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Big picture of statistical inference

I Given data yo, draw conclusions about properties of its source
I If available, possibly take prior information into account

yo
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Unknown properties
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General approach

I Set up a model with potential properties θ (parameters)
I See which θ are reasonable given the observed data

Prior information

yo

Data space

Observation

Inference

Data source

Unknown properties

Model
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Likelihood function

I Measures agreement between θ and the observed data yo

I Probability to see data y like yo if property θ holds

yo

Data space

ObservationData source

Unknown properties

Model

M(θ)
Data generation

y|θ
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Likelihood function
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Likelihood function

I For discrete random variables:

L(θ) = P(y = yo|θ) (1)

I For continuous random variables:

L(θ) = lim
ε→0

P(y ∈ Bε(yo)|θ)
Vol(Bε(yo)) = p(yo|θ) (2)
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Performing statistical inference

I If L(θ) is known, inference boils down to solving an
optimisation/sampling problem

I Maximum likelihood estimation

θ̂ = argmax
θ

L(θ)

I Bayesian inference

p(θ|yo) ∝ p(θ)× L(θ)
posterior ∝ prior × likelihood

I Solving the optimisation/sampling problem can be
computationally very difficult.
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Simulator-based models

I In this talk, we consider another difficulty:
Not all models are specified as family of pdfs p(y|θ).

I Here: simulator-based models:
models which are specified via a mechanism (rule) for
generating data
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Other names for simulator-based models

I Models specified via a data generating mechanism occur in
multiple and diverse scientific fields.

I Different communities use different names for simulator-based
models:
I Generative models
I Implicit models
I Stochastic simulation models
I Probabilistic programs
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Simulator-based models are widely used

I Astrophysics:
Simulating the formation of
galaxies, stars, or planets

I Evolutionary biology:
Simulating evolution

I Neuroscience:
Simulating neural circuits

I Ecology:
Simulating species migration

I Health science:
Simulating the spread of an
infectious disease

I . . .

Simulated neural activity in rat somatosensory cortex
(Figure from https://bbp.epfl.ch/nmc-portal)
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Toy example

I Let y |θ ∼ N (θ, 1)
I Family of pdfs as model:

p(y |θ) = 1√
2π

exp
(
−(y − θ)2

2

)
(3)

I Simulator-based model:

y = z + θ z ∼ N (0, 1) (4)

or

y = z + θ z =
√
−2 log(ω) cos(2πν) (5)

where ω and ν are independent random variables uniformly
distributed on (0, 1)
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Formal definition of a simulator-based model
I Let (Ω,F ,P) be a probability space.
I A simulator-based model is a collection of (measurable)

functions g(.,θ) parametrized by θ,

ω ∈ Ω 7→ y = g(ω,θ) ∈ Y (6)

I The functions g(.,θ) are typically not available in closed form
but implicitly defined by a computer programme.

Simulation / Sampling
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Advantages of simulator-based models

I Direct implementation of hypotheses of how the observed
data were generated.

I Neat interface with physical or biological models of data.
I Modelling by replicating the mechanisms of nature which

produced the observed/measured data. (“Analysis by
synthesis”)

I Possibility to perform experiments in silico.
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Disadvantages of simulator-based models

I Generally elude analytical treatment.
I Can easily be made more complicated than necessary (→

possible identifiability issues).
I Statistical inference is difficult.
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Family of pdfs induced by the simulator

I For any fixed θ, the output of the simulator yθ = g(.,θ) is a
random variable.

I No closed-form formulae available for p(y|θ).
I Simulator defines the model pdfs p(y|θ) implicitly.
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Implicit definition of the model distribution

A

A
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Implicit definition of the likelihood function
For discrete random variables:
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Implicit definition of the likelihood function
For continuous random variables: L(θ) = limε→0 Lε(θ)
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Implicit definition of the likelihood function

I To compute the likelihood function, we need to compute the
probability that the simulator generates data close to yo,

P (y = yo|θ) or P (y ∈ Bε(yo)|θ)

I No analytical expression available.
I But we can empirically test whether simulated data equals yo

or is in Bε(yo).
I This property will be exploited to perform inference for

simulator-based models.
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Different inference approaches

I There are several flavors of parameter inference for
simulator-based models. In Bayesian setting e.g.
I Approximate Bayesian computation (ABC)
I Synthetic likelihood (Wood, 2010; Price et al 2017)
I Likelihood-free inference by ratio estimation (Thomas et al 2016;

Hermans et al 2020)
I . . .

I Here: Focus on ABC.
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Exact inference for discrete random variables

I For discrete random variables, we can perform exact Bayesian
inference without knowing the likelihood function.

I By definition, the posterior is obtained by conditioning p(θ, y)
on the event y = yo:

p(θ|yo) = p(θ, yo)
p(yo) = p(θ, y = yo)

p(y = yo) (7)
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Exact inference for discrete random variables

I Generate tuples (θi , yi ):
1. θi ∼ pθ (iid from the prior)
2. ωi ∼ P (by running the simulator)
3. yi = g(ωi ,θi ) (by running the simulator)

I Condition on y = yo ⇔ Retain only the tuples with yi = yo

I The θi from the retained tuples are samples from the
posterior p(θ|yo).
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Limitations

I Only applicable to discrete random variables.
I And even for discrete random variables:

Computationally infeasible in higher dimensions
I Reason: The probability of the event yθ = yo becomes smaller

and smaller as the dimension of the data increases.
I Out of N simulated tuples only a small fraction will be

accepted.
I The small number of accepted samples do not represent the

posterior well.
I Large Monte Carlo errors
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Approximations to make inference feasible

I Settle for approximate yet computationally feasible inference.
I Introduce two types of approximations:

1. Instead of working with the whole data, work with lower
dimensional summary statistics tθ and to ,

tθ = T (yθ) to = T (yo). (8)

2. Instead of checking tθ = to , check whether ∆θ = d(to , tθ) is
less than ε. (d may or may not be a metric)
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Approximation of the likelihood function

L(θ) = limε→0 Lε(θ) Lε(θ) = P(y∈Bε(yo)|θ)
Vol(Bε(yo))

I Approximations are equivalent to:
1. Replacing P (y ∈ Bε′(yo) | θ) with P (∆θ ≤ ε| θ)
2. Not taking the limit ε→ 0

I Defines an approximate likelihood function L̃ε(θ),

L̃ε(θ) ∝ P (∆θ ≤ ε | θ) (9)

I Discrepancy ∆θ is a (non-negative) random variable

∆θ = d(to, tθ) = d (T (yo),T (yθ))
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Rejection ABC algorithm

I The two approximations made yield the rejection algorithm for
approximate Bayesian computation (ABC):
1. Sample θi ∼ pθ

2. Simulate a data set yi by running the simulator with θi
(yi = g(ωi ,θi ))

3. Compute the discrepancy ∆i = d(T (yo),T (yi ))
4. Retain θi if ∆i ≤ ε

I This is the basic ABC algorithm.
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Properties

I Rejection ABC algorithm produces samples θ ∼ p̃ε(θ|yo),

p̃ε(θ|yo) ∝ pθ(θ)L̃ε(θ) (10)
L̃ε(θ) ∝ P

(
d(T (yo),T (y))︸ ︷︷ ︸

∆θ

≤ ε | θ
)

(11)

I Inference is approximate due to
I the summary statistics T and distance d
I ε > 0
I the finite number of samples (Monte Carlo error)

I Robust but slow algorithm
I ε needs to be small to reduce bias, but this causes a low

acceptance rate
I low acceptance rate when the likelihood is much more

concentrated than the prior
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Two widely used algorithms

I Two widely used algorithms which improve upon rejection
ABC:
1. Regression ABC (Beaumont et al, 2002, Blum and Francois, 2010)
2. Sequential Monte Carlo ABC (Sisson et al, 2007)

I Both use rejection ABC as a building block.
I Sequential Monte Carlo (SMC) ABC is also known as

Population Monte Carlo (PMC) ABC.
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Two widely used algorithms

I Regression ABC consists in running rejection ABC with a
relatively large ε and then adjusting the obtained samples so
that they are closer to samples from the true posterior.

I Sequential Monte Carlo ABC consists in sampling θ from an
adaptively constructed proposal distribution φ(θ) rather than
from the prior in order to avoid simulating many data sets
which are not accepted.
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Basic idea of regression ABC

I The summary statistics tθ = T (yθ) and θ have a joint
distribution.

I Let ti be the summary statistics for simulated data
yi = g(ωi ,θi ).

I We can learn a regression model between the summary
statistics (covariates) and the parameters (response variables)

θi = f (ti ) + ξi (12)

where ξi is the error term (zero mean random variable).
I The training data for the regression are typically tuples (θi , ti )

produced by rejection-ABC with some sufficiently large ε.
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Basic idea of regression ABC

I Fitting the regression model to the training data (θi , ti ) yields
an estimated regression function f̂ and the residuals ξ̂i ,

ξ̂i = θi − f̂ (ti ) (13)

I Regression ABC consists in replacing θi with θ∗i ,

θ∗i = f̂ (to) + ξ̂i = f̂ (to) + θi − f̂ (ti ) (14)

I Corresponds to an adjustment of θi .
I If the relation between t and θ is learned correctly, the θ∗i

correspond to samples from an approximation with ε = 0.
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Basic idea of sequential Monte Carlo ABC

I We may modify the rejection ABC algorithm and use φ(θ)
instead of the prior pθ.
1. Sample θi ∼ φ(θ)
2. Simulate a data set yi by running the simulator with θi

(yi = g(ωi ,θi ))
3. Compute the discrepancy ∆i = d(T (yo),T (yi ))
4. Retain θi if ∆i ≤ ε

I The retained samples follow a distribution proportional to
φ(θ)L̃ε(θ)
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Basic idea of sequential Monte Carlo ABC

I Parameters θi weighted with wi ,

wi = pθ(θi )
φ(θi )

, (15)

follow a distribution proportional to pθ(θ)L̃ε(θ).
I Can be used to iteratively morph the prior into a posterior:

I Use a sequence of shrinking thresholds εt
I Run rejection ABC with ε0.
I Define φt at iteration t based on the weighted samples from

the previous iteration (e.g Gaussian mixture with means equal
to the θi from the previous iteration).
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Basic idea of sequential Monte Carlo ABC
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Example: Bacterial infections in child care centers
I Simulating bacterial transmissions in child day care centers

(Numminen et al, 2013)
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Example: Bacterial infections in child care centers

I Data: Streptococcus pneumoniae colonization for 29 centers
I Inference with Population Monte Carlo ABC
I Reveals strong competition between different bacterial strains

Expensive:
I 4.5 days on a cluster with

200 cores
I More than one million

simulated data sets
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Brief recap

I Simulator-based models: Models which are specified by a data
generating mechanism.

I By construction, we can sample from simulator-based models.
Likelihood function can generally not be written down.

I Approximate likelihood function: Probability to generate data
for which some discrepancy measure is less than some
threshold.

I Rejection ABC: Trial and error scheme to find parameter
values which produce simulated data resembling the observed
data.

I Regression and sequential Monte Carlo ABC improve upon
rejection ABC. But are still expensive.
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Why is the ABC algorithm so expensive?

1. It rejects most samples when ε is small
2. It does not make assumptions about the shape of L(θ)
3. It does not use all information available
4. It does not take the finite computational budget into account

L̃ε(θ) ≈ 1
N
∑N

i=1 1

(
d(y(i)

θ , y
o) ≤ ε

)
Approximate lik function for competition
parameter. N = 300.
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Proposed solution

(Gutmann and Corander, 2016)

1. It rejects most samples when ε is small
⇒ Don’t reject samples – learn from them

2. It does not make assumptions about the shape of L(θ)
⇒ Model the distances, assume average distance is smooth

3. It does not use all information available
⇒ Incorporate new information using Bayes’ theorem

4. It does not take finite computational budget into account
⇒ Decide where to allocate the computational resources

equivalent strategy applies to
inference with synthetic likelihood
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Conceptual connection to classical algorithms
I The hallmarks of the proposed approach are

(a) modelling (points 1 and 2)
(b) using acquired information (data) to decide where to allocate

the computational resources (points 3 and 4)
I Regression and SMC ABC have elements of the proposed

approach:
I Regression ABC: Fits an auxiliary (linear) model to perform

the adjustment. → (a)
I SMC: Proposal distribution is constructed based on previously

simulated data, thus using previously simulated data to
“decide” for which parameters to run the simulator next. →
(b)

I Combining (a) & (b) is key to increasing the performance
(e.g. Chen and Gutmann, 2019).

I Most modern algorithm for ABC do it (implicitly) in some
way. In this talk, we will focus on Gaussian processes and
Bayesian decision making.
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Modelling

I Data Dt are tuples (θi ,∆i ), i = 1, . . . , t, where
∆i = d(y(i)

θ , xo)
I Model the conditional distribution of ∆ given θ
I Estimated model yields approximation L̂ε(θ) for any choice of
ε

L̂ε(θ) ∝ P̂ (∆ ≤ ε | θ)

P̂ is probability under the estimated model.
I Here: Use (log) Gaussian process as model (with squared

exponential covariance function)
(see Järvenpää et al, 2018, on GP model selection)
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Decision making to allocate computational resources

I For which θ should we run the simulator?
I Intuition: Give priority to regions in the parameter space

where the distance tends to be small.
I Piggy-back on Bayesian optimisation to find such regions

using the lower confidence bound acquisition function (e.g.
Srinivas et al, 2012)

At(θ) = µt(θ)︸ ︷︷ ︸
post mean

−
√√√√ η2

t︸︷︷︸
weight

vt(θ)︸ ︷︷ ︸
post var

(16)

t: number of samples acquired so far
I Run simulator next for

θ∗t+1 = argmin
θ
At(θ) (17)

I Approach not restricted to this acquisition function.
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Bayesian optimisation for likelihood-free inference
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Example: Bacterial infections in child care centers

I Comparison of the proposed approach with a standard
population Monte Carlo ABC approach.

I Roughly equal results using 1000 times fewer simulations.

4.5 days with 200 cores
↓

90 minutes with seven cores

Posterior means: solid lines,

credibility intervals: shaded areas or dashed lines.
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Example: Bacterial infections in child care centers
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Posterior means are shown as solid lines, credibility intervals as shaded areas or dashed lines.
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Closer look at the decision making

I We piggy-backed on Bayesian optimisation to determine the
parameter for which to run the simulator next.

I Advantages
I Relatively easy, re-uses large body of work on Bayesian

optimisation
I Acquisition function is cheap to compute and does not depend

on ε, which is often difficult to choose.
I Some optimality results for the task of finding the minimum of

E[∆|θ].
I Minimising expected distance maximises a lower bound on the

approximate log-likelihood. (Gutmann and Corander, 2016)
I Disadvantages

I Acquisition function is not derived based on what we actually
care most about: the posterior.

I Does not incorporate the prior, which can lead to issues for
confident mis-specified priors (Gutmann and Corander, 2016)
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Going back to first principles

(Järvenpää et al, 2019)

I Model ∆θ = f (θ) + ν where f is a GP and ν ∼ N (0, σ2
n).

I If f and σ2
n were known, the ABC posterior πf

ABC would be
proportional to

π̃f
ABC(θ) ∝ pθ(θ)P(f (θ) + ν ≤ ε) (18)

∝ pθ(θ)Φ ((ε− f (θ))/σn) (19)

where Φ(·) is the cdf of the standard Gaussian density.
I We don’t know f but given acquired data Dt , we have a

distribution over it: f | Dt ∼ GP(mt(θ), ct(θ,θ′))
I Uncertainty about f induces uncertainty about π̃f

ABC(θ)
I Choose next acquisition point θ∗t to reduce this uncertainty.
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Illustration

Data: parameter, distance pairs

GP model of the distance

Model of the unnormalised

posterior, keeping track of 

the uncertainty due to an 

insu cient amount of 

simulated data.
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Optimal selection of simulation locations

I We use Bayesian experimental design (Chaloner and Verdinelli,
1995)

I Define loss function l(πf
ABC, d) that quantifies the penalty of

the decision to report d as our estimate of the ABC posterior
while the true one is πf

ABC.
I Compute the expected loss of the best decision

Jt(θ∗) = E∆∗|θ∗,Dt

(
min

d
Ef |Dt∪{(∆∗,θ∗)}l(πf

ABC, d)
)
. (20)

I Depends on the “design” parameter θ∗: the parameter for
which we run the simulator next

I Choose θ∗ such that above loss is minimised

θ∗t+1 = argmin
θ

Jt(θ) (21)
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Expected integrated variance (EIV) criterion

(Järvenpää et al, 2019) Jt (θ∗) = E∆∗|θ∗,Dt

(
mind Ef |Dt∪{(∆∗,θ∗)}l(πf

ABC, d)
)

I Consider loss function

l(πf
ABC, d) =

∫
Θ

(π̃f
ABC(θ)− d̃(θ))2dθ (22)

between the unnormalised posteriors.
I The optimal decision (point estimate for unnormalised

posterior) is

d̃opt(θ) = Ef |Dt∪{(∆∗,θ∗)}(π̃f
ABC(θ)) (23)

= pθ(θ)Φ

 ε−mt(θ)√
σ2

n + s2
t (θ)

 (24)

where s2
t (θ) is the posterior variance for f .
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Expected integrated variance (EIV) criterion
(Järvenpää et al, 2019) Jt (θ∗) = E∆∗|θ∗,Dt

(
mind Ef |Dt∪{(∆∗,θ∗)}l(πf

ABC, d)
)

I The minimal loss
min

d
Ef |Dt∪{(∆∗,θ∗)}l(πf

ABC, d) (25)

equals the integrated variance of π̃f
ABC(θ)

I The expected loss Jt(θ∗) thus equals the expected integrated
variance.

I It can be derived in closed form

Jt(θ∗t ) = 2
∫

p2
θ(θ)

[
T

(
ε− mt(θ)√
σ2

n + s2
t (θ)

,

√
σ2

n + s2
t (θ) − τ 2

t (θ, θ∗)
σ2

n + s2
t (θ) + τ 2

t (θ, θ∗)

)

− T

(
ε− mt(θ)√
σ2

n + s2
t (θ)

,
σn√

σ2
n + 2s2

t (θ))

)]
dθ, (26)

where τ 2
t (θ; θ∗)=ct(θ, θ∗)[ct(θ∗, θ∗)+σ2

nI]−1ct(θ∗, θ) and T is Owen’s
t-function.

I Integral approximated using importance sampling
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Example: Banana posterior
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Example: Banana posterior
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Example: Banana posterior
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Example: Banana posterior
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Comparison
(Many more results in the paper by Järvenpää et al, 2019)

I Metric: compute L1 distance to reference posterior after each
acquisition and report area under the curve

I Table below shows median over 100 experiments, normalised
to performance of the expected integrated variance (expintvar).

I Other methods
I maxvar: determine where the variance V(π̃ABC(θ) | D1:t) is

largest
I randmaxvar: stochastic version
I LCB, EI: acquisition functions from Bayesian optimisation
I unif: uniform sampling

expintvar maxvar randmaxvar LCB EI unif

Banana 1.00 1.23 1.09 1.08 1.67 1.47
Lotka-Volterra 1.00 1.37 1.10 1.15 1.85 1.62

LIKE22 Winter School – Accelerating ABC– ©Michael U. Gutmann CC BY 4.0 cb 63 / 67

https://creativecommons.org/licenses/by/4.0/


Comparison

I Expected integrated variance yields consistently good
performance.

I However, it is expensive to compute. Only worth it for
expensive simulators.

I For more results, other loss functions, relationship to LCB,
batch and parallel processing: see Järvenpää et al, 2019, 2020.
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Summary

1. Simulator-based models
I What they are
I Why the likelihood function is intractable

2. Classical algorithms for approximate Bayesian computation
I Need for approximations
I 3 classical algorithms: rejection, regression, and SMC ABC.

3. Accelerating ABC
I Discussed reasons why the classical algorithms so expensive
I Framework to accelerate the inference based on (a) modelling

and (b) decision making under uncertainty
I LCB and new inference-targeted expected integrated variance

(EIV) criteria
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