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Key messages

1. Optimisation Monte Carlo (OMC) is an existing method for
efficient Bayesian inference with implicit models.

2. While efficient OMC under-estimates uncertainty by collapsing
regions of near-constant likelihood into a single point.

3. A robust generalisation, robust OMC, explains and corrects
this failure mode while maintaining OMC's benefits.
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Problem considered

Given

» a parametric model p(x|@) whose likelihood function is
intractable but from which we can generate samples

x ~ p(x/0)

» a prior distribution p(@) on 0
» observed data x,

estimate p(6|x,) / obtain approximate samples from it.
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Assumptions

» The parametric model p(x|@) is implicitly defined by a
simulator/generative process g(6,u)

X ~ p(X‘e) — X= g(ev u), u -~ p(u)

» g(0,u) is a black-box computer programme taking 8 as input.
Randomness is represented by u ~ p(u).

» We are provided with a distance (discrepancy) function
d(x,x,) between simulated data x and observed data x,.
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The distance function

» There are methods for likelihood-free inference that do not
require a distance function, e.g. by

> modelling the ||ke||hood (e.g. Wood, 2010; Price et al, 2017; Papamakarios 2019)
» framing posterior estimation as a ratio estimation problem

p(x|0)
p(x)

p(Olx) = p(6)

“Likelihood-free inference by ratio estimation” (LFIRE)
(Thomas et al, 2016, 2020; Hermans et al 2020)
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The distance function

» There are methods for likelihood-free inference that do not
require a distance function, e.g. by

> modelling the ||ke||hood (e.g. Wood, 2010; Price et al, 2017; Papamakarios 2019)
» framing posterior estimation as a ratio estimation problem

p(x|0)
p(x)

p(Olx) = p(6)

“Likelihood-free inference by ratio estimation” (LFIRE)
(Thomas et al, 2016, 2020; Hermans et al 2020)

» Optimisation Monte Carlo requires a distance function
d(x, %) = [[®(x) — P(xo)||2

where ®(.) are known summary statistics.
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Optimisation Monte Carlo  (meeds and weling, nips 2015)

> Main property: uses optimisation to increase efficiency.
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Optimisation Monte Carlo  (meeds and weling, nips 2015)

> Main property: uses optimisation to increase efficiency.

» Assumptions:
> (approximate) derivative of ®(x) = ¢(g(0,u)) = f(0,u) wrt 6
is available
> dim(0) < dim(®(x))
> Algorithm to generate n weighted samples 6;:

1: for i <+ 1 to ndo

2: u; ~ p(u) > Set seed

3: 0; = arg min [|f(0,u;) — P(x,)||2 I> Optimisation
6

Compute J; with columns Of(07,u;)/00,
: Compute w; = p(67) * (det(J;'J;)) /2
6: Accept 0] as posterior sample with weight w;

(Note that samples with too large final distances may be omitted.)
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Intuition

Intuition for weight formula w; = p(87) * (det(J;'J;))~1/2

» Volume of the region around a posterior sample 87 containing
points that should also be considered posterior samples.

> (det(J;'J;))"1/2 is proportional to the volume of an ellipse
defined by J;'J;.
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Application to inverse graphics

» Implicit model/simulator given by a graphics renderer

» We used Open Differential Renderer (Loper and Black, 2014)

20 parameters:
Shape
Rotation/Pose
[llumination
Colour

Renderer
(forward problem)
—_—\
~

Inference

(inverse problem)
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Application to inverse graphics

» Example considered: Infer colour of the object when external
lighting conditions are unknown.

» The inverse problem may have multiple solutions (multi-modal
posterior)

(a) Gray teapot under red light. (b) Red teapot under white light.
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Results for colour inference task

» We used OMC and the (simpler) rejection ABC algorithm.
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Results for colour inference task

» We used OMC and the (simpler) rejection ABC algorithm.

» Rejection ABC relies on trial and error instead of optimisation
to determine the posterior samples. Slow but reliable.

» Same distance function d(x, X,).

» Posteriors for two colours ¢y and ¢; (red and green):

Reference Rej-ABC Posterior OMC Posterior
1.0 1.0
B Observed Value
0.8 @ Alternative Solution 0.8
Network Prediction
0.6 0.6
< G
O'%.O 0.2 0.4 0.6 0.8 1.0 O'%.O 0.2 0.4 0.6 0.8 1.0
Co Co
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Why did OMC fail?

» The OMC weights w; = p(07)  (det(J;'J;))~1/2 are unstable
(ESS was 1.21)

» This happens when the (approximate) likelihood function has
nearly flat regions so that det(J,-TJ,-) ~ 0.
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Why did OMC fail?

» The OMC weights w; = p(07)  (det(J;'J;))~1/2 are unstable
(ESS was 1.21)

» This happens when the (approximate) likelihood function has
nearly flat regions so that det(J,-TJ,-) ~ 0.
Note: stated OMC assumptions are not violated.

Posteriors
1.0 i
|I ........ Prior
08 :l —— True Posterior
il —— OMC
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Stabilising the weights/matrices does not help

» Taking the pseudo-inverse or pseudo-determinant of J;'J; does

not help.
Posteriors Posteriors
1.0 1.0
- Prior e PrIOR
0.8 —— True Posterior 0.8 —— True Posterior
—— OMC —— OMC
Heuristic OMC Heuristic OMC
.06 .06
z z
8 04 804
0.2 / 0.2
0.0 1 0.0
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
6 2]
(a) Pseudo-inverse (b) Pseudo-determinant
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Stabilising the weights/matrices does not help

» Taking the pseudo-inverse or pseudo-determinant of J;'J; does
not help.

» The weights are not the real issue. The problem is more
fundamental:
OMC uses a single point to represent an entire region where
the likelihood is (nearly) constant.

Posteriors Posteriors
1.0 1.0
-+ Prior s Prior
08 —— True Posterior 08 —— True Posterior
—— OMC —— OMC
Heuristic OMC Heuristic OMC
0.6 0.6

Density

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
6 [}
(a) Pseudo-inverse (b) Pseudo-determinant

Michael U. Gutmann Robust OMC 16 /24



Background: Optimisation Monte Carlo
Contribution 1: A failure mode of Optimisation Monte Carlo

Contribution 2: Robust Optimisation Monte Carlo (ROMC)



Key properties of ROMC

(Ikonomov and Gutmann, AISTATS 2020)

1. ROMC generalises OMC.

2. Fixes OMC's failure case: It handles likelihood functions that
are (nearly) flat on significant regions in parameter space.

3. Works for general distance functions d(g(6,u),x,) and not
only Euclidean distances between summary statistics.
(condition dim(8) < dim(®(x)) disappears)

4. Does not require (approximate) derivatives, while OMC does.

5. Can be run as post-processing to OMC or from scratch.
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The ROMC framework

ROMC is a framework for inference. It has three key steps:

1. Fori=1,...n, sample u; ~ p(u) and determine

07 = arg min d(g(0,u;),x,)
0

Same as in OMC but we can use general distances d(x, X,).
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ROMC is a framework for inference. It has three key steps:
1. Fori=1,...n, sample u; ~ p(u) and determine
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0
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The ROMC framework

ROMC is a framework for inference. It has three key steps:
1. Fori=1,...n, sample u; ~ p(u) and determine

07 = arg min d(g(0,u;),x,)
0

Same as in OMC but we can use general distances d(x, X,).

2. Use the minimal distances d = d(g(67,u;)) to choose an
acceptance threshold € / keep the n best 6;.

3. For each i where df < ¢, define a proposal distribution g; on
the “acceptance region” C! = {0 : d(g(0,u;),x,) < €}

Approximate posterior is represented by weighted samples 6;:

p(0;)

0~ qi(0)  wy=1c(6y)
y ] Ci\Yij Qi(aij)
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Construction of the proposal distribution

(General idea, see paper for details)

» Using 07 and the optimisation trajectory, we build a model of
the acceptance regions C' = {0 : d(g(0,u;),x,) < ¢}

» Simple but effective: model C/ as a hypercube or ellipse and
define g; to be the uniform distribution on it.
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Results on the toy example

» Acceptance regions C! given by intervals on the line.
» ROMC handles the (nearly) flat likelihood function correctly.
» ROMC accurately represents uncertainty while OMC does not.

Posteriors
1.0 "
|I ........ Prior
08 :l —— True Posterior
!= —— OMC
H ---- Robust OMC
> 0.6 L (KDE)
= [H
(7] o
C H
[
a
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Results on the colour inference task

> Setup:
» Optimisation via a gradient-free method (Bayesian
optimisation with GP surrogate modelling)
> Acceptance regions were modelled as ellipses (derived from the
GP surrogate model)

» ROMC posterior matches reference posterior well.
» Effective sample size: 97% (vs. approx. 0.5% for OMC)

10 Reference Rej-ABC Posterior 10 Robust OMC Posterior
B Observed Value
0.8 @ Alternative Solution 0.8
Network Prediction
0.6 0.6
G G
0'%.0 0.2 0.4 0.6 0.8 1.0 O'%YO 0.2 0.4 0.6 0.8 1.0
Co Co
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» Talk was on Bayesian inference for implicit models.
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Conclusions

» Talk was on Bayesian inference for implicit models.
» Implicit models: models that are defined by a stochastic
simulator/data generating process.
» Optimisation Monte Carlo (OMC): Bayesian inference method
that uses optimisation to increase computational efficiency.
» We showed that OMC under-estimates posterior uncertainty
by collapsing regions of near-constant likelihood into a point.

» We proposed a robust generalisation of OMC, robust OMC,
that explains and corrects this failure mode while maintaining
OMC's benefits due to optimisation.
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Code

» ROMC has been added to the software package “ELFI: Engine
for Likelihood-Free Inference”
https://github.com/elfi-dev/elfi

P Link to collab notebooks available through
Vasileios Gkolemis, Michael Gutmann
Extending the statistical software package Engine for
Likelihood-Free Inference
https://arxiv.org/abs/2011.03977
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ROMC generalises OMC (see paper for the proof)

Theorem: Under the below assumptions, ROMC becomes
equivalent to standard OMC as ¢ — 0.

Assumption 1. The distance d(g(0,u),x,) is given by the
Euclidean distance between summary statistics ||f(6,u) — ®(x,)||.

Assumption 2. The proposal distribution g;(@) is the uniform
distribution on C/.

Assumption 3. The acceptance regions C/ are approximated by
the ellipsoid C/ = {6 : (6 — 0%)'J;J;(0 — 67) < €} where J; is the
Jacobian matrix with columns Of (0}, u;)/00.

Assumption 4. The matrix square root A; of J,-TJ,- is full rank, i.e.
rank(A;) = dim(6).

Assumption 5. The prior p(8) is constant on the acceptance
regions C/.
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Explanation of the failure case

Identified failure case is due to violation of Assumptions 3 and 4:

Assumption 3. The acceptance regions C/ are approximated by
the ellipsoid C/' = {6 : (6 — %)'J;J;(0 — 67) < €} where J; is the
Jacobian matrix with columns of(6}, u;)/00y.

Assumption 4. The matrix square root A; of J,-TJ,- is full rank, i.e.
rank(A;) = dim(6).
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Explanation of the failure case

Identified failure case is due to violation of Assumptions 3 and 4:

Assumption 3. The acceptance regions C/ are approximated by
the ellipsoid C/' = {6 : (6 — %)'J;J;(0 — 67) < €} where J; is the
Jacobian matrix with columns Of (0}, u;)/00.

Assumption 4. The matrix square root A; of J,-TJ,- is full rank, i.e.
rank(A;) = dim(6).

For non-uniform priors, one then also risks violating Assumption 5:
Assumption 5. The prior p(0) is constant on the acceptance regions C!.
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Explanation of the failure case

» OMOC uses only information at 8 to approximate C'.

» ROMC in contrast uses information in a non-negligible
neighbourhood around 67 to approximate C;.

12 4 T
b AU M f(theta, u) —--
10 Ll AN ® RN eps region [ _|
| ® NN S Stat  ©
sl 1 ) . e End o
o e |Weight ©
= .
©
s
n
4
2]
[ T t L - — T t T 1
[ 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

(Figure from Meeds and Welling, NIPS 2015)

Michael U. Gutmann Robust OMC 3/3



	Background: Optimisation Monte Carlo
	Contribution 1: A failure mode of Optimisation Monte Carlo
	Contribution 2: Robust Optimisation Monte Carlo (ROMC)
	Appendix

