Robust Optimisation Monte Carlo

Michael U. Gutmann

<michael.gutmann@ed.ac.uk>

School of Informatics, University of Edinburgh

2 March 2021

Paper:

Borislav Ikonomov and Michael U. Gutmann Robust Optimisation Monte Carlo AISTATS 2020

Software:

Vasileios Gkolemis, Michael Gutmann Extending the statistical software package Engine for Likelihood-Free Inference <https://arxiv.org/abs/2011.03977>

- 1. Optimisation Monte Carlo (OMC) is an existing method for efficient Bayesian inference with implicit models.
- 2. While efficient OMC under-estimates uncertainty by collapsing regions of near-constant likelihood into a single point.
- 3. A robust generalisation, robust OMC, explains and corrects this failure mode while maintaining OMC's benefits.

[Background: Optimisation Monte Carlo](#page-4-0)

[Contribution 1: A failure mode of Optimisation Monte Carlo](#page-13-0)

[Contribution 2: Robust Optimisation Monte Carlo \(ROMC\)](#page-25-0)

[Background: Optimisation Monte Carlo](#page-4-0)

[Contribution 1: A failure mode of Optimisation Monte Carlo](#page-13-0)

[Contribution 2: Robust Optimisation Monte Carlo \(ROMC\)](#page-25-0)

Given

E a parametric model $p(x|\theta)$ whose likelihood function is intractable but from which we can generate samples

x ∼ p(**x**|*θ*)

- **I** a prior distribution $p(\theta)$ on θ
- \triangleright observed data \mathbf{x}_0

estimate $p(\theta|\mathbf{x}_o)$ / obtain approximate samples from it.

IF The parametric model $p(\mathbf{x}|\theta)$ is implicitly defined by a simulator/generative process g(*θ,* **u**)

$$
\mathbf{x} \sim p(\mathbf{x}|\boldsymbol{\theta}) \qquad \Longleftrightarrow \qquad \mathbf{x} = g(\boldsymbol{\theta}, \mathbf{u}), \quad \mathbf{u} \sim p(\mathbf{u})
$$

- \blacktriangleright g(θ , **u**) is a black-box computer programme taking θ as input. Randomness is represented by $\mathbf{u} \sim p(\mathbf{u})$.
- \triangleright We are provided with a distance (discrepancy) function $d(\mathbf{x}, \mathbf{x}_o)$ between simulated data **x** and observed data **x**_o.

The distance function

 \blacktriangleright There are methods for likelihood-free inference that do not require a distance function, e.g. by

- In modelling the likelihood (e.g. Wood, 2010; Price et al, 2017; Papamakarios 2019)
- \triangleright framing posterior estimation as a ratio estimation problem

$$
\rho(\boldsymbol{\theta}|\mathbf{x}) = \frac{p(\mathbf{x}|\boldsymbol{\theta})}{p(\mathbf{x})}p(\boldsymbol{\theta})
$$

"Likelihood-free inference by ratio estimation" (LFIRE)

(Thomas et al, 2016, 2020; Hermans et al 2020)

The distance function

 \blacktriangleright There are methods for likelihood-free inference that do not require a distance function, e.g. by

- **In modelling the likelihood** (e.g. Wood, 2010; Price et al, 2017; Papamakarios 2019)
- \blacktriangleright framing posterior estimation as a ratio estimation problem

$$
\rho(\boldsymbol{\theta}|\mathbf{x}) = \frac{p(\mathbf{x}|\boldsymbol{\theta})}{\rho(\mathbf{x})} \rho(\boldsymbol{\theta})
$$

"Likelihood-free inference by ratio estimation" (LFIRE) (Thomas et al, 2016, 2020; Hermans et al 2020)

 \triangleright Optimisation Monte Carlo requires a distance function

$$
d(\mathbf{x}, \mathbf{x}_o) = ||\Phi(\mathbf{x}) - \Phi(\mathbf{x}_o)||_2
$$

where Φ(*.*) are known summary statistics.

 \blacktriangleright Main property: uses optimisation to increase efficiency.

Optimisation Monte Carlo (Meeds and Welling, NIPS 2015)

- \blacktriangleright Main property: uses optimisation to increase efficiency.
- **Assumptions:**
	- \blacktriangleright (approximate) derivative of $\Phi(\mathbf{x}) = \Phi(g(\theta, \mathbf{u})) = \mathbf{f}(\theta, \mathbf{u})$ wrt θ is available
	- \blacktriangleright dim(θ) \leq dim(Φ (**x**))
- \blacktriangleright Main property: uses optimisation to increase efficiency.
- **Assumptions:**
	- \blacktriangleright (approximate) derivative of $\Phi(\mathbf{x}) = \Phi(g(\theta, \mathbf{u})) = \mathbf{f}(\theta, \mathbf{u})$ wrt θ is available
	- \blacktriangleright dim(θ) \leq dim(Φ (**x**))

► Algorithm to generate *n* weighted samples θ_i^* :

1: **for**
$$
i \leftarrow 1
$$
 to *n* **do**
\n2: **u**_{*i*} ~ $\rho(\mathbf{u})$ \triangleright Set seed
\n3: $\theta_i^* = \arg \min_{\theta} ||\mathbf{f}(\theta, \mathbf{u}_i) - \Phi(\mathbf{x}_o)||_2 \triangleright$ Optimization
\n4: Compute **J**_{*i*} with columns $\partial \mathbf{f}(\theta_i^*, \mathbf{u}_i)/\partial \theta_k$
\n5: Compute $w_i = \rho(\theta_i^*) * (\det(\mathbf{J}_i^T \mathbf{J}_i))^{-1/2}$
\n6: Accept θ_i^* as posterior sample with weight w_i

(Note that samples with too large final distances may be omitted.)

 $\textsf{Intuition}$ for weight formula $w_i = \rho(\bm{\theta}_i^*) * (\textsf{det}(\mathbf{J}_i^{\top}\mathbf{J}_i))^{-1/2}$

- ▶ Volume of the region around a posterior sample θ_i^* containing points that should also be considered posterior samples.
- **►** $(\det(\mathbf{J}_i^{\top}\mathbf{J}_i))^{-1/2}$ is proportional to the volume of an ellipse defined by $\mathbf{J}_i^{\top} \mathbf{J}_i$.

[Background: Optimisation Monte Carlo](#page-4-0)

[Contribution 1: A failure mode of Optimisation Monte Carlo](#page-13-0)

[Contribution 2: Robust Optimisation Monte Carlo \(ROMC\)](#page-25-0)

Application to inverse graphics

- \blacktriangleright Implicit model/simulator given by a graphics renderer
- \blacktriangleright We used Open Differential Renderer (Loper and Black, 2014)

20 parameters: **Shape** Rotation/Pose Illumination Colour

Renderer

 $\begin{picture}(180,170)(-6,0) \put(0,0){\line(1,0){150}} \put(0,0){\line(1,0){150}} \put(10,0){\line(1,0){150}} \put(10,0){\line(1,0){150}} \put(10,0){\line(1,0){150}} \put(10,0){\line(1,0){150}} \put(10,0){\line(1,0){150}} \put(10,0){\line(1,0){150}} \put(10,0){\line(1,0){150}} \put(10,0){\line(1,0){150}} \put(10,0){\line(1,0$

Inference

(inverse problem)

Application to inverse graphics

- \blacktriangleright Example considered: Infer colour of the object when external lighting conditions are unknown.
- \blacktriangleright The inverse problem may have multiple solutions (multi-modal posterior)

(a) Gray teapot under red light. \qquad (b) Red teapot under white light.

▶ We used OMC and the (simpler) rejection ABC algorithm.

- ▶ We used OMC and the (simpler) rejection ABC algorithm.
- \triangleright Rejection ABC relies on trial and error instead of optimisation to determine the posterior samples. Slow but reliable.

- ▶ We used OMC and the (simpler) rejection ABC algorithm.
- \blacktriangleright Rejection ABC relies on trial and error instead of optimisation to determine the posterior samples. Slow but reliable.
- **If** Same distance function $d(\mathbf{x}, \mathbf{x}_o)$.

- \triangleright We used OMC and the (simpler) rejection ABC algorithm.
- \blacktriangleright Rejection ABC relies on trial and error instead of optimisation to determine the posterior samples. Slow but reliable.
- Same distance function $d(\mathbf{x}, \mathbf{x}_o)$.
- \triangleright Posteriors for two colours c_0 and c_1 (red and green):

Why did OMC fail?

- ▶ The OMC weights $w_i = p(\theta_i^*) * (\det(\mathbf{J}_i^{\top}\mathbf{J}_i))^{-1/2}$ are unstable (ESS was 1.2!)
- \triangleright This happens when the (approximate) likelihood function has nearly flat regions so that $\det(\mathbf{J}_i^{\top}\mathbf{J}_i) \approx 0$.

Why did OMC fail?

- ▶ The OMC weights $w_i = p(\theta_i^*) * (\det(\mathbf{J}_i^{\top}\mathbf{J}_i))^{-1/2}$ are unstable (ESS was 1.2!)
- \triangleright This happens when the (approximate) likelihood function has nearly flat regions so that $\det(\mathbf{J}_i^{\top}\mathbf{J}_i) \approx 0$.

Why did OMC fail?

- ▶ The OMC weights $w_i = p(\theta_i^*) * (\det(\mathbf{J}_i^{\top}\mathbf{J}_i))^{-1/2}$ are unstable (ESS was 1.2!)
- \triangleright This happens when the (approximate) likelihood function has nearly flat regions so that $\det(\mathbf{J}_i^{\top}\mathbf{J}_i) \approx 0$.

Note: stated OMC assumptions are not violated.

Stabilising the weights/matrices does not help

 \blacktriangleright Taking the pseudo-inverse or pseudo-determinant of $\mathbf{J}_i^{\top} \mathbf{J}_i$ does not help.

Stabilising the weights/matrices does not help

- \blacktriangleright Taking the pseudo-inverse or pseudo-determinant of $\mathbf{J}_i^{\top} \mathbf{J}_i$ does not help.
- \blacktriangleright The weights are not the real issue. The problem is more fundamental:

OMC uses a single point to represent an entire region where the likelihood is (nearly) constant.

[Background: Optimisation Monte Carlo](#page-4-0)

[Contribution 1: A failure mode of Optimisation Monte Carlo](#page-13-0)

[Contribution 2: Robust Optimisation Monte Carlo \(ROMC\)](#page-25-0)

(Ikonomov and Gutmann, AISTATS 2020)

- 1. ROMC generalises OMC.
- 2. Fixes OMC's failure case: It handles likelihood functions that are (nearly) flat on significant regions in parameter space.
- 3. Works for general distance functions $d(g(\theta, \mathbf{u}), \mathbf{x}_o)$ and not only Euclidean distances between summary statistics. (condition dim(θ) \leq dim(Φ (**x**)) disappears)
- 4. Does not require (approximate) derivatives, while OMC does.
- 5. Can be run as post-processing to OMC or from scratch.

ROMC is a framework for inference. It has three key steps: 1. For $i = 1, \ldots n'$, sample $\mathbf{u}_i \sim p(\mathbf{u})$ and determine

$$
\theta_i^* = \underset{\theta}{\text{arg min }} d(g(\theta, \mathbf{u}_i), \mathbf{x}_o)
$$

Same as in OMC but we can use general distances $d(\mathbf{x}, \mathbf{x}_o)$.

ROMC is a framework for inference. It has three key steps:

1. For $i = 1, \ldots n'$, sample $\mathbf{u}_i \sim p(\mathbf{u})$ and determine

$$
\boldsymbol{\theta}_i^* = \arg\min_{\boldsymbol{\theta}} d(g(\boldsymbol{\theta}, \mathbf{u}_i), \mathbf{x}_o)
$$

Same as in OMC but we can use general distances $d(\mathbf{x}, \mathbf{x}_o)$.

2. Use the minimal distances $d_i^* = d(g(\theta_i^*, \mathbf{u}_i))$ to choose an acceptance threshold ϵ / keep the *n* best $\boldsymbol{\theta}_i^*$.

ROMC is a framework for inference. It has three key steps:

1. For $i = 1, \ldots n'$, sample $\mathbf{u}_i \sim p(\mathbf{u})$ and determine

$$
\theta_i^* = \underset{\theta}{\text{arg min }} d(g(\theta, \mathbf{u}_i), \mathbf{x}_o)
$$

Same as in OMC but we can use general distances $d(\mathbf{x}, \mathbf{x}_o)$.

- 2. Use the minimal distances $d_i^* = d(g(\theta_i^*, \mathbf{u}_i))$ to choose an acceptance threshold ϵ / keep the *n* best $\boldsymbol{\theta}_i^*$.
- 3. For each i where $d_i^* \leq \epsilon$, define a proposal distribution q_i on the "acceptance region" $C_\epsilon^i = \{\bm{\theta}: d(\bm{g}(\bm{\theta},\mathbf{u}_i),\mathbf{x}_o) \leq \epsilon\}$

ROMC is a framework for inference. It has three key steps:

1. For $i = 1, \ldots n'$, sample $\mathbf{u}_i \sim p(\mathbf{u})$ and determine

$$
\boldsymbol{\theta}_i^* = \arg\min_{\boldsymbol{\theta}} d(g(\boldsymbol{\theta}, \mathbf{u}_i), \mathbf{x}_o)
$$

Same as in OMC but we can use general distances $d(\mathbf{x}, \mathbf{x}_o)$.

- 2. Use the minimal distances $d_i^* = d(g(\theta_i^*, \mathbf{u}_i))$ to choose an acceptance threshold ϵ / keep the *n* best $\boldsymbol{\theta}_i^*$.
- 3. For each i where $d_i^* \leq \epsilon$, define a proposal distribution q_i on the "acceptance region" $C_\epsilon^i = \{\bm{\theta}: d(\bm{g}(\bm{\theta},\mathbf{u}_i),\mathbf{x}_o) \leq \epsilon\}$

Approximate posterior is represented by weighted samples *θ*ij :

$$
\theta_{ij} \sim q_i(\theta) \qquad w_{ij} = 1_{C_{\epsilon}^i}(\theta_{ij}) \frac{p(\theta_{ij})}{q_i(\theta_{ij})} \qquad (\text{i=1}, \ldots, n; \text{ j=1}, \ldots, m)
$$

(General idea, see paper for details)

- ► Using θ_i^* and the optimisation trajectory, we build a model of the acceptance regions $\mathcal{C}_{\epsilon}^{i} = \{\boldsymbol{\theta}: d(g(\boldsymbol{\theta}, \mathbf{u}_{i}), \mathbf{x}_{o}) \leq \epsilon\}$
- Simple but effective: model C_{ϵ}^{i} as a hypercube or ellipse and define q_i to be the uniform distribution on it.

Results on the toy example

- Acceptance regions C_{ϵ}^{i} given by intervals on the line.
- \triangleright ROMC handles the (nearly) flat likelihood function correctly.
- \triangleright ROMC accurately represents uncertainty while OMC does not.

Results on the colour inference task

- \blacktriangleright Setup:
	- \triangleright Optimisation via a gradient-free method (Bayesian optimisation with GP surrogate modelling)
	- \triangleright Acceptance regions were modelled as ellipses (derived from the GP surrogate model)
- \triangleright ROMC posterior matches reference posterior well.
- Effective sample size: 97% (vs. approx. 0.5% for OMC)

 \blacktriangleright Talk was on Bayesian inference for implicit models.

Implicit models: models that are defined by a stochastic simulator/data generating process.

Conclusions

- \blacktriangleright Implicit models: models that are defined by a stochastic simulator/data generating process.
- ▶ Optimisation Monte Carlo (OMC): Bayesian inference method that uses optimisation to increase computational efficiency.

Conclusions

- \blacktriangleright Implicit models: models that are defined by a stochastic simulator/data generating process.
- **D** Optimisation Monte Carlo (OMC): Bayesian inference method that uses optimisation to increase computational efficiency.
- \triangleright We showed that OMC under-estimates posterior uncertainty by collapsing regions of near-constant likelihood into a point.

Conclusions

- \blacktriangleright Implicit models: models that are defined by a stochastic simulator/data generating process.
- **D** Optimisation Monte Carlo (OMC): Bayesian inference method that uses optimisation to increase computational efficiency.
- \triangleright We showed that OMC under-estimates posterior uncertainty by collapsing regions of near-constant likelihood into a point.
- \triangleright We proposed a robust generalisation of OMC, robust OMC, that explains and corrects this failure mode while maintaining OMC's benefits due to optimisation.
- \triangleright ROMC has been added to the software package "ELFI: Engine for Likelihood-Free Inference" <https://github.com/elfi-dev/elfi>
- \blacktriangleright Link to collab notebooks available through Vasileios Gkolemis, Michael Gutmann Extending the statistical software package Engine for Likelihood-Free Inference <https://arxiv.org/abs/2011.03977>

Theorem: Under the below assumptions, ROMC becomes equivalent to standard OMC as $\epsilon \to 0$.

Assumption 1. The distance $d(g(\theta, \mathbf{u}), \mathbf{x}_o)$ is given by the Euclidean distance between summary statistics $||f(\theta, u) - \Phi(\mathbf{x}_o)||$.

Assumption 2. The proposal distribution $q_i(\theta)$ is the uniform distribution on C^i_ϵ .

 ${\mathsf{Assumption}}$ 3. The acceptance regions C_ϵ^i are approximated by the ellipsoid $C_\epsilon^i = \{\bm{\theta}: (\bm{\theta}-\bm{\theta}_i^*)^\top \mathbf{J}_i^\top \mathbf{J}_i (\bm{\theta}-\bm{\theta}_i^*) \leq \epsilon\}$ where \mathbf{J}_i is the Jacobian matrix with columns $\partial \mathbf{f}(\boldsymbol{\theta}_i^*, \mathbf{u}_i) / \partial \theta_k$.

 $\boldsymbol{\mathsf{Assumption}}\ \boldsymbol{\mathsf{4}}.\ \textcolor{red}{\mathsf{The}\ \textsf{matrix}}\ \textsf{square}\ \textsf{root}\ \boldsymbol{\mathsf{A}}_i\ \textsf{of}\ \boldsymbol{\mathsf{J}}_i^\top \boldsymbol{\mathsf{J}}_i\ \textsf{is}\ \textsf{full}\ \textsf{rank},\ \textsf{i.e.}$ $rank(\mathbf{A}_i) = dim(\theta)$.

Assumption 5. The prior $p(\theta)$ is constant on the acceptance regions C^i_ϵ .

Identified failure case is due to violation of Assumptions 3 and 4:

 ${\mathsf{Assumption}}$ 3. The acceptance regions C_ϵ^i are approximated by the ellipsoid $C_\epsilon^i = \{\bm{\theta}: (\bm{\theta}-\bm{\theta}_i^*)^\top \mathbf{J}_i^\top \mathbf{J}_i (\bm{\theta}-\bm{\theta}_i^*) \leq \epsilon\}$ where \mathbf{J}_i is the Jacobian matrix with columns $\partial \mathbf{f}(\boldsymbol{\theta}_i^*, \mathbf{u}_i) / \partial \theta_k$.

Assumption 4. The matrix square root \mathbf{A}_i of $\mathbf{J}_i^{\top} \mathbf{J}_i$ is full rank, i.e. $rank(\mathbf{A}_i) = dim(\theta)$.

Identified failure case is due to violation of Assumptions 3 and 4:

 ${\mathsf{Assumption}}$ 3. The acceptance regions C_ϵ^i are approximated by the ellipsoid $C_\epsilon^i = \{\bm{\theta}: (\bm{\theta}-\bm{\theta}_i^*)^\top \mathbf{J}_i^\top \mathbf{J}_i (\bm{\theta}-\bm{\theta}_i^*) \leq \epsilon\}$ where \mathbf{J}_i is the Jacobian matrix with columns $\partial \mathbf{f}(\boldsymbol{\theta}_i^*, \mathbf{u}_i) / \partial \theta_k$.

Assumption 4. The matrix square root \mathbf{A}_i of $\mathbf{J}_i^{\top} \mathbf{J}_i$ is full rank, i.e. $rank(\mathbf{A}_i) = dim(\theta)$.

For non-uniform priors, one then also risks violating Assumption 5: ${\mathop{\mathrm{Assumption}}\nolimits}$ 5. The prior $p(\theta)$ is constant on the acceptance regions $C_\epsilon^i.$

Explanation of the failure case

- ▶ OMC uses only information at θ_i^* to approximate C_{ϵ}^i .
- \triangleright ROMC in contrast uses information in a non-negligible neighbourhood around $\bm{\theta}_i^*$ to approximate \mathcal{C}_{ϵ}^i .

