbf{K}\mathbf{x} - c\right) \mathbb{I}(\mathbf{x} \in A), \quad A \subset \mathbb{R}^d \quad (13)
$$

$$
x_i \perp x_j \mid \text{other variables} \iff K_{ij} = 0 \quad (14)
$$

Cannot compute partition function.

- \triangleright Previous work used non-negative Score Matching (Hyvärinen, 2007) to estimate the model. Not applicable to data with missing values.
- \triangleright Data points with missing values were omitted.
- \triangleright With VNCE, we can treat the missing values as latent variables.

Application: Structure learning with missing data

- Results on synthetic data (20 dimensions, $n = 1000$ samples) with different fractions of missing data
- \triangleright Graph: ring structure with 10% densely connected nodes (hubs)
- \triangleright Criterion: accuracy of the learned graph in terms of AUC.
- E Learned matrix $\hat{\mathsf{K}}$ yields a graph:
	- \blacktriangleright If \hat{K}_{ij} below a threshold, then we predict no edge between x_i & xj .
	- \triangleright Comparing to ground-truth graph, we obtain a true & false positive rate.
	- \triangleright Varying the threshold yields curve; area under the curve (AUC) is the criterion (1: best, 0: worst)
- \blacktriangleright Comparison:
	- \triangleright mean imputation plus NCE
	- ► generally infeasible MLE-based gold standard $\nabla_{\theta} \ell(\theta)$ can here be approximated using sampling.

Results

- \triangleright VNCE is significantly better than NCE + fixed imputation $(\nu = 10)$
- \triangleright Close to a (generally infeasible) MLE-based gold standard.

- \triangleright Unnormalised latent variable models: what they are and why they are important
- \triangleright Estimation is difficult because of two intractable integrals
	- \blacktriangleright due to the partition function
	- \blacktriangleright due to marginalisation of latent variables.
- \blacktriangleright Reviewed noise-contrastive estimation for unnormalised models (previous work)
	- \triangleright density estimation by classifying between data and noise.
- \blacktriangleright Theory of variational noise-contrastive estimation
	- \triangleright a theory that parallels standard (likelihood-based) variational inference but for unnormalised latent variable models
- \triangleright Application to structure learning from missing data