Statistical applications of contrastive (self-supervised) learning

Michael U. Gutmann

<michael.gutmann@ed.ac.uk>

School of Informatics, University of Edinburgh

August 28 2024

- 1. The likelihood function is a main workhorse in statistics and ML but becomes easily computationally intractable.
- 2. Contrastive learning is an intuitive and computationally feasible alternative to likelihood-based approaches.
- 3. It is broadly applicable. Here: (1) parameter estimation, (2) Bayesian inference, and (3) Bayesian experimental design.

[Preliminaries](#page-3-0)

[The wall of intractable likelihoods](#page-8-0)

[Contrastive learning](#page-38-0)

[Preliminaries](#page-3-0)

[The wall of intractable likelihoods](#page-8-0)

[Contrastive learning](#page-38-0)

Overall goal

- ▶ Goal: Understanding properties of some data source
- \blacktriangleright Enables predictions, decision making under uncertainty, ...

Two fundamental tasks

- \triangleright Data analysis : Given data D, what can we robustly say about the properties of the source?
- \blacktriangleright Experimental design : How to obtain data $\mathcal D$ that is maximally useful for learning about the properties?

Approaching the tasks via parametric models

- \triangleright Set up a model with properties that the unknown data source might have.
- ▶ The potential properties are induced by the parameters *θ* of the model.

The likelihood function L(*θ*)

- ▶ Probability that the model generates data like the observed one when using parameter value *θ*
- \triangleright Classically, the main workhorse in statistics/ML but intractable for the models we would like to work with.

[Preliminaries](#page-3-0)

[The wall of intractable likelihoods](#page-8-0) [Estimation of deep energy-based models](#page-9-0) [Bayesian inference for simulator models](#page-16-0) [Experimental design for simulator models](#page-25-0) [Summary](#page-34-0)

[Contrastive learning](#page-38-0)

[Preliminaries](#page-3-0)

[The wall of intractable likelihoods](#page-8-0) [Estimation of deep energy-based models](#page-9-0)

[Bayesian inference for simulator models](#page-16-0) [Experimental design for simulator models](#page-25-0) [Summary](#page-34-0)

[Contrastive learning](#page-38-0)

From deep supervised to deep unsupervised learning

- Deep neural networks have transformed supervised learning.
- ▶ Allow us to specify complex parameterised functions $f_{\theta}(\mathbf{x})$ mapping the inputs (covariates) **x** to the target variables.
- \blacktriangleright Fitting is supported by a rich code infrastructure.
- ▶ Simple regression example:

Michael U. Gutmann [Selfsupervised learning](#page-0-0) 11 / 106

From deep supervised to deep unsupervised learning

- ▶ "All models are wrong" but deep neural networks are broadly applicable to different supervised learning tasks.
- \blacktriangleright The situation is a bit different in unsupervised learning (density estimation).
- \triangleright Consider task of learning the parameters θ of a density model $p(\mathbf{x}|\theta)$ for the following two data sets.

▶ We may need rather different models and frameworks (e.g. mixture models etc).

Energy-based models

- \triangleright We would like to use the same model-class $p(\mathbf{x}|\theta)$ for both data sets.
- \triangleright One approach is to write

$$
p(\mathbf{x}|\boldsymbol{\theta}) = \frac{\exp(-f_{\boldsymbol{\theta}}(\mathbf{x}))}{Z(\boldsymbol{\theta})} \qquad Z(\boldsymbol{\theta}) = \int \exp(-f_{\boldsymbol{\theta}}(\mathbf{x})) \, \mathrm{d}\mathbf{x} \qquad (1)
$$

where *f_θ* is a deep neural network (sometimes called the energy)

- ▶ Models specified in terms of ^f*^θ* are called energy-based models.
- \blacktriangleright Widely used:

 \blacktriangleright . . .

- ▶ computer vision and modelling of images
- ▶ natural language processing and machine translation
- ▶ modelling social or biological networks

Log-likelihood for energy-based models

▶ Given iid data $D = \{x_1, ..., x_n\}$, the log-likelihood function is

$$
\ell(\boldsymbol{\theta}) = \sum_{i=1}^n \log p(\mathbf{x}_i | \boldsymbol{\theta}) = -\sum_{i=1}^n f_{\boldsymbol{\theta}}(\mathbf{x}_i) - n \log Z(\boldsymbol{\theta}) \qquad (2)
$$

▶ Problem: The partition function $Z(\theta)$ is defined in terms of a high-dimensional integral

$$
Z(\theta) = \int \exp(-f_{\theta}(\mathbf{x})) \, \mathrm{d}\mathbf{x} \tag{3}
$$

that is typically impossible to compute.

▶ Makes evaluating *ℓ*(*θ*) intractable.

We cannot just ignore the partition function

Consider
$$
p(x|\theta) = \frac{\exp(-f_{\theta}(x))}{Z(\theta)} = \frac{\exp(-\theta \frac{x^2}{2})}{\sqrt{2\pi/\theta}}
$$
 with $x \in \mathbb{R}$.

▶ Log-likelihood function for precision (inverse variance) *θ* ≥ 0

$$
\ell(\theta) = -n \log \sqrt{\frac{2\pi}{\theta}} - \theta \sum_{i=1}^{n} \frac{x_i^2}{2}
$$
 (4)

- ▶ Data-dependent (blue) and independent part (red) balance each other.
- **•** Ignoring $Z(\theta)$ leads to meaningless estimates.

Question 1: estimation of deep energy-based models

▶ Consider an energy-based model specified as

$$
p(\mathbf{x}|\boldsymbol{\theta}) = \frac{\exp(-f_{\boldsymbol{\theta}}(\mathbf{x}))}{Z(\boldsymbol{\theta})} \qquad Z(\boldsymbol{\theta}) = \int \exp(f_{\boldsymbol{\theta}}(-\mathbf{x})) \, \mathrm{d}\mathbf{x} \qquad (5)
$$

where *f_θ* is a deep neural network.

- ▶ Problem: Likelihood-based learning requires us to compute or approximate $Z(\theta)$ (or related quantities).
- ▶ Question: What learning principles can we use to efficiently estimate θ when the model pdf $p(x|\theta)$ is only available up to Z(*θ*)?

[Preliminaries](#page-3-0)

[The wall of intractable likelihoods](#page-8-0)

[Estimation of deep energy-based models](#page-9-0) [Bayesian inference for simulator models](#page-16-0) [Experimental design for simulator models](#page-25-0) [Summary](#page-34-0)

[Contrastive learning](#page-38-0)

Simulator models

▶ Widely used:

 \triangleright computer models/simulators in the natural sciences ▶ evolutionary biology to model evolution ▶ neuroscience to model neural processing

- ▶ epidemiology to model the spread of an infectious disease \blacktriangleright . . .
- \triangleright Specified via a measurable function g, typically not known in closed form but implemented as a computer programme.

$$
\mathbf{x} = g(\boldsymbol{\theta}, \boldsymbol{\omega}), \quad \boldsymbol{\omega} \sim p(\boldsymbol{\omega}) \tag{6}
$$

Maps parameters *θ* and "noise" *ω* to data **x**

▶ Equals the basic definition of a random variable in terms of a measurable function.

Simulator models

Some examples:

 \blacktriangleright ...

$$
\triangleright \ \ p(\omega) = \mathcal{N}(\omega; 0, 1), \ g(\theta, \omega) = \mu + \sigma \omega, \text{ with } \theta = (\mu, \sigma).
$$

- \blacktriangleright $p(\omega) = \mathcal{U}(\omega; 0, 1), g(\theta, \omega) =$ inverse cdf of some target distribution with parameters *θ*.
- \triangleright $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ is obtained by solving a parameterised ODE subject to noise, e.g.

$$
\dot{\mathbf{z}} = f(\mathbf{z}, t, \boldsymbol{\theta}) \qquad \mathbf{x}_i = \mathbf{z}(t_i) + \boldsymbol{\omega}_i, \quad i = 1, \ldots, n \quad (7)
$$

where $\omega_i \sim \mathcal{N}(\omega_i; 0, \Sigma)$ iid.

- ▶ **x** is the solution to a stochastic differential equation with parameters *θ*.
- \triangleright **x** is the output of some graphics rendered with parameters θ .

Example from ecology

▶ A classical model for population growth is

$$
\dot{z} = rz(1 - \frac{z}{k}) \tag{8}
$$

where r is the growth rate and k is the carrying capacity.

 \triangleright Defines a dynamics with a fixed point at 0 (unstable) and at k (stable). For example, for $k = 6$:

Example from ecology

- \triangleright Denote by z_i the solution of the ODE evaluated at times t1*, . . . ,*tn.
- \blacktriangleright Let the observed data x_1, \ldots, x_n be the z_i corrupted by some noise:

$$
x_i = z_i + \omega_i \qquad \qquad \omega_i = \mathcal{N}(\omega_i; 0, \sigma^2) \qquad \qquad (9)
$$

In other words, $x_i | z_i \sim \mathcal{N}(x_i; z_i, \sigma^2)$

- Note that the z_i , and hence the x_i , depend on the values of k and r.
- \blacktriangleright They are the parameters θ of the model.

Key strengths and weaknesses of simulator models

▶ Strengths:

- \triangleright Most general definition of a statistical model
- ▶ Connects statistics to the natural sciences and engineering

▶ Weaknesses:

▶ Model pdf implicitly defined in terms of the inverse image of $g(\theta,\omega)$:

$$
\mathsf{Pr}(\mathbf{x} \in \mathcal{A}|\boldsymbol{\theta}) = \mathsf{Pr}(\{\omega : g(\boldsymbol{\theta}, \boldsymbol{\omega}) \in \mathcal{A}\})
$$

for some event A.

▶ Computing inverse image and the associated probability is typically not possible, which makes the model pdf $p(\mathbf{x}|\theta)$ intractable.

Intractable model pdf implies intractable likelihood

- **►** For models explicitly expressed as a family of pdfs $\{p(\mathbf{x}|\theta)\}\$ indexed by θ : $L(\theta) = p(\mathcal{D}|\theta)$.
- **►** For models implicitly expressed in terms of a simulator, $p(x|\theta)$ and hence $L(\theta)$ are typically not available.
- \blacktriangleright This causes problems in likelihood-based inference, which requires L(*θ*):

$$
\hat{\theta} = \underset{\theta}{\arg\max} L(\theta) \quad \text{or} \quad p(\theta|\mathcal{D}) = \frac{L(\theta)}{p(\mathcal{D})} p(\theta) \quad (10)
$$

▶ In some cases, we can obtain $p(x, z | \theta)$ for some unobserved variable **z** and then use MCMC or variational methods for inference. We here do not assume that the model allows for such an expression.

Ecology example

- ▶ A latent process $z(t)$ follows the ODE $\dot{z} = rz(1 z/k)$. We observe $x \sim \mathcal{N}(x; z(t), \sigma^2)$ at a known time t (say $t = 5)$.
- \triangleright Assuming a Gamma prior on k (and r known), what are plausible values of the carrying capacity k given x ?

(Gamma prior has a shape parameter 9, and scale parameter 0.5, giving a prior mean of 4.5 and std 1.5. "True" value of k : 5, std of observation noise: 0.3) **Michael U. Gutmann [Selfsupervised learning](#page-0-0) 24 / 106**

Question 2: Bayesian inference for simulator models

▶ Consider a simulator model specified as

$$
\mathbf{x} = g(\boldsymbol{\theta}, \boldsymbol{\omega}), \quad \boldsymbol{\omega} \sim p(\boldsymbol{\omega}) \tag{11}
$$

where g is not known in closed form but implemented as a computer programme.

- ▶ We are given data $D = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ and have a prior $p(\theta)$ on *θ*. We would like to determine which values of *θ* are plausible given D.
- ▶ Problem: Likelihood-based inference would require us to numerically compute the likelihood or run e.g. MCMC, which may not be feasible for complex simulator models.
- \blacktriangleright Question: How can we compute or sample from $p(\theta|\mathcal{D})$ without access to the model pdf $p(\mathbf{x}|\theta)$?

[Preliminaries](#page-3-0)

[The wall of intractable likelihoods](#page-8-0)

[Estimation of deep energy-based models](#page-9-0) [Bayesian inference for simulator models](#page-16-0) [Experimental design for simulator models](#page-25-0) [Summary](#page-34-0)

[Contrastive learning](#page-38-0)

Ecology example: when to measure?

- In the previous example, we took the measurement at $t = 5$. Was that a good choice? Could it have been better?
- \triangleright Deciding about t corresponds to experimental design. What is a criterion to measure optimality of an experimental design?

Ecology example: when to measure?

We want experimental data from which we can learn something, i.e. data that can change our belief.

▶ Assume now that we have some control over the data collection process. Denote the control (design) variables by **d** and include **d** in the model as an additional parameter:

$$
p(\mathbf{x}|\boldsymbol{\theta},\mathbf{d}) \Longleftrightarrow \mathbf{x} = g(\boldsymbol{\theta},\mathbf{d},\boldsymbol{\omega}), \quad \boldsymbol{\omega} \sim p(\boldsymbol{\omega}) \qquad (12)
$$

- \triangleright While θ is unknown (e.g. the carrying capacity k), **d** is controllable (e.g. the measurement time).
- \triangleright We can assess the value of some data D obtained with design **d** by computing how much it can change our belief about *θ*.

Expected information gain

▶ Let us use the Kullback-Leibler divergence to measure the difference between our belief before seeing the data, p(*θ*|**d**), and our belief after seeing the data, $p(\theta|\mathcal{D}, \mathbf{d})$ when using design **d**:

$$
value(D, \mathbf{d}) = KL(p(\theta|\mathcal{D}, \mathbf{d})||p(\theta|\mathbf{d}))
$$
\n(13)

$$
= \int p(\boldsymbol{\theta} | \mathcal{D}, \mathbf{d}) \log \frac{p(\boldsymbol{\theta} | \mathcal{D}, \mathbf{d})}{p(\boldsymbol{\theta} | \mathbf{d})} d\boldsymbol{\theta} \qquad (14)
$$

We call this the information gain.

- ▶ Quantifies how much information we gain about *θ* by analysing the data D .
- ▶ Often but not necessarily: p(*θ*|**d**) = p(*θ*) (belief about *θ* is independent of the design **d**).

Expected information gain

- \blacktriangleright value(\mathcal{D}, \mathbf{d}) can be used to assess the value of some data $\mathcal D$ that we have gathered with design **d**.
- ▶ When deciding about what design **d** to use, D is not yet observed.
- \blacktriangleright However, we can average over possible data sets D that we may observe when using **d** and compute the expected information gain (EIG):

$$
\begin{aligned}\n\text{EIG}(\mathbf{d}) &= \int p(\mathbf{x}|\mathbf{d}) \text{value}(\mathbf{x}, \mathbf{d}) \, \mathrm{d}\mathbf{x} \tag{15} \\
&= \int p(\mathbf{x}|\mathbf{d}) \int p(\theta|\mathbf{x}, \mathbf{d}) \log \frac{p(\theta|\mathbf{x}, \mathbf{d})}{p(\theta|\mathbf{d})} \, \mathrm{d}\theta \, \mathrm{d}\mathbf{x} \tag{16} \\
&= \int \int p(\mathbf{x}, \theta|\mathbf{d}) \log \frac{p(\theta|\mathbf{x}, \mathbf{d})}{p(\theta|\mathbf{d})} \, \mathrm{d}\theta \, \mathrm{d}\mathbf{x} \tag{17}\n\end{aligned}
$$

Expected information gain

 \blacktriangleright Equals an expectation with respect to $p(\mathbf{x}, \theta | \mathbf{d})$, hence

$$
\mathrm{EIG}(\mathbf{d}) = \mathbb{E}_{p(\mathbf{x}, \theta | \mathbf{d})} \left[\log \frac{p(\theta | \mathbf{x}, \mathbf{d})}{p(\theta | \mathbf{d})} \right]
$$
(18)

▶ Since

$$
p(\theta|\mathbf{x}, \mathbf{d}) = \frac{p(\mathbf{x}, \theta|\mathbf{d})}{p(\mathbf{x}|\mathbf{d})} = \frac{p(\mathbf{x}|\theta, \mathbf{d})p(\theta|\mathbf{d})}{p(\mathbf{x}|\mathbf{d})}
$$
(19)

we also have

$$
\mathrm{EIG}(\mathbf{d}) = \mathbb{E}_{p(\mathbf{x}, \theta | \mathbf{d})} \left[\log \frac{p(\mathbf{x}, \theta | \mathbf{d})}{p(\mathbf{x} | \mathbf{d}) p(\theta | \mathbf{d})} \right] \tag{20}
$$
\n
$$
= \mathrm{KL}(p(\mathbf{x}, \theta | \mathbf{d}) || p(\mathbf{x} | \mathbf{d}) p(\theta | \mathbf{d})) \tag{21}
$$

which is known as the mutual information (MI) between **x** and *θ* (for fixed **d**). Measures the dependency between **x** and *θ* for a given **d**.

▶ We choose **d** such that the EIG / MI is maximised.

Ecology example: when to measure?

 \triangleright For the simple toy example, we can numerically compute the EIG as a function of the measurement time.

 \blacktriangleright EIG is larger for later measurements, which is in line with posterior vs prior plots.

Question 3: experimental design for simulator models

▶ Consider a simulator model specified as

$$
\mathbf{x} = g(\boldsymbol{\theta}, \mathbf{d}, \boldsymbol{\omega}), \quad \boldsymbol{\omega} \sim p(\boldsymbol{\omega}) \tag{22}
$$

where g is not known in closed form but implemented as a computer programme so that $p(x|\theta, d)$ is not available.

- ▶ We would like to compute the value of **d** that maximises the expected information gain about *θ*.
- ▶ Problem: The expected information gain cannot be computed/maximised when $p(x|\theta, d)$ is not tractable.
- ▶ Question: How to obtain a design **d** that approximately maximises the expected information gain without access to the model pdf $p(x|\theta, d)$?

[Preliminaries](#page-3-0)

[The wall of intractable likelihoods](#page-8-0)

[Estimation of deep energy-based models](#page-9-0) [Bayesian inference for simulator models](#page-16-0) [Experimental design for simulator models](#page-25-0) [Summary](#page-34-0)

[Contrastive learning](#page-38-0)

Summary so far

- \triangleright Not all models are specified as a family of pdfs.
- ▶ Two important classes considered here:
	- 1. Energy-based (unnormalised) models
	- 2. Simulator models
- \blacktriangleright The models are rather different, common point:

Multiple integrals needed to be solved to represent the models in terms of pdfs.

- \triangleright Solving the integrals exactly is computationally impossible (curse of dimensionality)
	- \Rightarrow No model pdfs

 \Rightarrow A wall of intractable likelihoods that prevents inference and experimental design
Summary so far

- ▶ We considered diverse kinds of problems and associated questions:
	- 1. Deep energy-based models: What learning principles can we use to efficiently estimate θ when the model pdf $p(\mathbf{x}|\theta)$ is only available up to Z(*θ*)?
	- 2. Inference for simulator models: How can we compute or sample from $p(\theta|\mathcal{D})$ without access to the model pdf $p(\mathbf{x}|\theta)$?
	- 3. Exp design for simulator models: How to obtain a design **d** that approximately maximises the expected information gain without access to the model pdf $p(\mathbf{x}|\boldsymbol{\theta}, \mathbf{d})$?
- \triangleright Contrastive learning provides a single answer to the above questions.
- 1. The likelihood function is a main workhorse in statistics and ML but becomes easily computationally intractable.
- 2. Contrastive learning is an intuitive and computationally feasible alternative to likelihood-based approaches.
- 3. It is broadly applicable. Here: (1) parameter estimation, (2) Bayesian inference, and (3) Bayesian experimental design.

Contents

[Preliminaries](#page-3-0)

[The wall of intractable likelihoods](#page-8-0)

[Contrastive learning](#page-38-0) [Preview of what we can do](#page-39-0) [The technical foundations](#page-51-0) [Estimation of deep energy-based models](#page-71-0) [Bayesian inference for simulator models](#page-76-0) [Experimental design for simulator models](#page-84-0) [Summary](#page-96-0)

[Going further](#page-100-0)

Contents

[Preliminaries](#page-3-0)

[The wall of intractable likelihoods](#page-8-0)

[Contrastive learning](#page-38-0) [Preview of what we can do](#page-39-0)

[The technical foundations](#page-51-0) [Estimation of deep energy-based models](#page-71-0) [Bayesian inference for simulator models](#page-76-0) [Experimental design for simulator models](#page-84-0) [Summary](#page-96-0)

[Going further](#page-100-0)

Question 1: estimation of deep energy-based models

▶ Consider an energy-based model specified as

$$
p(\mathbf{x}|\boldsymbol{\theta}) = \frac{\exp(-f_{\boldsymbol{\theta}}(\mathbf{x}))}{Z(\boldsymbol{\theta})} \qquad Z(\boldsymbol{\theta}) = \int \exp(f_{\boldsymbol{\theta}}(-\mathbf{x})) \, \mathrm{d}\mathbf{x} \quad (23)
$$

where *f_θ* is a deep neural network.

- ▶ Problem: Likelihood-based learning requires us to compute or approximate $Z(\theta)$ (or related quantities).
- ▶ Question: What learning principles can we use to efficiently estimate θ when the model pdf $p(x|\theta)$ is only available up to Z(*θ*)?

Preview 1: contrastive deep energy-based learning

- **►** Let $p(x|\theta) \propto exp(-f_{\theta}(x))$ where $f_{\theta}(x)$ is a deep neural network.
- \triangleright Contour plot of the log-density obtained with contrastive learning (up to additive constant). Obtained with the same model and training procedure.

▶ Main point: contrastive learning allows us to use flexible deep neural networks for unsupervised learning (density estimation) in exactly the same way as in supervised learning.

Question 2: Bayesian inference for simulator models

▶ Consider a simulator model specified as

$$
\mathbf{x} = g(\boldsymbol{\theta}, \boldsymbol{\omega}), \quad \boldsymbol{\omega} \sim p(\boldsymbol{\omega}) \tag{24}
$$

where g is not known in closed form but implemented as a computer programme.

- ▶ We are given data $D = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ and have a prior $p(\theta)$ on *θ*. We would like to determine which values of *θ* are plausible given D.
- ▶ Problem: Likelihood-based inference would require us to numerically compute the likelihood or run e.g. MCMC, which may not be feasible for complex simulator models.
- \blacktriangleright Question: How can we compute or sample from $p(\theta|\mathcal{D})$ without access to the model pdf $p(\mathbf{x}|\theta)$?

Ecology example

- ▶ A latent process $z(t)$ follows the ODE $\dot{z} = rz(1 z/k)$. We observe $x \sim \mathcal{N}(x|z(t), \sigma^2)$ at some fixed time t (say $t=5$).
- \triangleright Assuming a Gamma prior on k (and r known), what are plausible values of the carrying capacity k given x ?

(Gamma prior has a shape parameter 9, and scale parameter 0.5, giving a prior mean of 4.5 and std 1.5. "True" value of $k: 5$, std of observation noise: 0.3)

Preview 2: contrastive Bayesian inference

▶ Reference posterior (via numerical integration) and posterior estimated via contrastive learning.

▶ Main point: contrastive learning allows us to estimate posteriors $p(\theta|\mathcal{D})$ for simulator models without access to $L(\theta)$.

Preview 2: contrastive Bayesian inference

▶ The method is amortised with respect to the observed data: it returns $p(\theta|\mathcal{D})$ for any value of $\mathcal D$ without new learning.

Question 3: experimental design for simulator models

▶ Consider a simulator model specified as

$$
\mathbf{x} = g(\boldsymbol{\theta}, \mathbf{d}, \boldsymbol{\omega}), \quad \boldsymbol{\omega} \sim p(\boldsymbol{\omega}) \tag{25}
$$

where g is not known in closed form but implemented as a computer programme so that $p(x|\theta, d)$ is not available.

- ▶ We would like to compute the value of **d** that maximises the expected information gain about *θ*.
- ▶ Problem: The expected information gain cannot be computed/maximised when $p(x|\theta, d)$ is not tractable.
- ▶ Question: How to obtain a design **d** that approximately maximises the expected information gain without access to the model pdf $p(x|\theta, d)$?

- ▶ We optimise another measure of information gain: While the EIG is defined in terms of the KL-divergence, we use a proxy measure that is defined in terms of another divergence, the Jensen-Shannon divergence (JSD).
- ▶ The JSD is a symmetrized and smoothed version of the KL divergence. Considered more robust.

 \blacktriangleright For the simple toy example, we can numerically compute the JSD as a function of the measurement time.

▶ Similar behaviour as the EIG: later measurements are optimal.

▶ To find the optimal design, we learn a lower bound on the JSD and jointly tighten the bound and determine its maximiser.

▶ Main point: Contrastive learning enables and accelerates exp design with simulator models by only approximating the JSD around its maximiser **d**ˆ.

▶ The method also returns posteriors $p(\theta|\mathcal{D}, \hat{\mathbf{d}})$ that are amortised with respect to the observed data.

Michael U. Gutmann [Selfsupervised learning](#page-0-0) 51 / 106

Contents

[Preliminaries](#page-3-0)

[The wall of intractable likelihoods](#page-8-0)

[Contrastive learning](#page-38-0)

[Preview of what we can do](#page-39-0)

[The technical foundations](#page-51-0)

[Estimation of deep energy-based models](#page-71-0) [Bayesian inference for simulator models](#page-76-0) [Experimental design for simulator models](#page-84-0) [Summary](#page-96-0)

[Going further](#page-100-0)

Basic idea

- \blacktriangleright The basic idea in contrastive learning is to learn the difference between the data of interest and some reference data.
- ▶ Properties of the reference are typically known or not of interest; by learning the difference we focus the (computational) resources on learning what matters.
- ▶ As straightforward as

(26)

 \triangleright Contrastive learning has two main ingredients:

- 1. Learning/measuring the difference
- 2. Constructing the reference

Connection to other frameworks

▶ Link to (log) ratio estimation (see e.g. Sugiyama et al's textbook "Density Ratio Estimation in Machine Learning".)

$$
\underbrace{\log p_b}_{\text{reference}} + \underbrace{\log p_a - \log p_b}_{\text{difference}} \Rightarrow \underbrace{\log p_a}_{\text{interest}} \tag{27}
$$

▶ Link to Bayes' rule

$$
\underbrace{\log p(\boldsymbol{\theta})}_{\text{reference}} + \underbrace{\log p(\mathbf{x}|\boldsymbol{\theta}) - \log p(\mathbf{x})}_{\text{difference}} \Rightarrow \underbrace{\log p(\boldsymbol{\theta}|\mathbf{x})}_{\text{interest}} \qquad (28)
$$

▶ Link to classification: learning differences between data sets can be seen as a classification problem.

Ingredient 1: learning the difference

- ▶ Let $\mathcal{D} = \{x_1, \ldots, x_n\}$ be the data of interest, $x_i \sim p$ (iid), and {**y**1*, . . .* **y**m} be reference data, **y**ⁱ ∼ q (iid).
- ▶ Label the data: $(x_i, 1)$, $(y_i, 0)$ and learn a classifier h by minimising the (rescaled) logistic loss $J(h)$

$$
J(h) = \frac{1}{n} \sum_{i=1}^{n} \log \left[1 + \nu \exp(-h(\mathbf{x}_i)) \right] +
$$

$$
\frac{\nu}{m} \sum_{i=1}^{m} \log \left[1 + \frac{1}{\nu} \exp(h(\mathbf{y}_i)) \right]
$$
(29)

where $\nu = m/n$

• For large sample sizes *n* and *m* (and fixed ratio ν), the optimal h is

$$
h^* = \log \frac{p}{q} \tag{30}
$$

Two key points:

1. The optimisation is done without any constraints (e.g. normalisation constraint that leads to a partition function). The optimal h is automagically the ratio between two densities

$$
h^* = \log \frac{p}{q} \tag{31}
$$

2. We only need samples from p and q ; we do not need their densities or a model for them (but we do need an appropriate model for the ratio)

$$
\blacktriangleright \text{ When } n \text{ and } m \text{ are large, } J(h) \to \bar{J}(h),
$$

$$
\bar{J}(h) = \mathbb{E}_{\rho(\mathbf{x})} \log \left[1 + \nu e^{-h(\mathbf{x})} \right] + \nu \mathbb{E}_{q(\mathbf{y})} \log \left[1 + \frac{1}{\nu} e^{h(\mathbf{y})} \right] \tag{32}
$$

▶ With the definitions $p(.|C = 1) = p(.)$ and $p(.|C = 0) = q(.)$

$$
\bar{J}(h) = \mathbb{E}_{p(\mathbf{u}|C=1)} \log \left[1 + \nu e^{-h(\mathbf{u})} \right] + \nu \mathbb{E}_{p(\mathbf{u}|C=0)} \log \left[1 + \frac{1}{\nu} e^{h(\mathbf{u})} \right]
$$
(33)

 \triangleright *ν* is kept fixed as *n* and *m* increase. It equals the ratio of the prior class probabilities:

$$
\nu = \frac{m}{n} = \frac{\frac{m}{m+n}}{\frac{n}{m+n}} = \frac{p(C=0)}{p(C=1)} = \frac{p_0}{p_1}
$$
(34)

$$
\begin{aligned}\n\blacktriangleright & \text{Insert } \nu = p_0/p_1: \\
\bar{J}(h) = \mathbb{E}_{p(u|C=1)} \log \left[1 + \frac{p_0}{p_1} e^{-h(u)} \right] + \\
& \frac{p_0}{p_1} \mathbb{E}_{p(u|C=0)} \log \left[1 + \frac{p_1}{p_0} e^{h(u)} \right] \tag{35}\n\end{aligned}
$$

 \blacktriangleright It follows that

$$
p_1 \bar{J}(h) = p_1 \mathbb{E}_{p(u|C=1)} \log \left[1 + \frac{p_0}{p_1} e^{-h(u)} \right] +
$$

\n
$$
p_0 \mathbb{E}_{p(u|C=0)} \log \left[1 + \frac{p_1}{p_0} e^{h(u)} \right] \qquad (36)
$$

\n
$$
= -p_1 \mathbb{E}_{p(u|C=1)} \log \left[\frac{1}{1 + \frac{p_0}{p_1} e^{-h(u)}} \right] -
$$

\n
$$
p_0 \mathbb{E}_{p(u|C=0)} \log \left[\frac{1}{1 + \frac{p_1}{p_0} e^{h(u)}} \right] \qquad (37)
$$

Michael U. Gutmann [Selfsupervised learning](#page-0-0) 58 / 106

 \triangleright By manipulating the terms in the logs:

$$
p_1 \bar{J}(h) = -p_1 \mathbb{E}_{p(u|C=1)} \log \left[\frac{p_1 e^{h(u)}}{p_0 + p_1 e^{h(u)}} \right] -
$$

$$
p_0 \mathbb{E}_{p(u|C=0)} \log \left[\frac{p_0}{p_0 + p_1 e^{h(u)}} \right] \tag{38}
$$

$$
\blacktriangleright \ \mathsf{Let}
$$

$$
\Pr(C|\mathbf{u};h) = \begin{cases} \frac{p_1 e^{h(\mathbf{u})}}{p_0 + p_1 e^{h(\mathbf{u})}} & \text{if } C = 1\\ \frac{p_0}{p_0 + p_1 e^{h(\mathbf{u})}} & \text{if } C = 0 \end{cases}
$$
(39)

$$
\blacktriangleright \text{ With } p_1 \mathbb{E}_{p(\mathbf{u}|C=1)} \ldots + p_0 \mathbb{E}_{p(\mathbf{u}|C=0)} = \mathbb{E}_{p(\mathbf{u},C)}
$$

$$
p_1 \bar{J}(h) = -\mathbb{E}_{p(\mathbf{u},C)}\left[\log \Pr(C|\mathbf{u};h)\right]
$$
 (40)

▶ Note that $p_1J(h)$ is just the sample version of $p_1J(h)$.

 ϵ

 \triangleright Whilst Pr($C|\mathbf{u}; h$) is our model of the conditional distribution of the class C given an input **u**, let Pr(C|**u**) be the true conditional (obtained via Bayes' rule),

$$
Pr(C|\mathbf{u}) = \begin{cases} \frac{p_1 p(\mathbf{u})}{p_0 q(\mathbf{u}) + p_1 p(\mathbf{u})} & \text{if } C = 1\\ \frac{p_0 q(\mathbf{u})}{p_0 q(\mathbf{u}) + p_1 p(\mathbf{u})} & \text{if } C = 0 \end{cases}
$$
(41)

Denominator is the marginal $m(\mathbf{u}) = \sum_C p(\mathbf{u}, C) =$ $p_0p(\mathbf{u}|C=0) + p_1p(\mathbf{u}|C=1) = p_0q(\mathbf{u}) + p_1p(\mathbf{u}).$ Add $\mathbb{E}_{p(\mathbf{u}, C)}[\log \Pr(C|\mathbf{u})]$ to $p_1\bar{J}(h)$:

$$
p_1 \overline{J}(h) + \mathbb{E}_{p(\mathbf{u},C)} \log \Pr(C|\mathbf{u}) = -\mathbb{E}_{p(\mathbf{u},C)} \left[\log \frac{\Pr(C|\mathbf{u};h)}{\Pr(C|\mathbf{u})} \right] \tag{42}
$$

▶ Introduce abbreviation $\mathcal{L}(h) = p_1 \overline{J}(h) + \mathbb{E}_{p(\mathbf{u},C)}$ log Pr $(C|\mathbf{u})$:

$$
\mathcal{L}(h) = -\mathbb{E}_{p(\mathbf{u},C)}\left[\log \frac{\Pr(C|\mathbf{u};h)}{\Pr(C|\mathbf{u})}\right]
$$
(43)

► argmin_h
$$
\mathcal{L}(h)
$$
 = argmin_h $\bar{J}(h)$.
\n► By the chain rule $p(\mathbf{u}, C) = m(\mathbf{u}) Pr(C|\mathbf{u})$, which gives

$$
\mathcal{L}(h) = -\mathbb{E}_{m(\mathbf{u})} \mathbb{E}_{\mathsf{Pr}(C|\mathbf{u})} \left[\log \frac{\mathsf{Pr}(C|\mathbf{u}; h)}{\mathsf{Pr}(C|\mathbf{u})} \right] \tag{44}
$$
\n
$$
= \mathbb{E}_{m(\mathbf{u})} \mathbb{E}_{\mathsf{Pr}(C|\mathbf{u})} \left[\log \frac{\mathsf{Pr}(C|\mathbf{u})}{\mathsf{Pr}(C|\mathbf{u}; h)} \right] \tag{45}
$$

$$
= \mathbb{E}_{m(\mathbf{u})} \mathrm{KL}(\mathrm{Pr}(C|\mathbf{u}) || \, \mathrm{Pr}(C|\mathbf{u}; h)) \tag{46}
$$

▶ Optimal h(**u**) minimises KL(Pr(C|**u**)|| Pr(C|**u**; h) for all **u** where $m(\mathbf{u}) > 0$.

 \blacktriangleright The KL divergence is 0 iff $Pr(C|\mathbf{u}) = Pr(C|\mathbf{u}; h)$. \blacktriangleright Recall:

$$
Pr(C|\mathbf{u}; h) = \begin{cases} \frac{p_1 e^{h(\mathbf{u})}}{p_0 + p_1 e^{h(\mathbf{u})}} & \text{if } C = 1\\ \frac{p_0}{p_0 + p_1 e^{h(\mathbf{u})}} & \text{if } C = 0 \end{cases}
$$
(47)

$$
Pr(C|\mathbf{u}) = \begin{cases} \frac{p_1 p(\mathbf{u})}{p_0 q(\mathbf{u}) + p_1 p(\mathbf{u})} & \text{if } C = 1\\ \frac{p_0 q(\mathbf{u})}{p_0 q(\mathbf{u}) + p_1 p(\mathbf{u})} & \text{if } C = 0 \end{cases}
$$
(48)

 \blacktriangleright Pr(C|u; h) = Pr(C|u) iff for all **u** where $m(u) > 0$:

$$
\exp(h(\mathbf{u})) = \frac{p(\mathbf{u})}{q(\mathbf{u})} \quad \Longleftrightarrow \quad h(\mathbf{u}) = \log \frac{p(\mathbf{u})}{q(\mathbf{u})} \qquad (49)
$$

This is the result that we wanted to show and concludes the proof.

Logistic loss lower bounds a divergence between p and q

 \blacktriangleright The optimal h sets $\mathcal{L}(h)$ to zero so that

$$
-p_1 \bar{J}(h^*) = \mathbb{E}_{p(\mathbf{u},C)} \log \Pr(C|\mathbf{u}) \tag{50}
$$

▶ Writing the right-hand-side out gives

$$
-p_1 \overline{J}(h^*) = p_1 \mathbb{E}_{p(\mathbf{u}|C=1)} \log \Pr(C=1|\mathbf{u})
$$

+
$$
p_0 \mathbb{E}_{p(\mathbf{u}|C=0)} \log \Pr(C=0|\mathbf{u})
$$
(51)
=
$$
p_1 \mathbb{E}_{p(\mathbf{x})} \log \Pr(C=1|\mathbf{x}) + p_0 \mathbb{E}_{q(\mathbf{y})} \log \Pr(C=0|\mathbf{y})
$$
(52)

$$
= p_1 \mathbb{E}_{p(\mathbf{x})} \log \left[\frac{p_1 p(\mathbf{x})}{p_0 q(\mathbf{x}) + p_1 p(\mathbf{x})} \right] + p_0 \mathbb{E}_{q(\mathbf{y})} \log \left[\frac{p_0 q(\mathbf{y})}{p_0 q(\mathbf{y}) + p_1 p(\mathbf{y})} \right]
$$
(53)

Logistic loss lower bounds a divergence between p and q

 \triangleright Continuing from the previous slide

$$
-p_1 \overline{J}(h^*) = p_1 \mathbb{E}_{p(\mathbf{x})} \log \left[\frac{p(\mathbf{x})}{p_0 q(\mathbf{x}) + p_1 p(\mathbf{x})} \right] + p_0 \mathbb{E}_{q(\mathbf{y})} \log \left[\frac{q(\mathbf{y})}{p_0 q(\mathbf{y}) + p_1 p(\mathbf{y})} \right] + p_1 \log p_1 + p_0 \log p_0
$$
(54)

▶ The term in red is a generalisation of the KL-divergence known as λ -divergence $D_{\lambda}(p||q)$ (typically p_1 is denoted by λ).

$$
-p_1 \bar{J}(h^*) = D_{\lambda}(p||q) + p_1 \log p_1 + p_0 \log p_0 \qquad (55)
$$

Logistic loss lower bounds a divergence between p and q

► Since
$$
\bar{J}(h^*) \le \bar{J}(h)
$$
, we have $-p_1\bar{J}(h^*) \ge -p_1\bar{J}(h)$ and
\n $-p_1\bar{J}(h^*) = D_{\lambda}(p||q) + p_1 \log p_1 + p_0 \log p_0 \ge -p_1\bar{J}(h)$ (56)

▶ Hence

$$
D_{\lambda}(p||q) \geq -p_1 \bar{J}(h) - p_1 \log p_1 - p_0 \log p_0 \qquad (57)
$$

Negative logistic loss provides a lower bound on the λ -divergence between p and q.

► For $p_1 = 1/2$, corresponding to $m = n$, the λ -divergence $D_{\lambda}(p||q)$ equals the Jensen-Shannon divergence (JSD).

$$
JSD(p||q) \ge -\frac{1}{2}\bar{J}(h) + \log 2
$$
 (58)

Negative logistic loss provides a lower bound on the JSD.

Summary

▶ Basic idea of contrastive learning

 \triangleright Contrastive learning has two main ingredients:

- 1. Learning/measuring the difference
- 2. Constructing the reference
- ▶ Minimising the logistic loss allows us to learn the difference between two distributions p and q .
- \blacktriangleright Key properties:
	- ▶ $h^* = \operatorname{argmin}_h \overline{J}(h) = \log p \log q$
	- ▶ JSD $(p||q) \ge -\frac{1}{2}\bar{J}(h) + \log 2$ and the bound is tight for h^* .

(59)

Ingredient 2: constructing reference data

Choice depends on the specific application of contrastive learning.

- ▶ Deep energy-based models: Fit a preliminary model and keep it fixed or iterate such that the fitted model becomes the reference (Gutmann and Hyvärinen, AISTATS 2010; JMLR 2012)
- ▶ Inference for simulator models: Use the prior or another proposal distribution, and the corresponding predictive distribution (Thomas et al, 2016; Thomas et al, Bayesian Analysis, 2020)
- ▶ Exp design for simulator-models: Use the product of the prior and the prior predictive distribution

(Kleinegesse and Gutmann, AISTATS 2019; ICML 2020; arXiv:2105.04379)

Something to watch out for: the density-chasm problem

- ▶ Logistic loss and other single ratio methods struggle if the two distributions are very different ("density chasm")
- ▶ Consider ratio between two zero-mean Gaussians. 10'000 samples from each distribution. Ratio parameterised by *θ* ∈ R.
- ▶ Solution in red bridges the "gap" using telescopic ratio estimation (TRE) (Rhodes, Xu, and Gutmann, NeurIPS 2020)

Telescoping density-ratio estimation (Rhodes, Xu, and Gutmann, NeurIPS 2020)

A single density-ratio fails to "bridge" the density-chasm.

Let us thus use multiple bridges.

(relabel $p \equiv p_0$ and $q \equiv p_4$) and compute telescoping product

$$
\frac{p(\mathbf{x})}{q(\mathbf{x})} = \frac{p_0(\mathbf{x})}{p_4(\mathbf{x})} = \frac{p_0(\mathbf{x})}{p_1(\mathbf{x})} \frac{p_1(\mathbf{x})}{p_2(\mathbf{x})} \frac{p_2(\mathbf{x})}{p_3(\mathbf{x})} \frac{p_3(\mathbf{x})}{p_4(\mathbf{x})}.
$$
(60)

Telescoping density-ratio estimation (Rhodes, Xu, and Gutmann, NeurIPS 2020)

▶ Sample efficiency curves for the 1d peaked ratio experiment

- ▶ More results in the paper!
- ▶ For further improvements: Srivastava et al, TMLR 2023, Estimating the Density Ratio between Distributions with High Discrepancy using Multinomial Logistic Regression[. . .].
- ▶ Use as replacement of the standard logistic loss if you suspect a density chasm.

Summary

 \blacktriangleright Basic idea of contrastive learning

 \triangleright Contrastive learning has two main ingredients:

- 1. Learning/measuring the difference
- 2. Constructing the reference
- ▶ Minimising the logistic loss allows us to learn the difference between two distributions p and q .
- ▶ Key properties:

$$
h^* = \operatorname{argmin}_h \bar{J}(h) = \log p - \log q
$$

▶ JSD $(p||q) \ge -\frac{1}{2}\bar{J}(h) + \log 2$ and the bound is tight for h^* .

 \blacktriangleright Mind the gap (density chasm).

(61)

Contents

[Preliminaries](#page-3-0)

[The wall of intractable likelihoods](#page-8-0)

[Contrastive learning](#page-38-0)

[Preview of what we can do](#page-39-0) [The technical foundations](#page-51-0)

[Estimation of deep energy-based models](#page-71-0)

[Bayesian inference for simulator models](#page-76-0) [Experimental design for simulator models](#page-84-0) [Summary](#page-96-0)

[Going further](#page-100-0)
Question 1: estimation of deep energy-based models

▶ Consider an energy-based model specified as

$$
p(\mathbf{x}|\boldsymbol{\theta}) = \frac{\exp(-f_{\boldsymbol{\theta}}(\mathbf{x}))}{Z(\boldsymbol{\theta})} \qquad Z(\boldsymbol{\theta}) = \int \exp(f_{\boldsymbol{\theta}}(-\mathbf{x})) \, \mathrm{d}\mathbf{x} \quad (62)
$$

where *f_θ* is a deep neural network.

- ▶ Problem: Likelihood-based learning requires us to compute or approximate $Z(\theta)$ (or related quantities).
- ▶ Question: What learning principles can we use to efficiently estimate θ when the model pdf $p(x|\theta)$ is only available up to Z(*θ*)?

(Gutmann and Hyvärinen, AISTATS 2010; JMLR 2012)

- ▶ Let $\mathcal{D} = {\mathbf{x}_1, ..., \mathbf{x}_n}$ be random sample from $\mathbf{x} \sim p_{\mathbf{x}}$
- \blacktriangleright Introduce reference data $\mathbf{y}_1, \ldots, \mathbf{y}_m$, sampled iid from a reference distribution with a known distribution q
- **▶** Parameterise h as $h_{\theta} = -f_{\theta} \log q$. Learn θ by minimising J(h*θ*).
- ▶ After learning: $h_{\hat{\theta}} = -f_{\hat{\theta}} \log q \approx \log p_{\mathbf{x}} \log q$

▶ Hence

$$
\exp(-f_{\hat{\theta}}) \approx \rho_{\mathbf{x}} \tag{63}
$$

(We here assume that f_θ is parameterised such that it can change is magnitude freely. Can always be ensured by adding a learnable constant.)

- ▶ We can use flexible deep neural networks in unsupervised learning as in supervised learning.
- ▶ Formulates unsupervised learning as a supervised learning problem, which is what self-supervised learning is all about.

Illustration on the toy example

Julia code "EBM-contrastive-learning.jl".

- \triangleright We can characterise the asymptotic distribution and estimation error of the estimator $\hat{\theta} = \mathrm{argmax}_{\theta} \, J(h_{\theta})$
- ▶ I won't go into this here. For those interested, please see the paper Gutmann and Hyvärinen, Noise-contrastive estimation of Unnormalized Statistical Models, with Applications to Natural Image Statistics, JMLR 2012.

 $▶$ As $\nu \rightarrow \infty$, $\hat{\theta}$ converges to the maximum likelihood estimator.

Contents

[Preliminaries](#page-3-0)

[The wall of intractable likelihoods](#page-8-0)

[Contrastive learning](#page-38-0)

[Preview of what we can do](#page-39-0) [The technical foundations](#page-51-0) [Estimation of deep energy-based models](#page-71-0) [Bayesian inference for simulator models](#page-76-0) [Experimental design for simulator models](#page-84-0) [Summary](#page-96-0)

[Going further](#page-100-0)

Question 2: Bayesian inference for simulator models

▶ Consider a simulator model specified as

$$
\mathbf{x} = g(\boldsymbol{\theta}, \boldsymbol{\omega}), \quad \boldsymbol{\omega} \sim p(\boldsymbol{\omega}) \tag{64}
$$

where g is not known in closed form but implemented as a computer programme.

- ▶ We are given data $D = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ and have a prior $p(\theta)$ on *θ*. We would like to determine which values of *θ* are plausible given D.
- ▶ Problem: Likelihood-based inference would require us to numerically compute the likelihood or run e.g. MCMC, which may not be feasible for complex simulator models.
- \blacktriangleright Question: How can we compute or sample from $p(\theta|\mathcal{D})$ without access to the model pdf $p(\mathbf{x}|\theta)$?

Ecology example

- ▶ A latent process $z(t)$ follows the ODE $\dot{z} = rz(1 z/k)$. We observe $x \sim \mathcal{N}(\mathbf{x} | z(t), \sigma^2)$ at some fixed time t (say $t=5$).
- \triangleright Assuming a Gamma prior on k (and r known), what are plausible values of the carrying capacity k given x ?

(Gamma prior has a shape parameter 9, and scale parameter 0.5, giving a prior mean of 4.5 and std 1.5. "True" value of $k: 5$, std of observation noise: 0.3)

(Likelihood-Free Inference by Ratio Estimation, Thomas et al, 2016; 2020) (Dinev and Gutmann, arXiv:1810.09899, 2018)

▶ Contrastive interpretation of Bayes' rule:

 \triangleright We use the logistic loss to learn the difference/log-ratio

$$
r(\mathbf{x}, \theta) = \log \frac{p(\mathbf{x}|\theta)}{p(\mathbf{x})}
$$
 (66)

- \blacktriangleright We need data from the numerator (class $C = 1$) and denominator (class $C = 0$) distribution.
- \triangleright Can be generated with the simulator model:

$$
C = 1: \mathbf{x} \sim p(\mathbf{x}|\theta) \Leftrightarrow \omega \sim p(\omega), \mathbf{x} = g(\omega, \theta) \tag{67}
$$

$$
C = 0: \mathbf{x} \sim p(\mathbf{x}) \Leftrightarrow \omega \sim p(\omega), \theta \sim p(\theta), \mathbf{x} = g(\omega, \theta) \tag{68}
$$

▶ Learned nonlinearity $\hat{h} = \operatorname{argmin}_h J(h)$ provides an estimate of $r(\mathbf{x}, \theta)$:

$$
\hat{h}(\mathbf{x}, \boldsymbol{\theta}) \approx r(\mathbf{x}, \boldsymbol{\theta}) = \log \frac{p(\mathbf{x}|\boldsymbol{\theta})}{p(\mathbf{x})}
$$
(69)

▶ Hence

$$
\underbrace{\log \hat{p}(\theta|\mathbf{x})}_{\text{interest}} = \underbrace{\hat{h}(\mathbf{x}, \theta)}_{\text{learned difference}} + \underbrace{\log p(\theta)}_{\text{reference}}
$$
(70)

▶ We can re-use the learned ratio $\hat{h}(\mathbf{x}, \theta)$ for any value of **x** (amortisation with respect to the data).

▶ Let us have a closer look at the loss $J(h)$: (using the large-sample formulation for ease of the argument)

$$
\bar{J}(h) = \mathbb{E}_{\rho(\mathbf{x}|\theta)} \log \left[1 + \nu e^{-h(\mathbf{x})} \right] + \nu \mathbb{E}_{\rho(\mathbf{x})} \log \left[1 + \frac{1}{\nu} e^{h(\mathbf{x})} \right] (71)
$$

- ▶ The nonlinearity only takes **x** as input and not also *θ*. Small tweak: $h(\mathbf{x}) \rightarrow h(\mathbf{x}, \theta)$
- ▶ The loss above is formulated for a specific (fixed) *θ*. That is ok if we would like to learn the ratio and evaluate the posterior for a specific *θ*.
- **►** But we can also learn it for a range of θ by averaging $J(h)$ over an auxiliary distribution $f(\theta)$.
- ▶ Learns the complete posterior function rather than the value of the posterior at a specific *θ*. Sometimes called amortisation with respect to *θ*.

• Denote the averaged loss by
$$
\bar{\mathcal{J}}_f(h)
$$

$$
\bar{\mathcal{J}}_f(h) = \mathbb{E}_{f(\theta)} \left[\bar{J}(h) \right]
$$
\n
$$
= \mathbb{E}_{f(\theta)} \mathbb{E}_{\rho(\mathbf{x}|\theta)} \log \left[1 + \nu e^{-h(\mathbf{x}, \theta)} \right]
$$
\n
$$
+ \nu \mathbb{E}_{f(\theta)} \mathbb{E}_{\rho(\mathbf{x})} \log \left[1 + \frac{1}{\nu} e^{h(\mathbf{x}, \theta)} \right]
$$
\n(73)

▶ Equivalent to using $\bar{J}(h)$ and targetting the ratio

$$
r(\mathbf{x}, \theta) = \log \frac{p(\mathbf{x}|\theta) f(\theta)}{p(\mathbf{x}) f(\theta)}
$$
(74)

Learning
$$
\log \frac{p(x|\theta)}{p(x)}
$$
 due to cancellation of *f*(*θ*).
\n**Example 2** As before
\n $\log \hat{p}(\theta | x) = \hat{h}(x, \theta) + \log p(\theta)$ (75)

Illustration on the toy example

Julia code "population-growth-contrastive-learning.jl".

Contents

[Preliminaries](#page-3-0)

[The wall of intractable likelihoods](#page-8-0)

[Contrastive learning](#page-38-0)

[Preview of what we can do](#page-39-0) [The technical foundations](#page-51-0) [Estimation of deep energy-based models](#page-71-0) [Bayesian inference for simulator models](#page-76-0) [Experimental design for simulator models](#page-84-0) [Summary](#page-96-0)

[Going further](#page-100-0)

Question 3: experimental design for simulator models

▶ Consider a simulator model specified as

$$
\mathbf{x} = g(\boldsymbol{\theta}, \mathbf{d}, \boldsymbol{\omega}), \quad \boldsymbol{\omega} \sim p(\boldsymbol{\omega}) \tag{76}
$$

where g is not known in closed form but implemented as a computer programme so that $p(x|\theta, d)$ is not available.

- ▶ We would like to compute the value of **d** that maximises the expected information gain about *θ*.
- ▶ Problem: The expected information gain cannot be computed/maximised when $p(x|\theta, d)$ is not tractable.
- ▶ Question: How to obtain a design **d** that approximately maximises the expected information gain without access to the model pdf $p(x|\theta, d)$?

Ecology example: when to measure?

- \blacktriangleright The figure shows realisations of the population growth $z(t)$ for different values of the parameter of the model, the carrying capacity K.
- ▶ We asked: When should we best measure the population to learn about $K²$

Michael U. Gutmann [Selfsupervised learning](#page-0-0) 87 / 106

Ecology example: when to measure?

 \blacktriangleright $t = 5$ is not bad but later seems better

Ecology example: when to measure?

 $\mathrm{EIG}(\mathbf{d}) = \mathbb{E}_{p(\mathbf{x}, \boldsymbol{\theta} | \mathbf{d})} \left[\log \frac{p(\mathbf{x}, \boldsymbol{\theta} | \mathbf{d})}{p(\mathbf{x} | \mathbf{d}) p(\boldsymbol{\theta} | \mathbf{d})} \right] = \mathrm{KL}(p(\mathbf{x}, \boldsymbol{\theta} | \mathbf{d}) || p(\mathbf{x} | \mathbf{d}) p(\boldsymbol{\theta} | \mathbf{d}))$

- ▶ We can use the expected information gain (EIG) to decide when to take the measurement.
- ▶ Typically intractable to compute. In the toy example, numerical integration can be used:

Contrastive approach (the direct way)

 \triangleright The EIG features density ratios that we can estimate by contrastive learning:

$$
\mathsf{EIG}(\mathbf{d}) = \mathbb{E}_{p(\mathbf{x}, \theta | \mathbf{d})} \log \left[\frac{p(\mathbf{x}, \theta | \mathbf{d})}{p(\mathbf{x} | \mathbf{d}) p(\theta | \mathbf{d})} \right] = \mathbb{E}_{p(\mathbf{x}, \theta | \mathbf{d})} \log \left[\frac{p(\mathbf{x} | \theta, \mathbf{d})}{p(\mathbf{x} | \mathbf{d})} \right]
$$
(77)

▶ For **d** fixed, we estimate

$$
h_{\mathbf{d}}(\mathbf{x}, \boldsymbol{\theta}) = \log p(\mathbf{x}|\boldsymbol{\theta}, \mathbf{d}) - \log p(\mathbf{x}|\mathbf{d}), \tag{78}
$$

and maximise the sample average of $h_d(\mathbf{x}, \theta)$ with respect to **d**

- ▶ Static setting: Kleinegesse and Gutmann, AISTATS 2019
- ▶ Sequential setting where we update our belief about *θ* as we sequentially acquire the data: Kleinegesse, Drovandi and Gutmann, Bayesian Analysis 2020

$$
\hat{\mathbf{d}} = \text{argmax}_{\mathbf{d}} \mathbb{E}_{p(\mathbf{x}, \boldsymbol{\theta} | \mathbf{d})} \log \left[\frac{p(\mathbf{x} | \boldsymbol{\theta}, \mathbf{d})}{p(\mathbf{x} | \mathbf{d})} \right]
$$

- ▶ Learning the ratio $h_d(x, \theta)$ and approximating the EIG is computationally costly.
- ▶ But we do not need to estimate the EIG accurately everywhere! Only around it's maximum.
- ▶ Suggests an approach where we lower bound the EIG (or proxy quantities), and then concurrently tighten the bound and maximise the (proxy) EIG.

▶ While the EIG is defined in terms of the KL-divergence, we use a proxy measure that is defined in terms of another divergence, the Jensen-Shannon divergence.

$$
\text{EIG}(\mathbf{d}) = \text{KL}(p(\mathbf{x}, \theta | \mathbf{d}) || p(\mathbf{x} | \mathbf{d}) p(\theta | \mathbf{d}))
$$
(79)

$$
proxy(\mathbf{d}) = JSDp(\mathbf{x}, \theta | \mathbf{d}) || p(\mathbf{x} | \mathbf{d})p(\theta | \mathbf{d}))
$$
(80)

$$
= \frac{1}{2} \Big(\text{KL}(p(\mathbf{x}, \boldsymbol{\theta} | \mathbf{d}) || m(\mathbf{x}, \boldsymbol{\theta} | \mathbf{d})) +
$$

$$
\text{KL}(p(\mathbf{x}|\mathbf{d})p(\boldsymbol{\theta}|\mathbf{d})||m(\mathbf{x},\boldsymbol{\theta}|\mathbf{d}))\big) \tag{81}
$$

$$
m(\mathbf{x},\theta|\mathbf{d})=\frac{1}{2}\left(p(\mathbf{x},\theta|\mathbf{d})+p(\mathbf{x}|\mathbf{d})p(\theta|\mathbf{d})\right) \qquad (82)
$$

▶ The JSD is a symmetrized and smoothed version of the KL divergence. Considered more robust.

(Kleinegesse and Gutmann, ICML 2020; arXiv:2105.04379)

$$
\text{JSD}(p,q) \geq \log 2 - \frac{1}{2}\bar{J}(h) \tag{83}
$$

where h is the regression function and \overline{J} the logistic loss. ▶ Use with

$$
p \equiv p(\mathbf{x}, \theta | \mathbf{d}) \qquad q \equiv p(\mathbf{x} | \mathbf{d}) p(\theta | \mathbf{d}) \qquad (84)
$$

 \blacktriangleright The loss is, using $\nu = 1$ and making the **d** dependency explicit:

$$
\bar{J}(h, \mathbf{d}) = \mathbb{E}_{p(\mathbf{x}, \theta | \mathbf{d})} \log \left[1 + e^{-h(\mathbf{x}, \theta, \mathbf{d})} \right] +
$$

$$
\mathbb{E}_{p(\mathbf{x} | \mathbf{d}) p(\theta | \mathbf{d})} \log \left[1 + e^{-h(\mathbf{x}, \theta, \mathbf{d})} \right]
$$
(85)

 \blacktriangleright Recall:

▶ Minimise sample version jointly with respect to h and **d**:

$$
\hat{h}, \hat{\mathbf{d}} = \underset{h, \mathbf{d}}{\text{argmin}} J(h, \mathbf{d})
$$
 (86)

- \triangleright Optim with respect to h tightens the bound to approximate the JSD. Optim with respect to **d** for optimal design.
- ▶ Allows for computational savings as we only aim to approximate the JSD accurately around its maximiser **d**. (This is because we optimise iteratively, changing **d** and h as we proceed)
- \blacktriangleright Result for the ecology example:

- \blacktriangleright \hat{d} is the optimal design.
- As before, \hat{h} approximates the log-ratio of the distributions in the expectations of the logistic loss.
- ▶ Provides and estimate of the posterior: Since

$$
\hat{h}(\mathbf{x}, \boldsymbol{\theta}, \mathbf{d}) \approx \log \frac{p(\mathbf{x}, \boldsymbol{\theta} | \mathbf{d})}{p(\mathbf{x} | \mathbf{d}) p(\boldsymbol{\theta} | \mathbf{d})} = \log \frac{p(\boldsymbol{\theta} | \mathbf{x}, \mathbf{d})}{p(\boldsymbol{\theta} | \mathbf{d})}
$$
(87)

we have $\log \hat{p}(\theta|\mathbf{x}, \mathbf{d}) = \hat{h}(\mathbf{x}, \theta, \mathbf{d}) + \log p(\theta|\mathbf{d})$

- ▶ Use for values of **d** around **d**ˆ. May not be accurate for other **d**.
- ▶ Estimated posterior is amortised with respect to *θ* and the data **x**.

Michael U. Gutmann [Selfsupervised learning](#page-0-0) 96 / 106

Contents

[Preliminaries](#page-3-0)

[The wall of intractable likelihoods](#page-8-0)

[Contrastive learning](#page-38-0)

[Preview of what we can do](#page-39-0) [The technical foundations](#page-51-0) [Estimation of deep energy-based models](#page-71-0) [Bayesian inference for simulator models](#page-76-0) [Experimental design for simulator models](#page-84-0) [Summary](#page-96-0)

[Going further](#page-100-0)

Summary

 \triangleright Contrastive learning has two main ingredients:

- 1. Learning/measuring the difference
- 2. Constructing the reference
- ▶ Minimising the logistic loss allows us to learn the difference between two distributions p and q .
- \blacktriangleright Key properties:
	- ▶ $h^* = \operatorname{argmin}_h \overline{J}(h) = \log p \log q$
	- ▶ JSD $(p||q) \ge -\frac{1}{2}\bar{J}(h) + \log 2$ and the bound is tight for h^* .
- ▶ A number of diverse kinds of problems can be solved with contrastive learning.

Summary

- 1. Deep energy-based models: What learning principles can we use to efficiently estimate θ when the model pdf $p(\mathbf{x}|\theta)$ is only available up to Z(*θ*)?
	- ⇒ Use contrastive learning to target log exp(−f*θ*(**x**)) q(**x**) where q is a preliminary model, e.g. representing our current belief about **x**.
- 2. Inference for simulator models: How can we compute or sample from $p(\theta|\mathcal{D})$ without access to the model pdf $p(\mathbf{x}|\theta)$? \Rightarrow Use contrastive learning to target log $\frac{p(x|\theta)f(\theta)}{p(x)f(\theta)}$ where $f(\theta)$ is an auxiliary distribution.
- 3. Exp design for simulator models: How to obtain a design **d** that approximately maximises the expected information gain without access to the model pdf $p(x|\theta, d)$?

 \Rightarrow Use contrastive learning to lower bound and maximise $JSD(p(x, \theta | d) || p(x | d) p(\theta | d))$ with respect to **d**. Targets $\log \frac{p(x, \theta | d)}{p(x | d) p(\theta | d)}$.

- 1. The likelihood function is a main workhorse in statistics and ML but becomes easily computationally intractable.
- 2. Contrastive learning is an intuitive and computationally feasible alternative to likelihood-based approaches. \checkmark
- 3. It is broadly applicable. Here: (1) parameter estimation, (2) Bayesian inference, and (3) Bayesian experimental design.

[Preliminaries](#page-3-0)

[The wall of intractable likelihoods](#page-8-0)

[Contrastive learning](#page-38-0)

[Going further](#page-100-0)

Directions to go from here

- \triangleright Contrastive learning has two main ingredients:
	- 1. Learning/measuring the difference
	- 2. Constructing the reference
- \triangleright Multiple directions are possible. Classify them broadly into three:
	- 1. Other loss functions to learn the difference.
	- 2. Construction of the reference distribution.
	- 3. Applications.

Other loss functions

- ▶ Other loss functions than logistic loss can be used.
- ▶ Multinomial logistic loss where we contrast more than two data points:
	- ▶ Ma and M. Collins, Conference on Empirical Methods in Natural Language Processing 2018. Noise contrastive estimation and negative sampling for conditional models: Consistency and statistical efficiency.
	- ▶ Srivastava et al, TMLR 2023. Estimating the Density Ratio between Distributions with High Discrepancy using Multinomial Logistic Regression.
- ▶ Bregman and other divergences:
	- ▶ Pihlaja et al, UAI, 2010. A family of computationally efficient and simple estimators for unnormalized statistical models
	- ▶ Gutmann and Hirayama, 2011. Bregman divergence as general framework to estimate unnormalized statistical models
	- ▶ Uehera et al, AISTATS 2020. A Unified Statistically Efficient Estimation Framework for Unnormalized Models

Construction of the reference distribution

- \blacktriangleright The reference depends on the problem-class studied.
- ▶ Research has mostly focussed on the case of energy-based models.
	- ▶ We can iterate and choose as reference the model from the previous iteration (Gutmann and Hyvärinen, 2010).
	- ▶ Iterate and as use as reference a normalising flow (Gao et al, NeurIPS 2019. Flow-contrastive estimation.)
	- \triangleright Use a kernel-density estimate of the data distribution (Uehera et al, AISTATS 2020)
	- \triangleright We can generate the reference data conditionally on the observed data

(Ceylan and Gutmann, ICML 2019. Conditional noise-contrastive estimation of unnormalised models)

 \triangleright We can investigate which fixed reference distribution gives the smallest error

(Chehab et al, AISTATS 2022. The optimal noise in noise-contrastive learning is not what you think)

▶ Adaptive construction of the reference distribution gives raise to GANs if a simulator model instead of a EBM is used.

Further applications

- ▶ Change-point detection (e.g. Puchkin et al, AISTATS 2023)
- ▶ Recommendation systems (e.g. Wu et al, SIGIR 2019)
- ▶ Representation learning, e.g. Word2Vec (Mikolov et al, 2013), InfoNCE (van den Oord, et al, arXiv:1807.03748), or SimCL (Chen et al, ICML 2020). For a recent review paper in this domain, see A Cookbook of Self-Supervised Learning (Balestriero et al, arXiv:2304.12210)
- \blacktriangleright Sequential experimental design

(e.g. Ivanova et al, NeurIPS 2021. Implicit Deep Adaptive Design [. . .])

Conclusions

- ▶ Introduced energy-based and simulator models.
- ▶ Pointed out that their likelihood function is typically computationally intractable, which hampers inference and experimental design.
- ▶ Contrastive learning is an intuitive and computationally feasible alternative to likelihood-based approaches.
- ▶ Contrastive learning is closely related to classification, logistic regression, and ratio estimation.
- ▶ Explained how to use it to solve various difficult statistical problems:
	- 1. Parameter estimation for energy-based models
	- 2. Bayesian inference for simulator models
	- 3. Bayesian experimental design for simulator models
- ▶ For papers and code, see

<https://michaelgutmann.github.io>