Robust Optimisation Monte Carlo

Michael U. Gutmann

michael.gutmann@ed.ac.uk

School of Informatics, University of Edinburgh

12 April 2021

References

Paper:

Borislav Ikonomov and Michael U. Gutmann Robust Optimisation Monte Carlo AISTATS 2020

Software:

Vasileios Gkolemis, Michael Gutmann Extending the statistical software package Engine for Likelihood-Free Inference https://arxiv.org/abs/2011.03977

Key messages

- 1. Optimisation Monte Carlo (OMC) is an existing method for efficient Bayesian inference with implicit models.
- 2. While efficient OMC under-estimates uncertainty by collapsing regions of near-constant likelihood into a single point.
- 3. A robust generalisation, robust OMC, explains and corrects this failure mode while maintaining OMC's benefits.

Contents

Background: Optimisation Monte Carlo

Contribution 1: A failure mode of Optimisation Monte Carlo

Contribution 2: Robust Optimisation Monte Carlo (ROMC)

Contents

Background: Optimisation Monte Carlo

Contribution 1: A failure mode of Optimisation Monte Carlo

Contribution 2: Robust Optimisation Monte Carlo (ROMC)

Problem considered

Given

▶ a parametric model $p(\mathbf{x}|\theta)$ whose likelihood function is intractable but from which we can generate samples

$$\mathbf{x} \sim p(\mathbf{x}|\boldsymbol{\theta})$$

- ightharpoonup a prior distribution $p(\theta)$ on θ
- observed data x_o

estimate $p(\theta|\mathbf{x}_o)$ / obtain approximate samples from it.

Assumptions

The parametric model $p(\mathbf{x}|\theta)$ is implicitly defined by a simulator/generative process $g(\theta, \mathbf{u})$

$$\mathbf{x} \sim p(\mathbf{x}|\boldsymbol{\theta}) \iff \mathbf{x} = g(\boldsymbol{\theta}, \mathbf{u}), \quad \mathbf{u} \sim p(\mathbf{u})$$

- ▶ $g(\theta, \mathbf{u})$ is a black-box computer programme taking θ as input. Randomness is represented by $\mathbf{u} \sim p(\mathbf{u})$.
- We are provided with a distance (discrepancy) function d(x, x_o) between simulated data x and observed data x_o.

The distance function

- There are methods for likelihood-free inference that do not require a distance function, e.g. by
 - modelling the likelihood (e.g. Wood, 2010; Price et al, 2017; Papamakarios 2019)
 - framing posterior estimation as a ratio estimation problem

$$ho(heta|\mathbf{x}) = rac{
ho(\mathbf{x}|oldsymbol{ heta})}{
ho(\mathbf{x})}
ho(oldsymbol{ heta})$$

"Likelihood-free inference by ratio estimation" (LFIRE)

(Thomas et al, 2016, 2020; Hermans et al 2020)

The distance function

- ► There are methods for likelihood-free inference that do not require a distance function, e.g. by
 - modelling the likelihood (e.g. Wood, 2010; Price et al, 2017; Papamakarios 2019)
 - framing posterior estimation as a ratio estimation problem

$$p(\theta|\mathbf{x}) = \frac{p(\mathbf{x}|\theta)}{p(\mathbf{x})}p(\theta)$$

"Likelihood-free inference by ratio estimation" (LFIRE)

(Thomas et al, 2016, 2020; Hermans et al 2020)

Optimisation Monte Carlo requires a distance function

$$d(\mathbf{x}, \mathbf{x}_o) = ||\Phi(\mathbf{x}) - \Phi(\mathbf{x}_o)||_2$$

where $\Phi(.)$ are known summary statistics.

Advertisement

▶ New method to learn summary statistics:

Yanzhi Chen, Dinghuai Zhang, Michael U. Gutmann, Aaron Courville, Zhanxing Zhu

Neural approximate sufficient statistics for implicit models ICLR 2021

https://openreview.net/forum?id=SRDuJssQud

► Exploits a link between sufficient statistics and information theory: sufficient statistics are representations of the data that maximise the mutual information with the parameters.

Optimisation Monte Carlo (Meeds and Welling, NIPS 2015)

▶ Main property: uses optimisation to increase efficiency.

- Main property: uses optimisation to increase efficiency.
- Assumptions:
 - (approximate) derivative of $\Phi(\mathbf{x}) = \Phi(g(\theta, \mathbf{u})) = \mathbf{f}(\theta, \mathbf{u})$ wrt θ is available
 - $\blacktriangleright \ \operatorname{dim}(\theta) \leq \operatorname{dim}(\Phi(\mathbf{x}))$

- (Meeds and Welling, NIPS 2015)
- Main property: uses optimisation to increase efficiency.
- Assumptions:
 - (approximate) derivative of $\Phi(\mathbf{x}) = \Phi(g(\theta, \mathbf{u})) = \mathbf{f}(\theta, \mathbf{u})$ wrt θ is available
 - $ightharpoonup dim(\theta) < dim(\Phi(x))$
- \triangleright Algorithm to generate *n* weighted samples θ_i^* :
 - 1: **for** $i \leftarrow 1$ to n **do**
 - $\mathbf{u}_i \sim p(\mathbf{u})$ 2: ▷ Set seed
 - $\boldsymbol{\theta}_i^* = \arg\min_{\boldsymbol{a}} ||\mathbf{f}(\boldsymbol{\theta}, \mathbf{u}_i) \Phi(\mathbf{x}_o)||_2$ 3: ▶ Optimisation
 - Compute \mathbf{J}_i with columns $\partial \mathbf{f}(\boldsymbol{\theta}_i^*, \mathbf{u}_i)/\partial \theta_k$ 4:
 - Compute $w_i = p(\boldsymbol{\theta}_i^*) * (\det(\mathbf{J}_i^\top \mathbf{J}_i))^{-1/2}$ 5:
 - Accept θ_i^* as posterior sample with weight w_i 6:

(Note that samples with too large final distances may be omitted.)

Intuition

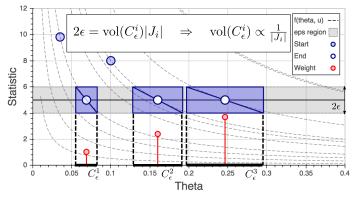
Intuition for weight formula $w_i = p(\boldsymbol{\theta}_i^*) * (\det(\mathbf{J}_i^{\mathsf{T}} \mathbf{J}_i))^{-1/2}$

- Proportional to the volume of a region around a posterior sample θ_i^* containing points that should also be considered posterior samples.
- We call such regions "acceptance regions" C_{ϵ}^{i} .
- ▶ $(\det(\mathbf{J}_i^{\mathsf{T}}\mathbf{J}_i))^{-1/2}$ is proportional to the volume of an ellipse defined by $\mathbf{J}_i^{\mathsf{T}}\mathbf{J}_i$. (length of an interval defined by a line with slope $|J_i|$)

1D example

$$w_i = p(\boldsymbol{\theta}_i^*) * (\det(\mathbf{J}_i^{\mathsf{T}} \mathbf{J}_i))^{-1/2}$$

- $(\mathbf{J}_i^{\mathsf{T}} \mathbf{J}_i)^{1/2} = |J_i|$ absolute value of the slope of the summary statistics
- Acceptance regions C_{ϵ}^{i} are intervals whose length $\operatorname{vol}(C_{\epsilon}^{i})$ is proportional to $1/|J_{i}| = (\det(\mathbf{J}_{i}^{\mathsf{T}}\mathbf{J}_{i}))^{-1/2}$.



Robust OMC

(Figure adapted from Meeds and Welling, NIPS 2015)

Michael U. Gutmann

12 / 29

Contents

Background: Optimisation Monte Carlo

Contribution 1: A failure mode of Optimisation Monte Carlo

Contribution 2: Robust Optimisation Monte Carlo (ROMC)

Application to inverse graphics

- ▶ Implicit model/simulator given by a graphics renderer
- ► We used Open Differential Renderer (Loper and Black, 2014)

20 parameters: Shape Rotation/Pose Illumination Colour Renderer
(forward problem)

Inference (inverse problem)

Application to inverse graphics

- Example considered: Infer colour of the object when external lighting conditions are unknown.
- ► The inverse problem may have multiple solutions (multi-modal posterior)

(a) Gray teapot under red light.

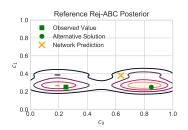
(b) Red teapot under white light.

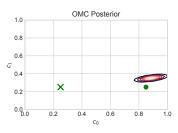
▶ We used OMC and the (simpler) rejection ABC algorithm.

- ▶ We used OMC and the (simpler) rejection ABC algorithm.
- ▶ Rejection ABC relies on trial and error instead of optimisation to determine the posterior samples. Slow but reliable.

- We used OMC and the (simpler) rejection ABC algorithm.
- ► Rejection ABC relies on trial and error instead of optimisation to determine the posterior samples. Slow but reliable.
- Same distance function $d(\mathbf{x}, \mathbf{x}_o)$.

- We used OMC and the (simpler) rejection ABC algorithm.
- ► Rejection ABC relies on trial and error instead of optimisation to determine the posterior samples. Slow but reliable.
- ▶ Same distance function $d(\mathbf{x}, \mathbf{x}_o)$.
- ▶ Posteriors for two colours c_0 and c_1 (red and green):



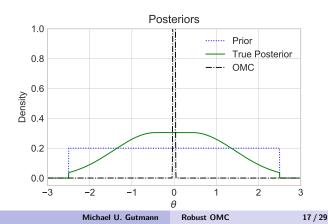


Why did OMC fail?

- ► The OMC weights $w_i = p(\boldsymbol{\theta}_i^*) * (\det(\mathbf{J}_i^{\mathsf{T}} \mathbf{J}_i))^{-1/2}$ are unstable (ESS was 1.2!)
- This happens when the (approximate) likelihood function has nearly flat regions so that $\det(\mathbf{J}_i^{\mathsf{T}}\mathbf{J}_i) \approx 0$.

Why did OMC fail?

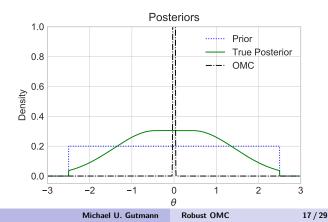
- ► The OMC weights $w_i = p(\boldsymbol{\theta}_i^*) * (\det(\mathbf{J}_i^{\mathsf{T}} \mathbf{J}_i))^{-1/2}$ are unstable (ESS was 1.2!)
- This happens when the (approximate) likelihood function has nearly flat regions so that $\det(\mathbf{J}_i^{\mathsf{T}}\mathbf{J}_i)\approx 0$.



Why did OMC fail?

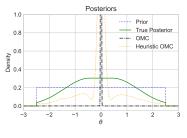
- ► The OMC weights $w_i = p(\boldsymbol{\theta}_i^*) * (\det(\mathbf{J}_i^{\mathsf{T}} \mathbf{J}_i))^{-1/2}$ are unstable (ESS was 1.2!)
- This happens when the (approximate) likelihood function has nearly flat regions so that $\det(\mathbf{J}_i^{\mathsf{T}}\mathbf{J}_i) \approx 0$.

Note: stated OMC assumptions are not violated.

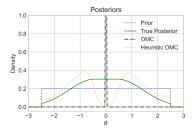


Stabilising the weights/matrices does not help

► Taking the pseudo-inverse or pseudo-determinant of $\mathbf{J}_i^{\mathsf{T}} \mathbf{J}_i$ does not help.



(a) Pseudo-inverse

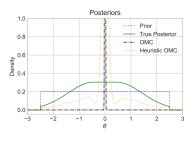


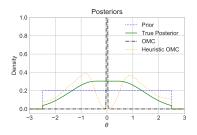
(b) Pseudo-determinant

Stabilising the weights/matrices does not help

- ► Taking the pseudo-inverse or pseudo-determinant of $\mathbf{J}_i^{\mathsf{T}} \mathbf{J}_i$ does not help.
- ► The weights are not the real issue. The problem is more fundamental:

OMC uses a single point to represent an entire region where the likelihood is (nearly) constant.





(b) Pseudo-determinant

Contents

Background: Optimisation Monte Carlo

Contribution 1: A failure mode of Optimisation Monte Carlo

Contribution 2: Robust Optimisation Monte Carlo (ROMC)

(Ikonomov and Gutmann, AISTATS 2020)

- 1. ROMC generalises OMC.
- 2. Fixes OMC's failure case: It handles likelihood functions that are (nearly) flat on significant regions in parameter space.
- 3. Works for general distance functions $d(g(\theta, \mathbf{u}), \mathbf{x}_o)$ and not only Euclidean distances between summary statistics. (condition $\dim(\theta) \leq \dim(\Phi(\mathbf{x}))$ disappears)
- 4. Does not require (approximate) derivatives, while OMC does.
- 5. Can be run as post-processing to OMC or from scratch.

ROMC is a framework for inference. It has three key steps:

1. For i = 1, ..., n', sample $\mathbf{u}_i \sim p(\mathbf{u})$ and determine

$$oldsymbol{ heta}_i^* = rg \min_{oldsymbol{ heta}} \, d(g(oldsymbol{ heta}, \mathbf{u}_i), \mathbf{x}_o)$$

Same as in OMC but we can use general distances $d(\mathbf{x}, \mathbf{x}_o)$.

ROMC is a framework for inference. It has three key steps:

1. For i = 1, ..., n', sample $\mathbf{u}_i \sim p(\mathbf{u})$ and determine

$$m{ heta}_i^* = rg \min_{m{ heta}} \, d(g(m{ heta}, \mathbf{u}_i), \mathbf{x}_o)$$

Same as in OMC but we can use general distances $d(\mathbf{x}, \mathbf{x}_o)$.

2. Use the minimal distances $d_i^* = d(g(\theta_i^*, \mathbf{u}_i))$ to choose an acceptance threshold ϵ / keep the n best θ_i^* .

ROMC is a framework for inference. It has three key steps:

1. For i = 1, ..., n', sample $\mathbf{u}_i \sim p(\mathbf{u})$ and determine

$$m{ heta}_i^* = rg \min_{m{ heta}} \, d(g(m{ heta}, \mathbf{u}_i), \mathbf{x}_o)$$

Same as in OMC but we can use general distances $d(\mathbf{x}, \mathbf{x}_o)$.

- 2. Use the minimal distances $d_i^* = d(g(\theta_i^*, \mathbf{u}_i))$ to choose an acceptance threshold ϵ / keep the n best θ_i^* .
- 3. For each i where $d_i^* \leq \epsilon$, define a proposal distribution q_i on the "acceptance region" $C_{\epsilon}^i = \{\theta : d(g(\theta, \mathbf{u}_i), \mathbf{x}_o) \leq \epsilon\}$

21/29

ROMC is a framework for inference. It has three key steps:

1. For i = 1, ..., n', sample $\mathbf{u}_i \sim p(\mathbf{u})$ and determine

$$oldsymbol{ heta}_i^* = rg \min_{oldsymbol{ heta}} d(g(oldsymbol{ heta}, \mathbf{u}_i), \mathbf{x}_o)$$

Same as in OMC but we can use general distances $d(\mathbf{x}, \mathbf{x}_o)$.

- 2. Use the minimal distances $d_i^* = d(g(\theta_i^*, \mathbf{u}_i))$ to choose an acceptance threshold ϵ / keep the n best θ_i^* .
- 3. For each i where $d_i^* \leq \epsilon$, define a proposal distribution q_i on the "acceptance region" $C_{\epsilon}^i = \{\theta : d(g(\theta, \mathbf{u}_i), \mathbf{x}_o) \leq \epsilon\}$

Approximate posterior is represented by weighted samples $heta_{ij}$:

$$m{ heta}_{ij} \sim q_i(m{ heta}) \qquad w_{ij} = \mathbb{1}_{C_\epsilon^i}(m{ heta}_{ij}) rac{p(m{ heta}_{ij})}{q_i(m{ heta}_{ij})} \qquad ext{(i=1, \dots n; j=1, \dots, m)}$$

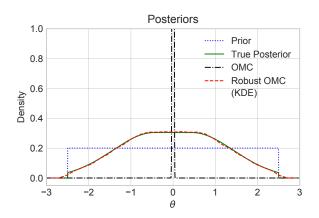
Construction of the proposal distribution

(General idea, see paper for details)

- ▶ Using θ_i^* and the optimisation trajectory, we build a model of the acceptance regions $C_{\epsilon}^i = \{\theta : d(g(\theta, \mathbf{u}_i), \mathbf{x}_o) \leq \epsilon\}$
- ▶ Simple but effective: model C_{ϵ}^{i} as a hypercube or ellipse and define q_{i} to be the uniform distribution on it.

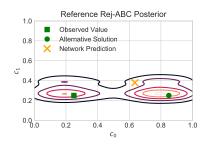
Results on the toy example

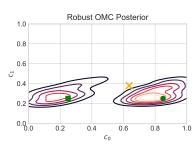
- ▶ Acceptance regions C_{ϵ}^{i} given by intervals on the line.
- ▶ ROMC handles the (nearly) flat likelihood function correctly.
- ▶ ROMC accurately represents uncertainty while OMC does not.



Results on the colour inference task

- Setup:
 - Optimisation via a gradient-free method (Bayesian optimisation with GP surrogate modelling)
 - Acceptance regions were modelled as ellipses (derived from the GP surrogate model)
- ▶ ROMC posterior matches reference posterior well.
- ► Effective sample size: 97% (vs. approx. 0.5% for OMC)





ROMC generalises OMC (see paper for the proof)

Theorem: Under the below assumptions, ROMC becomes equivalent to standard OMC as $\epsilon \to 0$.

Assumption 1. The distance $d(g(\theta, \mathbf{u}), \mathbf{x}_o)$ is given by the Euclidean distance between summary statistics $||\mathbf{f}(\theta, \mathbf{u}) - \Phi(\mathbf{x}_o)||_2$.

Assumption 2. The proposal distribution $q_i(\theta)$ is the uniform distribution on C_{ϵ}^i .

Assumption 3. The acceptance regions C_{ϵ}^{i} are approximated by the ellipsoid $C_{\epsilon}^{i} = \{\boldsymbol{\theta}: (\boldsymbol{\theta} - \boldsymbol{\theta}_{i}^{*})^{\mathsf{T}}\mathbf{J}_{i}^{\mathsf{T}}\mathbf{J}_{i}(\boldsymbol{\theta} - \boldsymbol{\theta}_{i}^{*}) \leq \epsilon\}$ where \mathbf{J}_{i} is the Jacobian matrix with columns $\partial \mathbf{f}(\boldsymbol{\theta}_{i}^{*}, \mathbf{u}_{i})/\partial \theta_{k}$.

Assumption 4. The matrix square root \mathbf{A}_i of $\mathbf{J}_i^{\mathsf{T}} \mathbf{J}_i$ is full rank, i.e. $\mathrm{rank}(\mathbf{A}_i) = \dim(\theta)$.

Assumption 5. The prior $p(\theta)$ is constant on the acceptance regions C_{ϵ}^{i} .

Explanation of the failure case

Identified failure case is due to violation of Assumptions 3 and 4:

Assumption 3. The acceptance regions C_{ϵ}^{i} are approximated by the ellipsoid $C_{\epsilon}^{i} = \{\boldsymbol{\theta} : (\boldsymbol{\theta} - \boldsymbol{\theta}_{i}^{*})^{\mathsf{T}} \mathbf{J}_{i}^{\mathsf{T}} \mathbf{J}_{i} (\boldsymbol{\theta} - \boldsymbol{\theta}_{i}^{*}) \leq \epsilon \}$ where \mathbf{J}_{i} is the Jacobian matrix with columns $\partial \mathbf{f}(\boldsymbol{\theta}_{i}^{*}, \mathbf{u}_{i}) / \partial \theta_{k}$.

Assumption 4. The matrix square root \mathbf{A}_i of $\mathbf{J}_i^{\mathsf{T}} \mathbf{J}_i$ is full rank, i.e. $\mathsf{rank}(\mathbf{A}_i) = \mathsf{dim}(\boldsymbol{\theta})$.

Explanation of the failure case

Identified failure case is due to violation of Assumptions 3 and 4:

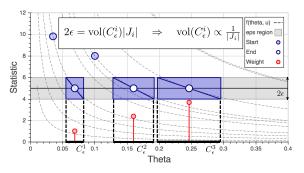
Assumption 3. The acceptance regions C_{ϵ}^{i} are approximated by the ellipsoid $C_{\epsilon}^{i} = \{\boldsymbol{\theta} : (\boldsymbol{\theta} - \boldsymbol{\theta}_{i}^{*})^{\mathsf{T}} \mathbf{J}_{i}^{\mathsf{T}} \mathbf{J}_{i} (\boldsymbol{\theta} - \boldsymbol{\theta}_{i}^{*}) \leq \epsilon \}$ where \mathbf{J}_{i} is the Jacobian matrix with columns $\partial \mathbf{f}(\boldsymbol{\theta}_{i}^{*}, \mathbf{u}_{i}) / \partial \theta_{k}$.

Assumption 4. The matrix square root \mathbf{A}_i of $\mathbf{J}_i^{\mathsf{T}} \mathbf{J}_i$ is full rank, i.e. $\mathsf{rank}(\mathbf{A}_i) = \mathsf{dim}(\boldsymbol{\theta})$.

For non-uniform priors, one then also risks violating Assumption 5: Assumption 5. The prior $p(\theta)$ is constant on the acceptance regions C_{ϵ}^{i} .

Explanation of the failure case

- lacktriangle OMC uses only information at $m{ heta}_i^*$ to approximate C_ϵ^i .
- ▶ ROMC in contrast uses information in a non-negligible neighbourhood around θ_i^* to approximate C_{ϵ}^i .



(Figure adapted from Meeds and Welling, NIPS 2015)

► Talk was on Bayesian inference for implicit models.

- ► Talk was on Bayesian inference for implicit models.
 - Implicit models: models that are defined by a stochastic simulator/data generating process.

- ► Talk was on Bayesian inference for implicit models.
 - ► Implicit models: models that are defined by a stochastic simulator/data generating process.
 - Optimisation Monte Carlo (OMC): Bayesian inference method that uses optimisation to increase computational efficiency.

- Talk was on Bayesian inference for implicit models.
 - Implicit models: models that are defined by a stochastic simulator/data generating process.
 - Optimisation Monte Carlo (OMC): Bayesian inference method that uses optimisation to increase computational efficiency.
- ► We showed that OMC under-estimates posterior uncertainty by collapsing regions of near-constant likelihood into a point.

- Talk was on Bayesian inference for implicit models.
 - ► Implicit models: models that are defined by a stochastic simulator/data generating process.
 - Optimisation Monte Carlo (OMC): Bayesian inference method that uses optimisation to increase computational efficiency.
- ► We showed that OMC under-estimates posterior uncertainty by collapsing regions of near-constant likelihood into a point.
- ▶ We proposed a robust generalisation of OMC, robust OMC, that explains and corrects this failure mode while maintaining OMC's benefits due to optimisation.

Code

- ▶ ROMC has been added to the software package "ELFI: Engine for Likelihood-Free Inference" https://github.com/elfi-dev/elfi
- Link to collab notebooks available through Vasileios Gkolemis, Michael Gutmann Extending the statistical software package Engine for Likelihood-Free Inference https://arxiv.org/abs/2011.03977