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Overall goal

» Given data y°, draw conclusions about properties of its source

» |f available, possibly take prior information into account

Data space

Data source Observation

Unknown properties oy

Inference

Prior information
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Model-based approach

» Set up a model with potential properties 8 (parameters)

» See which @ are reasonable given the observed data

Data space
Data source Observation
: 0
Unknown properties oy
Model Inference

Prior information
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Likelihood function

» Measures agreement between 0 and the observed data y°

» Probability to see data y like y° if property @ holds

Data space
Data source Observation

Unknown properties

Data generation
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Performing statistical inference

>

>

For models specified as a family of pdfs p(y|@), the likelihood
function equals

L(6) = p(y°|6) (1)

Inference boils down to solving an optimisation/sampling
problem.

Maximum likelihood estimation
6 = argmax L(6) (2)
0
Bayesian inference
p(0ly°®) o< p(0) x L(0) (3)
posterior ox prior X likelihood (4)

Solving the optimisation/sampling problem can be
computationally very difficult.
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Inference for simulator-based models

» In this talk, we consider another difficulty:
Not all models are specified as family of pdfs p(y|8).
» Here: simulator-based models:

models which are specified via a mechanism (rule) for
generating data

» Problem considered: perform statistical inference when

1. the likelihood function is too costly to compute, but
2. sampling — simulating data — from the model is possible

» This is sometimes called “likelihood-free inference”.
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Other names for simulator-based models

» Models specified via a data generating mechanism occur in
multiple and diverse scientific fields.

» Different communities use different names for simulator-based
models:

» Generative models

» Implicit models

» Stochastic simulation models
» Probabilistic programs
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Simulator-based models are widely used

» Astrophysics:
Simulating the formation of
galaxies, stars, or planets

» Evolutionary biology:
Simulating evolution

» Neuroscience:
Simulating neural circuits

» Ecology:
Simulating species migration

» Health science:
Simulating the spread of an
. . . Simulated neural activity in rat somatosensory cortex
ImceCtIOUS d ISease (Figure from https://bbp.epfl.ch/nmc-portal)
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Advantages of simulator-based models

» Direct implementation of hypotheses of how the observed
data were generated.

» Neat interface with physical or biological models of data.

» Modelling by replicating the mechanisms of nature which
produced the observed/measured data. (“Analysis by
synthesis™)

» Possibility to perform experiments in silico.
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Disadvantages of simulator-based models

» Generally elude analytical treatment.

» Can easily be made more complicated than necessary (—
possible identifiability issues).

» Standard likelihood-based workflow not applicable to perform
statistical inference.
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Different inference approaches

» There are several flavors of parameter inference for
simulator-based models. In Bayesian setting e.g.

» Approximate Bayesian computation (ABC)
» Synthetic likelihood (Wood, 2010; Price et al 2017)
» Likelihood-free inference by ratio estimation (Thomas et al 2016;

Hermans et al 2020)
> ...

» Here: Focus on ABC.
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Exact inference for discrete random variables

» For discrete random variables, we can perform exact Bayesian
inference without knowing the likelihood function.

» Being able to sample from the model is sufficient.
» The posterior is obtained by conditioning p(@,y) on the event
y =y

p(Hayo) o p(@,y — yo) (5)

PBly") = p(y°)  ply=y°)
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Exact inference for discrete random variables

» Generate tuples (6;,y;):

1. 8; ~ pe (iid from the prior)
2. wi~P (by running the simulator)
3. yi = g(wj, ;) (by running the simulator)

» Condition on y = y° < Retain only the tuples with y; = y°

» The 0; from the retained tuples are samples from the
posterior p(0|y°).
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Limitations

» Only applicable to discrete random variables.

» And even for discrete random variables:
Computationally infeasible in higher dimensions

» Reason: The probability of the event yg = y° becomes smaller
and smaller as the dimension of the data increases.

» Out of N simulated tuples only a small fraction will be
accepted.

» The small number of accepted samples do not represent the
posterior well.
» Large Monte Carlo errors
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Approximations to make inference feasible

» Settle for approximate yet computationally feasible inference.

» Introduce two types of approximations:

1. Instead of working with the whole data, work with lower
dimensional summary statistics tg and t°,

to = T(ye) t® = T(y°). (6)

2. Instead of checking tg = t°, check whether Ag = d(t°,tg) is
less than €. (d may or may not be a metric)

» Defines an approximate likelihood function L.(8),

16(9) x P(Ag <€]0) (7)
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Rejection ABC algorithm

» The two approximations made yield the rejection algorithm for
approximate Bayesian computation (ABC):

1. Sample 8; ~ pg
2. Simulate a data set y; by running the simulator with 6;

(yi = g(wi, 07))
3. Compute the discrepancy A; = d(T(y°), T(y;))
4. Retain 0; if A; <e¢

» This is the basic ABC algorithm.
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Properties

» Inference is approximate due to

» the summary statistics T and distance d
> >0
» the finite number of samples (Monte Carlo error)

» Robust but slow algorithm

» ¢ needs to be small to reduce bias, but this causes a low
acceptance rate

» |ow acceptance rate when the likelihood is much more
concentrated than the prior
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Two widely used algorithms

» Two widely used algorithms which improve upon rejection
ABC are

1. Regression ABC (Beaumont et al, 2002, Blum and Francois, 2010)
2. Sequential Monte Carlo ABC (Sisson et al, 2007)

» Both use rejection ABC as a building block.

» Sequential Monte Carlo (SMC) ABC is also known as
Population Monte Carlo (PMC) ABC.
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Regression ABC

» Regression ABC consists in running rejection ABC with a
relatively large € and then adjusting the obtained samples so
that they are closer to samples from the true posterior.

» Adjustment is based on fitting a (linear) regression model to
the simulated parameters and summary statistics: It is an early
example of using an auxiliary model to improve the inference.
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Sequential Monte Carlo ABC

» Sequential Monte Carlo (SMC) ABC consists in sampling 6
from an adaptively constructed proposal distribution ¢(8)
(with decreasing €) rather than from the prior in order to
avoid simulating many data sets which are not accepted.

» Proposal distribution is constructed based on simulated data:

It is an early example of using previously simulated data to
guide further simulation.
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Example: Bacterial infections in child care centers

» Simulating bacterial transmissions in child day care centers
(Numminen et al, 2013)

5F .
Parameters of interest:
- o - rate of infections within a center
‘© 15 - rate of infections from outside
Nl ™ - competition between the strains
25¢
30+
5f |
5 10 15 20 25 30 35 |
Individual 10/
|
| |
-
| |
[ |
|
u m
u m m
| |

5 10 15 20 25 30 35
Individual
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Example: Bacterial infections in child care centers

» Data: Streptococcus pneumoniae colonization for 29 centers
» Inference with SMC ABC

» Reveals strong competition between different bacterial strains

18

= = =prior
161 h — posterior ||

Expensive:

a
T

-
N
T

» 4.5 days on a cluster with
200 cores

» More than one million
simulated data sets

-
o
T

Competition

strong weak

probability density function

N B D oo
T T T

0 0.2 0.4 0.6 0.8 1
Competition parameter
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Brief recap

» Simulator-based models: Models which are specified by a data
generating mechanism.

» By construction, we can sample from simulator-based models.
Likelihood function can generally not be written down.

» Approximate likelihood function: Probability to generate data
for which some discrepancy measure is less than some
threshold.

» Rejection ABC: Trial and error scheme to find parameter
values which produce simulated data resembling the observed
data.

» Regression and sequential Monte Carlo ABC improve upon
rejection ABC. But are still expensive.
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Why are the ABC algorithms so expensive?

. They reject most samples when € is small
. They do not make assumptions about the shape of L(8)

. They do not use all information available

B~ w0 NN =

. They do not take the finite computational budget into account

Approximate di
5t likelihood function Average distance

(rescaled) \

Approximate lik function for competition 2| distances
parameter. N = 300.

L)~ 4501 (dod ) <)

Variability 1

Threshold €

0 0.05 0.1 0.15 0.2
Competition parameter
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Proposed solution

(Gutmann and Corander, 2016)

1. They reject most samples when € is small
= Don't reject samples — learn from them

2. They do not make assumptions about the shape of L(8)
= Model the distances, assume average distance is smooth

3. They do not use all information available
= Incorporate new information using Bayes' theorem

4. They do not take the finite computational budget into account
= Decide where to allocate the computational resources

equivalent strategy applies to
inference with synthetic likelihood
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Conceptual connection to classical algorithms

» The hallmarks of the proposed approach are

(a) modelling (points 1 and 2)
(b) using acquired information (data) to decide where to allocate
the computational resources (points 3 and 4)

» Regression and SMC ABC have elements of the proposed
approach:

» Regression ABC: Fits an auxiliary (linear) model to perform
the adjustment. — (a)

» SMC: Proposal distribution is constructed based on previously
simulated data, using it to “decide” for which parameters to
run the simulator next. — (b)

» Combining (a) & (b) is key to increasing the performance
(e.g. Chen and Gutmann, 2019).

» Most modern algorithm for ABC do it (implicitly) in some
way. In this talk, we will focus on Gaussian processes and
Bayesian decision making.
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Modelling

» Data D; are tuples (0;,A;), i =1,...,t, where
Ai — d(y(gl)a yo)
» Model the conditional distribution of A given 6

» Estimated model yields approximation 26(9) for any choice of
€

L(0) xP(A<c|0)
Pis probability under the estimated model.

» Here: Use (log) Gaussian process as model (with squared
exponential covariance function)

(see Jarvenpaa et al, 2018, on GP model selection)
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Decision making to allocate computational resources

» For which 6 should we run the simulator?

» Intuition: Give priority to regions in the parameter space
where the distance tends to be small.

» Piggy-back on Bayesian optimisation to find such regions
using the lower confidence bound acquisition function (e.g.

Srinivas et al, 2012)

0= ) - 7 )

post mean weight post var

t: number of samples acquired so far

» Run simulator next for

0; 1 = argmin .4.(0)
0

» Approach not restricted to this acquisition function.
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Bayesian optimisation for likelihood-free inference

distance
(&)

-10+

-15

Model based on 2 data points

95%
90%

- __{80%

mean 50%
420%
10%

Acquisition function 5%

0.05 0.1 0.15 0.2

Competition parameter Next parameter
to try

Model based on 4 data points

distance

0.05 0.1 0.15 0.2

Competition parameter

Accelerating ABC — ©Michael U. Gutmann CC BY 4.0 @@

Model based on 3 data points

| | . |
0.05 0.1 0.15 0.2
Competition parameter

Exploration vs exploitation

Model Data

Bayes' theorem
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Example: Bacterial infections in child care centers

» Comparison of the proposed approach with a standard SMC
ABC approach.

» Roughly equal results using 1000 times fewer simulations.

\ —e— Developed Fast Method

0.4 —4— Standard Method

. 0.35
4.5 days with 200 cores .

° 03
i :

i i §0.25

90 minutes with seven cores s ,

. . £ 0.15
Posterior means: solid lines, O

credibility intervals: shaded areas or dashed lines. 0'17"‘“

2 2.5 3 3.5 4 4.5 5 55 6
Computational cost (log10)

(Gutmann and Corander, 2016)
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Example: Bacterial infections in child care centers

» Comparison of the proposed approach with a standard SMC
ABC approach.

» Roughly equal results using 1000 times fewer simulations.

11

—o— Developed Fast Method 18 | | | —e— Developed Fést Me{hod’

10 —— Standard Method I —— Standard Method

9 1.6
3] 5]
© 8 ©
% % 1.4
g g
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s 8 S
8 5 8
£ £
< 4 T [ECISISISISISISISIEE . . . - - - - SIS
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(0] (0]
g3 5

2

1

e Ll
2 2.5 3 3.5 4 4.5 5 5.5 6 2 2.5 3 3.5 4 4.5 5 5.5 6
Computational cost (log10) Computational cost (log10)

Posterior means are shown as solid lines, credibility intervals as shaded areas or dashed lines.
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Closer look at the decision making

» We piggy-backed on Bayesian optimisation to determine the
parameters for which to run the simulator next.

» Advantages

» Relatively easy, re-uses large body of work on Bayesian
optimisation

» Acquisition function is cheap to compute and does not depend
on ¢, which is often difficult to choose.

» Some optimality results for the task of finding the minimum of
E[A|6].

» Minimising expected distance maximises a lower bound on the
approximate log-likelihood. (Gutmann and Corander, 2016)

» Disadvantages
» Acquisition function is not derived based on what we actually

care most about: the posterior.
» Does not incorporate the prior, which can lead to issues for
confident mis-specified priors (Gutmann and Corander, 2016)
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Going back to first principles

(Jarvenpaa et al, 2019)

» Model Ag = f(0) 4 v where f is a GP and v ~ N(0, 02).

> If f and o2 were known, the ABC posterior hg would be

proportional to

hgc(8) o po(B)P(F(0) +v < ¢) (10)
x pg(0)® ((¢ — 1(8))/on) (11)

where ®(-) is the cdf of the standard Gaussian density.

» We don't know f but given acquired data D¢, we have a
distribution over it: f | Dy ~ GP(m:(0), c:(6,0"))

> Uncertainty about f induces uncertainty about #4g-(6)

» Choose next acquisition point 8;_; to reduce this uncertainty.
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40

30

20 +

10

Data: parameter, distance pairs

* Discrepancy realisation
——Threshold £

L

*

»*
*
* **_];
* * oy %
x, *% * ok
*
Fupl
w &
L Il 1
-10 5 0 ] 10

50

40 +

-~

GP model of the‘distance

——Mean (estimated discrepancy)
95% Cl (estimated discrepancy)

——Mean (true discrepancy)

— — 95% Cl (true discrepancy) 2

[ |[—Threshold ¢ y

Model of the unnormalised

T T

—— True posterior
——Mean (posterior curve)
95% CI (posterior curve)

posterior, keeping track of
| the uncertainty due to an

7 insufficient amount of
1 simulated data.

Accelerating ABC — ©Michael U. Gutmann CC BY 4.0 @@

] L
10 15



https://creativecommons.org/licenses/by/4.0/

Optimal selection of simulation locations

>

>

We use Bayesian experimental design (Chaloner and Verdinelli,
1995)

Define loss function /(mhgc, d) that quantifies the penalty of

the decision to report d as our estimate of the ABC posterior

. . f'
while the true one is magc.

Compute the expected loss of the best decision

J:(0") = Epvo+ p, (mcj“ Efp.ui(a6-)n ! (TAsC: d))- (12)

Depends on the “design” parameter 8*: the parameter for
which we run the simulator next

Choose 8" such that above loss is minimised

11 = argmin J¢(0) (13)
0
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Expected integrated variance (EIV) criterion

(Jarvenpai et al, 2019) Ji(0%) = Eax 6+ ,D, (mind Ef|thu{(A*,0*)}l(77£Bcv d))

» Consider loss function
(hec.d) = | (Fhec(6) —d(O)7d0 (14

between the unnormalised posteriors.

» The optimal decision (point estimate for the unnormalised
posterior) is

dopt(8) = Efip,u1(ar 071} (FAsc(6)) (15)

B e — m¢(0)
= po(0)® (\/0% " sE(O)) (16)

where s2(0) is the posterior variance for f.
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Expected integrated variance (EIV) criterion

(Jarvenpaa et al, 2019)  J;(8*) = Envqo+ 1, (mind Efpoug(as,0%)} (Thscs d))
» The minimal loss
mdin Ef|’DtU{(A*,0*)}/(7T£BC7 d) (17)

equals the integrated variance of #hg(0)

» The expected loss J:(0*) thus equals the expected integrated
variance.

» It can be derived in closed form

o > ¢ — m(0) on +s¢(0) — 7£(6,07)
H(8:) = 2/p9(0) [T <\/a,% + 53(0)’ \/0% + s2(0) + 72(6, 9*))

o e=ml8) On a0, (18)
Vo3 +s2(8) \/oi + 2s3(0))
where 72(0; 0*)=c:(0, 0*)[c:(0%,0%)+o21] *c:(0*,0) and T is Owen’s

t-function.
» Integral approximated using importance sampling
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Example:
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Banana posterior
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Example: Banana posterior

KL=1.37 TV=0.60

Estimated posterior
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Example: Banana posterior

Estimated posterior . True posterior
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Comparison

(Many more results in the paper by Jarvenpai et al, 2019)

» Metric: compute Li distance to reference posterior after each
acquisition and report area under the curve

» Table below shows median over 100 experiments, normalised
to performance of the expected integrated variance (expintvar).

» QOther methods

» maxvar: determine where the variance V(7agc(@) | D1.¢) is
largest

» randmaxvar: stochastic version

» LCB, El: acquisition functions from Bayesian optimisation

» unif: uniform sampling

expintvar maxvar randmaxvar LCB El unif
Banana 1.00 1.23 1.09 1.08 1.67 1.47
Lotka-Volterra 1.00 1.37 1.10 1.15 185 1.62
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Comparison

» Expected integrated variance yields consistently good
performance.

» However, it is expensive to compute. Only worth it for
expensive simulators.

» For more results, other loss functions, relationship to LCB,
batch and parallel processing: see Jarvenpaa et al, 2019, 2020.

Accelerating ABC — ©Michael U. Gutmann CC BY 4.0 @® 50 / 53


https://creativecommons.org/licenses/by/4.0/

Summary

1. Simulator-based models

» What they are
» Likelihood function is intractable

2. Classical algorithms for approximate Bayesian computation

» Need for approximations
» 3 classical algorithms: rejection, regression, and SMC ABC.

3. Accelerating ABC

» Discussed reasons why the classical algorithms are expensive
» Framework to accelerate the inference based on (a) modelling
and (b) decision making under uncertainty

» LCB and new inference-targeted expected integrated variance
(EIV) criteria
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Two widely used algorithms

» Regression ABC consists in running rejection ABC with a
relatively large € and then using an auxiliary model to adjust
the obtained samples so that they are closer to samples from
the true posterior.

» Sequential Monte Carlo ABC consists in sampling @ from an
adaptively constructed proposal distribution ¢(0) rather than
from the prior in order to avoid simulating many data sets
which are not accepted.

Accelerating ABC — ©Michael U. Gutmann CC BY 4.0 @@ 1/6


https://creativecommons.org/licenses/by/4.0/

Basic idea of regression ABC

» The summary statistics tg = T(yg) and 6 have a joint
distribution.

» Let t; be the summary statistics for simulated data
Yi — g(wiv 01)

» We can learn a regression model between the summary
statistics (covariates) and the parameters (response variables)

0, = f(t;) + &, (19)

where &; is the error term (zero mean random variable).

» The training data for the regression are typically tuples (6;, t;)
produced by rejection-ABC with some sufficiently large e.
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Basic idea of regression ABC

> Fitting the regression model to the training data (6;,t;) yields
an estimated regression function f and the residuals 5

£ =0;—f(t) (20)
» Regression ABC consists in replacing 8; with 67,
07 = f(t°) + & =f(t°) + 0, — f(t;) (21)

» Corresponds to an adjustment of 6;.

» |f the relation between t and 0 is learned correctly, the 67
correspond to samples from an approximation with ¢ = 0.
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Basic idea of sequential Monte Carlo ABC

» We may modify the rejection ABC algorithm and use ¢(80)
instead of the prior pg.

1. Sample 6; ~ ¢(0)
2. Simulate a data set y; by running the simulator with 6;

(yi — g(wh 91))
3. Compute the discrepancy A; = d(T(y°), T(y;))
4. Retain 0; if A; <e¢

» The retained samples follow a distribution proportional to

$(0)L(6)
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Basic idea of sequential Monte Carlo ABC

» Parameters 0; weighted with w;,

~_ pe(8))
YT e6) 22)

follow a distribution proportional to pg(0)L.(6).
» Can be used to iteratively morph the prior into a posterior:

» Use a sequence of shrinking thresholds ¢;

» Run rejection ABC with €.
» Define ¢, at iteration t based on the weighted samples from
the previous iteration (e.g Gaussian mixture with means equal

to the 8; from the previous iteration).
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Basic idea of sequential Monte Carlo ABC

Construction of proposal distribution

35r
true posterior t=t+1
3 -
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2 -
proposal t=3
1.5}
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