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Main messages

1. The likelihood function is computationally intractable for
energy-based and simulator-based models.

2. Contrastive learning is an intuitive and computationally
feasible alternative to likelihood-based learning.

3. We used it in a broad range of tasks: (1) parameter
estimation, (2) Bayesian inference, and (3) Bayesian
experimental design.
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Overall goal

I Goal: Understanding properties of some data source
I Enables predictions, decision making under uncertainty, . . .
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Two fundamental tasks

I Inference task : Given xo, what can we robustly say about the
properties of the source?

I Experimental design task : How to obtain a xo that is
maximally useful for learning about the properties?
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The likelihood function L(θ)

I Probability that the model generates data like xo when using
parameter value θ

I Classically, the main workhorse to solve the inference and
design task.
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The likelihood function L(θ)

I For models expressed as a family of pdfs {p(x|θ)} indexed by
θ: L(θ) = p(x|θ) where x is fixed.

I Inference:

θ̂ = argmax
θ

p(x|θ) or p(θ|x) = p(x|θ)
p(x) p(θ) (1)

with x fixed to xo.
I Experimental design via mutual information: expand model to

include (deterministic) design variable d, {p(x|θ,d)}

d̂ = argmax
d

MId(x,θ) (2)

MId(x,θ) = KL (p(θ, x|d)||p(θ|d)p(x|d)) (3)

= Ep(x,θ|d) log
[p(x|θ,d)

p(x|d)

]
(4)
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Energy and simulator-based models

I Not all models are specified as family of pdfs.
I Two important classes considered here

1. Energy-based (unnormalised) models
2. Simulator-based (implicit) models

I The models are rather different, common point:
Multiple integrals needed to be solved to represent the models
in terms of pdfs.

I Solving the integrals exactly is computationally impossible
(curse of dimensionality)
⇒ No model pdfs
⇒ No standard likelihood-based inference or experimental

design
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Energy-based models
I Widely used:

I computer vision and modelling of images
I natural language processing and machine translation
I modelling social or biological networks
I . . .

I Specified via an energy function E (x;θ) so that
φ(x|θ) = exp(−E (x;θ)) ∝ p(x|θ),∫

· · ·
∫
φ(x|θ)dx = Z (θ) 6= 1 p(x|θ) = φ(x|θ)

Z (θ)

I Advantage: Specifying an energy E (x;θ) is often easier than
specifying normalised models

I Disadvantage: Integral defining the partition function Z (θ)
can generally not be computed. Model pdf and likelihood
function are intractable.
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We cannot just ignore the partition function

I Consider p(x ; θ) = φ(x ;θ)
Z(θ) =

exp
(
−θ x2

2

)
√

2π/θ
I Log-likelihood function for precision θ ≥ 0

`(θ) = −n log

√
2π
θ
−θ

n∑
i=1

x2
i
2 (5)

I Data-dependent (blue) and
independent part (red)
balance each other.

I Ignoring Z (θ) leads to
meaningless estimates.
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Simulator-based models
I Widely used:

I computer models/simulators in the natural sciences
I evolutionary biology to model evolution
I epidemiology to model the spread of an infectious disease
I . . .

I Specified via a measurable function g , typically not known in
closed form but implemented as a computer programme.

x = g(θ,ω), ω ∼ p(ω) (6)

Maps parameters θ and “noise” ω to data x
I Advantage: connects statistics to the natural sciences
I Disadvantage: Model pdf and lik function are intractable.

Pr(x ∈ A|θ) = Pr({ω : g(θ,ω) ∈ A})
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Basic idea
I The basic idea in contrastive learning is to learn the difference

between the data of interest and some reference data.

I Properties of the reference are typically known or not of
interest; by learning the difference we focus the
(computational) resources on learning what matters.

I As straightforward as
b︸︷︷︸

reference

+ a − b︸ ︷︷ ︸
difference

⇒ a︸︷︷︸
interest

(7)

I Link to (log) ratio estimation (see e.g. Sugiyama et al’s
textbook)

log pb︸ ︷︷ ︸
reference

+ log pa − log pb︸ ︷︷ ︸
difference

⇒ log pa︸ ︷︷ ︸
interest

(8)

I Link to Bayes’ rule
log p(θ)︸ ︷︷ ︸
reference

+ log p(x|θ)− log p(x)︸ ︷︷ ︸
difference

⇒ log p(θ|x)︸ ︷︷ ︸
interest

(9)
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Logistic loss
I Link to classification: learning differences between data sets

can be seen as a classification problem.

I Let {x1, . . . , xn} be the data of interest, xi ∼ p (iid), and
{y1, . . . ym} be reference data, yi ∼ q (iid).

I Label the data: (xi , 1), (yi , 0) and minimise the (rescaled)
logistic loss J(h)

J(h) =1
n

n∑
i=1

log [1 + ν exp(−h(xi ))] +

ν

m

m∑
i=1

log
[
1 + 1

ν
exp(h(yi ))

]
(10)

where ν = m/n
I For large sample sizes n and m (and fixed ratio ν), the

optimal h is
h∗ = log p − log q (11)
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Logistic loss

Two key points:
1. The optimisation is done without any constraints (e.g.

normalisation). The optimal h is automagically the ratio
between two densities

h∗ = log p − log q (12)

2. We only need samples from p and q; we do not need their
densities or model of them (but we do need an appropriate model for the ratio)
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Logistic loss

I For large sample sizes n and m, J(h)→ J̄(h) and the
corresponding minimal loss is

J̄(h∗) = Ex∼p log
[
1 + ν

q(x)
p(x)

]
+ νEy∼q log

[
1 + p(y)

νq(y)

]
(13)

= . . .

= −KL(p||Mν)− νKL(q||Mν) + 2 log 2 (14)

with Mν = (p + νq)/2

I For ν = 1, J̄(h∗) = −2JSD(p, q) + 2 log 2, and hence

J̄(h) ≥ −2JSD(p, q) + 2 log 2 (15)

I Contrastive learning via classification with the logistic loss
estimates the JSD.

Michael U. Gutmann Statistical applications of contrastive learning 18 / 32



Logistic loss

I For large sample sizes n and m, J(h)→ J̄(h) and the
corresponding minimal loss is

J̄(h∗) = Ex∼p log
[
1 + ν

q(x)
p(x)

]
+ νEy∼q log

[
1 + p(y)

νq(y)

]
(13)

= . . .

= −KL(p||Mν)− νKL(q||Mν) + 2 log 2 (14)

with Mν = (p + νq)/2
I For ν = 1, J̄(h∗) = −2JSD(p, q) + 2 log 2, and hence

J̄(h) ≥ −2JSD(p, q) + 2 log 2 (15)

I Contrastive learning via classification with the logistic loss
estimates the JSD.

Michael U. Gutmann Statistical applications of contrastive learning 18 / 32



Logistic loss

I For large sample sizes n and m, J(h)→ J̄(h) and the
corresponding minimal loss is

J̄(h∗) = Ex∼p log
[
1 + ν

q(x)
p(x)

]
+ νEy∼q log

[
1 + p(y)

νq(y)

]
(13)

= . . .

= −KL(p||Mν)− νKL(q||Mν) + 2 log 2 (14)

with Mν = (p + νq)/2
I For ν = 1, J̄(h∗) = −2JSD(p, q) + 2 log 2, and hence

J̄(h) ≥ −2JSD(p, q) + 2 log 2 (15)

I Contrastive learning via classification with the logistic loss
estimates the JSD.

Michael U. Gutmann Statistical applications of contrastive learning 18 / 32



Other loss functions

I In the following, I will focus on the logistic loss as done in our
early work on contrastive learning for the estimation of
unnormalised models, “Noise-contrastive estimation (NCE)”
(Gutmann and Hyvärinen, AISTATS 2010).

I But other loss functions can be used:
I multinomial logistic loss when we contrast more than two data

points.
I Bregman divergences
I f-divergences
I . . .
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Constructing reference data
Choice depends on the specific application of contrastive learning.
I Fit a preliminary model and keep it fixed (as often done in

NCE)
I Iterative approach: fitted model becomes reference in the next

iteration (as also done in our original work on NCE!)
I Use other segments for time series data

(Hyvärinen and Morioka, NeurIPS 2016)

I For Bayesian inference, use prior predictive distribution
(Thomas et al, 2016; Thomas et al, Bayesian Analysis, 2020)

I Generate it conditionally on observed data
(Ceylan and Gutmann, ICML 2018)

I Iterative adaptive approach with implicit models: gives GANs
(Goodfellow et al, NeurIPS 2014)

I Iterative adaptive approach with flexible density model such as
flows (“Flow-contrastive estimation”, Gao et al, NeurIPS 2019)

I . . .
Michael U. Gutmann Statistical applications of contrastive learning 20 / 32



The density-chasm problem

I Single ratio methods are sample inefficient if the two
distributions are very different (“density chasm”)

I Consider ratio between two zero-mean Gaussians. 10’000
samples from each distribution. Ratio parametrised by θ ∈ R.

I Solution in red bridges the “gap” using telescopic ratio
estimation (TRE) (Rhodes, Xu, and Gutmann, NeurIPS 2020)
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Telescoping density-ratio estimation (Rhodes, Xu, and Gutmann, NeurIPS 2020)

A single density-ratio fails to “bridge” the density-chasm.

Let us thus use multiple bridges.
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Telescoping density-ratio estimation (Rhodes, Xu, and Gutmann, NeurIPS 2020)

Sample efficiency curves for the 1d peaked ratio experiment.

More results in the paper!
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Estimation of energy-based models p(x|θ) ∝ φ(x|θ)

(Gutmann and Hyvärinen, AISTATS 2010; JMLR 2012)
(Pihlaja, Gutmann, and Hyvärinen, UAI2010; Gutmann and Hirayama, UAI 2011)

(Rhodes, Xu, and Gutmann, NeurIPS 2020)

I Data: random sample from x ∼ px

I Introduce reference data y ∼ q
I Estimate the log-ratio h(x;θ) ≈ log px(x)− log q(x)

I Either parametrise h(x;θ) in terms of an energy-based model if
provided, i.e. h(x;θ) = log φ(x|θ)− log q(x) + const

I Or parametrise the log-ratio h(x;θ) directly, e.g. for deep
unsupervised learning.

I Set log p(x|θ̂) = log q(x)︸ ︷︷ ︸
reference

+ h(x; θ̂)︸ ︷︷ ︸
difference

Gaussian
Copula
Flow

Noise distribution Single ratio (NCE) TRE

(Figure from Rhodes, Xu, and Gutmann, NeurIPS 2020)
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Bayesian inference for simulator-based models

(Likelihood-Free Inference by Ratio Estimation, Thomas et al, 2016; 2020)
(Dinev and Gutmann, arXiv:1810.09899, 2018)

I Consider simulator-based model x = g(θ,ω), ω ∼ p(ω)
I Task: estimate the posterior p(θ|xo)
I Contrastive interpretation of Bayes’ rule:

log p(θ)︸ ︷︷ ︸
reference

+ log p(x|θ)− log p(x)︸ ︷︷ ︸
difference

⇒ log p(θ|x)︸ ︷︷ ︸
interest

(17)

I Use simulator to generate data from p(x|θ) and from p(x).
I Learning the difference provides an estimate of the desired

h(x,θ) = log p(x|θ)− log p(x) and hence an estimate of the
posterior.
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Experimental design for simulator-based models
(Kleinegesse and Gutmann, AISTATS 2019; ICML 2020; arXiv:2105.04379)

(Kleinegesse, Drovandi and Gutmann, Bayesian Analysis 2020)
(Ivanova, Foster, Kleinegesse, Gutmann and Rainforth, NeurIPS 2021)

I Example: Stochastic SIR model with noisy observations
Latent process: Susceptibles → Infected I(t) → Recovered
Observation model: y(t)|θ ∼ Poisson(y ;φI(t))

I Parameters θ = (β, γ): infection rate and recovery rate
I Task: find the optimal times at which to take measurements

to most accurately estimate θ.
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Experimental design for simulator-based models

I Experimental design by maximising mutual information (MI)

d̂ = argmax
d

Ep(x,θ|d) log
[p(x|θ,d)

p(x|d)

]
(18)

I Use contrastive learning to estimate

hd(x,θ) = log p(x|θ,d)− log p(x|d), (19)

and maximise sample average of hd(x,θ) with respect to d
I Static setting: Kleinegesse and Gutmann, AISTATS 2019
I Sequential setting where we update our belief about θ as we

sequentially acquire the data: Kleinegesse, Drovandi and
Gutmann, Bayesian Analysis 2020
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Experimental design for simulator-based models
d̂ = argmaxd Ep(x,θ|d) log

[
p(x|θ,d)
p(x|d)

]
I Learning the ratio hd(x,θ) and approximating the MI is

computationally costly.

I But we do not need to estimate the MI accurately
everywhere! Only around it’s maximum.

I Suggests approach using lower bounds on the MI (or proxy
quantities) where we concurrently tighten the bound and
maximise the (proxy) MI.
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Experimental design for simulator-based models

d̂ = argmaxd KL (p(θ, x|d)||p(θ|d)p(x|d))
I We can (again!) leverage logistic regression.

I Logistic regression results in replacing the KL divergence with
the JSD when measuring the MI.

JSD(p, q) ≥ log 2− 1
2 J̄(h) (20)

where h is the regression function and J̄ the logistic loss.
I Perform experimental design by maximising the negative

logistic loss jointly with respect to h and d.
I Learned h provides an estimate of the posterior (as before!)
I For more details and other loss functions:

Kleinegesse and Gutmann, ICML 2020; arXiv:2105.04379
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SIR example
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Conclusions

I Introduced energy-based (unnormalised) and simulator-based
(implicit) models.

I Pointed out that their likelihood function is computationally
intractable.

I Introduced contrastive learning as an intuitive and
computationally feasible alternative to likelihood-based
learning.

I Contrastive learning is closely related to classification, logistic
regression, and ratio estimation.

I We can use it to solve a range of difficult statistical problems:
1. Parameter estimation for energy-based models
2. Bayesian inference for simulator-based models
3. Bayesian experimental design for simulator-based models

I For papers, see https://michaelgutmann.github.io
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