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Key messages

1. Sufficient statistics are information maximising
representations.

2. We can learn approximate sufficient statistics using estimators
of mutual information or their proxies.

3. The learned statistics boost the performance of Bayesian
inference methods for implicit models.
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Sufficient statistics

I Consider a parametric statistical model p(x|θ) for data x.

I A statistic is a vector-valued function of the data. Basic
example is the sample average:

x̄ = 1
n

n∑
i=1

xi (1)

I Fisher–Neyman factorisation: A statistic T is sufficient for θ
if and only if p(x|θ) factorises as

p(x|θ) = u(x)v(T (x),θ) (2)

for all x and θ, where u and v are two non-negative functions.
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Example

I Classic example: n iid observations of a Gaussian random
variable with mean θ and known variance σ2.

p(x|θ) =
n∏

i=1

1√
2πσ2

exp
(
− 1
2σ2 (xi − θ)2

)
(3)

= 1
(2πσ2)

n
2

exp
(
−
∑n

i=1 x2i
2σ2

)
︸ ︷︷ ︸

u(x)

exp
(
2nθx̄ − nθ2

2σ2

)
︸ ︷︷ ︸

v(T (x),θ)

with T (x) = x̄ .

I Intuition:

(1) the model parameters θ only interact with x through T (x)
(2) θ ⊥⊥ x | T (x)

Michael U. Gutmann Approximate Sufficient Statistics 7 / 26



Example

I Classic example: n iid observations of a Gaussian random
variable with mean θ and known variance σ2.

p(x|θ) =
n∏

i=1

1√
2πσ2

exp
(
− 1
2σ2 (xi − θ)2

)
(3)

= 1
(2πσ2)

n
2

exp
(
−
∑n

i=1 x2i
2σ2

)
︸ ︷︷ ︸

u(x)

exp
(
2nθx̄ − nθ2

2σ2

)
︸ ︷︷ ︸

v(T (x),θ)

with T (x) = x̄ .
I Intuition:

(1) the model parameters θ only interact with x through T (x)
(2) θ ⊥⊥ x | T (x)

Michael U. Gutmann Approximate Sufficient Statistics 7 / 26



Example

I Classic example: n iid observations of a Gaussian random
variable with mean θ and known variance σ2.

p(x|θ) =
n∏

i=1

1√
2πσ2

exp
(
− 1
2σ2 (xi − θ)2

)
(3)

= 1
(2πσ2)

n
2

exp
(
−
∑n

i=1 x2i
2σ2

)
︸ ︷︷ ︸

u(x)

exp
(
2nθx̄ − nθ2

2σ2

)
︸ ︷︷ ︸

v(T (x),θ)

with T (x) = x̄ .
I Intuition:

(1) the model parameters θ only interact with x through T (x)

(2) θ ⊥⊥ x | T (x)

Michael U. Gutmann Approximate Sufficient Statistics 7 / 26



Example

I Classic example: n iid observations of a Gaussian random
variable with mean θ and known variance σ2.

p(x|θ) =
n∏

i=1

1√
2πσ2

exp
(
− 1
2σ2 (xi − θ)2

)
(3)

= 1
(2πσ2)

n
2

exp
(
−
∑n

i=1 x2i
2σ2

)
︸ ︷︷ ︸

u(x)

exp
(
2nθx̄ − nθ2

2σ2

)
︸ ︷︷ ︸

v(T (x),θ)

with T (x) = x̄ .
I Intuition:

(1) the model parameters θ only interact with x through T (x)
(2) θ ⊥⊥ x | T (x)

Michael U. Gutmann Approximate Sufficient Statistics 7 / 26



Log likelihood function
I Assume p(x|θ) = u(x)v(T (x),θ)

I Given some observed data x, the log likelihood function is

`(θ) = log v(T (x),θ) + const (4)

I To infer θ from x, we do not need to know x but only the
value of T (x).

I Gaussian example

`(θ) = n
2σ2 (2θx̄ − θ2) (5)

so that θ̂MLE = x̄
I Sufficient statistics are important both for MLE and Bayesian

inference

p(θ|x) = p(θ|T (x)) ∝ v(T (x),θ)π(θ), (6)

where π(θ) is the prior.
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Computational benefits of sufficient statistics

I Dimensionality reduction: Both the posterior and the
(log)-likelihood only depend on x via T (x) ⇒ we don’t need
to store or work with the raw data but can work with T (x),
which is often much easier.

I Gaussian example: 1 number vs n numbers
I Many algorithms work by comparing data sets to each other.

But comparing x with x′ is very hard due to high
dimensionality. Comparing T (x) with T (x′) is often simpler.
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Characterisation in terms of mutual information

I Denote the mutual information between by two random
variables y1 and y2 by I(y1; y2),

I(y1; y2) = Ey1,y2

[
log p(y1, y2)

p(y1)p(y2)

]
(7)

I (Data-processing inequality) For a Markov chain θ → x→ z,

I(θ; z) ≤ I(θ; x) (8)

We can’t gain MI but only lose it by transforming data.
Inequality also holds for deterministic functions z = g(x).

I No information loss for sufficient statistics:

T is a sufficient statistic⇐⇒ I(θ;T (x)) = I(θ; x) (9)
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Sufficient statistics are infomax representations

I MI-based characterisation of sufficient statistics T

T is a sufficient statistic⇐⇒ I(θ;T (x)) = I(θ; x) (10)

I Since for deterministic transformations g

I(θ; g(x)) ≤ I(θ; x) (11)

we have a variational characterisation of sufficient statistics

T is a sufficient statistic⇐⇒ I(θ;T (x)) = max
g∈G

I(θ; g(x))
(12)

I Choosing a function family G can introduce an approximation.
We work with neural networks with a fixed number of outputs
(2 dim(θ)).
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Combining the idea with MI estimators

I Estimating MI is hard.

I We are interested in finding an argmaxg I(θ; g(x)) rather than
knowing the precise value of the MI.

I Broadens the set of applicable MI estimators to include
surrogate quantities.

I MI as KL divergence between joint and marginals
→ Use the more robust Jensen-Shannon divergence (JSD)
instead of the KL divergence

I MI as a nonlinear dependency measure
→ Use the ratio-free distance correlation (Székely and Rizzo, 2009, 2014)
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Learning sufficient statistics with the JSD

I A density-free variational formulation of the JSD between
p(θ, x) and p(θ)p(x) is

sup
F

Ep(θ,x) [− sp(−F (θ, x))]− Ep(θ)p(x) [sp(F (θ, x))] (13)

where sp(t) = log(1 + exp(t)) is the softplus function.

I Objective for learning sufficient statistics:

sup
g ,F

Ep(θ,x) [− sp (−F (θ, g(x)))]− Ep(θ)p(x) [sp (F (θ, g(x))]

(14)
I Same as learning the ratio p(θ, x)/p(θ)p(x) = p(θ|x) by

logistic regression (classification) with a particular constraint
on the processing of x.
(see“LFI by ratio estimation” by Thomas et al, 2016; Hermans et al, 2020)

Michael U. Gutmann Approximate Sufficient Statistics 14 / 26



Learning sufficient statistics with the JSD

I A density-free variational formulation of the JSD between
p(θ, x) and p(θ)p(x) is

sup
F

Ep(θ,x) [− sp(−F (θ, x))]− Ep(θ)p(x) [sp(F (θ, x))] (13)

where sp(t) = log(1 + exp(t)) is the softplus function.
I Objective for learning sufficient statistics:

sup
g ,F

Ep(θ,x) [− sp (−F (θ, g(x)))]− Ep(θ)p(x) [sp (F (θ, g(x))]

(14)

I Same as learning the ratio p(θ, x)/p(θ)p(x) = p(θ|x) by
logistic regression (classification) with a particular constraint
on the processing of x.
(see“LFI by ratio estimation” by Thomas et al, 2016; Hermans et al, 2020)

Michael U. Gutmann Approximate Sufficient Statistics 14 / 26



Learning sufficient statistics with the JSD

I A density-free variational formulation of the JSD between
p(θ, x) and p(θ)p(x) is

sup
F

Ep(θ,x) [− sp(−F (θ, x))]− Ep(θ)p(x) [sp(F (θ, x))] (13)

where sp(t) = log(1 + exp(t)) is the softplus function.
I Objective for learning sufficient statistics:

sup
g ,F

Ep(θ,x) [− sp (−F (θ, g(x)))]− Ep(θ)p(x) [sp (F (θ, g(x))]

(14)
I Same as learning the ratio p(θ, x)/p(θ)p(x) = p(θ|x) by

logistic regression (classification) with a particular constraint
on the processing of x.
(see“LFI by ratio estimation” by Thomas et al, 2016; Hermans et al, 2020)

Michael U. Gutmann Approximate Sufficient Statistics 14 / 26



Learning sufficient statistics via distance correlation

(Székely and Rizzo, 2014)

I The distance correlation between two random variables is a
multivariate dependence coefficient defined as

R2(θ, x) = E[AθAx]√
E[A2

θ]E[A2
x]]

(15)

where Ax is a double-centred (random) distance function

Ax = ‖x− x′‖−Ex[‖x− x′‖]−Ex′ [‖x′− x‖] + Ex′Ex[‖x− x′‖]

(equivalent definition for Aθ)

I Expectation in the numerator is taken with respect to (x,θ)
and the independent and identically distributed tuple (x′,θ′).
(The expectations in the denominator are taken with respect to the
corresponding marginals.)
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Learning sufficient statistics via distance correlation

I There are equivalent definitions in terms of characteristic
functions and the so-called Brownian distance covariance
(Székely and Rizzo, 2009, 2014).
Links to maximum mean discrepancy (MMD, Sejdinovic et al, 2013)

I Key properties:

I 0 ≤ R(θ, x) ≤ 1
I R(θ, x) = 0⇐⇒ θ ⊥⊥ x
I R(θ, x) = 1 means θ and x are a linear transformation of each

other.

I Objective for learning sufficient statistics:

max
g

R2(θ, g(x)) (16)

Note: we only need to train one network and not two as in
the JSD (and other variational MI estimators), which makes
this approach faster.
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Goal

I Goal: approximate Bayesian parameter inference for implicit
models

I Implicit models: models where sampling is possible but
evaluating the likelihood function is computationally infeasible

x ∼ p(x|θ) (17)

I Approach: learn approximate sufficient statistics S(·) and aim
at p(θ|s), with s = S(x), instead of p(θ|x) to increase
efficiency.

I Focus on sequential inference methods:

I (variant of) sequential approximate Bayesian computation
(SMC-ABC, Beaumont, 2009)

I sequential neural likelihood (SNL, Papamakarios et al., 2019)
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Overview of the approach

We jointly learn the statistics and the posterior in multiple rounds.
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Variant of SMC-ABC with neural suff stats (SMC-ABC+)
Input: prior π(θ), observed data xo
Output: estimated posterior π̂(θ|xo)
Initialisation: D = ∅, p1(θ) = π(θ)
for j in 1 to r do
repeat
sample θi ∼ pj(θ) ; sample from proposal distr
simulate xi ∼ p(x|θi) ; sample data from the model

until n samples
D ← D ∪ {θi , xi}ni=1
learn approx suff stats S(·) using D ; ←− the main modification
compute so = S(xo) and si = S(xi) for (θi , xi) ∈ D;
sort D according to ‖si − so‖;
fit p(θ|so) with the top m θs in D; e.g. MoG or copula model
qj(θ|so) ∝ p(θ|so)π(θ)/

∑j
l pl(θ); π/

∑j
l pl : importance weights

pj+1(θ)← qj(θ|so); update proposal distribution

end for
return π̂(θ|xo) = qr (θ|so) alternatively: return the weighted samples
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SNL with neural suff stats (SNL+)

Input: prior π(θ), observed data xo
Output: estimated posterior π̂(θ|xo)
Initialisation: D = ∅, p1(θ) = π(θ)
for j in 1 to r do
repeat
sample θi ∼ pj(θ) ; sample from proposal distr
simulate xi ∼ p(x|θi) ; sample data from the model

until n samples
D ← D ∪ {θi , xi}ni=1
learn approx suff stats S(·) using D ; ←− the modification
compute so = S(xo) and si = S(xi) for (θi , xi) ∈ D;
fit q(s|θ) as in original SNL; neural density estimator, e.g. MAF
qj(θ|so) ∝ π(θ) · q(so|θ); prior times estimated likelihood
pj+1(θ)← qj(θ|so); update proposal distribution

end for
return π̂(θ|xo) = qr (θ|so)
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Example results: Ising model (using JSD)

I 64-dimensional Ising model, θ: coupling strength (prior:
U(0, 1.5))

I Sufficient statistics are known. Reference posterior obtained
by (expensive) rejection sampling.

I The learned statistics (algorithms with a +) improve the
inference.

I Posterior mean as statistics is sub-optimal.
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Example results: Ornstein-Uhlenbeck process (using JSD)

I Stochastic differential equation simulated with the
Euler-Maruyama method

xt+1 = xt + ∆xt (18)
∆xt = θ1(exp(θ2)− xt)∆t + 0.5ε, ε ∼ N (ε; 0,∆t) (19)

where ∆t = 0.2 and x0 = 10.

I Data: x1, . . . , x50.
I Unknowns: θ1 and θ2 with

priors U(0, 1) and
U(−2.0, 2.0), respectively.
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Example results: Ornstein-Uhlenbeck process (using JSD)

I Learning approximate sufficient statistics improves the
inference.

I Learned statistics give better calibrated posteriors.
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Other MI proxies

(Results for SNL+)

I We can use other MI proxies than JSD and DC. Results for
Donsker-Varadhan (DV) and Wasserstein distance (WD).

I JSD performs here best but DC is about 15 times faster than
the other methods.

Ising model OU process
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Conclusions

I Two characterisations of sufficient statistics:
I Fisher-Neyman factorisation
I Characterisation in terms of mutual information (MI)

I Variational characterisation: sufficient statistics are
information maximising representations.

I Learn (approximate) sufficient statistics using (proxy) MI
estimators.

I We used the learned statistics to boost the performance of
Bayesian inference with implicit models.

I “Approach plays well with others”: can be used to enhance
existing algorithms

I More results and comparisons in the paper
Neural approximate sufficient statistics for implicit models
https://openreview.net/pdf?id=SRDuJssQud
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