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Overall goal

I Goal: Understanding properties of some data source
I Enables predictions, decision making under uncertainty, . . .

Data space

Observation

Insight

Data source

Unknown properties

Michael U. Gutmann Self-supervised learning for Bayesian exp. design 5 / 34



Two fundamental tasks

I Inference task : Given xo, what can we robustly say about the
properties of the source?

I Experimental design task : How to obtain a xo that is
maximally useful for learning about the properties?
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Example: stochastic SIR model
I Stochastic model describing the population of susceptibles

S(τ), infected I(τ) and recovered R(τ) as a function of time.
I Parameters θ: rate of infection β and the rate of recovery γ.
I Inference task : determine plausible values of β and γ given

some measurements of the population sizes.
I Exp design task : find the optimal times at which to perform

the measurements to most accurately estimate β and γ.
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Bayesian inference and design with tractable models

I Assume model is expressed as a family of pdfs {p(x|θ,d)}
indexed by parameter θ and design variable d.

I Bayesian inference of θ for data xo obtained with design do:

p(θ|x,d) = p(x|θ,d)
p(x|d) p(θ|d) (1)

with x fixed to xo and d to do.
I Experimental design by maximising mutual information (MI)

between data x and parameters θ:

d̂ = argmax
d

MId(x,θ) (2)

MId(x,θ) = Ep(x|d)KL (p(θ|x,d)||p(θ|d)) (3)

= Ep(x,θ|d) log
[p(x|θ,d)

p(x|d)

]
(4)
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Simulator models

I Not all models are specified as
family of pdfs.

I We consider here the important
class of simulator models:
models that are specified via a
parameterised stochastic
mechanism for generating data

DALL·E’s view on simulator models
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Simulator models

I Technically, a simulator model is a measurable function g

x = g(θ,d,ω), ω ∼ p(ω) (5)

Maps params θ, design variables d, and “noise” ω to data x

I Function g is not known in closed form but implemented as a
(complex) computer programme.

I No closed form expression for p(x|θ,d) available
I Sampling data x|θ,d ∼ p(x|θ,d) is possible
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Simulator models are widely used in the natural sciences

I Evolutionary biology:
to model evolution

I Biochemistry:
to model gene expression

I Neuroscience:
to model neural processing

I Cognitive sciences:
to model human decision
making

I Epidemiology:
to model the spread of an
infectious disease

I . . .

Simulated neural activity in rat somatosensory cortex
(Figure from https://bbp.epfl.ch/nmc-portal)
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Research objective

I Simulator models have great modelling power.

I However, we pay the price when attempting to perform
inference and experimental design:
evaluating p(x|θ,d) is computationally intractable

I Paradoxical situation: we have great models from the natural
sciences but cannot fully use them because we lack suitable
tools to perform inference and experimental design with them.

I Research objective:
Develop efficient tools for Bayesian inference and experimental
design with simulator models.
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Basic idea

I Self-supervised learning is a paradigm in machine learning
where labels are generated by the learning algorithm itself
without manual labelling.

I Will focus on “contrastive self-supervised learning”.
I The basic idea is to learn the difference between the data of

interest and some reference data.
I Properties of the reference are typically known or not of

interest; by learning the difference we focus the
(computational) resources on learning what matters.

I As straightforward as

b︸︷︷︸
reference

+ a − b︸ ︷︷ ︸
difference

⇒ a︸︷︷︸
interest

(6)
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Logistic loss
I Link to classification: learning differences between data sets

can be seen as a classification problem.

I Let {x1, . . . , xn} be the data of interest, xi ∼ p (iid), and
{y1, . . . ym} be the reference data, yi ∼ q (iid).

I Label the data: (xi , 1), (yi , 0) and minimise the (rescaled)
logistic loss J(h)

J(h) =1
n

n∑
i=1

log [1 + ν exp(−h(xi ))] +

ν

m

m∑
i=1

log
[
1 + 1

ν
exp(h(yi ))

]
(10)

where ν = n/m and h is a nonlinearity (e.g. neural network)
that we learn.

I For large sample sizes n and m (and fixed ratio ν), the
optimal h is

h∗ = log p − log q (11)
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Logistic loss

Two key points:
1. The optimisation is done without any constraints (e.g.

normalisation). The optimal h is automagically the ratio
between two densities

h∗ = log p − log q (12)

2. We only need samples from p and q; we do not need their
densities or a model of them (but we do need an appropriate model for the ratio)
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Logistic loss
I For large sample sizes n and m, J(h)→ J̄(h) and the

corresponding minimal loss is

J̄(h∗) = Ex∼p log
[
1 + ν

q(x)
p(x)

]
+ νEy∼q log

[
1 + p(y)

νq(y)

]
= −Ex∼p log

[ p(x)
p(x) + νq(x)

]
− νEy∼q log

[
νq(y)

p(y) + νq(y)

]
(13)

I For ν = 1 and introducing m = (p + q)/2

J̄(h∗) = −KL(p||m)− KL(q||m) + 2 log 2 (14)
= −2JSD(p, q) + 2 log 2 (15)

I Since we are minimising the loss J̄(h), we have

J̄(h) ≥ −2JSD(p, q) + 2 log 2 (16)
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Logistic loss

I Rearranging, we obtain

JSD(p, q) ≥ log 2− 1
2 J̄(h) (17)

JSD(p, q) = log 2− 1
2 J̄(h∗) (18)

I Contrastive learning via classification with the logistic loss
corresponds to estimating the Jensen-Shannon divergence
(JSD) between p and q.

I For a review paper on statistical applications of contrastive
learning, see Gutmann, Kleinegesse, and Rhodes,
Behaviormetrika, 2022.
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Other loss functions

I In the following, I will focus on the logistic loss as done in our
early work on contrastive learning for the estimation of
unnormalised models, “Noise-contrastive estimation (NCE)”
(Gutmann and Hyvärinen, AISTATS 2010).

I But other loss functions can be used:
I multinomial logistic loss (Srivastava, et al, TMLR 2023)

I Bregman divergences (Gutmann and Hirayama, UAI 2011)

I f-divergences (e.g. Rhodes and Gutmann, AISTATS, 2019)

I . . .

Michael U. Gutmann Self-supervised learning for Bayesian exp. design 20 / 34



Other loss functions

I In the following, I will focus on the logistic loss as done in our
early work on contrastive learning for the estimation of
unnormalised models, “Noise-contrastive estimation (NCE)”
(Gutmann and Hyvärinen, AISTATS 2010).

I But other loss functions can be used:
I multinomial logistic loss (Srivastava, et al, TMLR 2023)

I Bregman divergences (Gutmann and Hirayama, UAI 2011)

I f-divergences (e.g. Rhodes and Gutmann, AISTATS, 2019)

I . . .

Michael U. Gutmann Self-supervised learning for Bayesian exp. design 20 / 34



Constructing reference data
Choice depends on the specific application of contrastive learning.
I Fit a preliminary model and keep it fixed (as often done in

NCE)
I Iterative approach: fitted model becomes reference in the next

iteration (as also done in our original work on NCE)
I Use other segments for time series data

(Hyvärinen and Morioka, NeurIPS 2016)

I For Bayesian inference, use prior predictive distribution
(Thomas et al, 2016; Thomas et al, Bayesian Analysis, 2020)

I Generate it conditionally on observed data
(Ceylan and Gutmann, ICML 2018)

I Iterative adaptive approach with generative models: results
into GANs (Goodfellow et al, NeurIPS 2014)

I Iterative adaptive approach with flexible density model such as
flows (“Flow-contrastive estimation”, Gao et al, NeurIPS 2019)

I . . .
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Constructing reference data

Is there an optimal reference (“noise”) distribution?

For parameter estimation, see the paper The Optimal Noise in
Noise-Contrastive Learning Is Not What You Think by Omar
Chehab, Alex Gramfort, Aapo Hyvarinen, at UAI, 2022.
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The density-chasm problem

I Problem: Single ratio methods are sample inefficient if the
two distributions are very different (“density chasm”)

I Consider ratio between two zero-mean Gaussians. 10’000
samples from each distribution. Ratio parametrised by θ ∈ R.

I Solution in red bridges the “gap” using telescopic ratio
estimation (TRE) (Rhodes, Xu, and Gutmann, NeurIPS 2020)
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The density-chasm problem

I Problem: Single ratio methods are sample inefficient if the
two distributions are very different (“density chasm”)

I Consider ratio between two zero-mean Gaussians. 10’000
samples from each distribution. Ratio parametrised by θ ∈ R.

I Solution in red bridges the “gap” using telescopic ratio
estimation (TRE) (Rhodes, Xu, and Gutmann, NeurIPS 2020)
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Telescoping density-ratio estimation (Rhodes, Xu, and Gutmann, NeurIPS 2020)

A single density-ratio fails to “bridge” the density-chasm.

Let us thus use multiple bridges.
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Telescoping density-ratio estimation (Rhodes, Xu, and Gutmann, NeurIPS 2020)

Sample efficiency curves for the 1d peaked ratio experiment.

More results in the paper!
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(c) Quadratic loss

For further improvements, see “Estimating the Density Ratio
between Distributions with High Discrepancy using Multinomial
Logistic Regression”, Srivastava et al, TMLR 2023.
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Example: stochastic SIR model
(Kleinegesse and Gutmann, AISTATS 2019; ICML 2020; arXiv:2105.04379)

(Kleinegesse, Drovandi and Gutmann, Bayesian Analysis 2020)

I Example: Stochastic SIR model with noisy observations
Latent process: Susceptibles → Infected I(t) → Recovered
Observation model: y(t)|θ ∼ Poisson(y ;φI(t))

I Parameters θ = (β, γ) (infection rate and recovery rate)
I Task: find the optimal times at which to take measurements

to most accurately estimate θ.
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Experimental design for simulator models

I Experimental design by maximising mutual information (MI)

d̂ = argmax
d

Ep(x,θ|d) log
[p(x|θ,d)

p(x|d)

]
(20)

I Use contrastive self-supervised learning to estimate

hd(x,θ) = log p(x|θ,d)− log p(x|d), (21)

and maximise sample average of hd(x,θ) with respect to d
I Static setting: Kleinegesse and Gutmann, AISTATS 2019
I Sequential setting where we update our belief about θ as we

sequentially acquire the data: Kleinegesse, Drovandi and
Gutmann, Bayesian Analysis 2020
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Experimental design for simulator models
d̂ = argmaxd Ep(x,θ|d) log

[
p(x|θ,d)
p(x|d)

]
I Learning the ratio hd(x,θ) and approximating the MI is

computationally costly.

I But we do not need to estimate the MI accurately
everywhere! Only around it’s maximum.

I Let us use lower bounds on the MI (or proxy) where we
concurrently tighten the bound and maximise the (proxy) MI!
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Experimental design for simulator models

d̂ = argmaxd KL (p(θ, x|d)||p(θ|d)p(x|d))
I We can (again!) leverage logistic regression.

I Logistic regression results in replacing the KL divergence with
the JSD when measuring the MI.

JSD(p, q; d) ≥ log 2− 1
2 J̄(h; d) (22)

where h is the regression function and J̄ the logistic loss.
I Perform experimental design by maximising the negative

logistic loss jointly with respect to h and d.
I Learned h provides an estimate of the posterior.
I For more details and other loss functions:

Kleinegesse and Gutmann, ICML 2020; arXiv:2105.04379
I For sequential setting: Ivanova et al, NeurIPS, 2021
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SIR example: static case (Kleinegesse and Gutmann, ICML 2020)
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SIR example: sequential case (Ivanova et al, NeurIPS, 2021)
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Conclusions

Research objective
Two main goals: inference and experimental design
Tasks are computationally intractable for simulator models

Self-supervised learning to deal with intractability
Link to logistic regression and Jensen-Shannon divergence
Technical challenge: the density-chasm problem

Application to Bayesian experimental design
Via self-supervised learning of density ratios
Exploiting bounds to increase computational efficiency
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Thank you for your attention!

Michael U. Gutmann Self-supervised learning for Bayesian exp. design 34 / 34


	Research objective
	Two main goals: inference and experimental design
	Tasks are computationally intractable for simulator models

	Self-supervised learning to deal with intractability
	Link to logistic regression and Jensen-Shannon divergence
	Technical challenge: the density-chasm problem

	Application to Bayesian experimental design
	Via self-supervised learning of density ratios
	Exploiting bounds to increase computational efficiency


