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Key messages

1. Optimisation Monte Carlo (OMC) is an existing method for
efficient Bayesian inference with implicit models.

2. While efficient OMC under-estimates uncertainty by collapsing
regions of near-constant likelihood into a single point.

3. A robust generalisation, robust OMC, explains and corrects
this failure mode while maintaining OMC's benefits.
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Overall topic of the talk

Bayesian parameter inference for models where
1. the likelihood function is too costly to evaluate

2. exact sampling — simulating data from the model — is possible
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Implicit models

(Diggle and Gratton, JRSS, 1982)

» Parametric statistical models specified by a data generating
mechanism g : (6,u) — x = g(0,u)
> 0: parameters
» u: stochasticity / nuisance parameters with distribution p(u).
> Xx: generated data
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Implicit models

(Diggle and Gratton, JRSS, 1982)

» Parametric statistical models specified by a data generating
mechanism g : (6,u) — x = g(0,u)
> 0: parameters
» u: stochasticity / nuisance parameters with distribution p(u).
> Xx: generated data

» The (deterministic) function g and the distribution p(u)
define the conditional distribution p(x|@)
» evaluating p(x|0) is generally intractable
— likelihood function is intractable
» drawing samples x; ~ p(x|@) is possible
— we can exploit this to perform Bayesian inference
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Implicit models

» The function g(8,u) is generally not known in closed form
but implemented as computer code

» 0: input parameters
» u: random draws performed when running the code / seed of
the random number generator used
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Implicit models

» The function g(8,u) is generally not known in closed form
but implemented as computer code

» 0: input parameters
» u: random draws performed when running the code / seed of
the random number generator used

» Other names: Simulator-based models, stochastic simulation
model, generative (latent-variable) models, ...
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Importance

Such models and inference problems occur widely

>

Evolutionary biology:
Simulating evolution
Neuroscience:

Simulating neural activity
Health science:

Simulating the spread of an
infectious disease

Robotics:

Simulating the outcome of an
action

Computer vision:
Simulating naturalistic scenes

Michael U. Gutmann

Simulated neural activity in rat somatosensory cortex

(Figure from https://bbp.epfl.ch/nmc-portal)
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Bayesian inference for implicit models

» Task: Given
» observed data x,,
» an implicit model g(@,u), and
» a prior distribution on 8,
estimate the posterior p(€|x,) / obtain approximate samples
from it.
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Bayesian inference for implicit models

» Task: Given

» observed data x,,
» an implicit model g(@,u), and
» a prior distribution on 8,

estimate the posterior p(€|x,) / obtain approximate samples
from it.

» Research fields: approximate Bayesian computation (ABC),
likelihood-free inference, Bayesian indirect inference

(overviews: Sisson et al 2018, Lintusaari et al 2017, Gutmann and Corander 2016, Drovandi 2015, Marin et al 2012)
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Approximate Bayesian computation (ABC)

» ABC builds on the fact that samples from the posterior are
given by samples from the prior for which simulated data x are
close to the observed data x,.
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Approximate Bayesian computation (ABC)

» ABC builds on the fact that samples from the posterior are
given by samples from the prior for which simulated data x are
close to the observed data x,.

» Two core ingredients of ABC algorithms:

1. a distance function d(x,x,) between x and x,

2. a search method to efficiently find such samples from the prior
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Optimisation Monte Carlo  (meeds and weling, nips 2015)

> Ingredients:
» Distance d(x,x,) = ||®(x) — ®(x,)|]2 with known ®.
» Search uses optimisation, which leads to increased efficiency.
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Optimisation Monte Carlo  (meeds and weling, nips 2015)

> Ingredients:
» Distance d(x,x,) = ||®(x) — ®(x,)|]2 with known ®.
» Search uses optimisation, which leads to increased efficiency.

» Assumptions:
» (approximate) derivative of ®(x) = ®(g(0,u)) = f(0,u) wrt
is available
» dim(0) < dim($(x))
> Algorithm to generate n weighted samples 87 :
1: for i < 1to ndo
2: u; ~ p(u)
3: 07 = arg min [|f(0,u;) — D(x,)|| B> Optimisation
7]
4: Compute J; with columns Of(07,u;)/00,
5: Compute w; = p(87) * (det(J;'3;)) /2
Accept 0} as posterior sample with weight w;

> Set seed

(Note that samples with too large final distances may be omitted.)
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Background: Bayesian inference for implicit models
Contribution 1: A failure mode of Optimisation Monte Carlo

Contribution 2: Robust Optimisation Monte Carlo (ROMC)



Application: Vision as inverse graphics

» Implicit model given by a graphics renderer

» We used Open Differential Renderer (Loper and Black, 2012)

Renderer
20 parameters: (forward problem)
Shape. \
Rotation/Pose <~
[llumination
Colour Inference

(inverse problem)
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Why Bayesian inference and not point-estimation?

» In some cases, quantifying uncertainty is very important
» The inverse problem may have multiple solutions (posterior
may be multi-modal)

Example considered: Infer object colour when external lighting
conditions are unknown.

(a) Gray teapot under red light.  (b) Red teapot under white light.
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Results for colour inference task

» We used OMC and the (simpler) rejection ABC algorithm.
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Results for colour inference task

» We used OMC and the (simpler) rejection ABC algorithm.

» Rejection ABC relies on trial and error instead of optimisation
to determine the posterior samples. Slow but reliable.

» Same distance function d(x,x,): Euclidean distance between
parameter predictions made by a neural network trained on
images generated from the renderer under white light.

» Posteriors for two colours ¢y and ¢; (red and green):

Reference Rej-ABC Posterior

1.0 1.0
B Observed Value
0.8 @ Alternative Solution 0.8
Network Prediction
0.6 0.6
< <

04 M 04
e

02— — 0.2
O'%O 0.2 04 0.6 0.8 1.0 0'%0
Co
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OMC Posterior

0.2 04 0.6 0.8 1.0
Co
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Why did OMC fail?

» The OMC weights w; = p(8?) * (det(J;'J;)) /2 are unstable
(ESS was 1.21)

» This happens when the (approximate) likelihood function has
nearly flat regions so that det(J;'J;) ~ 0.
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Why did OMC fail?

» The OMC weights w; = p(8?) * (det(J;'J;)) /2 are unstable
(ESS was 1.21)

» This happens when the (approximate) likelihood function has
nearly flat regions so that det(J;'J;) ~ 0.

Posteriors
1.0 i
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Why did OMC fail?

» The OMC weights w; = p(8?) * (det(J;'J;)) /2 are unstable
(ESS was 1.21)

» This happens when the (approximate) likelihood function has
nearly flat regions so that det(J,-TJ,-) ~ 0.
Note: stated OMC assumptions are not violated.

Posteriors
1.0 i
|I ........ Prior
08 :l —— True Posterior

il —— OMC
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Stabilising the weights/matrices does not help

» Taking the pseudo-inverse or pseudo-determinant of J;'J; does

not help.
Posteriors Posteriors
1.0 1.0
+ Prior - Prior
08 —— True Posterior 08 —— True Posterior
—— oMC —— oMC
Heuristic OMC Heuristic OMC
.06 06
2 2
804 804
0.2 / 02
0.0 —1 1 0.0
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
] 6
(a) Pseudo-inverse (b) Pseudo-determinant
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Stabilising the weights/matrices does not help

» Taking the pseudo-inverse or pseudo-determinant of J;'J; does
not help.
» The weights are not the real issue. The problem is more

fundamental:
OMC uses a single point to represent an entire region where

the likelihood is (nearly) constant.

Posteriors Posteriors

+ Prior -+ Prior
08 —— True Posterior 08 —— True Posterior
—— OMC

—— OMC
Heuristic OMC Heuristic OMC

Density

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
2} [}
(a) Pseudo-inverse (b) Pseudo-determinant
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Key properties of ROMC

(Ikonomov and Gutmann, arXiv:1904.00670, 2019)

1. Fixes OMC's failure case: It handles likelihood functions that
are (nearly) flat on significant regions in parameter space.

2. Works for general distance functions d(g(0,u),x,) and not
only Euclidean distances between summary statistics.
(condition dim(8) < dim(®(x)) disappears)

3. Does not require (approximate) derivatives, while OMC does.

4. Can be run as post-processing to OMC or from scratch.
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The ROMC framework

ROMC is a framework for inference. It has three key steps:

1. Fori=1,...n, sample u; ~ p(u) and determine

07 = arg min d(g(0,u;),x,)
0

Same as in OMC but we can use general distances d(x, X,).
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The ROMC framework

ROMC is a framework for inference. It has three key steps:
1. Fori=1,...n, sample u; ~ p(u) and determine

07 = arg min d(g(0,u;),x,)
0

Same as in OMC but we can use general distances d(x, X,).

2. Use the minimal distances d = d(g(67,u;)) to choose an
acceptance threshold € / keep the n best 6;.

3. For each i where df < ¢, define a proposal distribution g; on
the “acceptance region” C! = {0 : d(g(0,u;),x,) < €}
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The ROMC framework

ROMC is a framework for inference. It has three key steps:
1. Fori=1,...n, sample u; ~ p(u) and determine

07 = arg min d(g(0,u;),x,)
0

Same as in OMC but we can use general distances d(x, X,).

2. Use the minimal distances d = d(g(67,u;)) to choose an
acceptance threshold € / keep the n best 6;.

3. For each i where df < ¢, define a proposal distribution g; on
the “acceptance region” C! = {0 : d(g(0,u;),x,) < €}

Approximate posterior is represented by weighted samples 6;:

p(0;)

0~ qi(0)  wy=1c(6y)
y ] Ci\Yij Qi(aij)
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Construction of the proposal distribution

(General idea, see paper for details)

» Using 07 and the optimisation trajectory, we build a model of
the acceptance regions C/ = {0 : d(g(0,u;),x,) < €}
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Construction of the proposal distribution

(General idea, see paper for details)
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define g; to be the uniform distribution on it.
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Construction of the proposal distribution

(General idea, see paper for details)
» Using 07 and the optimisation trajectory, we build a model of
the acceptance regions C! = {0 : d(g(0,u;),x,) < ¢}
» Simple but effective: model C/ as a hypercube or ellipse and
define g; to be the uniform distribution on it.

» Note: When computing the weight,

p(6;)

i(0y)

the indicator function checks whether 8j; is in the true
acceptance region C/. = Some robustness to modelling errors.

wij = 1¢i(05)

Q9
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Construction of the proposal distribution

(General idea, see paper for details)

» Using 07 and the optimisation trajectory, we build a model of
the acceptance regions C/ = {0 : d(g(0,u;),x,) < €}

» Simple but effective: model C/ as a hypercube or ellipse and
define g; to be the uniform distribution on it.

» Note: When computing the weight,

p(6;)

i(0y)

the indicator function checks whether 8j; is in the true
acceptance region C/. = Some robustness to modelling errors.

wij = 1¢i(05)

Q9

» Check requires evaluating the distance d(g(8,u;),x,) and can
be omitted/approximated to accelerate the inference.
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Results on the toy example

» Acceptance regions C/ given by intervals on the line.
» ROMC handles the (nearly) flat likelihood function correctly.
» ROMC accurately represents uncertainty while OMC does not.

Posteriors
1.0 i
|I ........ Prior
08 :l —— True Posterior
|: —— OMC
I ---- Robust OMC
0.6 il
2 dl (KDE)
C H
jo}
[m]

23 /27

Michael U. Gutmann Robust OMC



Results on the colour inference task

» Setup:
» Optimisation via a gradient-free method (Bayesian
optimisation with GP surrogate modelling)
» Acceptance regions were modelled as ellipses (derived from the
GP surrogate model)

» ROMC posterior matches reference posterior well.
» Effective sample size: 97% (vs. approx. 0.5% for OMC)

10 Reference Rej-ABC Posterior 10 Robust OMC Posterior
B Observed Value
0.8 @ Alternative Solution 0.8
Network Prediction
0.6 0.6
o) G
04 m@ ) @
0'%.0 0.2 0.4 0.6 0.8 1.0 0'%0 0.2 0.4 0.6 0.8 1.0
Co Co
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ROMC generalises OMC (see paper for the proof)

Theorem: Under the below assumptions, ROMC becomes
equivalent to standard OMC as ¢ — 0.

Assumption 1. The distance d(g(0,u),x,) is given by the
Euclidean distance between summary statistics ||f(6,u) — ®(x,)||.

Assumption 2. The proposal distribution g;(@) is the uniform
distribution on C/.

Assumption 3. The acceptance regions C/ are approximated by
the ellipsoid C/ = {6 : (6 — 0%)'J;J;(0 — 67) < €} where J; is the
Jacobian matrix with columns Of (0}, u;)/00.

Assumption 4. The matrix square root A; of J,-TJ,- is full rank, i.e.
rank(A;) = dim(6).

Assumption 5. The prior p(8) is constant on the acceptance
regions C/.
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Explanation of the failure case

Identified failure case is due to violation of Assumptions 3 and 4:

Assumption 3. The acceptance regions C/ are approximated by
the ellipsoid C/' = {6 : (6 — %)'J;J;(0 — 67) < €} where J; is the
Jacobian matrix with columns of(6}, u;)/00y.

Assumption 4. The matrix square root A; of J,-TJ,- is full rank, i.e.
rank(A;) = dim(6).
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Explanation of the failure case

Identified failure case is due to violation of Assumptions 3 and 4:

Assumption 3. The acceptance regions C/ are approximated by
the ellipsoid C/' = {6 : (6 — %)'J;J;(0 — 67) < €} where J; is the
Jacobian matrix with columns Of (0}, u;)/00.

Assumption 4. The matrix square root A; of J,-TJ,- is full rank, i.e.
rank(A;) = dim(6).

For non-uniform priors, one then also risks violating Assumption 5:
Assumption 5. The prior p(0) is constant on the acceptance regions C!.
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» Talk was on Bayesian inference for implicit models.
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Conclusions

» Talk was on Bayesian inference for implicit models.
» Implicit models: models that are defined by a data generating
process.
» Optimisation Monte Carlo (OMC): Bayesian inference method
that uses optimisation to increase computational efficiency.
» We showed that OMC under-estimates posterior uncertainty
by collapsing regions of near-constant likelihood into a point.

» We proposed a robust generalisation of OMC, robust OMC,
that explains and corrects this failure mode while maintaining
OMC's benefits due to optimisation.
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