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Key messages

1. Optimisation Monte Carlo (OMC) is an existing method for
efficient Bayesian inference with implicit models.

2. While efficient OMC under-estimates uncertainty by collapsing
regions of near-constant likelihood into a single point.

3. A robust generalisation, robust OMC, explains and corrects
this failure mode while maintaining OMC’s benefits.
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Problem considered

Given
I a parametric model p(x|θ) whose likelihood function is

intractable but from which we can generate samples

x ∼ p(x|θ)

I a prior distribution p(θ) on θ

I observed data xo

estimate p(θ|xo) / obtain approximate samples from it.
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Assumptions

I The parametric model p(x|θ) is implicitly defined by a
simulator/generative process g(θ,u)

x ∼ p(x|θ) ⇐⇒ x = g(θ,u), u ∼ p(u)

I g(θ,u) is a black-box computer programme taking θ as input.
Randomness is represented by u ∼ p(u).

I We are provided with a distance (discrepancy) function
d(x, xo) between simulated data x and observed data xo.
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The distance function

I There are methods for likelihood-free inference that do not
require a distance function, e.g. by
I modelling the likelihood (e.g. Wood, 2010; Price et al, 2017; Papamakarios 2019)

I framing posterior estimation as a ratio estimation problem

p(θ|x) = p(x|θ)
p(x) p(θ)

“Likelihood-free inference by ratio estimation” (LFIRE)
(Thomas et al, 2016, 2020; Hermans et al 2020)

I Optimisation Monte Carlo requires a distance function

d(x, xo) = ||Φ(x)− Φ(xo)||2

where Φ(.) are known summary statistics.
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Optimisation Monte Carlo (Meeds and Welling, NIPS 2015)

I Main property: uses optimisation to increase efficiency.

I Assumptions:
I (approximate) derivative of Φ(x) = Φ(g(θ,u)) = f(θ,u) wrt θ

is available
I dim(θ) ≤ dim(Φ(x))

I Algorithm to generate n weighted samples θ∗i :
1: for i ← 1 to n do
2: ui ∼ p(u) . Set seed
3: θ∗i = arg min

θ
||f(θ,ui )− Φ(xo)||2 . Optimisation

4: Compute Ji with columns ∂f(θ∗i ,ui )/∂θk
5: Compute wi = p(θ∗i ) ∗ (det(Ji

>Ji ))−1/2
6: Accept θ∗i as posterior sample with weight wi

(Note that samples with too large final distances may be omitted.)
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Intuition

Intuition for weight formula wi = p(θ∗i ) ∗ (det(Ji
>Ji ))−1/2

I Volume of the region around a posterior sample θ∗i containing
points that should also be considered posterior samples.

I (det(Ji
>Ji ))−1/2 is proportional to the volume of an ellipse

defined by Ji
>Ji .
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Application to inverse graphics

I Implicit model/simulator given by a graphics renderer
I We used Open Differential Renderer (Loper and Black, 2014)

20 parameters:
Shape
Rotation/Pose
Illumination
Colour

Renderer
(forward problem)



Inference
(inverse problem)
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Application to inverse graphics

I Example considered: Infer colour of the object when external
lighting conditions are unknown.

I The inverse problem may have multiple solutions (multi-modal
posterior)

(a) Gray teapot under red light. (b) Red teapot under white light.
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Results for colour inference task

I We used OMC and the (simpler) rejection ABC algorithm.

I Rejection ABC relies on trial and error instead of optimisation
to determine the posterior samples. Slow but reliable.

I Same distance function d(x, xo).
I Posteriors for two colours c0 and c1 (red and green):
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Why did OMC fail?
I The OMC weights wi = p(θ∗i ) ∗ (det(Ji

>Ji ))−1/2 are unstable
(ESS was 1.2!)

I This happens when the (approximate) likelihood function has
nearly flat regions so that det(Ji

>Ji ) ≈ 0.

Note: stated OMC assumptions are not violated.
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Stabilising the weights/matrices does not help

I Taking the pseudo-inverse or pseudo-determinant of Ji
>Ji does

not help.

I The weights are not the real issue. The problem is more
fundamental:
OMC uses a single point to represent an entire region where
the likelihood is (nearly) constant.
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Key properties of ROMC

(Ikonomov and Gutmann, AISTATS 2020)

1. ROMC generalises OMC.

2. Fixes OMC’s failure case: It handles likelihood functions that
are (nearly) flat on significant regions in parameter space.

3. Works for general distance functions d(g(θ,u), xo) and not
only Euclidean distances between summary statistics.
(condition dim(θ) ≤ dim(Φ(x)) disappears)

4. Does not require (approximate) derivatives, while OMC does.

5. Can be run as post-processing to OMC or from scratch.
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The ROMC framework
ROMC is a framework for inference. It has three key steps:
1. For i = 1, . . . n′, sample ui ∼ p(u) and determine

θ∗i = arg min
θ

d(g(θ,ui ), xo)

Same as in OMC but we can use general distances d(x, xo).

2. Use the minimal distances d∗i = d(g(θ∗i ,ui )) to choose an
acceptance threshold ε / keep the n best θ∗i .

3. For each i where d∗i ≤ ε, define a proposal distribution qi on
the “acceptance region” C i

ε = {θ : d(g(θ,ui ), xo) ≤ ε}

Approximate posterior is represented by weighted samples θij :

θij ∼ qi (θ) wij = 1C i
ε
(θij)

p(θij)
qi (θij)

(i=1, . . . n; j=1, . . . , m)
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Construction of the proposal distribution

(General idea, see paper for details)

I Using θ∗i and the optimisation trajectory, we build a model of
the acceptance regions C i

ε = {θ : d(g(θ,ui ), xo) ≤ ε}

I Simple but effective: model C i
ε as a hypercube or ellipse and

define qi to be the uniform distribution on it.
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Results on the toy example
I Acceptance regions C i

ε given by intervals on the line.
I ROMC handles the (nearly) flat likelihood function correctly.
I ROMC accurately represents uncertainty while OMC does not.
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Results on the colour inference task

I Setup:
I Optimisation via a gradient-free method (Bayesian

optimisation with GP surrogate modelling)
I Acceptance regions were modelled as ellipses (derived from the

GP surrogate model)
I ROMC posterior matches reference posterior well.
I Effective sample size: 97% (vs. approx. 0.5% for OMC)
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Conclusions

I Talk was on Bayesian inference for implicit models.

I Implicit models: models that are defined by a stochastic
simulator/data generating process.

I Optimisation Monte Carlo (OMC): Bayesian inference method
that uses optimisation to increase computational efficiency.

I We showed that OMC under-estimates posterior uncertainty
by collapsing regions of near-constant likelihood into a point.

I We proposed a robust generalisation of OMC, robust OMC,
that explains and corrects this failure mode while maintaining
OMC’s benefits due to optimisation.
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Code

I ROMC has been added to the software package “ELFI: Engine
for Likelihood-Free Inference”
https://github.com/elfi-dev/elfi

I Link to collab notebooks available through
Vasileios Gkolemis, Michael Gutmann
Extending the statistical software package Engine for
Likelihood-Free Inference
https://arxiv.org/abs/2011.03977
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ROMC generalises OMC (see paper for the proof)

Theorem: Under the below assumptions, ROMC becomes
equivalent to standard OMC as ε→ 0.

Assumption 1. The distance d(g(θ,u), xo) is given by the
Euclidean distance between summary statistics ||f(θ,u)− Φ(xo)||.
Assumption 2. The proposal distribution qi (θ) is the uniform
distribution on C i

ε .
Assumption 3. The acceptance regions C i

ε are approximated by
the ellipsoid C i

ε = {θ : (θ − θ∗i )>Ji
>Ji (θ − θ∗i ) ≤ ε} where Ji is the

Jacobian matrix with columns ∂f(θ∗i ,ui )/∂θk .
Assumption 4. The matrix square root Ai of Ji

>Ji is full rank, i.e.
rank(Ai ) = dim(θ).
Assumption 5. The prior p(θ) is constant on the acceptance
regions C i

ε .

Michael U. Gutmann Robust OMC 1 / 3



Explanation of the failure case

Identified failure case is due to violation of Assumptions 3 and 4:

Assumption 3. The acceptance regions C i
ε are approximated by

the ellipsoid C i
ε = {θ : (θ − θ∗i )>Ji

>Ji (θ − θ∗i ) ≤ ε} where Ji is the
Jacobian matrix with columns ∂f(θ∗i ,ui )/∂θk .
Assumption 4. The matrix square root Ai of Ji

>Ji is full rank, i.e.
rank(Ai ) = dim(θ).

For non-uniform priors, one then also risks violating Assumption 5:
Assumption 5. The prior p(θ) is constant on the acceptance regions C i

ε.
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Explanation of the failure case

I OMC uses only information at θ∗i to approximate C i
ε .

I ROMC in contrast uses information in a non-negligible
neighbourhood around θ∗i to approximate C i

ε .

(Figure from Meeds and Welling, NIPS 2015)
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