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Main messages

1. Optimisation Monte Carlo (OMC) is an existing method1 that
efficiently performs Bayesian inference with implicit models.

2. While efficient OMC under-estimates uncertainty by collapsing
regions of near-constant likelihood into a single point.

3. A robust generalisation, robust OMC, explains and corrects
this failure mode while maintaining OMC’s benefits.

1Meeds and Welling, NIPS 2015.
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Overall topic of the talk

I Bayesian parameter inference for implicit models where
1. the likelihood function is too costly to evaluate
2. exact sampling – simulating data from the model – is possible

I Importance: such models and inference problems occur widely
(evolutionary biology, neurosciences, health sciences, robotics,
computer vision, machine learning, . . .)
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Implicit models

(Diggle and Gratton, JRSS, 1982)

I Parametric statistical models specified by a data generating
mechanism g : (θ,u) 7→ x = g(θ,u)

I θ: parameters of interest
I u: nuisance parameters with distribution p(u)
I x: generated data

I The (deterministic) function g(θ,u) is generally not known in
closed form but implemented as computer code

I θ: input parameters
I u: random draws performed when running the code / seed of

the random number generator used
I x: output data generated by the code

I Other names: Simulator-based models, stochastic simulation
models, generative (latent-variable) models, . . .
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Bayesian inference for implicit models

I Task: Given
I observed data xo ,
I an implicit model g(θ,u), and
I a prior distribution on θ,

estimate the posterior p(θ|xo) / obtain approximate samples
from it.

I The deterministic function g : (θ,u) 7→ x = g(θ,u) and the
distribution p(u) define the conditional distribution p(x|θ)

I While well defined, evaluating p(x|θ) is generally intractable
→ likelihood function L(θ) = p(xo|θ) is intractable
→ Bayesian inference is difficult

I Drawing samples xi ∼ p(x|θ) is possible for implicit models
→ we can exploit this to perform Bayesian inference
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Bayesian inference for implicit models

I Research fields: approximate Bayesian computation (ABC),
likelihood-free inference, Bayesian indirect inference
(overviews: Sisson et al 2018, Lintusaari et al 2017, Gutmann and Corander 2016, Drovandi 2015, Marin et al 2012)

I ABC builds on the fact that samples from the posterior are
given by samples from the prior for which simulated data x are
close to the observed data xo.

I Two core ingredients of ABC algorithms:
1. a distance function d(x, xo) between x and xo

2. a search method to efficiently find such samples from the prior
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Optimisation Monte Carlo (Meeds and Welling, NIPS 2015)

I Ingredients:
I Distance d(x, xo) = ||Φ(x)− Φ(xo)||2 with known Φ.
I Search uses optimisation, which leads to increased efficiency.

I Assumptions:
I (approximate) derivative of Φ(x) = Φ(g(θ,u)) = f(θ,u) wrt θ

is available
I dim(θ) ≤ dim(Φ(x))

I Algorithm to generate n weighted samples θ∗
i :

1: for i ← 1 to n do . Can be fully parallelised
2: ui ∼ p(u) . Set seed
3: θ∗

i = arg min
θ

||f(θ,ui )− Φ(xo)|| . Optimisation

4: Compute Ji with columns ∂f(θ∗
i ,ui )/∂θk

5: Compute wi = p(θ∗
i ) ∗ (det(Ji

>Ji ))−1/2

6: Accept θ∗
i as posterior sample with weight wi

(Note that samples with too large final distances may be omitted.)
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Application: Vision as inverse graphics

I Implicit model given by a graphics renderer
I We used Open Differential Renderer (Loper and Black, 2014)

20 parameters:
Shape
Rotation/Pose
Illumination
Colour

Renderer
(forward problem)



Inference
(inverse problem)
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Why Bayesian inference and not point-estimation?

I In some cases, quantifying uncertainty is very important
I The inverse problem may have multiple solutions (posterior

may be multi-modal)
Example considered: Infer object colour when external lighting
conditions are unknown.

(a) Gray teapot under red light. (b) Red teapot under white light.
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Results for colour inference task

I We used OMC and the (simpler) rejection ABC algorithm.
I Rejection ABC uses trial and error instead of optimisation to

determine the posterior samples. Slow but reliable.
I Same distance function d(x, xo) = ||Φ(x)− Φ(xo)||2.
I Summary statistics Φ: parameters θ̂ predicted by a neural

network trained on images from the renderer with white light.
I Marginal joint posteriors for colours red (c0) and green (c1):

0.0 0.2 0.4 0.6 0.8 1.0
c0

0.0

0.2

0.4

0.6

0.8

1.0

c 1

Reference Rej-ABC Posterior

Observed Value
Alternative Solution
Network Prediction

0.0 0.2 0.4 0.6 0.8 1.0
c0

0.0

0.2

0.4

0.6

0.8

1.0

c 1

OMC Posterior

Michael U. Gutmann Robust OMC 14 / 25



Why did OMC fail?

I The OMC weights wi = p(θ∗
i ) ∗ (det(Ji

>Ji ))−1/2 are unstable
(ESS was 1.2!)

I det(Ji
>Ji ) ≈ 0 when the (approximate) likelihood function has

nearly flat regions.
Note: stated OMC assumptions are not violated.
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Stabilising the weights/matrices does not help

I Taking the pseudo-inverse or pseudo-determinant of Ji
>Ji does

not help.
I The weights are not the real issue. The problem is more

fundamental:
OMC uses a single point to represent an entire region where
the likelihood is (nearly) constant.
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(a) Pseudo-inverse
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Key properties of ROMC

(Ikonomov and Gutmann, arXiv:1904.00670, 2019)

1. Fixes OMC’s failure mode: It handles likelihood functions that
are (nearly) flat on significant regions in parameter space.

2. Works for general distance functions d(g(θ,u), xo) and not
only Euclidean distances between summary statistics.
(condition dim(θ) ≤ dim(Φ(x)) disappears)

3. Does not require (approximate) derivatives, while OMC does.

4. Can be run as post-processing to OMC or from scratch.
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The ROMC framework

ROMC is a framework for inference. It has three key steps:
1. Same as OMC but with general distances d(x, xo):

ui ∼ p(u), θ∗
i = arg min

θ
d(g(θ,ui ), xo) (i=1, . . . n’)

2. Use the minimal distances d∗
i = d(g(θ∗

i ,ui )) to choose an
acceptance threshold ε / keep the n best θ∗

i .
3. For each i where d∗

i ≤ ε, define a proposal distribution qi on
the “acceptance region” C i

ε = {θ : d(g(θ,ui ), xo) ≤ ε}.

Approximate posterior is represented by weighted samples θij :

θij ∼ qi (θ), wij = 1C i
ε
(θij)

p(θij)
qi (θij)

(i=1, . . . n; j=1, . . . , m)
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Construction of the proposal distribution

(General idea, see paper for details)
I Using θ∗

i and the optimisation trajectory, we build a model of
the acceptance regions C i

ε = {θ : d(g(θ,ui ), xo) ≤ ε}
I Simple but effective: model C i

ε as a hypercube or ellipse and
define qi to be the uniform distribution on it.

I Note: When computing the weight,

wij = 1C i
ε
(θij)

p(θij)
qi (θij)

the indicator function checks whether θij is in the true
acceptance region C i

ε . ⇒ Some robustness to modelling errors.
I Check requires evaluating the distance d(g(θ,ui ), xo) and can

be omitted/approximated to accelerate the inference.
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Results on the toy example

I Acceptance regions C i
ε given by intervals on the line.

I ROMC handles the (nearly) flat likelihood function correctly.
I ROMC accurately represents uncertainty while OMC does not.

3 2 1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

Posteriors

Prior
True Posterior
OMC
Robust OMC

Michael U. Gutmann Robust OMC 21 / 25



Results on the colour inference task

I Setup:
I Optimisation via a gradient-free method (Bayesian

optimisation with GP surrogate modelling)
I Acceptance regions were modelled as ellipses (derived from the

GP surrogate model)
I ROMC posterior matches reference posterior well.
I Effective sample size: 97% (vs. approx. 0.5% for OMC)
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ROMC generalises OMC (see paper for the proof)

Theorem: Under the below assumptions, ROMC becomes
equivalent to standard OMC as ε→ 0.

Assumption 1. The distance d(g(θ,u), xo) is given by the
Euclidean distance between summary statistics ||f(θ,u)−Φ(xo)||2.
Assumption 2. The proposal distribution qi (θ) is the uniform
distribution on C i

ε .
Assumption 3. The acceptance regions C i

ε are approximated by
the ellipsoids C i

ε = {θ : (θ − θ∗
i )>Ji

>Ji (θ − θ∗
i ) ≤ ε} where Ji is the

Jacobian matrix with columns ∂f(θ∗
i ,ui )/∂θk .

Assumption 4. The matrix square root Ai of Ji
>Ji is full rank, i.e.

rank(Ai ) = dim(θ).
Assumption 5. The prior p(θ) is constant on the acceptance
regions C i

ε .
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Explanation of OMC’s failure mode

Identified failure mode is due to violation of Assumptions 3 and 4
when the likelihood is nearly flat in a region of the parameter space:

Assumption 3. The acceptance regions C i
ε are approximated by

the ellipsoids C i
ε = {θ : (θ − θ∗

i )>Ji
>Ji (θ − θ∗

i ) ≤ ε} where Ji is the
Jacobian matrix with columns ∂f(θ∗

i ,ui )/∂θk .
Assumption 4. The matrix square root Ai of Ji

>Ji is full rank, i.e.
rank(Ai ) = dim(θ).

For non-uniform priors, Assumption 5 may also not hold:
Assumption 5. The prior p(θ) is constant on the acceptance regions C i

ε.
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Conclusions

Paper available at: arXiv:1904.00670

I Talk was on Bayesian inference for implicit models.
I Implicit models: statistical models that are defined by a data

generating process.
I Optimisation Monte Carlo (OMC): Bayesian inference method

that uses optimisation to increase computational efficiency.
I We showed that OMC under-estimates posterior uncertainty

by collapsing regions of near-constant likelihood into a point.
I We proposed a robust generalisation of OMC, robust OMC,

that explains and corrects this failure mode while maintaining
OMC’s benefits due to optimisation.
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