Robust Optimisation Monte Carlo

Michael U. Gutmann

michael.gutmann@ed.ac.uk

School of Informatics, University of Edinburgh

2 March 2021

Paper:

Borislav Ikonomov and Michael U. Gutmann Robust Optimisation Monte Carlo AISTATS 2020

Software:

Vasileios Gkolemis, Michael Gutmann Extending the statistical software package Engine for Likelihood-Free Inference https://arxiv.org/abs/2011.03977

- 1. Optimisation Monte Carlo (OMC) is an existing method for efficient Bayesian inference with implicit models.
- 2. While efficient OMC under-estimates uncertainty by collapsing regions of near-constant likelihood into a single point.
- 3. A robust generalisation, robust OMC, explains and corrects this failure mode while maintaining OMC's benefits.

Background: Optimisation Monte Carlo

Contribution 1: A failure mode of Optimisation Monte Carlo

Contribution 2: Robust Optimisation Monte Carlo (ROMC)

Background: Optimisation Monte Carlo

Contribution 1: A failure mode of Optimisation Monte Carlo

Contribution 2: Robust Optimisation Monte Carlo (ROMC)

Given

 a parametric model p(x|θ) whose likelihood function is intractable but from which we can generate samples

 $\mathbf{x} \sim p(\mathbf{x}|m{ heta})$

- ▶ a prior distribution $p(\theta)$ on θ
- observed data x_o

estimate $p(\theta | \mathbf{x}_o)$ / obtain approximate samples from it.

The parametric model p(x|θ) is implicitly defined by a simulator/generative process g(θ, u)

$$\mathbf{x} \sim p(\mathbf{x}|oldsymbol{ heta}) \qquad \Longleftrightarrow \qquad \mathbf{x} = g(oldsymbol{ heta}, \mathbf{u}), \quad \mathbf{u} \sim p(\mathbf{u})$$

- ► $g(\theta, \mathbf{u})$ is a black-box computer programme taking θ as input. Randomness is represented by $\mathbf{u} \sim p(\mathbf{u})$.
- We are provided with a distance (discrepancy) function d(x, x_o) between simulated data x and observed data x_o.

The distance function

There are methods for likelihood-free inference that do not require a distance function, e.g. by

- modelling the likelihood (e.g. Wood, 2010; Price et al, 2017; Papamakarios 2019)
- framing posterior estimation as a ratio estimation problem

$$p(oldsymbol{ heta}|\mathbf{x}) = rac{p(\mathbf{x}|oldsymbol{ heta})}{p(\mathbf{x})} p(oldsymbol{ heta})$$

"Likelihood-free inference by ratio estimation" (LFIRE)

(Thomas et al, 2016, 2020; Hermans et al 2020)

The distance function

There are methods for likelihood-free inference that do not require a distance function, e.g. by

- modelling the likelihood (e.g. Wood, 2010; Price et al, 2017; Papamakarios 2019)
- framing posterior estimation as a ratio estimation problem

$$p(\boldsymbol{ heta}|\mathbf{x}) = rac{p(\mathbf{x}|m{ heta})}{p(\mathbf{x})}p(m{ heta})$$

"Likelihood-free inference by ratio estimation" (LFIRE) (Thomas et al, 2016, 2020; Hermans et al 2020)

Optimisation Monte Carlo requires a distance function

$$d(\mathbf{x}, \mathbf{x}_o) = ||\Phi(\mathbf{x}) - \Phi(\mathbf{x}_o)||_2$$

where $\Phi(.)$ are known summary statistics.

Main property: uses optimisation to increase efficiency.

Optimisation Monte Carlo (Meeds and Welling, NIPS 2015)

- Main property: uses optimisation to increase efficiency.
- Assumptions:
 - (approximate) derivative of Φ(x) = Φ(g(θ, u)) = f(θ, u) wrt θ is available
 - $\dim(\theta) \leq \dim(\Phi(\mathbf{x}))$

- Main property: uses optimisation to increase efficiency.
- Assumptions:
 - (approximate) derivative of Φ(x) = Φ(g(θ, u)) = f(θ, u) wrt θ is available
 - $\dim(\theta) \leq \dim(\Phi(\mathbf{x}))$
- Algorithm to generate n weighted samples θ^{*}_i:

1: for
$$i \leftarrow 1$$
 to n do
2: $\mathbf{u}_i \sim p(\mathbf{u})$ \triangleright Set seed
3: $\theta_i^* = \arg\min_{\theta} ||\mathbf{f}(\theta, \mathbf{u}_i) - \Phi(\mathbf{x}_o)||_2$ \triangleright Optimisation
4: Compute \mathbf{J}_i with columns $\partial \mathbf{f}(\theta_i^*, \mathbf{u}_i) / \partial \theta_k$
5: Compute $w_i = p(\theta_i^*) * (\det(\mathbf{J}_i^\top \mathbf{J}_i))^{-1/2}$
6: Accept θ_i^* as posterior sample with weight w_i

(Note that samples with too large final distances may be omitted.)

Intuition for weight formula $w_i = p(\boldsymbol{\theta}_i^*) * (\det(\mathbf{J}_i^{\mathsf{T}}\mathbf{J}_i))^{-1/2}$

- Volume of the region around a posterior sample θ^{*}_i containing points that should also be considered posterior samples.
- (det(J_i[⊤]J_i))^{-1/2} is proportional to the volume of an ellipse defined by J_i[⊤]J_i.

Background: Optimisation Monte Carlo

Contribution 1: A failure mode of Optimisation Monte Carlo

Contribution 2: Robust Optimisation Monte Carlo (ROMC)

Application to inverse graphics

- Implicit model/simulator given by a graphics renderer
- ► We used Open Differential Renderer (Loper and Black, 2014)

20 parameters: Shape Rotation/Pose Illumination Colour Renderer

(forward problem)

1

Inference

(inverse problem)

Robust OMC

Application to inverse graphics

- Example considered: Infer colour of the object when external lighting conditions are unknown.
- The inverse problem may have multiple solutions (multi-modal posterior)

(a) Gray teapot under red light.

(b) Red teapot under white light.

▶ We used OMC and the (simpler) rejection ABC algorithm.

- ▶ We used OMC and the (simpler) rejection ABC algorithm.
- Rejection ABC relies on trial and error instead of optimisation to determine the posterior samples. Slow but reliable.

- We used OMC and the (simpler) rejection ABC algorithm.
- Rejection ABC relies on trial and error instead of optimisation to determine the posterior samples. Slow but reliable.
- Same distance function $d(\mathbf{x}, \mathbf{x}_o)$.

- We used OMC and the (simpler) rejection ABC algorithm.
- Rejection ABC relies on trial and error instead of optimisation to determine the posterior samples. Slow but reliable.
- Same distance function $d(\mathbf{x}, \mathbf{x}_o)$.
- ▶ Posteriors for two colours *c*⁰ and *c*¹ (red and green):

Why did OMC fail?

- The OMC weights w_i = p(θ^{*}_i) * (det(J^T_iJ_i))^{-1/2} are unstable (ESS was 1.2!)
- This happens when the (approximate) likelihood function has nearly flat regions so that det(J_i[⊤]J_i) ≈ 0.

Why did OMC fail?

- The OMC weights w_i = p(θ_i^{*}) * (det(J_i[⊤]J_i))^{-1/2} are unstable (ESS was 1.2!)
- This happens when the (approximate) likelihood function has nearly flat regions so that det(J_i[⊤]J_i) ≈ 0.

Why did OMC fail?

- The OMC weights w_i = p(θ_i^{*}) * (det(J_i[⊤]J_i))^{-1/2} are unstable (ESS was 1.2!)
- This happens when the (approximate) likelihood function has nearly flat regions so that det(J_i[⊤]J_i) ≈ 0.
 Note: stated OMC assumptions are not violated.

Note: stated OMC assumptions are not violated.

Stabilising the weights/matrices does not help

 \blacktriangleright Taking the pseudo-inverse or pseudo-determinant of $\mathbf{J}_i^{\dagger} \mathbf{J}_i$ does not help.

(b) Pseudo-determinant

Stabilising the weights/matrices does not help

- ► Taking the pseudo-inverse or pseudo-determinant of J^T_iJ_i does not help.
- The weights are not the real issue. The problem is more fundamental:

OMC uses a single point to represent an entire region where the likelihood is (nearly) constant.

(a) Pseudo-inverse

(b) Pseudo-determinant

Background: Optimisation Monte Carlo

Contribution 1: A failure mode of Optimisation Monte Carlo

Contribution 2: Robust Optimisation Monte Carlo (ROMC)

(Ikonomov and Gutmann, AISTATS 2020)

- 1. ROMC generalises OMC.
- 2. Fixes OMC's failure case: It handles likelihood functions that are (nearly) flat on significant regions in parameter space.
- Works for general distance functions d(g(θ, u), x_o) and not only Euclidean distances between summary statistics. (condition dim(θ) ≤ dim(Φ(x)) disappears)
- 4. Does not require (approximate) derivatives, while OMC does.
- 5. Can be run as post-processing to OMC or from scratch.

ROMC is a framework for inference. It has three key steps: 1. For i = 1, ..., n', sample $\mathbf{u}_i \sim p(\mathbf{u})$ and determine

$$oldsymbol{ heta}_i^* = rgmin_{oldsymbol{ heta}} d(g(oldsymbol{ heta}, \mathbf{u}_i), \mathbf{x}_o)$$

Same as in OMC but we can use general distances $d(\mathbf{x}, \mathbf{x}_o)$.

ROMC is a framework for inference. It has three key steps:

1. For i = 1, ..., n', sample $\mathbf{u}_i \sim p(\mathbf{u})$ and determine

$$oldsymbol{ heta}_i^* = rgmin_{oldsymbol{ heta}} d(g(oldsymbol{ heta}, \mathbf{u}_i), \mathbf{x}_o)$$

Same as in OMC but we can use general distances $d(\mathbf{x}, \mathbf{x}_o)$.

2. Use the minimal distances $d_i^* = d(g(\theta_i^*, \mathbf{u}_i))$ to choose an acceptance threshold ϵ / keep the *n* best θ_i^* .

ROMC is a framework for inference. It has three key steps:

1. For i = 1, ..., n', sample $\mathbf{u}_i \sim p(\mathbf{u})$ and determine

$$oldsymbol{ heta}_i^* = rgmin_{oldsymbol{ heta}} d(g(oldsymbol{ heta}, \mathbf{u}_i), \mathbf{x}_o)$$

Same as in OMC but we can use general distances $d(\mathbf{x}, \mathbf{x}_o)$.

- 2. Use the minimal distances $d_i^* = d(g(\theta_i^*, \mathbf{u}_i))$ to choose an acceptance threshold ϵ / keep the *n* best θ_i^* .
- 3. For each *i* where $d_i^* \leq \epsilon$, define a proposal distribution q_i on the "acceptance region" $C_{\epsilon}^i = \{\boldsymbol{\theta} : d(g(\boldsymbol{\theta}, \mathbf{u}_i), \mathbf{x}_o) \leq \epsilon\}$

ROMC is a framework for inference. It has three key steps:

1. For i = 1, ..., n', sample $\mathbf{u}_i \sim p(\mathbf{u})$ and determine

$$oldsymbol{ heta}_i^* = rgmin_{oldsymbol{ heta}} d(g(oldsymbol{ heta}, \mathbf{u}_i), \mathbf{x}_o)$$

Same as in OMC but we can use general distances $d(\mathbf{x}, \mathbf{x}_o)$.

- 2. Use the minimal distances $d_i^* = d(g(\theta_i^*, \mathbf{u}_i))$ to choose an acceptance threshold ϵ / keep the *n* best θ_i^* .
- 3. For each *i* where $d_i^* \leq \epsilon$, define a proposal distribution q_i on the "acceptance region" $C_{\epsilon}^i = \{\boldsymbol{\theta} : d(g(\boldsymbol{\theta}, \mathbf{u}_i), \mathbf{x}_o) \leq \epsilon\}$

Approximate posterior is represented by weighted samples θ_{ij} :

$$oldsymbol{ heta}_{ij} \sim q_i(oldsymbol{ heta}) \qquad w_{ij} = \mathbbm{1}_{C_{\epsilon}^i}(oldsymbol{ heta}_{ij}) rac{p(oldsymbol{ heta}_{ij})}{q_i(oldsymbol{ heta}_{ij})} \qquad (i=1,\ldots,i; \ j=1,\ldots,m)$$

(General idea, see paper for details)

- Using θ^{*}_i and the optimisation trajectory, we build a model of the acceptance regions Cⁱ_ϵ = {θ : d(g(θ, u_i), x_o) ≤ ϵ}
- Simple but effective: model Cⁱ_e as a hypercube or ellipse and define q_i to be the uniform distribution on it.

Results on the toy example

- Acceptance regions C_{ϵ}^{i} given by intervals on the line.
- ROMC handles the (nearly) flat likelihood function correctly.
- ROMC accurately represents uncertainty while OMC does not.

Results on the colour inference task

- Setup:
 - Optimisation via a gradient-free method (Bayesian optimisation with GP surrogate modelling)
 - Acceptance regions were modelled as ellipses (derived from the GP surrogate model)
- ROMC posterior matches reference posterior well.
- ▶ Effective sample size: 97% (vs. approx. 0.5% for OMC)

Talk was on Bayesian inference for implicit models.

► Talk was on Bayesian inference for implicit models.

Implicit models: models that are defined by a stochastic simulator/data generating process.

Conclusions

► Talk was on Bayesian inference for implicit models.

- Implicit models: models that are defined by a stochastic simulator/data generating process.
- Optimisation Monte Carlo (OMC): Bayesian inference method that uses optimisation to increase computational efficiency.

Conclusions

Talk was on Bayesian inference for implicit models.

- Implicit models: models that are defined by a stochastic simulator/data generating process.
- Optimisation Monte Carlo (OMC): Bayesian inference method that uses optimisation to increase computational efficiency.
- We showed that OMC under-estimates posterior uncertainty by collapsing regions of near-constant likelihood into a point.

Conclusions

- Talk was on Bayesian inference for implicit models.
 - Implicit models: models that are defined by a stochastic simulator/data generating process.
 - Optimisation Monte Carlo (OMC): Bayesian inference method that uses optimisation to increase computational efficiency.
- We showed that OMC under-estimates posterior uncertainty by collapsing regions of near-constant likelihood into a point.
- We proposed a robust generalisation of OMC, robust OMC, that explains and corrects this failure mode while maintaining OMC's benefits due to optimisation.

- ROMC has been added to the software package "ELFI: Engine for Likelihood-Free Inference" https://github.com/elfi-dev/elfi
- Link to collab notebooks available through Vasileios Gkolemis, Michael Gutmann Extending the statistical software package Engine for Likelihood-Free Inference https://arxiv.org/abs/2011.03977

Theorem: Under the below assumptions, ROMC becomes equivalent to standard OMC as $\epsilon \rightarrow 0.$

Assumption 1. The distance $d(g(\theta, \mathbf{u}), \mathbf{x}_o)$ is given by the Euclidean distance between summary statistics $||\mathbf{f}(\theta, \mathbf{u}) - \Phi(\mathbf{x}_o)||$.

Assumption 2. The proposal distribution $q_i(\theta)$ is the uniform distribution on C_{ϵ}^i .

Assumption 3. The acceptance regions C_{ϵ}^{i} are approximated by the ellipsoid $C_{\epsilon}^{i} = \{\boldsymbol{\theta} : (\boldsymbol{\theta} - \boldsymbol{\theta}_{i}^{*})^{\mathsf{T}} \mathbf{J}_{i}^{\mathsf{T}} \mathbf{J}_{i} (\boldsymbol{\theta} - \boldsymbol{\theta}_{i}^{*}) \leq \epsilon\}$ where \mathbf{J}_{i} is the Jacobian matrix with columns $\partial \mathbf{f}(\boldsymbol{\theta}_{i}^{*}, \mathbf{u}_{i})/\partial \theta_{k}$.

Assumption 4. The matrix square root \mathbf{A}_i of $\mathbf{J}_i^{\top} \mathbf{J}_i$ is full rank, i.e. rank $(\mathbf{A}_i) = \dim(\theta)$.

Assumption 5. The prior $p(\theta)$ is constant on the acceptance regions C_{ϵ}^{i} .

Identified failure case is due to violation of Assumptions 3 and 4:

Assumption 3. The acceptance regions C_{ϵ}^{i} are approximated by the ellipsoid $C_{\epsilon}^{i} = \{\boldsymbol{\theta} : (\boldsymbol{\theta} - \boldsymbol{\theta}_{i}^{*})^{\mathsf{T}} \mathbf{J}_{i}^{\mathsf{T}} \mathbf{J}_{i} (\boldsymbol{\theta} - \boldsymbol{\theta}_{i}^{*}) \leq \epsilon\}$ where \mathbf{J}_{i} is the Jacobian matrix with columns $\partial \mathbf{f}(\boldsymbol{\theta}_{i}^{*}, \mathbf{u}_{i}) / \partial \theta_{k}$.

Assumption 4. The matrix square root \mathbf{A}_i of $\mathbf{J}_i^{\top} \mathbf{J}_i$ is full rank, i.e. rank $(\mathbf{A}_i) = \dim(\theta)$.

Identified failure case is due to violation of Assumptions 3 and 4:

Assumption 3. The acceptance regions C_{ϵ}^{i} are approximated by the ellipsoid $C_{\epsilon}^{i} = \{\boldsymbol{\theta} : (\boldsymbol{\theta} - \boldsymbol{\theta}_{i}^{*})^{\mathsf{T}} \mathbf{J}_{i}^{\mathsf{T}} \mathbf{J}_{i} (\boldsymbol{\theta} - \boldsymbol{\theta}_{i}^{*}) \leq \epsilon\}$ where \mathbf{J}_{i} is the Jacobian matrix with columns $\partial \mathbf{f}(\boldsymbol{\theta}_{i}^{*}, \mathbf{u}_{i}) / \partial \theta_{k}$.

Assumption 4. The matrix square root \mathbf{A}_i of $\mathbf{J}_i^{\top} \mathbf{J}_i$ is full rank, i.e. rank $(\mathbf{A}_i) = \dim(\theta)$.

For non-uniform priors, one then also risks violating Assumption 5: Assumption 5. The prior $p(\theta)$ is constant on the acceptance regions C_{ϵ}^{i} .

Explanation of the failure case

- OMC uses only information at θ_i^* to approximate C_{ϵ}^i .
- ROMC in contrast uses information in a non-negligible neighbourhood around θ^{*}_i to approximate Cⁱ_ε.

