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Key messages

1. Optimisation Monte Carlo (OMC) is an existing method for
efficient Bayesian inference with implicit models.

2. While efficient OMC under-estimates uncertainty by collapsing
regions of near-constant likelihood into a single point.

3. A robust generalisation, robust OMC, explains and corrects
this failure mode while maintaining OMC’s benefits.
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Overall topic of the talk

Bayesian parameter inference for models where
1. the likelihood function is too costly to evaluate
2. exact sampling – simulating data from the model – is possible
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Implicit models

(Diggle and Gratton, JRSS, 1982)

I Parametric statistical models specified by a data generating
mechanism g : (θ,u) 7→ x = g(θ,u)

I θ: parameters
I u: stochasticity / nuisance parameters with distribution p(u).
I x: generated data

I The (deterministic) function g and the distribution p(u)
define the conditional distribution p(x|θ)

I evaluating p(x|θ) is generally intractable
→ likelihood function is intractable

I drawing samples xi ∼ p(x|θ) is possible
→ we can exploit this to perform Bayesian inference
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Implicit models

I The function g(θ,u) is generally not known in closed form
but implemented as computer code

I θ: input parameters
I u: random draws performed when running the code / seed of

the random number generator used

I Other names: Simulator-based models, stochastic simulation
model, generative (latent-variable) models, . . .

Michael U. Gutmann Robust OMC 8 / 27



Implicit models

I The function g(θ,u) is generally not known in closed form
but implemented as computer code

I θ: input parameters
I u: random draws performed when running the code / seed of

the random number generator used

I Other names: Simulator-based models, stochastic simulation
model, generative (latent-variable) models, . . .

Michael U. Gutmann Robust OMC 8 / 27



Importance

Such models and inference problems occur widely

I Evolutionary biology:
Simulating evolution

I Neuroscience:
Simulating neural activity

I Health science:
Simulating the spread of an
infectious disease

I Robotics:
Simulating the outcome of an
action

I Computer vision:
Simulating naturalistic scenes

I . . .

Simulated neural activity in rat somatosensory cortex
(Figure from https://bbp.epfl.ch/nmc-portal)
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Bayesian inference for implicit models

I Task: Given
I observed data xo ,
I an implicit model g(θ,u), and
I a prior distribution on θ,

estimate the posterior p(θ|xo) / obtain approximate samples
from it.

I Research fields: approximate Bayesian computation (ABC),
likelihood-free inference, Bayesian indirect inference
(overviews: Sisson et al 2018, Lintusaari et al 2017, Gutmann and Corander 2016, Drovandi 2015, Marin et al 2012)
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Approximate Bayesian computation (ABC)

I ABC builds on the fact that samples from the posterior are
given by samples from the prior for which simulated data x are
close to the observed data xo.

I Two core ingredients of ABC algorithms:
1. a distance function d(x, xo) between x and xo

2. a search method to efficiently find such samples from the prior
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Optimisation Monte Carlo (Meeds and Welling, NIPS 2015)

I Ingredients:
I Distance d(x, xo) = ||Φ(x)− Φ(xo)||2 with known Φ.
I Search uses optimisation, which leads to increased efficiency.

I Assumptions:
I (approximate) derivative of Φ(x) = Φ(g(θ,u)) = f(θ,u) wrt θ

is available
I dim(θ) ≤ dim(Φ(x))

I Algorithm to generate n weighted samples θ∗i :
1: for i ← 1 to n do
2: ui ∼ p(u) . Set seed
3: θ∗i = arg min

θ
||f(θ,ui )− Φ(xo)|| . Optimisation

4: Compute Ji with columns ∂f(θ∗i ,ui )/∂θk
5: Compute wi = p(θ∗i ) ∗ (det(Ji

>Ji ))−1/2
6: Accept θ∗i as posterior sample with weight wi

(Note that samples with too large final distances may be omitted.)
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Application: Vision as inverse graphics

I Implicit model given by a graphics renderer
I We used Open Differential Renderer (Loper and Black, 2014)

20 parameters:
Shape
Rotation/Pose
Illumination
Colour

Renderer
(forward problem)



Inference
(inverse problem)
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Why Bayesian inference and not point-estimation?

I In some cases, quantifying uncertainty is very important
I The inverse problem may have multiple solutions (posterior

may be multi-modal)
Example considered: Infer object colour when external lighting
conditions are unknown.

(a) Gray teapot under red light. (b) Red teapot under white light.

Michael U. Gutmann Robust OMC 15 / 27



Results for colour inference task

I We used OMC and the (simpler) rejection ABC algorithm.

I Rejection ABC relies on trial and error instead of optimisation
to determine the posterior samples. Slow but reliable.

I Same distance function d(x, xo): Euclidean distance between
parameter predictions made by a neural network trained on
images generated from the renderer under white light.

I Posteriors for two colours c0 and c1 (red and green):
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Why did OMC fail?

I The OMC weights wi = p(θ∗i ) ∗ (det(Ji
>Ji ))−1/2 are unstable

(ESS was 1.2!)
I This happens when the (approximate) likelihood function has

nearly flat regions so that det(Ji
>Ji ) ≈ 0.

Note: stated OMC assumptions are not violated.
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Stabilising the weights/matrices does not help

I Taking the pseudo-inverse or pseudo-determinant of Ji
>Ji does

not help.

I The weights are not the real issue. The problem is more
fundamental:
OMC uses a single point to represent an entire region where
the likelihood is (nearly) constant.
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Key properties of ROMC

(Ikonomov and Gutmann, arXiv:1904.00670, 2019)

1. Fixes OMC’s failure case: It handles likelihood functions that
are (nearly) flat on significant regions in parameter space.

2. Works for general distance functions d(g(θ,u), xo) and not
only Euclidean distances between summary statistics.
(condition dim(θ) ≤ dim(Φ(x)) disappears)

3. Does not require (approximate) derivatives, while OMC does.

4. Can be run as post-processing to OMC or from scratch.
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The ROMC framework
ROMC is a framework for inference. It has three key steps:
1. For i = 1, . . . n′, sample ui ∼ p(u) and determine

θ∗i = arg min
θ

d(g(θ,ui ), xo)

Same as in OMC but we can use general distances d(x, xo).

2. Use the minimal distances d∗i = d(g(θ∗i ,ui )) to choose an
acceptance threshold ε / keep the n best θ∗i .

3. For each i where d∗i ≤ ε, define a proposal distribution qi on
the “acceptance region” C i

ε = {θ : d(g(θ,ui ), xo) ≤ ε}

Approximate posterior is represented by weighted samples θij :

θij ∼ qi (θ) wij = 1C i
ε
(θij)

p(θij)
qi (θij)

(i=1, . . . n; j=1, . . . , m)
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Construction of the proposal distribution

(General idea, see paper for details)
I Using θ∗i and the optimisation trajectory, we build a model of

the acceptance regions C i
ε = {θ : d(g(θ,ui ), xo) ≤ ε}

I Simple but effective: model C i
ε as a hypercube or ellipse and

define qi to be the uniform distribution on it.
I Note: When computing the weight,

wij = 1C i
ε
(θij)

p(θij)
qi (θij)

the indicator function checks whether θij is in the true
acceptance region C i

ε . ⇒ Some robustness to modelling errors.
I Check requires evaluating the distance d(g(θ,ui ), xo) and can

be omitted/approximated to accelerate the inference.
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Results on the toy example

I Acceptance regions C i
ε given by intervals on the line.

I ROMC handles the (nearly) flat likelihood function correctly.
I ROMC accurately represents uncertainty while OMC does not.
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Results on the colour inference task

I Setup:
I Optimisation via a gradient-free method (Bayesian

optimisation with GP surrogate modelling)
I Acceptance regions were modelled as ellipses (derived from the

GP surrogate model)
I ROMC posterior matches reference posterior well.
I Effective sample size: 97% (vs. approx. 0.5% for OMC)
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ROMC generalises OMC (see paper for the proof)

Theorem: Under the below assumptions, ROMC becomes
equivalent to standard OMC as ε→ 0.

Assumption 1. The distance d(g(θ,u), xo) is given by the
Euclidean distance between summary statistics ||f(θ,u)− Φ(xo)||.
Assumption 2. The proposal distribution qi (θ) is the uniform
distribution on C i

ε .
Assumption 3. The acceptance regions C i

ε are approximated by
the ellipsoid C i

ε = {θ : (θ − θ∗i )>Ji
>Ji (θ − θ∗i ) ≤ ε} where Ji is the

Jacobian matrix with columns ∂f(θ∗i ,ui )/∂θk .
Assumption 4. The matrix square root Ai of Ji

>Ji is full rank, i.e.
rank(Ai ) = dim(θ).
Assumption 5. The prior p(θ) is constant on the acceptance
regions C i

ε .
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Explanation of the failure case

Identified failure case is due to violation of Assumptions 3 and 4:

Assumption 3. The acceptance regions C i
ε are approximated by

the ellipsoid C i
ε = {θ : (θ − θ∗i )>Ji

>Ji (θ − θ∗i ) ≤ ε} where Ji is the
Jacobian matrix with columns ∂f(θ∗i ,ui )/∂θk .
Assumption 4. The matrix square root Ai of Ji

>Ji is full rank, i.e.
rank(Ai ) = dim(θ).

For non-uniform priors, one then also risks violating Assumption 5:
Assumption 5. The prior p(θ) is constant on the acceptance regions C i

ε.
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Conclusions

I Talk was on Bayesian inference for implicit models.

I Implicit models: models that are defined by a data generating
process.

I Optimisation Monte Carlo (OMC): Bayesian inference method
that uses optimisation to increase computational efficiency.

I We showed that OMC under-estimates posterior uncertainty
by collapsing regions of near-constant likelihood into a point.

I We proposed a robust generalisation of OMC, robust OMC,
that explains and corrects this failure mode while maintaining
OMC’s benefits due to optimisation.
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