Robust Optimisation Monte Carlo

Michael U. Gutmann

michael.gutmann@ed.ac.uk

Institute for Adaptive and Neural Computation School of Informatics, University of Edinburgh

22 November 2019

Reference

Borislav Ikonomov and Michael U. Gutmann Robust Optimisation Monte Carlo arXiv:1904.00670, 2019

Key messages

- 1. Optimisation Monte Carlo (OMC) is an existing method for efficient Bayesian inference with implicit models.
- 2. While efficient OMC under-estimates uncertainty by collapsing regions of near-constant likelihood into a single point.
- 3. A robust generalisation, robust OMC, explains and corrects this failure mode while maintaining OMC's benefits.

Contents

Background: Bayesian inference for implicit models

Contribution 1: A failure mode of Optimisation Monte Carlo

Contribution 2: Robust Optimisation Monte Carlo (ROMC)

Contents

Background: Bayesian inference for implicit models

Contribution 1: A failure mode of Optimisation Monte Carlo

Contribution 2: Robust Optimisation Monte Carlo (ROMC)

Overall topic of the talk

Bayesian parameter inference for models where

- 1. the likelihood function is too costly to evaluate
- 2. exact sampling simulating data from the model is possible

(Diggle and Gratton, JRSS, 1982)

- ▶ Parametric statistical models specified by a data generating mechanism $g: (\theta, \mathbf{u}) \mapsto \mathbf{x} = g(\theta, \mathbf{u})$
 - \triangleright θ : parameters
 - **u**: stochasticity / nuisance parameters with distribution $p(\mathbf{u})$.
 - x: generated data

(Diggle and Gratton, JRSS, 1982)

- ▶ Parametric statistical models specified by a data generating mechanism $g: (\theta, \mathbf{u}) \mapsto \mathbf{x} = g(\theta, \mathbf{u})$
 - \triangleright θ : parameters
 - **u**: stochasticity / nuisance parameters with distribution $p(\mathbf{u})$.
 - x: generated data
- ► The (deterministic) function g and the distribution $p(\mathbf{u})$ define the conditional distribution $p(\mathbf{x}|\theta)$
 - evaluating $p(\mathbf{x}|\theta)$ is generally intractable
 - \rightarrow likelihood function is intractable
 - drawing samples $\mathbf{x}_i \sim p(\mathbf{x}|\boldsymbol{\theta})$ is possible
 - \rightarrow we can exploit this to perform Bayesian inference

7 / 27

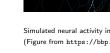
- ▶ The function $g(\theta, \mathbf{u})$ is generally not known in closed form but implemented as computer code
 - \triangleright θ : input parameters
 - u: random draws performed when running the code / seed of the random number generator used

- ▶ The function $g(\theta, \mathbf{u})$ is generally not known in closed form but implemented as computer code
 - \triangleright θ : input parameters
 - ▶ **u**: random draws performed when running the code / seed of the random number generator used
- ▶ Other names: Simulator-based models, stochastic simulation model, generative (latent-variable) models, . . .

Importance

Such models and inference problems occur widely

- Evolutionary biology: Simulating evolution
- Neuroscience: Simulating neural activity
- Health science: Simulating the spread of an infectious disease
- Robotics: Simulating the outcome of an action
- Computer vision: Simulating naturalistic scenes



Simulated neural activity in rat somatosensory cortex (Figure from https://bbp.epfl.ch/nmc-portal)

Bayesian inference for implicit models

- ▶ Task: Given
 - ▶ observed data **x**_o,
 - ▶ an implicit model $g(\theta, \mathbf{u})$, and
 - \triangleright a prior distribution on θ ,

estimate the posterior $p(\theta|\mathbf{x}_o)$ / obtain approximate samples from it.

Bayesian inference for implicit models

- ▶ Task: Given
 - ▶ observed data **x**_a,
 - ▶ an implicit model $g(\theta, \mathbf{u})$, and
 - \triangleright a prior distribution on θ ,

estimate the posterior $p(\theta|\mathbf{x}_o)$ / obtain approximate samples from it.

► Research fields: approximate Bayesian computation (ABC), likelihood-free inference, Bayesian indirect inference

(overviews: Sisson et al 2018, Lintusaari et al 2017, Gutmann and Corander 2016, Drovandi 2015, Marin et al 2012)

Approximate Bayesian computation (ABC)

▶ ABC builds on the fact that samples from the posterior are given by samples from the prior for which simulated data x are close to the observed data x_o.

Approximate Bayesian computation (ABC)

- ▶ ABC builds on the fact that samples from the posterior are given by samples from the prior for which simulated data **x** are close to the observed data **x**₀.
- ► Two core ingredients of ABC algorithms:
 - 1. a distance function $d(\mathbf{x}, \mathbf{x}_o)$ between \mathbf{x} and \mathbf{x}_o
 - 2. a search method to efficiently find such samples from the prior

Optimisation Monte Carlo (Meeds and Welling, NIPS 2015)

- Ingredients:
 - ▶ Distance $d(\mathbf{x}, \mathbf{x}_o) = ||\Phi(\mathbf{x}) \Phi(\mathbf{x}_o)||_2$ with known Φ .
 - Search uses optimisation, which leads to increased efficiency.

- ► Ingredients:
 - ▶ Distance $d(\mathbf{x}, \mathbf{x}_o) = ||\Phi(\mathbf{x}) \Phi(\mathbf{x}_o)||_2$ with known Φ .
 - Search uses optimisation, which leads to increased efficiency.
- Assumptions:
 - (approximate) derivative of $\Phi(\mathbf{x}) = \Phi(g(\theta, \mathbf{u})) = \mathbf{f}(\theta, \mathbf{u})$ wrt θ is available
 - $\blacktriangleright \ \dim(\theta) \leq \dim(\Phi(\mathbf{x}))$

- Ingredients:
 - ▶ Distance $d(\mathbf{x}, \mathbf{x}_o) = ||\Phi(\mathbf{x}) \Phi(\mathbf{x}_o)||_2$ with known Φ .
 - Search uses optimisation, which leads to increased efficiency.
- Assumptions:
 - (approximate) derivative of $\Phi(\mathbf{x}) = \Phi(g(\theta, \mathbf{u})) = \mathbf{f}(\theta, \mathbf{u})$ wrt θ is available
 - $\dim(\theta) \leq \dim(\Phi(\mathbf{x}))$
- ▶ Algorithm to generate n weighted samples θ_i^* :
 - 1: **for** $i \leftarrow 1$ to n **do**
 - 2: $\mathbf{u}_i \sim p(\mathbf{u})$

▷ Set seed

3:
$$\theta_i^* = \arg\min_{\theta} ||\mathbf{f}(\theta, \mathbf{u}_i) - \Phi(\mathbf{x}_o)||$$
 \triangleright Optimisation

- 4: Compute \mathbf{J}_i with columns $\partial \mathbf{f}(\boldsymbol{\theta}_i^*, \mathbf{u}_i)/\partial \theta_k$
- 5: Compute $w_i = p(\boldsymbol{\theta}_i^*) * (\det(\mathbf{J}_i^\top \mathbf{J}_i))^{-1/2}$
- 6: Accept θ_i^* as posterior sample with weight w_i

(Note that samples with too large final distances may be omitted.)

Contents

Background: Bayesian inference for implicit models

Contribution 1: A failure mode of Optimisation Monte Carlo

Contribution 2: Robust Optimisation Monte Carlo (ROMC)

Application: Vision as inverse graphics

- Implicit model given by a graphics renderer
- ▶ We used Open Differential Renderer (Loper and Black, 2014)

20 parameters: Shape Rotation/Pose Illumination Colour Renderer (forward problem)

Why Bayesian inference and not point-estimation?

- ▶ In some cases, quantifying uncertainty is very important
- ► The inverse problem may have multiple solutions (posterior may be multi-modal)

Example considered: Infer object colour when external lighting conditions are unknown.

(a) Gray teapot under red light.

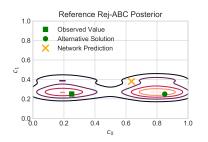
(b) Red teapot under white light.

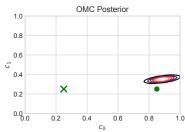
▶ We used OMC and the (simpler) rejection ABC algorithm.

- ▶ We used OMC and the (simpler) rejection ABC algorithm.
- Rejection ABC relies on trial and error instead of optimisation to determine the posterior samples. Slow but reliable.

- ▶ We used OMC and the (simpler) rejection ABC algorithm.
- Rejection ABC relies on trial and error instead of optimisation to determine the posterior samples. Slow but reliable.
- Same distance function $d(\mathbf{x}, \mathbf{x}_o)$: Euclidean distance between parameter predictions made by a neural network trained on images generated from the renderer under white light.

- ▶ We used OMC and the (simpler) rejection ABC algorithm.
- Rejection ABC relies on trial and error instead of optimisation to determine the posterior samples. Slow but reliable.
- Same distance function $d(\mathbf{x}, \mathbf{x}_o)$: Euclidean distance between parameter predictions made by a neural network trained on images generated from the renderer under white light.
- ▶ Posteriors for two colours c_0 and c_1 (red and green):



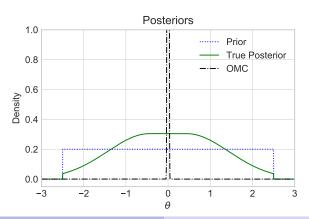


Why did OMC fail?

- ► The OMC weights $w_i = p(\theta_i^*) * (\det(\mathbf{J}_i^{\mathsf{T}} \mathbf{J}_i))^{-1/2}$ are unstable (ESS was 1.2!)
- ▶ This happens when the (approximate) likelihood function has nearly flat regions so that $\det(\mathbf{J}_i^{\mathsf{T}}\mathbf{J}_i) \approx 0$.

Why did OMC fail?

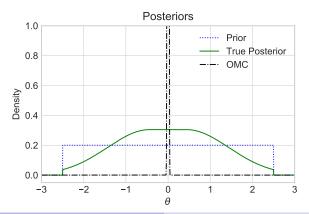
- ► The OMC weights $w_i = p(\theta_i^*) * (\det(\mathbf{J}_i^{\mathsf{T}} \mathbf{J}_i))^{-1/2}$ are unstable (ESS was 1.2!)
- ▶ This happens when the (approximate) likelihood function has nearly flat regions so that $\det(\mathbf{J}_i^{\mathsf{T}}\mathbf{J}_i) \approx 0$.



Why did OMC fail?

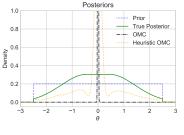
- ► The OMC weights $w_i = p(\boldsymbol{\theta}_i^*) * (\det(\mathbf{J}_i^{\mathsf{T}} \mathbf{J}_i))^{-1/2}$ are unstable (ESS was 1.2!)
- ▶ This happens when the (approximate) likelihood function has nearly flat regions so that $\det(\mathbf{J}_i^{\mathsf{T}}\mathbf{J}_i)\approx 0$.

Note: stated OMC assumptions are not violated.

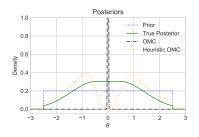


Stabilising the weights/matrices does not help

▶ Taking the pseudo-inverse or pseudo-determinant of $\mathbf{J}_i^{\mathsf{T}} \mathbf{J}_i$ does not help.



(a) Pseudo-inverse

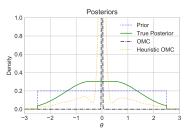


(b) Pseudo-determinant

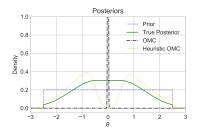
Stabilising the weights/matrices does not help

- ▶ Taking the pseudo-inverse or pseudo-determinant of $\mathbf{J}_i^{\mathsf{T}} \mathbf{J}_i$ does not help.
- ► The weights are not the real issue. The problem is more fundamental:

OMC uses a single point to represent an entire region where the likelihood is (nearly) constant.



(a) Pseudo-inverse



(b) Pseudo-determinant

Contents

Background: Bayesian inference for implicit models

Contribution 1: A failure mode of Optimisation Monte Carlo

Contribution 2: Robust Optimisation Monte Carlo (ROMC)

Key properties of ROMC

(Ikonomov and Gutmann, arXiv:1904.00670, 2019)

- 1. Fixes OMC's failure case: It handles likelihood functions that are (nearly) flat on significant regions in parameter space.
- 2. Works for general distance functions $d(g(\theta, \mathbf{u}), \mathbf{x}_o)$ and not only Euclidean distances between summary statistics. (condition $\dim(\theta) \leq \dim(\Phi(\mathbf{x}))$ disappears)
- 3. Does not require (approximate) derivatives, while OMC does.
- 4. Can be run as post-processing to OMC or from scratch.

ROMC is a framework for inference. It has three key steps:

1. For i = 1, ..., n', sample $\mathbf{u}_i \sim p(\mathbf{u})$ and determine

$$oldsymbol{ heta}_i^* = rg \min_{oldsymbol{ heta}} d(g(oldsymbol{ heta}, \mathbf{u}_i), \mathbf{x}_o)$$

Same as in OMC but we can use general distances $d(\mathbf{x}, \mathbf{x}_o)$.

ROMC is a framework for inference. It has three key steps:

1. For i = 1, ..., n', sample $\mathbf{u}_i \sim p(\mathbf{u})$ and determine

$$m{ heta}_i^* = rg \min_{m{ heta}} \, d(g(m{ heta}, \mathbf{u}_i), \mathbf{x}_o)$$

Same as in OMC but we can use general distances $d(\mathbf{x}, \mathbf{x}_o)$.

2. Use the minimal distances $d_i^* = d(g(\theta_i^*, \mathbf{u}_i))$ to choose an acceptance threshold ϵ / keep the n best θ_i^* .

ROMC is a framework for inference. It has three key steps:

1. For i = 1, ..., n', sample $\mathbf{u}_i \sim p(\mathbf{u})$ and determine

$$m{ heta}_i^* = rg \min_{m{ heta}} \, d(g(m{ heta}, \mathbf{u}_i), \mathbf{x}_o)$$

Same as in OMC but we can use general distances $d(\mathbf{x}, \mathbf{x}_o)$.

- 2. Use the minimal distances $d_i^* = d(g(\theta_i^*, \mathbf{u}_i))$ to choose an acceptance threshold ϵ / keep the n best θ_i^* .
- 3. For each i where $d_i^* \leq \epsilon$, define a proposal distribution q_i on the "acceptance region" $C_{\epsilon}^i = \{\theta : d(g(\theta, \mathbf{u}_i), \mathbf{x}_o) \leq \epsilon\}$

ROMC is a framework for inference. It has three key steps:

1. For i = 1, ..., n', sample $\mathbf{u}_i \sim p(\mathbf{u})$ and determine

$$oldsymbol{ heta}_i^* = rg \min_{oldsymbol{ heta}} d(g(oldsymbol{ heta}, \mathbf{u}_i), \mathbf{x}_o)$$

Same as in OMC but we can use general distances $d(\mathbf{x}, \mathbf{x}_o)$.

- 2. Use the minimal distances $d_i^* = d(g(\theta_i^*, \mathbf{u}_i))$ to choose an acceptance threshold ϵ / keep the n best θ_i^* .
- 3. For each i where $d_i^* \leq \epsilon$, define a proposal distribution q_i on the "acceptance region" $C_{\epsilon}^i = \{\theta : d(g(\theta, \mathbf{u}_i), \mathbf{x}_o) \leq \epsilon\}$

Approximate posterior is represented by weighted samples $heta_{ij}$:

$$m{ heta}_{ij} \sim q_i(m{ heta}) \qquad w_{ij} = \mathbb{1}_{C_\epsilon^i}(m{ heta}_{ij}) rac{p(m{ heta}_{ij})}{q_i(m{ heta}_{ij})} \qquad ext{(i=1, \dots n; j=1, \dots, m)}$$

(General idea, see paper for details)

▶ Using θ_i^* and the optimisation trajectory, we build a model of the acceptance regions $C_{\epsilon}^i = \{\theta : d(g(\theta, \mathbf{u}_i), \mathbf{x}_o) \leq \epsilon\}$

(General idea, see paper for details)

- ▶ Using θ_i^* and the optimisation trajectory, we build a model of the acceptance regions $C_{\epsilon}^i = \{\theta : d(g(\theta, \mathbf{u}_i), \mathbf{x}_o) \leq \epsilon\}$
- ▶ Simple but effective: model C_{ϵ}^{i} as a hypercube or ellipse and define q_{i} to be the uniform distribution on it.

(General idea, see paper for details)

- ▶ Using θ_i^* and the optimisation trajectory, we build a model of the acceptance regions $C_{\epsilon}^i = \{\theta : d(g(\theta, \mathbf{u}_i), \mathbf{x}_o) \leq \epsilon\}$
- ▶ Simple but effective: model C_{ϵ}^{i} as a hypercube or ellipse and define q_{i} to be the uniform distribution on it.
- ▶ Note: When computing the weight,

$$w_{ij} = \mathbb{1}_{C_{\epsilon}^i}(\boldsymbol{\theta}_{ij}) \frac{p(\boldsymbol{\theta}_{ij})}{q_i(\boldsymbol{\theta}_{ij})}$$

the indicator function checks whether θ_{ij} is in the true acceptance region C^i_{ϵ} . \Rightarrow Some robustness to modelling errors.

(General idea, see paper for details)

- ▶ Using θ_i^* and the optimisation trajectory, we build a model of the acceptance regions $C_{\epsilon}^i = \{\theta : d(g(\theta, \mathbf{u}_i), \mathbf{x}_o) \leq \epsilon\}$
- ▶ Simple but effective: model C_{ϵ}^{i} as a hypercube or ellipse and define q_{i} to be the uniform distribution on it.
- ▶ Note: When computing the weight,

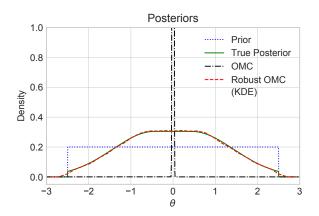
$$w_{ij} = \mathbb{1}_{C_{\epsilon}^i}(\boldsymbol{\theta}_{ij}) \frac{p(\boldsymbol{\theta}_{ij})}{q_i(\boldsymbol{\theta}_{ij})}$$

the indicator function checks whether θ_{ij} is in the true acceptance region C_{ϵ}^{i} . \Rightarrow Some robustness to modelling errors.

▶ Check requires evaluating the distance $d(g(\theta, \mathbf{u}_i), \mathbf{x}_o)$ and can be omitted/approximated to accelerate the inference.

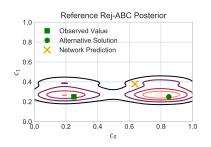
Results on the toy example

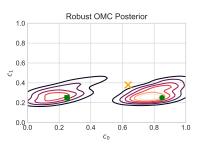
- Acceptance regions C_{ϵ}^{i} given by intervals on the line.
- ▶ ROMC handles the (nearly) flat likelihood function correctly.
- ▶ ROMC accurately represents uncertainty while OMC does not.



Results on the colour inference task

- Setup:
 - Optimisation via a gradient-free method (Bayesian optimisation with GP surrogate modelling)
 - Acceptance regions were modelled as ellipses (derived from the GP surrogate model)
- ROMC posterior matches reference posterior well.
- ► Effective sample size: 97% (vs. approx. 0.5% for OMC)





ROMC generalises OMC (see paper for the proof)

Theorem: Under the below assumptions, ROMC becomes equivalent to standard OMC as $\epsilon \to 0$.

Assumption 1. The distance $d(g(\theta, \mathbf{u}), \mathbf{x}_o)$ is given by the Euclidean distance between summary statistics $||\mathbf{f}(\theta, \mathbf{u}) - \Phi(\mathbf{x}_o)||$.

Assumption 2. The proposal distribution $q_i(\theta)$ is the uniform distribution on C_{ϵ}^i .

Assumption 3. The acceptance regions C_{ϵ}^{i} are approximated by the ellipsoid $C_{\epsilon}^{i} = \{\boldsymbol{\theta}: (\boldsymbol{\theta} - \boldsymbol{\theta}_{i}^{*})^{\mathsf{T}}\mathbf{J}_{i}^{\mathsf{T}}\mathbf{J}_{i}(\boldsymbol{\theta} - \boldsymbol{\theta}_{i}^{*}) \leq \epsilon\}$ where \mathbf{J}_{i} is the Jacobian matrix with columns $\partial \mathbf{f}(\boldsymbol{\theta}_{i}^{*}, \mathbf{u}_{i})/\partial \theta_{k}$.

Assumption 4. The matrix square root \mathbf{A}_i of $\mathbf{J}_i^{\mathsf{T}} \mathbf{J}_i$ is full rank, i.e. $\mathrm{rank}(\mathbf{A}_i) = \dim(\theta)$.

Assumption 5. The prior $p(\theta)$ is constant on the acceptance regions C_{ϵ}^{i} .

Explanation of the failure case

Identified failure case is due to violation of Assumptions 3 and 4:

Assumption 3. The acceptance regions C_{ϵ}^{i} are approximated by the ellipsoid $C_{\epsilon}^{i} = \{\boldsymbol{\theta} : (\boldsymbol{\theta} - \boldsymbol{\theta}_{i}^{*})^{\mathsf{T}} \mathbf{J}_{i}^{\mathsf{T}} \mathbf{J}_{i} (\boldsymbol{\theta} - \boldsymbol{\theta}_{i}^{*}) \leq \epsilon \}$ where \mathbf{J}_{i} is the Jacobian matrix with columns $\partial \mathbf{f}(\boldsymbol{\theta}_{i}^{*}, \mathbf{u}_{i}) / \partial \theta_{k}$.

Assumption 4. The matrix square root \mathbf{A}_i of $\mathbf{J}_i^{\mathsf{T}} \mathbf{J}_i$ is full rank, i.e. $\mathsf{rank}(\mathbf{A}_i) = \mathsf{dim}(\boldsymbol{\theta})$.

Explanation of the failure case

Identified failure case is due to violation of Assumptions 3 and 4:

Assumption 3. The acceptance regions C_{ϵ}^{i} are approximated by the ellipsoid $C_{\epsilon}^{i} = \{\boldsymbol{\theta} : (\boldsymbol{\theta} - \boldsymbol{\theta}_{i}^{*})^{\mathsf{T}} \mathbf{J}_{i}^{\mathsf{T}} \mathbf{J}_{i} (\boldsymbol{\theta} - \boldsymbol{\theta}_{i}^{*}) \leq \epsilon \}$ where \mathbf{J}_{i} is the Jacobian matrix with columns $\partial \mathbf{f}(\boldsymbol{\theta}_{i}^{*}, \mathbf{u}_{i}) / \partial \theta_{k}$.

Assumption 4. The matrix square root \mathbf{A}_i of $\mathbf{J}_i^{\mathsf{T}} \mathbf{J}_i$ is full rank, i.e. $\mathsf{rank}(\mathbf{A}_i) = \mathsf{dim}(\boldsymbol{\theta})$.

For non-uniform priors, one then also risks violating Assumption 5: Assumption 5. The prior $p(\theta)$ is constant on the acceptance regions C_{ϵ}^{i} .

▶ Talk was on Bayesian inference for implicit models.

- ► Talk was on Bayesian inference for implicit models.
 - Implicit models: models that are defined by a data generating process.

- ► Talk was on Bayesian inference for implicit models.
 - Implicit models: models that are defined by a data generating process.
 - ▶ Optimisation Monte Carlo (OMC): Bayesian inference method that uses optimisation to increase computational efficiency.

- ► Talk was on Bayesian inference for implicit models.
 - ▶ Implicit models: models that are defined by a data generating process.
 - ▶ Optimisation Monte Carlo (OMC): Bayesian inference method that uses optimisation to increase computational efficiency.
- ▶ We showed that OMC under-estimates posterior uncertainty by collapsing regions of near-constant likelihood into a point.

- ► Talk was on Bayesian inference for implicit models.
 - Implicit models: models that are defined by a data generating process.
 - ▶ Optimisation Monte Carlo (OMC): Bayesian inference method that uses optimisation to increase computational efficiency.
- We showed that OMC under-estimates posterior uncertainty by collapsing regions of near-constant likelihood into a point.
- We proposed a robust generalisation of OMC, robust OMC, that explains and corrects this failure mode while maintaining OMC's benefits due to optimisation.