Robust Optimisation Monte Carlo

Michael U. Gutmann

michael.gutmann@ed.ac.uk

School of Informatics, University of Edinburgh

6th December 2019

Borislav Ikonomov and Michael U. Gutmann Robust Optimisation Monte Carlo *arXiv:1904.00670*, 2019

- 1. Optimisation Monte Carlo (OMC) is an existing method¹ that efficiently performs Bayesian inference with implicit models.
- 2. While efficient OMC under-estimates uncertainty by collapsing regions of near-constant likelihood into a single point.
- 3. A robust generalisation, robust OMC, explains and corrects this failure mode while maintaining OMC's benefits.

¹Meeds and Welling, NIPS 2015.

Background: Optimisation Monte Carlo (OMC)

Contribution 1: An important failure mode of OMC

Contribution 2: Robust Optimisation Monte Carlo (ROMC)

Background: Optimisation Monte Carlo (OMC)

Contribution 1: An important failure mode of OMC

Contribution 2: Robust Optimisation Monte Carlo (ROMC)

- Bayesian parameter inference for implicit models where
 - 1. the likelihood function is too costly to evaluate
 - 2. exact sampling simulating data from the model is possible

- Bayesian parameter inference for implicit models where
 - 1. the likelihood function is too costly to evaluate
 - 2. exact sampling simulating data from the model is possible
- Importance: such models and inference problems occur widely (evolutionary biology, neurosciences, health sciences, robotics, computer vision, machine learning, ...)

(Diggle and Gratton, JRSS, 1982)

- Parametric statistical models specified by a data generating mechanism g : (θ, u) → x = g(θ, u)
 - θ : parameters of interest
 - **u**: nuisance parameters with distribution $p(\mathbf{u})$
 - x: generated data
- The (deterministic) function g(θ, u) is generally not known in closed form but implemented as computer code
 - θ : input parameters
 - u: random draws performed when running the code / seed of the random number generator used
 - **x**: output data generated by the code

(Diggle and Gratton, JRSS, 1982)

- Parametric statistical models specified by a data generating mechanism g : (θ, u) → x = g(θ, u)
 - θ : parameters of interest
 - **u**: nuisance parameters with distribution $p(\mathbf{u})$
 - x: generated data
- The (deterministic) function g(θ, u) is generally not known in closed form but implemented as computer code
 - θ : input parameters
 - u: random draws performed when running the code / seed of the random number generator used
 - x: output data generated by the code
- Other names: Simulator-based models, stochastic simulation models, generative (latent-variable) models, ...

- Task: Given
 - observed data x_o,
 - an implicit model $g(\theta, \mathbf{u})$, and
 - a prior distribution on θ ,

estimate the posterior $p(\theta|\mathbf{x}_o)$ / obtain approximate samples from it.

- ► Task: Given
 - observed data x_o,
 - an implicit model $g(\theta, \mathbf{u})$, and
 - a prior distribution on θ ,

estimate the posterior $p(\theta|\mathbf{x}_o)$ / obtain approximate samples from it.

► The deterministic function g : (θ, u) → x = g(θ, u) and the distribution p(u) define the conditional distribution p(x|θ)

- ► Task: Given
 - observed data x_o,
 - an implicit model $g(\theta, \mathbf{u})$, and
 - a prior distribution on θ ,

estimate the posterior $p(\theta|\mathbf{x}_o)$ / obtain approximate samples from it.

- ► The deterministic function g : (θ, u) → x = g(θ, u) and the distribution p(u) define the conditional distribution p(x|θ)
- ► While well defined, evaluating $p(\mathbf{x}|\boldsymbol{\theta})$ is generally intractable \rightarrow likelihood function $L(\boldsymbol{\theta}) = p(\mathbf{x}_o|\boldsymbol{\theta})$ is intractable
 - \rightarrow Bayesian inference is difficult

- ► Task: Given
 - observed data x_o,
 - an implicit model $g(\theta, \mathbf{u})$, and
 - a prior distribution on θ ,

estimate the posterior $p(\theta|\mathbf{x}_o)$ / obtain approximate samples from it.

- ► The deterministic function g : (θ, u) → x = g(θ, u) and the distribution p(u) define the conditional distribution p(x|θ)
- While well defined, evaluating p(x|θ) is generally intractable → likelihood function L(θ) = p(x₀|θ) is intractable → Bayesian inference is difficult
- ► Drawing samples x_i ~ p(x|θ) is possible for implicit models → we can exploit this to perform Bayesian inference

 Research fields: approximate Bayesian computation (ABC), likelihood-free inference, Bayesian indirect inference

(overviews: Sisson et al 2018, Lintusaari et al 2017, Gutmann and Corander 2016, Drovandi 2015, Marin et al 2012)

Research fields: approximate Bayesian computation (ABC), likelihood-free inference, Bayesian indirect inference (overviews: Sisson et al 2018, Lintusaari et al 2017, Gutmann and Corander 2016, Drovandi 2015, Marin et al 2012)

► ABC builds on the fact that samples from the posterior are given by samples from the prior for which simulated data x are close to the observed data x_o.

- Research fields: approximate Bayesian computation (ABC), likelihood-free inference, Bayesian indirect inference (overviews: Sisson et al 2018, Lintusaari et al 2017, Gutmann and Corander 2016, Drovandi 2015, Marin et al 2012)
- ► ABC builds on the fact that samples from the posterior are given by samples from the prior for which simulated data x are close to the observed data x_o.
- Two core ingredients of ABC algorithms:
 - 1. a distance function $d(\mathbf{x}, \mathbf{x}_o)$ between \mathbf{x} and \mathbf{x}_o
 - 2. a search method to efficiently find such samples from the prior

Optimisation Monte Carlo (Meeds and Welling, NIPS 2015)

- Ingredients:
 - Distance $d(\mathbf{x}, \mathbf{x}_o) = ||\Phi(\mathbf{x}) \Phi(\mathbf{x}_o)||_2$ with known Φ .
 - Search uses optimisation, which leads to increased efficiency.

Optimisation Monte Carlo (Meeds and Welling, NIPS 2015)

- Ingredients:
 - Distance $d(\mathbf{x}, \mathbf{x}_o) = ||\Phi(\mathbf{x}) \Phi(\mathbf{x}_o)||_2$ with known Φ .
 - Search uses optimisation, which leads to increased efficiency.
- Assumptions:
 - (approximate) derivative of Φ(x) = Φ(g(θ, u)) = f(θ, u) wrt θ is available
 - $\dim(\boldsymbol{\theta}) \leq \dim(\Phi(\mathbf{x}))$

- Ingredients:
 - Distance $d(\mathbf{x}, \mathbf{x}_o) = ||\Phi(\mathbf{x}) \Phi(\mathbf{x}_o)||_2$ with known Φ .
 - Search uses optimisation, which leads to increased efficiency.
- Assumptions:
 - (approximate) derivative of Φ(x) = Φ(g(θ, u)) = f(θ, u) wrt θ is available
 - $\dim(\theta) \leq \dim(\Phi(\mathbf{x}))$
- Algorithm to generate *n* weighted samples θ_i^* :
 - 1: for $i \leftarrow 1$ to n do \triangleright Can be fully parallelised
 - 2: $\mathbf{u}_i \sim p(\mathbf{u})$ > Set seed
 - 3: $\theta_i^* = \arg\min_{\theta} ||\mathbf{f}(\theta, \mathbf{u}_i) \Phi(\mathbf{x}_o)|| > Optimisation$
 - 4: Compute \mathbf{J}_i with columns $\partial \mathbf{f}(\boldsymbol{\theta}_i^*, \mathbf{u}_i) / \partial \theta_k$
 - 5: Compute $w_i = p(\boldsymbol{\theta}_i^*) * (\det(\mathbf{J}_i^{\top}\mathbf{J}_i))^{-1/2}$
 - 6: Accept θ_i^* as posterior sample with weight w_i

(Note that samples with too large final distances may be omitted.)

Background: Optimisation Monte Carlo (OMC)

Contribution 1: An important failure mode of OMC

Contribution 2: Robust Optimisation Monte Carlo (ROMC)

Application: Vision as inverse graphics

- Implicit model given by a graphics renderer
- ► We used Open Differential Renderer (Loper and Black, 2014)

20 parameters: Shape Rotation/Pose Illumination Colour Renderer

(forward problem)

 \rightarrow

Inference

(inverse problem)

Why Bayesian inference and not point-estimation?

- In some cases, quantifying uncertainty is very important
- The inverse problem may have multiple solutions (posterior may be multi-modal)

Example considered: Infer object colour when external lighting conditions are unknown.

(a) Gray teapot under red light.

(b) Red teapot under white light.

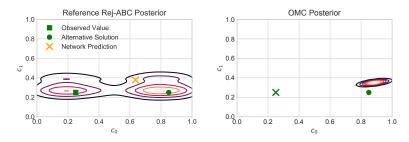
▶ We used OMC and the (simpler) rejection ABC algorithm.

- ▶ We used OMC and the (simpler) rejection ABC algorithm.
- Rejection ABC uses trial and error instead of optimisation to determine the posterior samples. Slow but reliable.

- ▶ We used OMC and the (simpler) rejection ABC algorithm.
- Rejection ABC uses trial and error instead of optimisation to determine the posterior samples. Slow but reliable.
- Same distance function $d(\mathbf{x}, \mathbf{x}_o) = ||\Phi(\mathbf{x}) \Phi(\mathbf{x}_o)||_2$.

- ▶ We used OMC and the (simpler) rejection ABC algorithm.
- Rejection ABC uses trial and error instead of optimisation to determine the posterior samples. Slow but reliable.
- Same distance function $d(\mathbf{x}, \mathbf{x}_o) = ||\Phi(\mathbf{x}) \Phi(\mathbf{x}_o)||_2$.
- Summary statistics Φ: parameters θ̂ predicted by a neural network trained on images from the renderer with white light.

- ▶ We used OMC and the (simpler) rejection ABC algorithm.
- Rejection ABC uses trial and error instead of optimisation to determine the posterior samples. Slow but reliable.
- Same distance function $d(\mathbf{x}, \mathbf{x}_o) = ||\Phi(\mathbf{x}) \Phi(\mathbf{x}_o)||_2$.
- Summary statistics Φ: parameters θ̂ predicted by a neural network trained on images from the renderer with white light.
- ▶ Marginal joint posteriors for colours red (*c*₀) and green (*c*₁):



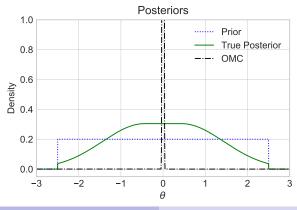
Michael U. Gutmann

Why did OMC fail?

- The OMC weights w_i = p(θ_i^{*}) * (det(J_i[⊤]J_i))^{-1/2} are unstable (ESS was 1.2!)
- det(J_i^TJ_i) ≈ 0 when the (approximate) likelihood function has nearly flat regions.

Why did OMC fail?

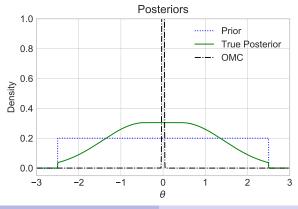
- The OMC weights w_i = p(θ_i^{*}) * (det(J_i[⊤]J_i))^{-1/2} are unstable (ESS was 1.2!)
- det(J_i[⊤]J_i) ≈ 0 when the (approximate) likelihood function has nearly flat regions.



Why did OMC fail?

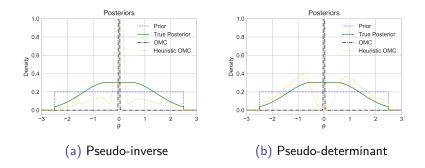
- The OMC weights w_i = p(θ_i^{*}) * (det(J_i[⊤]J_i))^{-1/2} are unstable (ESS was 1.2!)
- det($\mathbf{J}_i^{\mathsf{T}}\mathbf{J}_i$) ≈ 0 when the (approximate) likelihood function has nearly flat regions.

Note: stated OMC assumptions are not violated.



Stabilising the weights/matrices does not help

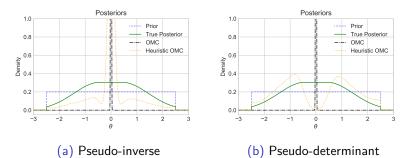
► Taking the pseudo-inverse or pseudo-determinant of J_i^TJ_i does not help.



Stabilising the weights/matrices does not help

- ► Taking the pseudo-inverse or pseudo-determinant of J_i^TJ_i does not help.
- The weights are not the real issue. The problem is more fundamental:

OMC uses a single point to represent an entire region where the likelihood is (nearly) constant.



Background: Optimisation Monte Carlo (OMC)

Contribution 1: An important failure mode of OMC

Contribution 2: Robust Optimisation Monte Carlo (ROMC)

(Ikonomov and Gutmann, arXiv:1904.00670, 2019)

- 1. Fixes OMC's failure case: It handles likelihood functions that are (nearly) flat on significant regions in parameter space.
- Works for general distance functions d(g(θ, u), x_o) and not only Euclidean distances between summary statistics. (condition dim(θ) ≤ dim(Φ(x)) disappears)
- 3. Does not require (approximate) derivatives, while OMC does.
- 4. Can be run as post-processing to OMC or from scratch.

The ROMC framework

ROMC is a framework for inference. It has three key steps:

1. Same as OMC but with general distances $d(\mathbf{x}, \mathbf{x}_o)$:

$$\mathbf{u}_i \sim p(\mathbf{u}), \qquad \mathbf{\theta}_i^* = rgmin_{\mathbf{\theta}} d(g(\mathbf{\theta}, \mathbf{u}_i), \mathbf{x}_o) \qquad (i=1, \dots n)$$

The ROMC framework

ROMC is a framework for inference. It has three key steps:

1. Same as OMC but with general distances $d(\mathbf{x}, \mathbf{x}_o)$:

$$\mathbf{u}_i \sim p(\mathbf{u}), \qquad \boldsymbol{\theta}_i^* = rgmin_{\boldsymbol{\theta}} d(g(\boldsymbol{\theta}, \mathbf{u}_i), \mathbf{x}_o) \qquad (i=1, \dots n')$$

2. Use the minimal distances $d_i^* = d(g(\theta_i^*, \mathbf{u}_i))$ to choose an acceptance threshold ϵ / keep the *n* best θ_i^* .

The ROMC framework

ROMC is a framework for inference. It has three key steps:

1. Same as OMC but with general distances $d(\mathbf{x}, \mathbf{x}_o)$:

$$\mathbf{u}_i \sim p(\mathbf{u}), \qquad \boldsymbol{\theta}_i^* = rgmin_{\boldsymbol{\theta}} d(g(\boldsymbol{\theta}, \mathbf{u}_i), \mathbf{x}_o) \qquad (i=1, \dots n')$$

- 2. Use the minimal distances $d_i^* = d(g(\theta_i^*, \mathbf{u}_i))$ to choose an acceptance threshold ϵ / keep the *n* best θ_i^* .
- 3. For each *i* where $d_i^* \leq \epsilon$, define a proposal distribution q_i on the "acceptance region" $C_{\epsilon}^i = \{\boldsymbol{\theta} : d(g(\boldsymbol{\theta}, \mathbf{u}_i), \mathbf{x}_o) \leq \epsilon\}.$

The ROMC framework

ROMC is a framework for inference. It has three key steps:

1. Same as OMC but with general distances $d(\mathbf{x}, \mathbf{x}_o)$:

$$\mathbf{u}_i \sim p(\mathbf{u}), \qquad \boldsymbol{\theta}_i^* = rgmin_{\boldsymbol{\theta}} d(g(\boldsymbol{\theta}, \mathbf{u}_i), \mathbf{x}_o) \qquad (i=1, \dots n')$$

- 2. Use the minimal distances $d_i^* = d(g(\theta_i^*, \mathbf{u}_i))$ to choose an acceptance threshold ϵ / keep the *n* best θ_i^* .
- 3. For each *i* where $d_i^* \leq \epsilon$, define a proposal distribution q_i on the "acceptance region" $C_{\epsilon}^i = \{ \boldsymbol{\theta} : d(g(\boldsymbol{\theta}, \mathbf{u}_i), \mathbf{x}_o) \leq \epsilon \}.$

Approximate posterior is represented by weighted samples θ_{ij} :

$$oldsymbol{ heta}_{ij} \sim oldsymbol{q}_i(oldsymbol{ heta}), \qquad w_{ij} = \mathbbm{1}_{\mathcal{C}_{\epsilon}^i}(oldsymbol{ heta}_{ij}) rac{p(oldsymbol{ heta}_{ij})}{oldsymbol{q}_i(oldsymbol{ heta}_{ij})} \qquad (i=1,\ldots,n; \ j=1,\ldots,m)$$

(General idea, see paper for details)

Using θ^{*}_i and the optimisation trajectory, we build a model of the acceptance regions Cⁱ_ϵ = {θ : d(g(θ, u_i), x_o) ≤ ϵ}

(General idea, see paper for details)

- Using θ^{*}_i and the optimisation trajectory, we build a model of the acceptance regions Cⁱ_ϵ = {θ : d(g(θ, u_i), x_o) ≤ ϵ}
- ► Simple but effective: model Cⁱ_e as a hypercube or ellipse and define q_i to be the uniform distribution on it.

(General idea, see paper for details)

- Using θ^{*}_i and the optimisation trajectory, we build a model of the acceptance regions Cⁱ_ϵ = {θ : d(g(θ, u_i), x_o) ≤ ϵ}
- ► Simple but effective: model Cⁱ_e as a hypercube or ellipse and define q_i to be the uniform distribution on it.
- Note: When computing the weight,

$$w_{ij} = \mathbb{1}_{\textit{C}^i_{\epsilon}}(\pmb{ heta}_{ij}) rac{p(\pmb{ heta}_{ij})}{q_i(\pmb{ heta}_{ij})}$$

the indicator function checks whether θ_{ij} is in the true acceptance region C_{ϵ}^{i} . \Rightarrow Some robustness to modelling errors.

(General idea, see paper for details)

- Using θ^{*}_i and the optimisation trajectory, we build a model of the acceptance regions Cⁱ_ϵ = {θ : d(g(θ, u_i), x_o) ≤ ϵ}
- ► Simple but effective: model Cⁱ_e as a hypercube or ellipse and define q_i to be the uniform distribution on it.
- Note: When computing the weight,

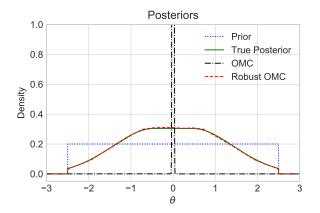
$$w_{ij} = \mathbb{1}_{\textit{C}^i_{\epsilon}}(\pmb{ heta}_{ij}) rac{p(\pmb{ heta}_{ij})}{q_i(\pmb{ heta}_{ij})}$$

the indicator function checks whether θ_{ij} is in the true acceptance region C_{ϵ}^{i} . \Rightarrow Some robustness to modelling errors.

► Check requires evaluating the distance d(g(θ, u_i), x_o) and can be omitted/approximated to accelerate the inference.

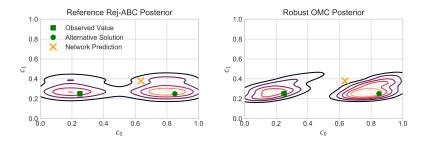
Results on the toy example

- Acceptance regions C_{ϵ}^{i} given by intervals on the line.
- ROMC handles the (nearly) flat likelihood function correctly.
- ROMC accurately represents uncertainty while OMC does not.



Results on the colour inference task

- Setup:
 - Optimisation via a gradient-free method (Bayesian optimisation with GP surrogate modelling)
 - Acceptance regions were modelled as ellipses (derived from the GP surrogate model)
- ROMC posterior matches reference posterior well.
- ▶ Effective sample size: 97% (vs. approx. 0.5% for OMC)



Theorem: Under the below assumptions, ROMC becomes equivalent to standard OMC as $\epsilon \rightarrow 0$.

Assumption 1. The distance $d(g(\theta, \mathbf{u}), \mathbf{x}_o)$ is given by the Euclidean distance between summary statistics $||\mathbf{f}(\theta, \mathbf{u}) - \Phi(\mathbf{x}_o)||$.

Assumption 2. The proposal distribution $q_i(\theta)$ is the uniform distribution on C_{ϵ}^i .

Assumption 3. The acceptance regions C_{ϵ}^{i} are approximated by the ellipsoid $C_{\epsilon}^{i} = \{\boldsymbol{\theta} : (\boldsymbol{\theta} - \boldsymbol{\theta}_{i}^{*})^{\mathsf{T}} \mathbf{J}_{i}^{\mathsf{T}} \mathbf{J}_{i} (\boldsymbol{\theta} - \boldsymbol{\theta}_{i}^{*}) \leq \epsilon\}$ where \mathbf{J}_{i} is the Jacobian matrix with columns $\partial \mathbf{f}(\boldsymbol{\theta}_{i}^{*}, \mathbf{u}_{i})/\partial \theta_{k}$.

Assumption 4. The matrix square root \mathbf{A}_i of $\mathbf{J}_i^{\top} \mathbf{J}_i$ is full rank, i.e. rank $(\mathbf{A}_i) = \dim(\theta)$.

Assumption 5. The prior $p(\theta)$ is constant on the acceptance regions C_{ϵ}^{i} .

Identified failure case is due to violation of Assumptions 3 and 4:

Assumption 3. The acceptance regions C_{ϵ}^{i} are approximated by the ellipsoid $C_{\epsilon}^{i} = \{\boldsymbol{\theta} : (\boldsymbol{\theta} - \boldsymbol{\theta}_{i}^{*})^{\mathsf{T}} \mathbf{J}_{i}^{\mathsf{T}} \mathbf{J}_{i} (\boldsymbol{\theta} - \boldsymbol{\theta}_{i}^{*}) \leq \epsilon\}$ where \mathbf{J}_{i} is the Jacobian matrix with columns $\partial \mathbf{f}(\boldsymbol{\theta}_{i}^{*}, \mathbf{u}_{i}) / \partial \theta_{k}$.

Assumption 4. The matrix square root \mathbf{A}_i of $\mathbf{J}_i^{\top} \mathbf{J}_i$ is full rank, i.e. rank $(\mathbf{A}_i) = \dim(\theta)$.

Identified failure case is due to violation of Assumptions 3 and 4:

Assumption 3. The acceptance regions C_{ϵ}^{i} are approximated by the ellipsoid $C_{\epsilon}^{i} = \{\boldsymbol{\theta} : (\boldsymbol{\theta} - \boldsymbol{\theta}_{i}^{*})^{\mathsf{T}} \mathbf{J}_{i}^{\mathsf{T}} \mathbf{J}_{i} (\boldsymbol{\theta} - \boldsymbol{\theta}_{i}^{*}) \leq \epsilon\}$ where \mathbf{J}_{i} is the Jacobian matrix with columns $\partial \mathbf{f}(\boldsymbol{\theta}_{i}^{*}, \mathbf{u}_{i}) / \partial \theta_{k}$.

Assumption 4. The matrix square root \mathbf{A}_i of $\mathbf{J}_i^{\top} \mathbf{J}_i$ is full rank, i.e. rank $(\mathbf{A}_i) = \dim(\boldsymbol{\theta})$.

For non-uniform priors, OMC then also risks violating Assumption 5: Assumption 5. The prior $p(\theta)$ is constant on the acceptance regions C_{ϵ}^{i} .

Paper available at: arXiv:1904.00670

Talk was on Bayesian inference for implicit models.

- ► Talk was on Bayesian inference for implicit models.
 - Implicit models: statistical models that are defined by a data generating process.

- ► Talk was on Bayesian inference for implicit models.
 - Implicit models: statistical models that are defined by a data generating process.
 - Optimisation Monte Carlo (OMC): Bayesian inference method that uses optimisation to increase computational efficiency.

- ► Talk was on Bayesian inference for implicit models.
 - Implicit models: statistical models that are defined by a data generating process.
 - Optimisation Monte Carlo (OMC): Bayesian inference method that uses optimisation to increase computational efficiency.
- We showed that OMC under-estimates posterior uncertainty by collapsing regions of near-constant likelihood into a point.

- Talk was on Bayesian inference for implicit models.
 - Implicit models: statistical models that are defined by a data generating process.
 - Optimisation Monte Carlo (OMC): Bayesian inference method that uses optimisation to increase computational efficiency.
- We showed that OMC under-estimates posterior uncertainty by collapsing regions of near-constant likelihood into a point.
- We proposed a robust generalisation of OMC, robust OMC, that explains and corrects this failure mode while maintaining OMC's benefits due to optimisation.