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Overall goal: density estimation

I Given observed data {x1, . . . , xn} estimate parameters θ of a
statistical model p(x;θ).

I We assume that p(x;θ) is not directly available but specified
in terms of an unnormalised latent variable model.

I Classical example: restricted Boltzmann machine

I Importance: such models are highly flexible and widely
applicable
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Latent variable models

I Latent variables = variables z in the model for which we do
not have observed data

I Latent variable model: we model the joint behaviour of (x, z)
and specify p(x, z;θ), rather than p(x;θ).

I Obtain model for the observables x by marginalising out z

p(x;θ) =

∫
p(x, z;θ) dz (1)

but integral often too expensive to compute/approximate
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Latent variable models are important

I Modelling tool: explain structure (dependencies) in observed
data in terms of unobserved explanatory factors

I PCA, ICA, factor analysis, HMMs, topic models, variational
autoencoders, ...

I Probabilistic treatment of missing data
I model missing values 7 as unobserved (latent) random

variables

data matrix =


3 3 7 . . . 7

7 3 7 . . . 3

3 7 3 . . . 3
...

...
...

. . .
...

7 7 3 . . . 3
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Unnormalised models

I Model p(x;θ) must satisfy for all parameter values θ∫
p(x;θ) dx = 1 (2)

I Unnormalised models φ(x;θ) ∝ p(x;θ) do not impose this
constraint.

I Obtain p(x;θ) by dividing by the partition function Z (θ).

p(x;θ) =
φ(x;θ)∫
φ(x;θ) dx

(3)

but integral often too expensive to compute/approximate
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Unnormalised models are important

I Removing normalisation constraint gives more flexibility in
model specification (“energy-based modelling”)

I Widely used:
I Large class of undirected graphical models (e.g. Markov

networks) are typically unnormalised.
I Unsupervised representation learning (including word and

graph embeddings)
I Machine translation (e.g. Zoph et al, 20161)

I Product recommendation: (e.g. Tschiatschek et al, 20162)

I . . .

1Simple, fast noise-contrastive estimation for large RNN vocabularies
2Learning probabilistic submodular diversity models via noise contrastive estimation
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Unnormalised latent variable models

I Unnormalised latent variable models φ(x, z;θ) are latent
variable models that are unnormalised∫

φ(x, z;θ)dzdx = Z (θ) 6= 1 (4)

I They are important:
I estimation of unnormalised models from data with missing

values
I increased modelling flexibility (e.g. latent variable models do

not need to satisfy normalisation constraint)
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Can we use maximum likelihood estimation? sometimes

I Since model pdf p(x;θ) is defined via integrals, (log)
likelihood evaluations are expensive/intractable

p(x;θ) =

∫
φ(x, z;θ) dz∫
φ(x, z;θ)dzdx

`(θ) =
n∑

i=1

log p(xi ;θ) (5)

I Gradient ∇θ`(θ) can be expressed as

∇θ`(θ) =
n∑

i=1

Ez∼p(z|xi ;θ) [∇θ log φ(xi , z;θ)]−

Ex,z∼p(x,z;θ) [∇θ log φ(x, z;θ)] (6)

I Enables gradient ascent on the log-likelihood IF computing
the expectations (e.g. via sampling) is reasonably efficient.

Michael Gutmann VNCE 9 / 20



Alternative: variational noise-contrastive estimation

(Rhodes and Gutmann, AISTATS, 2019)

I New method for learning parameters of unnormalised latent
variable models.

I Variational theory for noise-contrastive estimation (NCE),
which is an estimation framework for unnormalised models.
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Noise-contrastive estimation (for unnormalised models)

(Gutmann and Hyvärinen, 2010, 2012)

I Formulates the estimation problem as a classification problem:
observed data vs. auxiliary “noise” (reference data with known

properties)

I Successful classification ≡ learn the differences between the
data and the noise

I differences + known noise properties ⇒ properties of the data

I Unsupervised learning by
supervised learning

I We used (nonlinear) logistic
regression for classification

Data Noise

Data or noise ?
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Noise-contrastive estimation (for unnormalised models)

(Gutmann and Hyvärinen, 2010, 2012)

I NCE procedure:

1. Choose auxiliary noise distribution py
2. Generate auxiliary data {y1, . . . , ym}, yi ∼ py
3. Estimate θ by maximising

JNCE(θ) =
1

n

n∑
i=1

log
φ(xi ;θ)

φ(xi ;θ) + νpy(xi )

+ ν
1

m

m∑
i=1

log
νpy(yi )

φ(yi ;θ) + νpy(yi )
(7)

where ν = m/n

I Nonlinear logistic regression (classification) to learn the
differences between the observed data {x1, . . . , xn} and the
auxiliary data {y1, . . . , ym}.
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Noise-contrastive estimation (for unnormalised models)

I Choice of py:
I simple distributions (e.g. uniform, Gaussian) work surprisingly

well
I can be adaptively chosen to make classification harder or we

can take the model learned in the previous iteration (Gutmann

and Hyvärinen, 2010),  GANs
I can be chosen dependent on the observed data

(Ciwan and Gutmann, ICML, 2018)

I . . .

I NCE has provable convergence guarantees, including MLE as
limit for ν →∞
(Gutmann and Hyvärinen, 2012; Riou-Durand and Chopin, 2018)
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NCE for latent variables?

JNCE(θ) = 1
n

∑n
i=1 log φ(xi ;θ)

φ(xi ;θ)+νpy(xi )
+ ν 1

m

∑m
i=1 log

νpy(yi )
φ(yi ;θ)+νpy(yi )

I NCE cannot be used for latent variables models φ(x, z;θ).
Issue:

φ(u;θ) =

∫
φ(u, z;θ) dz (8)

generally intractable

I Approach: derive a variational lower bound JVNCE(θ, q) on
JNCE(θ) such that

JNCE(θ) = max
q

JVNCE(θ, q), (9)

where JVNCE is computable and defined in terms of φ(x, z;θ).

I q(z|x) is a variational distribution
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Variational noise-contrastive estimation (VNCE)

(Rhodes and Gutmann, 2019)

I (Skipping lots of details) Derivation of the bound based on
Jensen’s inequality, analogue to but not the same as standard
variational inference with the log likelihood.

I The variational lower bound is

JVNCE(θ, q) =
1

n

n∑
i=1

Ez∼q(z|xi ) log

(
φ(xi , z;θ)

φ(xi , z;θ) + νq(z | xi )py(xi )

)

+ ν
1

m

m∑
i=1

log

(
νpy(yi )

νpy(yi ) + Ez∼q(z|yi )

[
φ(yi ,z;θ)
q(z|yi )

]).
(10)

where yi ∼ py as in NCE.

Michael Gutmann VNCE 15 / 20



Variational noise-contrastive estimation (VNCE)

(Rhodes and Gutmann, 2019)

I Key properties of VNCE:

1. Parameter estimation for unnormalised latent variable models

max
θ

JNCE(θ) = max
θ,q

JVNCE(θ, q) (11)

2. Posterior estimation: optimal q is the true posterior

p(z | x;θ) = arg max
q

JVNCE(θ, q) (12)

I Results parallel to those for standard variational inference (VI)
for normalised models (see paper for details)

I Significance: Allows us to apply the tricks and tools from
standard VI to the unnormalised setting (e.g. EM algorithm,
VAEs, etc)
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Application: Structure learning with missing data

I Lin et al. (2016) learn undirected graphs for gene expressions
in RNAseq data.

I Unnormalised model (truncated normal):

φ(x;K, c) = exp

(
−1

2
x>Kx− c

)
I(x ∈ A), A ⊂ Rd (13)

xi ⊥⊥ xj | other variables ⇐⇒ Kij = 0 (14)

Cannot compute partition function.

I Previous work used non-negative Score Matching (Hyvärinen,
2007) to estimate the model. Not applicable to data with
missing values.

I Data points with missing values were omitted.

I With VNCE, we can treat the missing values as latent
variables.
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Application: Structure learning with missing data

I Results on synthetic data (20 dimensions, n = 1000 samples)
with different fractions of missing data

I Graph: ring structure with 10% densely connected nodes
(hubs)

I Criterion: accuracy of the learned graph in terms of AUC.

I Learned matrix K̂ yields a graph:
I If K̂ij below a threshold, then we predict no edge between xi &

xj .
I Comparing to ground-truth graph, we obtain a true & false

positive rate.
I Varying the threshold yields curve; area under the curve (AUC)

is the criterion (1: best, 0: worst)

I Comparison:
I mean imputation plus NCE
I generally infeasible MLE-based gold standard — ∇θ`(θ) can

here be approximated using sampling.
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Results

I VNCE is significantly better than NCE + fixed imputation
(ν = 10)

I Close to a (generally infeasible) MLE-based gold standard.
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Summary

I Unnormalised latent variable models: what they are and why
they are important

I Estimation is difficult because of two intractable integrals
I due to the partition function
I due to marginalisation of latent variables.

I Reviewed noise-contrastive estimation for unnormalised
models (previous work)

I density estimation by classifying between data and noise.

I Theory of variational noise-contrastive estimation
I a theory that parallels standard (likelihood-based) variational

inference but for unnormalised latent variable models

I Application to structure learning from missing data
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