Decision making under uncertainty to accelerate approximate Bayesian computation

Michael U. Gutmann

School of Informatics The University of Edinburgh michael.gutmann@ed.ac.uk

February 7 2022

- 1. Simulator-based models
- 2. Classical algorithms for approximate Bayesian computation
- 3. Accelerating ABC
- 1. Simulator-based models
- 2. Classical algorithms for approximate Bayesian computation
- 3. Accelerating ABC

Overall goal

Given data y^o, draw conclusions about properties of its source

 \blacktriangleright If available, possibly take prior information into account

Model-based approach

 \triangleright Set up a model with potential properties θ (parameters)

 \blacktriangleright See which θ are reasonable given the observed data

Likelihood function

 \blacktriangleright Measures agreement between θ and the observed data y°

P Probability to see data **y** like **y**^o if property *θ* holds

Performing statistical inference

For models specified as a family of pdfs $p(\mathbf{y}|\theta)$, the likelihood function equals

$$
L(\theta) = \rho(\mathbf{y}^o|\theta) \tag{1}
$$

Inference boils down to solving an optimisation/sampling problem.

 \blacktriangleright Maximum likelihood estimation

$$
\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \, L(\boldsymbol{\theta}) \tag{2}
$$

 \blacktriangleright Bayesian inference

$$
p(\theta|\mathbf{y}^o) \propto p(\theta) \times L(\theta) \tag{3}
$$

$$
\text{posterior} \propto \text{prior} \times \text{likelihood} \tag{4}
$$

 \blacktriangleright Solving the optimisation/sampling problem can be computationally very difficult.

Inference for simulator-based models

 \blacktriangleright In this talk, we consider another difficulty: Not all models are specified as family of pdfs $p(\mathbf{y}|\boldsymbol{\theta})$.

 \blacktriangleright Here: simulator-based models:

models which are specified via a mechanism (rule) for generating data

 \blacktriangleright Problem considered: perform statistical inference when

- 1. the likelihood function is too costly to compute, but
- 2. sampling simulating data from the model is possible
- \blacktriangleright This is sometimes called "likelihood-free inference".

Other names for simulator-based models

- **In Models specified via a data generating mechanism occur in** multiple and diverse scientific fields.
- \triangleright Different communities use different names for simulator-based models:
	- \blacktriangleright Generative models
	- \blacktriangleright Implicit models
	- \triangleright Stochastic simulation models
	- \blacktriangleright Probabilistic programs

Simulator-based models are widely used

- \blacktriangleright Astrophysics: Simulating the formation of galaxies, stars, or planets
- \blacktriangleright Evolutionary biology: Simulating evolution
- \blacktriangleright Neuroscience: Simulating neural circuits
- \blacktriangleright Ecology: Simulating species migration
- \blacktriangleright Health science: Simulating the spread of an infectious disease

Simulated neural activity in rat somatosensory cortex (Figure from https://bbp.epfl.ch/nmc-portal)

I . . .

Advantages of simulator-based models

- ▶ Direct implementation of hypotheses of how the observed data were generated.
- \blacktriangleright Neat interface with physical or biological models of data.
- \blacktriangleright Modelling by replicating the mechanisms of nature which produced the observed/measured data. ("Analysis by synthesis")
- \blacktriangleright Possibility to perform experiments in silico.

Disadvantages of simulator-based models

- \blacktriangleright Generally elude analytical treatment.
- \blacktriangleright Can easily be made more complicated than necessary (\rightarrow possible identifiability issues).
- ▶ Standard likelihood-based workflow not applicable to perform statistical inference.

Different inference approaches

- \blacktriangleright There are several flavors of parameter inference for simulator-based models. In Bayesian setting e.g.
	- **Approximate Bayesian computation (ABC)**
	- Synthetic likelihood (Wood, 2010; Price et al 2017)
	- \blacktriangleright Likelihood-free inference by ratio estimation (Thomas et al 2016; Hermans et al 2020)
	- I *. . .*

 \blacktriangleright Here: Focus on ABC.

- 1. Simulator-based models
- 2. Classical algorithms for approximate Bayesian computation
- 3. Accelerating ABC

1. Simulator-based models

2. Classical algorithms for approximate Bayesian computation

3. Accelerating ABC

Exact inference for discrete random variables

- \blacktriangleright For discrete random variables, we can perform exact Bayesian inference without knowing the likelihood function.
- \blacktriangleright Being able to sample from the model is sufficient.
- **I** The posterior is obtained by conditioning $p(\theta, y)$ on the event $y = y^{\circ}$:

$$
p(\theta | \mathbf{y}^{\circ}) = \frac{p(\theta, \mathbf{y}^{\circ})}{p(\mathbf{y}^{\circ})} = \frac{p(\theta, \mathbf{y} = \mathbf{y}^{\circ})}{p(\mathbf{y} = \mathbf{y}^{\circ})}
$$
(5)

Exact inference for discrete random variables

- **I** Generate tuples (θ_i, y_i) :
	- 1. $\theta_i \sim p_\theta$ (iid from the prior) 2. $\omega_i \sim \mathcal{P}$ (by running the simulator) 3. $\mathbf{y}_i = g(\boldsymbol{\omega}_i, \boldsymbol{\theta}_i)$) (by running the simulator)
- ▶ Condition on $y = y^o \Leftrightarrow$ Retain only the tuples with $y_i = y^o$
- \blacktriangleright The θ_i from the retained tuples are samples from the posterior $p(\theta | y^o)$.

Limitations

- \triangleright Only applicable to discrete random variables.
- \triangleright And even for discrete random variables: Computationally infeasible in higher dimensions
- **P** Reason: The probability of the event $y_{\theta} = y^{\circ}$ becomes smaller and smaller as the dimension of the data increases.
- \triangleright Out of N simulated tuples only a small fraction will be accepted.
	- \blacktriangleright The small number of accepted samples do not represent the posterior well.
	- **Large Monte Carlo errors**

Approximations to make inference feasible

- \blacktriangleright Settle for approximate yet computationally feasible inference.
- Introduce two types of approximations:
	- 1. Instead of working with the whole data, work with lower dimensional summary statistics $\mathbf{t}_{\boldsymbol{\theta}}$ and \mathbf{t}^o ,

$$
\mathbf{t}_{\theta} = \mathcal{T}(\mathbf{y}_{\theta}) \qquad \qquad \mathbf{t}^{\circ} = \mathcal{T}(\mathbf{y}^{\circ}). \tag{6}
$$

- 2. Instead of checking $\mathbf{t}_{\theta} = \mathbf{t}^{\circ}$, check whether $\Delta_{\theta} = d(\mathbf{t}^{\circ}, \mathbf{t}_{\theta})$ is less than ϵ . (d may or may not be a metric)
- \blacktriangleright Defines an approximate likelihood function $\tilde{L}_{\epsilon}(\theta)$,

$$
\tilde{L}_{\epsilon}(\theta) \propto \mathbb{P}\left(\Delta_{\theta} \leq \epsilon \mid \theta\right) \tag{7}
$$

- \blacktriangleright The two approximations made yield the rejection algorithm for approximate Bayesian computation (ABC):
	- 1. Sample $\theta_i \sim p_{\theta}$
	- 2. Simulate a data set \mathbf{y}_i by running the simulator with $\boldsymbol{\theta}_i$ $\left(\mathbf{y}_i = g(\boldsymbol{\omega}_i, \boldsymbol{\theta}_i)\right)$
	- 3. Compute the discrepancy $\Delta_i = d(T(\mathbf{y}^o), T(\mathbf{y}_i))$
	- 4. Retain $\boldsymbol{\theta}_i$ if $\Delta_i \leq \epsilon$
- \blacktriangleright This is the basic ABC algorithm.

Properties

 \blacktriangleright Inference is approximate due to

- \blacktriangleright the summary statistics T and distance d
- \blacktriangleright $\epsilon > 0$
- \blacktriangleright the finite number of samples (Monte Carlo error)
- \blacktriangleright Robust but slow algorithm
	- \blacktriangleright ϵ needs to be small to reduce bias, but this causes a low acceptance rate
	- \blacktriangleright low acceptance rate when the likelihood is much more concentrated than the prior
- \blacktriangleright Two widely used algorithms which improve upon rejection ABC are
	- 1. Regression ABC (Beaumont et al, 2002, Blum and Francois, 2010)
	- 2. Sequential Monte Carlo ABC (Sisson et al, 2007)
- Both use rejection ABC as a building block.
- ▶ Sequential Monte Carlo (SMC) ABC is also known as Population Monte Carlo (PMC) ABC.
- **IN Regression ABC consists in running rejection ABC with a** relatively large ϵ and then adjusting the obtained samples so that they are closer to samples from the true posterior.
- Adjustment is based on fitting a (linear) regression model to the simulated parameters and summary statistics: It is an early example of using an auxiliary model to improve the inference.
- I Sequential Monte Carlo (SMC) ABC consists in sampling *θ* from an adaptively constructed proposal distribution *φ*(*θ*) (with decreasing ϵ) rather than from the prior in order to avoid simulating many data sets which are not accepted.
- **Pro[posa](#page-57-0)l distribution is constructed based on simulated data:** It is an early example of using previously simulated data to guide further simulation.

Example: Bacterial infections in child care centers

 \blacktriangleright Simulating bacterial transmissions in child day care centers

(Numminen et al, 2013)

Example: Bacterial infections in child care centers

- ▶ Data: Streptococcus pneumoniae colonization for 29 centers
- \blacktriangleright Inference with SMC ABC
- **In Reveals strong competition between different bacterial strains**

Expensive:

- ▶ 4.5 days on a cluster with 200 cores
- \blacktriangleright More than one million simulated data sets

Brief recap

- ▶ Simulator-based models: Models which are specified by a data generating mechanism.
- \blacktriangleright By construction, we can sample from simulator-based models. Likelihood function can generally not be written down.
- **Approximate likelihood function: Probability to generate data** for which some discrepancy measure is less than some threshold.
- ▶ Rejection ABC: Trial and error scheme to find parameter values which produce simulated data resembling the observed data.
- **In Regression and sequential Monte Carlo ABC improve upon** rejection ABC. But are still expensive.

1. Simulator-based models

2. Classical algorithms for approximate Bayesian computation

3. Accelerating ABC

- 1. Simulator-based models
- 2. Classical algorithms for approximate Bayesian computation
- 3. Accelerating ABC

Why are the ABC algorithms so expensive?

- 1. They reject most samples when ϵ is small
- 2. They do not make assumptions about the shape of L(*θ*)
- 3. They do not use all information available
- 4. They do not take the finite computational budget into account

$$
\tilde{L}_{\epsilon}(\theta) \approx \tfrac{1}{N} \sum_{i=1}^{N} \mathbb{1} \left(d(\mathbf{y}_{\theta}^{(i)}, \mathbf{y}^{\circ}) \leq \epsilon \right)
$$

Approximate lik function for competition parameter. $N = 300$.

(Gutmann and Corander, 2016)

- 1. They reject most samples when ϵ is small \Rightarrow Don't reject samples – learn from them
- 2. They do not make assumptions about the shape of L(*θ*) \Rightarrow Model the distances, assume average distance is smooth
- 3. They do not use all information available \Rightarrow Incorporate new information using Bayes' theorem
- 4. They do not take the finite computational budget into account \Rightarrow Decide where to allocate the computational resources

equivalent strategy applies to inference with synthetic likelihood

Conceptual connection to classical algorithms

- \blacktriangleright The hallmarks of the proposed approach are
	- (a) modelling (points 1 and 2)
	- (b) using acquired information (data) to decide where to allocate the computational resources (points 3 and 4)
- ▶ Regression and SMC ABC have elements of the proposed approach:
	- ▶ Regression ABC: Fits an auxiliary (linear) model to perform the adjustment. \rightarrow (a)
	- In SMC: Proposal distribution is constructed based on previously simulated data, using it to "decide" for which parameters to run the simulator next. \rightarrow (b)
- \triangleright Combining (a) & (b) is key to increasing the performance (e.g. Chen and Gutmann, 2019).
- \blacktriangleright Most modern algorithm for ABC do it (implicitly) in some way. In this talk, we will focus on Gaussian processes and Bayesian decision making.

Modelling

- ▶ Data D_t are tuples (θ_i, Δ_i) , $i = 1, \ldots, t$, where $\Delta_i = d(\mathsf{y}_{\theta}^{(i)})$ *θ ,* **y** o)
- **►** Model the conditional distribution of Δ given θ
- **►** Estimated model yields approximation $\hat{L}_{\epsilon}(\theta)$ for any choice of ϵ

$$
\hat{\mathcal{L}}_{\epsilon}(\boldsymbol{\theta}) \propto \widehat{\mathbb{P}}\left(\Delta \leq \epsilon \mid \boldsymbol{\theta}\right)
$$

 $\widehat{\mathbb{P}}$ is probability under the estimated model.

In Here: Use (log) Gaussian process as model (with squared exponential covariance function)

(see Järvenpää et al, 2018, on GP model selection)

Decision making to allocate computational resources

- \blacktriangleright For which θ should we run the simulator?
- Intuition: Give priority to regions in the parameter space where the distance tends to be small.
- **Piggy-back on Bayesian optimisation to find such regions** using the lower confidence bound acquisition function (e.g. Srinivas et al, 2012)

$$
\mathcal{A}_t(\theta) = \underbrace{\mu_t(\theta)}_{\text{post mean}} - \sqrt{\frac{\eta_t^2}{\text{weight post var}}} \quad (8)
$$

- t: number of samples acquired so far
- \blacktriangleright Run simulator next for

$$
\boldsymbol{\theta}_{t+1}^* = \operatorname*{argmin}_{\boldsymbol{\theta}} \mathcal{A}_t(\boldsymbol{\theta}) \tag{9}
$$

 \blacktriangleright Approach not restricted to this acquisition function.

Bayesian optimisation for likelihood-free inference

Example: Bacterial infections in child care centers

- ▶ Comparison of the proposed approach with a standard SMC ABC approach.
- \blacktriangleright Roughly equal results using 1000 times fewer simulations.

(Gutmann and Corander, 2016)

Example: Bacterial infections in child care centers

- Comparison of the proposed approach with a standard SMC ABC approach.
- Roughly equal results using 1000 times fewer simulations.

Posterior means are shown as solid lines, credibility intervals as shaded areas or dashed lines.

Closer look at the decision making

- \blacktriangleright We piggy-backed on Bayesian optimisation to determine the parameters for which to run the simulator next.
- **Advantages**
	- \blacktriangleright Relatively easy, re-uses large body of work on Bayesian optimisation
	- Acquisition function is cheap to compute and does not depend on ϵ , which is often difficult to choose.
	- \triangleright Some optimality results for the task of finding the minimum of $\mathbb{E}[\Delta|\theta]$.
	- \blacktriangleright Minimising expected distance maximises a lower bound on the approximate log-likelihood. (Gutmann and Corander, 2016)
- \blacktriangleright Disadvantages
	- \blacktriangleright Acquisition function is not derived based on what we actually care most about: the posterior.
	- \triangleright Does not incorporate the prior, which can lead to issues for confident mis-specified priors (Gutmann and Corander, 2016)

The following slides are based on slides kindly shared by Marko Järvenpää.

Going back to first principles

(Järvenpää et al, 2019)

- \triangleright Model $\Delta_{\theta} = f(\theta) + \nu$ where *f* is a GP and $\nu \sim \mathcal{N}(0, \sigma_n^2)$.
- If f and σ_n^2 n^2 were known, the ABC posterior π_{ABC}^f would be proportional to

$$
\tilde{\pi}_{\text{ABC}}^f(\theta) \propto p_{\theta}(\theta) \mathbb{P}(f(\theta) + \nu \leq \epsilon) \tag{10}
$$
\n
$$
\propto p_{\theta}(\theta) \Phi\left((\epsilon - f(\theta))/\sigma_n\right) \tag{11}
$$

where $\Phi(\cdot)$ is the cdf of the standard Gaussian density.

- \blacktriangleright We don't know f but given acquired data \mathcal{D}_t , we have a $\mathsf{distribution}$ over it: $f \mid \mathcal{D}_t \sim \mathcal{GP}(m_t(\bm{\theta}), c_t(\bm{\theta}, \bm{\theta}'))$
- \blacktriangleright Uncertainty about *f* induces uncertainty about $\tilde{\pi}^f_{\mathsf{ABC}}(\theta)$
- ► Choose next acquisition point θ_t^* $_{t+1}^{\ast}$ to reduce this uncertainty.

Illustration

Optimal selection of simulation locations

- I We use Bayesian experimental design (Chaloner and Verdinelli, 1995)
- \blacktriangleright Define loss function $I(\pi_{\mathsf{ABC}}^f,d)$ that quantifies the penalty of the decision to report d as our estimate of the ABC posterior while the true one is $\pi_{\mathsf{ABC}}^f.$
- \triangleright Compute the expected loss of the best decision

$$
J_t(\theta^*) = \mathbb{E}_{\Delta^*|\theta^*, \mathcal{D}_t} \Big(\min_d \mathbb{E}_{f|\mathcal{D}_t \cup \{(\Delta^*, \theta^*)\}} / (\pi_{ABC}^f, d)\Big). \qquad (12)
$$

- ▶ Depends on the "design" parameter $\boldsymbol{\theta}^*$: the parameter for which we run the simulator next
- ► Choose θ^* such that above loss is minimised

$$
\boldsymbol{\theta}_{t+1}^* = \operatorname*{argmin}_{\boldsymbol{\theta}} J_t(\boldsymbol{\theta})
$$
\n(13)

Expected integrated variance (EIV) criterion

 $\mathcal{G}(\mathsf{J}$ ärvenpää et al, 2019) $J_t(\pmb{\theta}^*)=\mathbb{E}_{\pmb{\Delta}^*\mid\pmb{\theta}^*,\mathcal{D}_t}\bigg($ $\min_d \mathbb{E}_{f | \mathcal{D}_t \cup \{(\Delta^*, \theta^*)\}} \mathcal{I}(\pi_{\mathsf{ABC}}^f, d)$ Λ

 \blacktriangleright Consider loss function

$$
I(\pi_{ABC}^f, d) = \int_{\Theta} (\tilde{\pi}_{ABC}^f(\boldsymbol{\theta}) - \tilde{d}(\boldsymbol{\theta}))^2 d\boldsymbol{\theta}
$$
 (14)

between the unnormalised posteriors.

 \blacktriangleright The optimal decision (point estimate for the unnormalised posterior) is

$$
\tilde{d}_{opt}(\theta) = \mathbb{E}_{f|\mathcal{D}_t \cup \{(\Delta^*, \theta^*)\}}(\tilde{\pi}_{ABC}^f(\theta)) \qquad (15)
$$
\n
$$
= p_{\theta}(\theta)\Phi\left(\frac{\epsilon - m_t(\theta)}{\sqrt{\sigma_n^2 + s_t^2(\theta)}}\right) \qquad (16)
$$

where s_t^2 $t^2_t(\boldsymbol\theta)$ is the posterior variance for f .

Expected integrated variance (EIV) criterion

 $\mathcal{G}(\mathsf{J}$ ärvenpää et al, 2019) $J_t(\pmb{\theta}^*)=\mathbb{E}_{\pmb{\Delta}^*\mid\pmb{\theta}^*,\mathcal{D}_t}\bigg($ $\min_d \mathbb{E}_{f | \mathcal{D}_t \cup \{(\Delta^*, \theta^*)\}} \mathcal{I}(\pi_{\mathsf{ABC}}^f, d)$ Λ \blacktriangleright The minimal loss

$$
\min_{d} \mathbb{E}_{f|\mathcal{D}_t \cup \{(\Delta^*,\theta^*)\}} / (\pi_{\text{ABC}}^f, d) \tag{17}
$$

equals the integrated variance of $\tilde{\pi}^f_{\mathsf{ABC}}(\boldsymbol{\theta})$

- The expected loss $J_t(\theta^*)$ thus equals the expected integrated variance.
- \blacktriangleright It can be derived in closed form

$$
J_t(\theta_t^*) = 2 \int \rho_{\theta}^2(\theta) \left[T \left(\frac{\epsilon - m_t(\theta)}{\sqrt{\sigma_n^2 + s_t^2(\theta)}}, \sqrt{\frac{\sigma_n^2 + s_t^2(\theta) - \tau_t^2(\theta, \theta^*)}{\sigma_n^2 + s_t^2(\theta) + \tau_t^2(\theta, \theta^*)}} \right) - T \left(\frac{\epsilon - m_t(\theta)}{\sqrt{\sigma_n^2 + s_t^2(\theta)}}, \frac{\sigma_n}{\sqrt{\sigma_n^2 + 2s_t^2(\theta)}} \right) \right] d\theta, \qquad (18)
$$

where τ^2_t $\mathcal{L}_t^2(\bm{\theta};\bm{\theta}^*)$ = $c_t(\bm{\theta},\bm{\theta}^*)$ [$c_t(\bm{\theta}^*,\bm{\theta}^*)+\sigma_n^2$ l] $^{-1}$ $c_t(\bm{\theta}^*,\bm{\theta})$ and $\bm{\mathcal{T}}$ is Owen's t-function.

 \blacktriangleright Integral approximated using importance sampling

Accelerating ABC – ©Michael U. Gutmann CC BY 4.0 $\textcircled{6}$ **64 and** *Accelerating ABC* **– ©Michael U. Gutmann CC BY 4.0** $\textcircled{6}$ **65**

Accelerating ABC – ©Michael U. Gutmann CC BY 4.0 $\textcircled{6}$ **66 / 46 / 46 / 46 / 53**

Accelerating ABC – ©Michael U. Gutmann CC BY 4.0 cb **47 / 53**

Accelerating ABC – ©Michael U. Gutmann CC BY 4.0 $\textcircled{6}$ **68 / 48 / 48 / 48 / 53 48 / 53**

Comparison

(Many more results in the paper by Järvenpää et al, 2019)

- \blacktriangleright Metric: compute L_1 distance to reference posterior after each acquisition and report area under the curve
- \blacktriangleright Table below shows median over 100 experiments, normalised to performance of the expected integrated variance (expintvar).
- \triangleright Other methods
	- **I** maxvar: determine where the variance $\mathbb{V}(\tilde{\pi}_{ABC}(\theta) | \mathcal{D}_{1:t})$ is largest
	- \blacktriangleright randmaxvar: stochastic version
	- \blacktriangleright LCB, EI: acquisition functions from Bayesian optimisation
	- \blacktriangleright unif: uniform sampling

- \blacktriangleright Expected integrated variance yields consistently good performance.
- ▶ However, it is expensive to compute. Only worth it for expensive simulators.
- \blacktriangleright For more results, other loss functions, relationship to LCB, batch and parallel processing: see Järvenpää et al, 2019, 2020.

Summary

- 1. Simulator-based models
	- \blacktriangleright What they are
	- \blacktriangleright Likelihood function is intractable
- 2. Classical algorithms for approximate Bayesian computation
	- \blacktriangleright Need for approximations
	- ▶ 3 classical algorithms: rejection, regression, and SMC ABC.
- 3. Accelerating ABC
	- \blacktriangleright Discussed reasons why the classical algorithms are expensive
	- \blacktriangleright Framework to accelerate the inference based on (a) modelling and (b) decision making under uncertainty
	- \blacktriangleright LCB and new inference-targeted expected integrated variance (EIV) criteria

References

- \blacktriangleright Wood. Statistical inference for noisy nonlinear ecological dynamic systems. Nature, 2010.
- ▶ Price, Drovandi, Lee and Nott. Bayesian Synthetic Likelihood. JCGS, 2017.
- ▶ Thomas, Dutta, Corander, Kaski and Gutmann. Likelihood-Free Inference by Ratio Estimation. Bayesian Analysis, 2016, 2020
- ▶ Hermans, Begy, Loupe. Likelihood-free MCMC with Amortized Approximate Ratio Estimators. ICML, 2020.
- ▶ Beaumont, Zhang, Balding. Approximate Bayesian Computation in Population Genetics. Genetics, 2002.
- ▶ Blum and Francois. Non-linear regression models for Approximate Bayesian Computation. Statistics and Computing, 2010.
- ▶ Sisson, Fan, Tanaka. Sequential Monte Carlo without likelihoods. PNAS, 2007.
- ▶ Numminen, Cheng, Gyllenberg, Corander. Estimating the Transmission Dynamics of Streptococcus pneumoniae from Strain Prevalence Data. Biometrics, 2013.

References

- \blacktriangleright Gutmann and Corander. Bayesian optimization for likelihood-free inference of simulator-based statistical models. JMLR 2016.
- ▶ Chen and Gutmann. Adaptive Gaussian Copula ABC, AISTATS 2019.
- ▶ Järvenpää, Gutmann, Vehtari and Marttinen. Gaussian process modeling in approximate Bayesian computation to estimate horizontal gene transfer in bacteria. The Annals of Applied Statistics, 2018.
- ▶ Srinivas, Krause, Kakade, Seeger. Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting Information Theory. IEEE Transactions on Information Theory, 2012.
- ▶ Järvenpää, Gutmann, Vehtari, Marttinen. Efficient acquisition rules for model-based approximate Bayesian computation. Bayesian Analysis, 2019.
- **In Chaloner and Verdinelli. Bayesian Experimental Design: A Review** Statistical Science. Statistical Science, 1995.
- **I** Järvenpää, Vehtari, Marttinen. Batch simulations and uncertainty quantification in Gaussian process surrogate approximate Bayesian computation. UAI 2020.

Appendix

- \triangleright Regression ABC consists in running rejection ABC with a relatively large ϵ and then using an auxiliary model to adjust the obtained samples so that they are closer to samples from the true posterior.
- I Sequential Monte Carlo ABC consists in sampling *θ* from an adaptively constructed proposal distribution *φ*(*θ*) rather than from the prior in order to avoid simulating many data sets which are not accepted.

Basic idea of regression ABC

- **P** The summary statistics $\mathbf{t}_{\theta} = T(\mathbf{y}_{\theta})$ and θ have a joint distribution.
- \blacktriangleright Let t_i be the summary statistics for simulated data ${\sf y}_i=g(\bm{\omega}_i,\bm{\theta}_i).$
- \blacktriangleright We can learn a regression model between the summary statistics (covariates) and the parameters (response variables)

$$
\boldsymbol{\theta}_i = f(\mathbf{t}_i) + \boldsymbol{\xi}_i \tag{19}
$$

where $\boldsymbol{\xi}_i$ is the error term (zero mean random variable).

 \blacktriangleright The training data for the regression are typically tuples (θ_i, \mathbf{t}_i) produced by rejection-ABC with some sufficiently large ϵ .

Basic idea of regression ABC

Fitting the regression model to the training data (θ_i, t_i) yields an estimated regression function \hat{f} and the residuals $\hat{\boldsymbol{\xi}}_i$,

$$
\hat{\boldsymbol{\xi}}_i = \boldsymbol{\theta}_i - \hat{f}(\mathbf{t}_i) \tag{20}
$$

 \blacktriangleright Regression ABC consists in replacing θ_i with θ_i^* *_I ,

$$
\theta_i^* = \hat{f}(\mathbf{t}^{\circ}) + \hat{\xi}_i = \hat{f}(\mathbf{t}^{\circ}) + \theta_i - \hat{f}(\mathbf{t}_i)
$$
 (21)

- \blacktriangleright Corresponds to an adjustment of θ_i .
- **If the relation between t** and θ is learned correctly, the θ_i^* i correspond to samples from an approximation with $\epsilon = 0$.

back

Basic idea of sequential Monte Carlo ABC

- \blacktriangleright We may modify the rejection ABC algorithm and use $\phi(\boldsymbol{\theta})$ instead of the prior p_{θ} .
	- 1. Sample $\theta_i \sim \phi(\theta)$
	- 2. Simulate a data set \mathbf{y}_i by running the simulator with $\boldsymbol{\theta}_i$ $(\mathsf{y}_i = \mathcal{g}(\boldsymbol{\omega}_i, \boldsymbol{\theta}_i))$
	- 3. Compute the discrepancy $\Delta_i = d(T(\mathbf{y}^o), T(\mathbf{y}_i))$
	- 4. Retain $\boldsymbol{\theta}_i$ if $\Delta_i \leq \epsilon$
- \blacktriangleright The retained samples follow a distribution proportional to $\phi(\boldsymbol{\theta}) \tilde{L}_{\epsilon}(\boldsymbol{\theta})$

Basic idea of sequential Monte Carlo ABC

Parameters θ_i weighted with w_i ,

$$
w_i = \frac{p_{\theta}(\theta_i)}{\phi(\theta_i)},
$$
\n(22)

follow a distribution proportional to $p_{\boldsymbol{\theta}}(\boldsymbol{\theta}) \tilde{L}_{\epsilon}(\boldsymbol{\theta}).$

- \blacktriangleright Can be used to iteratively morph the prior into a posterior:
	- I Use a sequence of shrinking thresholds ϵ_t
	- **I** Run rejection ABC with ϵ_0 .
	- \blacktriangleright Define ϕ_t at iteration t based on the weighted samples from the previous iteration (e.g Gaussian mixture with means equal to the $\boldsymbol{\theta}_i$ from the previous iteration).

Basic idea of sequential Monte Carlo ABC

 \blacktriangleright back