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Main messages

1. The likelihood function is a main workhorse in statistics and
ML but becomes easily computationally intractable.

2. Contrastive learning is an intuitive and computationally
feasible alternative to likelihood-based approaches.

3. It is broadly applicable. Here: (1) parameter estimation, (2)
Bayesian inference, and (3) Bayesian experimental design.
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Overall goal

▶ Goal: Understanding properties of some data source
▶ Enables predictions, decision making under uncertainty, . . .
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Two fundamental tasks

▶ Data analysis : Given data D, what can we robustly say about
the properties of the source?

▶ Experimental design : How to obtain data D that is
maximally useful for learning about the properties?
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Approaching the tasks via parametric models

▶ Set up a model with properties that the unknown data source
might have.

▶ The potential properties are induced by the parameters θ of
the model.
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The likelihood function L(θ)

▶ Probability that the model generates data like the observed
one when using parameter value θ

▶ Classically, the main workhorse in statistics/ML but typically
intractable for flexible models.
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From deep supervised to deep unsupervised learning

▶ Deep neural networks have transformed supervised learning.
▶ Allow us to specify flexible parameterised functions fθ(x)

mapping the inputs (covariates) x to the target variables.
▶ Fitting is supported by a rich code infrastructure.
▶ Simple regression example:

(fθ(x) was a multi-layer NN with relu activation functions)
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From deep supervised to deep unsupervised learning

▶ "All models are wrong" but deep neural networks are broadly
applicable to different supervised learning tasks.

▶ The situation is a bit different in unsupervised learning
(density estimation).

▶ Consider task of learning the parameters θ of a density model
p(x|θ) for the following two data sets.

▶ We may need rather different models and frameworks (e.g.
mixture models etc).
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Energy-based models

▶ We would like to use the same model-class p(x|θ) for both
data sets.

▶ One approach is to write

p(x|θ) = exp(−fθ(x))
Z (θ) Z (θ) =

∫
exp(−fθ(x)) dx (1)

where fθ is a deep neural network (sometimes called the
energy)

▶ Models specified in terms of fθ are called energy-based models.
▶ Widely used:

▶ computer vision and modelling of images
▶ natural language processing and machine translation
▶ modelling social or biological networks
▶ . . .
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Log-likelihood for energy-based models

▶ Given iid data D = {x1, . . . , xn}, the log-likelihood function is

ℓ(θ) =
n∑

i=1
log p(xi |θ) = −

n∑
i=1

fθ(xi) − n log Z (θ) (2)

▶ Problem: The partition function Z (θ) is defined in terms of a
high-dimensional integral

Z (θ) =
∫

exp(−fθ(x)) dx (3)

that is typically impossible to compute.
▶ Makes evaluating ℓ(θ) intractable.
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We cannot just ignore the partition function

▶ Consider p(x |θ) = exp(−fθ(x))
Z(θ) =

exp
(

−θ x2
2

)
√

2π/θ
with x ∈ R.

▶ Log-likelihood function for precision (inverse variance) θ ≥ 0

ℓ(θ) = −n log

√
2π

θ
−θ

n∑
i=1

x2
i
2 (4)

▶ Data-dependent (blue) and
independent part (red)
balance each other.

▶ Ignoring Z (θ) leads to
meaningless estimates.
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Question 1: estimation of deep energy-based models

▶ Consider an energy-based model specified as

p(x|θ) = exp(−fθ(x))
Z (θ) Z (θ) =

∫
exp(fθ(−x)) dx (5)

where fθ is a deep neural network.
▶ Problem: Likelihood-based learning requires us to compute or

approximate Z (θ) (or related quantities).
▶ Question: What learning principles can we use to efficiently

estimate θ when the model pdf p(x|θ) is only available up to
Z (θ)?
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Simulator models

▶ Widely used:
▶ computer models/simulators in the natural sciences
▶ evolutionary biology to model evolution
▶ neuroscience to model neural processing
▶ epidemiology to model the spread of an infectious disease
▶ . . .

▶ Specified via a measurable function g , typically not known in
closed form but implemented as a computer programme

x = g(θ, ω), ω ∼ p(ω) (6)

Maps parameters θ and “noise” ω to data x.
▶ Equals the basic definition of a random variable in terms of a

measurable function.
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Simulator models

Some examples:
▶ p(ω) = N (ω; 0, 1), g(θ, ω) = µ + σω, with θ = (µ, σ).
▶ p(ω) = U(ω; 0, 1), g(θ, ω) = inverse cdf of some target

distribution with parameters θ.
▶ x = (x1, . . . , xn) is obtained by solving a parameterised ODE

subject to noise, e.g.

ż = f (z, t, θ) xi = z(ti) + ωi , i = 1, . . . , n (7)

where ωi ∼ N (ωi ; 0, Σ) iid and the initial conditions may be
unknown.

▶ x is the solution to a stochastic differential equation with
parameters θ.

▶ x is the output of some graphics renderer with parameters θ.
▶ . . .
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Example from ecology
▶ A classical model for population growth is

ż = rz(1 − z
k ) (8)

where r is the growth rate and k is the carrying capacity.
▶ Defines a dynamics with a fixed point at 0 (unstable) and at k

(stable). For example, for k = 6:

0 1 2 3 4 5 6 7

−1

0

1

z

ż
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Example from ecology

▶ Denote the solution of the ODE evaluated at times t1, . . . , tn
by z1, . . . , zn.

▶ Let the observed data x1, . . . , xn be the zi corrupted by some
noise:

xi = zi + ωi ωi = N (ωi ; 0, σ2) (9)

In other words, xi |zi ∼ N (xi ; zi , σ2)
▶ Note that the zi , and hence the xi , depend on the values of k

and r .
▶ They are the parameters θ of the model.
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Key strengths and weaknesses of simulator models

▶ Strengths:
▶ Most general definition of a statistical model
▶ Connects statistics to the natural sciences and engineering

▶ Weaknesses:
▶ Model pdf implicitly defined in terms of the inverse image of

g(θ, ω):

Pr(x ∈ A|θ) = Pr({ω : g(θ, ω) ∈ A})

for some event A.
▶ Computing inverse image and the associated probability is

typically not possible, which makes the model pdf p(x|θ)
intractable.
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Intractable model pdf implies intractable likelihood

▶ For models explicitly expressed as a family of pdfs {p(x|θ)}
indexed by θ: L(θ) = p(D|θ).

▶ For models implicitly expressed in terms of a simulator, p(x|θ)
and hence L(θ) are typically not available.

▶ This causes problems in likelihood-based inference, which
requires L(θ):

θ̂ = argmax
θ

L(θ) or p(θ|D) = L(θ)
p(D)p(θ) (10)

▶ In some cases, we can obtain p(x, z|θ) for some unobserved
variable z and then use MCMC or variational methods for
inference. We here do not assume that the model allows for
such an expression.
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Ecology example
▶ A latent process z(t) follows the ODE ż = rz(1 − z/k). We

observe x ∼ N (x ; z(t), σ2) at a known time t (say t = 5).
▶ Assuming a Gamma prior on k (and r known), what are

plausible values of the carrying capacity k given x?

(Gamma prior has a shape parameter 9, and scale parameter 0.5, giving a prior
mean of 4.5 and std 1.5. "True" value of k: 5, std of observation noise: 0.3)
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Question 2: Bayesian inference for simulator models

▶ Consider a simulator model specified as

x = g(θ, ω), ω ∼ p(ω) (11)

where g is not known in closed form but implemented as a
computer programme.

▶ We are given data D = (x1, . . . , xn) and have a prior p(θ) on
θ. We would like to determine which values of θ are plausible
given D.

▶ Problem: Likelihood-based inference would require us to
numerically compute the likelihood or run e.g. MCMC, which
may not be feasible for complex simulator models.

▶ Question: How can we compute or sample from p(θ|D)
without access to the model pdf p(x|θ)?
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Ecology example: when to measure?
▶ In the previous example, we took the measurement at t = 5.

Was that a good choice? Could it have been better?
▶ Deciding about t corresponds to experimental design. What is

a criterion to measure optimality of an experimental design?
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Ecology example: when to measure?
We want experimental data from which we can learn something,
i.e. data that can change our belief.

(a) Measurement at t = 1 (b) Measurement at t = 2

(c) Measurement at t = 5 (d) Measurement at t = 8
Michael U. Gutmann Selfsupervised learning 28 / 98



Expected information gain

▶ Assume now that we have some control over the data
collection process. Denote the control (design) variables by d
and include d in the model as an additional parameter:

p(x|θ, d) ⇐⇒ x = g(θ, d, ω), ω ∼ p(ω) (12)

▶ While θ is unknown (e.g. the carrying capacity k), d is
controllable (e.g. the measurement time).

▶ We can assess the value of some data D obtained with design
d by computing how much it can change our belief about θ.
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Expected information gain

▶ Let us use the Kullback-Leibler divergence to measure the
difference between our belief before seeing the data, p(θ|d),
and our belief after seeing the data, p(θ|D, d) when using
design d:

value(D, d) = KL(p(θ|D, d)||p(θ|d)) (13)

=
∫

p(θ|D, d) log p(θ|D, d)
p(θ|d) dθ (14)

We call this the information gain.
▶ Quantifies how much information we gain about θ by

analysing the data D.
▶ Often but not necessarily: p(θ|d) = p(θ) (belief about θ is

independent of the design d).
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Expected information gain

▶ value(D, d) can be used to assess the value of some data D
that we have gathered with design d.

▶ When deciding about what design d to use, D is not yet
observed.

▶ However, we can average over possible data sets D that we
may observe when using d and compute the expected
information gain (EIG):

EIG(d) =
∫

p(x|d)value(x, d) dx (15)

=
∫

p(x|d)
∫

p(θ|x, d) log p(θ|x, d)
p(θ|d) dθ dx (16)

=
∫ ∫

p(x, θ|d) log p(θ|x, d)
p(θ|d) dθ dx (17)
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Expected information gain
▶ Equals an expectation with respect to p(x, θ|d), hence

EIG(d) = Ep(x,θ|d)

[
log p(θ|x, d)

p(θ|d)

]
(18)

▶ Since
p(θ|x, d) = p(x, θ|d)

p(x|d) (19)

we also have

EIG(d) = Ep(x,θ|d)

[
log p(x, θ|d)

p(x|d)p(θ|d)

]
(20)

= KL(p(x, θ|d)||p(x|d)p(θ|d)) (21)

which is known as the mutual information (MI) between x and
θ (for fixed d). Measures the dependency between x and θ for
a given d.

▶ We choose d such that the EIG / MI is maximised.
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Ecology example: when to measure?

▶ For the simple toy example, we can numerically compute the
EIG as a function of the measurement time.

▶ EIG is larger for later measurements, which is in line with
posterior vs prior plots.
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Question 3: experimental design for simulator models

▶ Consider a simulator model specified as

x = g(θ, d, ω), ω ∼ p(ω) (22)

where g is not known in closed form but implemented as a
computer programme so that p(x|θ, d) is not available.

▶ We would like to compute the value of d that maximises the
expected information gain about θ.

▶ Problem: The expected information gain cannot be
computed/maximised when p(x|θ, d) is not tractable.

▶ Question: How to obtain a design d that approximately
maximises the expected information gain without access to
the model pdf p(x|θ, d)?

Michael U. Gutmann Selfsupervised learning 34 / 98



Contents

Preliminaries

The wall of intractable likelihoods
Estimation of deep energy-based models
Bayesian inference for simulator models
Experimental design for simulator models
Summary

Contrastive learning

Going further

Michael U. Gutmann Selfsupervised learning 35 / 98



Summary so far

▶ Not all models are specified as a family of pdfs.
▶ Two important classes considered here:

1. Energy-based (unnormalised) models
2. Simulator models

▶ The models are rather different, common point:
Multiple integrals needed to be solved to represent the models
in terms of pdfs.

▶ Solving the integrals exactly is computationally impossible
(curse of dimensionality)
⇒ No model pdfs
⇒ A wall of intractable likelihoods that prevents inference and
experimental design
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Summary so far

▶ We considered diverse kinds of problems and associated
questions:

1. Deep energy-based models: What learning principles can we
use to efficiently estimate θ when the model pdf p(x|θ) is only
available up to Z (θ)?

2. Inference for simulator models: How can we compute or
sample from p(θ|D) without access to the model pdf p(x|θ)?

3. Exp design for simulator models: How to obtain a design d
that approximately maximises the expected information gain
without access to the model pdf p(x|θ, d)?

▶ Contrastive learning provides a single answer to the above
questions.
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Main messages

1. The likelihood function is a main workhorse in statistics and
ML but becomes easily computationally intractable. ✓

2. Contrastive learning is an intuitive and computationally
feasible alternative to likelihood-based approaches.

3. It is broadly applicable. Here: (1) parameter estimation, (2)
Bayesian inference, and (3) Bayesian experimental design.
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Basic idea

▶ The basic idea in contrastive learning is to learn the difference
between the data of interest and some reference data.

▶ Properties of the reference are typically known or not of
interest; by learning the difference we focus the
(computational) resources on learning what matters.

▶ As straightforward as

b︸︷︷︸
reference

+ a − b︸ ︷︷ ︸
difference

⇒ a︸︷︷︸
interest

(23)

▶ Contrastive learning has two main ingredients:
1. Learning/measuring the difference
2. Constructing the reference
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Connection to other frameworks

▶ Link to (log) ratio estimation (see e.g. Sugiyama et al’s
textbook “Density Ratio Estimation in Machine Learning”.)

log pb︸ ︷︷ ︸
reference

+ log pa − log pb︸ ︷︷ ︸
difference

⇒ log pa︸ ︷︷ ︸
interest

(24)

▶ Link to Bayes’ rule

log p(θ)︸ ︷︷ ︸
reference

+ log p(x|θ) − log p(x)︸ ︷︷ ︸
difference

⇒ log p(θ|x)︸ ︷︷ ︸
interest

(25)

▶ Link to classification: learning differences between data sets
can be seen as a classification problem.
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Ingredient 1: learning the difference

▶ Let D = {x1, . . . , xn} be the data of interest, xi ∼ p (iid), and
{y1, . . . ym} be reference data, yi ∼ q (iid).

▶ Label the data: (xi , 1), (yi , 0) and learn a classifier h by
minimising the (rescaled) logistic loss J(h)

J(h) =1
n

n∑
i=1

log [1 + ν exp(−h(xi))] +

ν

m

m∑
i=1

log
[
1 + 1

ν
exp(h(yi))

]
(26)

where ν = m/n
▶ For large sample sizes n and m (and fixed ratio ν), the

optimal h is
h∗ = log p

q (27)
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Ingredient 1: learning the difference

Two key points:
1. The optimisation is done without any constraints (e.g.

normalisation constraint that leads to a partition function).
The optimal h is automagically the ratio between two densities

h∗ = log p
q (28)

2. We only need samples from p and q; we do not need their
densities or a model for them (but we do need a model for the ratio)
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Proof that h∗ = log p − log q

▶ When n and m are large, J(h) → J̄(h),

J̄(h) =Ep(x) log
[
1 + νe−h(x)

]
+ νEq(y) log

[
1 + 1

ν
eh(y)

]
(29)

▶ With the definitions p(.|C = 1) = p(.) and p(.|C = 0) = q(.)

J̄(h) =Ep(u|C=1) log
[
1 + νe−h(u)

]
+

νEp(u|C=0) log
[
1 + 1

ν
eh(u)

]
(30)

▶ ν is kept fixed as n and m increase. It equals the ratio of the
prior class probabilities:

ν = m
n =

m
m+n

n
m+n

= p(C = 0)
p(C = 1) = p0

p1
(31)
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Proof that h∗ = log p − log q
▶ Insert ν = p0/p1:

J̄(h) =Ep(u|C=1) log
[
1 + p0

p1
e−h(u)

]
+

p0
p1

Ep(u|C=0) log
[
1 + p1

p0
eh(u)

]
(32)

▶ It follows that

p1J̄(h) =p1Ep(u|C=1) log
[
1 + p0

p1
e−h(u)

]
+

p0Ep(u|C=0) log
[
1 + p1

p0
eh(u)

]
(33)

= −p1Ep(u|C=1) log
[

1
1 + p0

p1
e−h(u)

]
−

p0Ep(u|C=0) log
[

1
1 + p1

p0
eh(u)

]
(34)
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Proof that h∗ = log p − log q

▶ By manipulating the terms in the logs:

p1J̄(h) = −p1Ep(u|C=1) log
[

p1eh(u)

p0 + p1eh(u)

]
−

p0Ep(u|C=0) log
[ p0

p0 + p1eh(u)

]
(35)

▶ Let

Pr(C |u; h) =


p1eh(u)

p0+p1eh(u) if C = 1
p0

p0+p1eh(u) if C = 0
(36)

▶ With p1Ep(u|C=1) . . . + p0Ep(u|C=0) = Ep(u,C)

p1J̄(h) = −Ep(u,C) [log Pr(C |u; h)] (37)

▶ Note that p1J(h) is just the sample version of p1J̄(h).
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Proof that h∗ = log p − log q

▶ Whilst Pr(C |u; h) is our model of the conditional distribution
of the class C given an input u, let Pr(C |u) be the true
conditional (obtained via Bayes’ rule),

Pr(C |u) =


p1p(u)

p0q(u)+p1p(u) if C = 1
p0q(u)

p0q(u)+p1p(u) if C = 0
(38)

Denominator is the marginal m(u) =
∑

C p(u, C) =
p0p(u|C = 0) + p1p(u|C = 1) = p0q(u) + p1p(u).

▶ Add Ep(u,C)[log Pr(C |u)] to p1J̄(h):

p1J̄(h) + Ep(u,C) log Pr(C |u) = −Ep(u,C)

[
log Pr(C |u; h)

Pr(C |u)

]
(39)
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Proof that h∗ = log p − log q

▶ Introduce abbreviation L(h) = p1J̄(h) + Ep(u,C) log Pr(C |u):

L(h) = −Ep(u,C)

[
log Pr(C |u; h)

Pr(C |u)

]
(40)

▶ argminh L(h) = argminh J̄(h).
▶ By the chain rule p(u, C) = m(u) Pr(C |u), which gives

L(h) = −Em(u)EPr(C |u)

[
log Pr(C |u; h)

Pr(C |u)

]
(41)

= Em(u)EPr(C |u)

[
log Pr(C |u)

Pr(C |u; h)

]
(42)

= Em(u)KL(Pr(C |u)|| Pr(C |u; h)) (43)

▶ Optimal h(u) minimises KL(Pr(C |u)|| Pr(C |u; h) for all u
where m(u) > 0.
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Proof that h∗ = log p − log q

▶ The KL divergence is 0 iff Pr(C |u) = Pr(C |u; h).
▶ Recall:

Pr(C |u; h) =


p1eh(u)

p0+p1eh(u) if C = 1
p0

p0+p1eh(u) if C = 0
(44)

Pr(C |u) =


p1p(u)

p0q(u)+p1p(u) if C = 1
p0q(u)

p0q(u)+p1p(u) if C = 0
(45)

▶ Pr(C |u; h) = Pr(C |u) iff for all u where m(u) > 0:

exp(h(u)) = p(u)
q(u) ⇐⇒ h(u) = log p(u)

q(u) (46)

This is the result that we wanted to show and concludes the
proof.
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Logistic loss lower bounds a divergence between p and q

▶ The optimal h sets L(h) to zero so that

−p1J̄(h∗) = Ep(u,C) log Pr(C |u) (47)

▶ Writing the right-hand-side out gives

−p1J̄(h∗) = p1Ep(u|C=1) log Pr(C = 1|u)
+ p0Ep(u|C=0) log Pr(C = 0|u) (48)

= p1Ep(x) log Pr(C = 1|x) + p0Eq(y) log Pr(C = 0|y)
(49)

= p1Ep(x) log
[ p1p(x)

p0q(x) + p1p(x)

]
+ p0Eq(y) log

[ p0q(y)
p0q(y) + p1p(y)

]
(50)
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Logistic loss lower bounds a divergence between p and q

▶ Continuing from the previous slide

−p1J̄(h∗) = p1Ep(x) log
[ p(x)

p0q(x) + p1p(x)

]
+ p0Eq(y) log

[ q(y)
p0q(y) + p1p(y)

]
+ p1 log p1 + p0 log p0 (51)

▶ The term in red is a generalisation of the KL-divergence
known as λ-divergence Dλ(p||q) (typically p1 is denoted by λ).

−p1J̄(h∗) = Dλ(p||q) + p1 log p1 + p0 log p0 (52)
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Logistic loss lower bounds a divergence between p and q

▶ Since J̄(h∗) ≤ J̄(h), we have −p1J̄(h∗) ≥ −p1J̄(h) and

−p1J̄(h∗) = Dλ(p||q) + p1 log p1 + p0 log p0 ≥ −p1J̄(h) (53)

▶ Hence

Dλ(p||q) ≥ −p1J̄(h) − p1 log p1 − p0 log p0 (54)

Negative logistic loss provides a lower bound on the
λ-divergence between p and q.

▶ For p1 = 1/2, corresponding to m = n, the λ-divergence
Dλ(p||q) equals the Jensen-Shannon divergence (JSD).

JSD(p||q) ≥ −1
2 J̄(h) + log 2 (55)

Negative logistic loss provides a lower bound on the JSD.
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Summary

▶ Basic idea of contrastive learning

b︸︷︷︸
reference

+ a − b︸ ︷︷ ︸
difference

⇒ a︸︷︷︸
interest

(56)

▶ Contrastive learning has two main ingredients:
1. Learning/measuring the difference
2. Constructing the reference

▶ Minimising the logistic loss allows us to learn the difference
between two distributions p and q.

▶ Key properties:
▶ h∗ = argminh J̄(h) = log p − log q
▶ JSD(p||q) ≥ − 1

2 J̄(h) + log 2 and the bound is tight for h∗.
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Ingredient 2: constructing reference data

Choice depends on the specific application of contrastive learning.
▶ Deep energy-based models: Fit a preliminary model and keep

it fixed or iterate such that the fitted model becomes the
reference (Gutmann and Hyvärinen, AISTATS 2010; JMLR 2012)

▶ Inference for simulator models: Use the prior or another
proposal distribution, and the corresponding predictive
distribution (Thomas et al, 2016; Thomas et al, Bayesian Analysis, 2020)

▶ Exp design for simulator-models: Use the product of the prior
and the prior predictive distribution
(Kleinegesse and Gutmann, AISTATS 2019; ICML 2020; arXiv:2105.04379)

▶ . . .
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Something to watch out for: the density-chasm problem

▶ Logistic loss and other single ratio methods struggle if the two
distributions are very different (“density chasm”)

▶ Consider ratio between two zero-mean Gaussians. 10’000
samples from each distribution. Ratio parameterised by θ ∈ R.

▶ Solution in red bridges the “gap” using telescopic ratio
estimation (TRE) (Rhodes, Xu, and Gutmann, NeurIPS 2020)

100 10 1 10 2 0 10 2 10 1 100

x

0

10 1

101

103

105

d
e
n
si

ty
/r

a
ti

o
 v

a
lu

e

p(x)

q(x)
p(x)
q(x)

4 6 8 10 12 14

0.0

0.5

1.0

1.5

lo
g
is

ti
c 

lo
ss

n( )

*

TRE

4 6 8 10 12 14 16 18 20

0.0

0.1

0.2

0.3

0.4

0.5
n( )

*

TRE

q
u
a
d
ra

ti
c 

lo
ss

8 9 10 11 12 13 14 15
15

10

5

0

N
W

J
lo

ss

n( )

*

TRE

Michael U. Gutmann Selfsupervised learning 56 / 98



Telescoping density-ratio estimation (Rhodes, Xu, and Gutmann, NeurIPS 2020)

A single density-ratio fails to “bridge” the density-chasm.

Let us thus use multiple bridges.
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Telescoping density-ratio estimation (Rhodes, Xu, and Gutmann, NeurIPS 2020)

▶ Sample efficiency curves for the 1d peaked ratio experiment

101 102 103 104 105

sample size (log scale)

0

2

4

6

8

|θ
∗
−
θ

es
t|

single ratio

TRE

(a) Logistic loss

101 102 103 104 105

sample size (log scale)

0

2

4

6

8

|θ
∗
−
θ

es
t|

single ratio

TRE

(b) f-MINE/NWJ loss
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(c) Quadratic loss

▶ More results in the paper!
▶ For further improvements: Srivastava et al, TMLR 2023, Estimating the

Density Ratio between Distributions with High Discrepancy using Multinomial
Logistic Regression[. . . ].

▶ Use as replacement of the standard logistic loss if you suspect
a density chasm.
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Summary

▶ Basic idea of contrastive learning

b︸︷︷︸
reference

+ a − b︸ ︷︷ ︸
difference

⇒ a︸︷︷︸
interest

(58)

▶ Contrastive learning has two main ingredients:
1. Learning/measuring the difference
2. Constructing the reference

▶ Minimising the logistic loss allows us to learn the difference
between two distributions p and q.

▶ Key properties:
▶ h∗ = argminh J̄(h) = log p − log q
▶ JSD(p||q) ≥ − 1

2 J̄(h) + log 2 and the bound is tight for h∗.
▶ Mind the gap (density chasm).
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Question 1: estimation of deep energy-based models

▶ Consider an energy-based model specified as

p(x|θ) = exp(−fθ(x))
Z (θ) Z (θ) =

∫
exp(fθ(−x)) dx (59)

where fθ is a deep neural network.
▶ Problem: Likelihood-based learning requires us to compute or

approximate Z (θ) (or related quantities).
▶ Question: What learning principles can we use to efficiently

estimate θ when the model pdf p(x|θ) is only available up to
Z (θ)?
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Contrastive approach

(Gutmann and Hyvärinen, AISTATS 2010; JMLR 2012)

▶ Let D = {x1, . . . , xn} be a random sample from x ∼ px
▶ Introduce reference data y1, . . . , ym, sampled iid from a

reference distribution with a known distribution q
▶ Parameterise h as hθ = −fθ − log q.
▶ Learn θ by minimising J(hθ)

J(hθ) =1
n

n∑
i=1

log [1 + ν exp(−hθ(xi))] +

ν

m

m∑
i=1

log
[
1 + 1

ν
exp(hθ(yi))

]
(60)

▶ After learning: hθ̂ = −fθ̂ − log q ≈ log px − log q
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Contrastive approach

(Gutmann and Hyvärinen, AISTATS 2010; JMLR 2012)

▶ After learning: hθ̂ = −fθ̂ − log q ≈ log px − log q
▶ Hence

exp(−fθ̂) ≈ px (61)

(We here assume that fθ is parameterised such that it can change is magnitude
freely. Can always be ensured by adding a learnable constant.)

▶ We can use flexible deep neural networks in unsupervised
learning as in supervised learning.

▶ No need to compute/approximate the partition function Z (θ).
▶ Formulates unsupervised learning as a supervised learning

problem, which is what self-supervised learning is all about.
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Illustration on the toy example

▶ Contour plots of the log-density obtained with contrastive
learning (up to additive constant). Obtained with the same
model and training procedure.

▶ Used a uniform distribution as reference for simplicity. (Typically
not a great choice, due to density chasm problem)

▶ Take away: Contrastive learning allows us to use flexible deep
neural networks for unsupervised learning (density estimation)
in exactly the same way as in supervised learning.
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How good is the estimation procedure?

▶ We can characterise the asymptotic distribution and
estimation error of the estimator θ̂ = argmaxθ J(hθ)

▶ I won’t go into this here. For those interested, please see the
paper Gutmann and Hyvärinen, Noise-contrastive estimation
of Unnormalized Statistical Models, with Applications to
Natural Image Statistics, JMLR 2012.

▶ As ν → ∞, θ̂ converges to the maximum likelihood estimator.
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Question 2: Bayesian inference for simulator models

▶ Consider a simulator model specified as

x = g(θ, ω), ω ∼ p(ω) (62)

where g is not known in closed form but implemented as a
computer programme.

▶ We are given data D = (x1, . . . , xn) and have a prior p(θ) on
θ. We would like to determine which values of θ are plausible
given D.

▶ Problem: Likelihood-based inference would require us to
numerically compute the likelihood or run e.g. MCMC, which
may not be feasible for complex simulator models.

▶ Question: How can we compute or sample from p(θ|D)
without access to the model pdf p(x|θ)?
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Contrastive approach
(Likelihood-Free Inference by Ratio Estimation, Thomas et al, 2016; 2020)

(Dinev and Gutmann, arXiv:1810.09899, 2018)

▶ Contrastive interpretation of Bayes’ rule:

log p(θ)︸ ︷︷ ︸
reference

+ log p(x|θ) − log p(x)︸ ︷︷ ︸
difference

⇒ log p(θ|x)︸ ︷︷ ︸
interest

(63)

▶ We use the logistic loss to learn the difference/log-ratio

r(x, θ) = log p(x|θ)
p(x) (64)

▶ We need data from the numerator (class C = 1) and
denominator (class C = 0) distribution.

▶ Can be generated with the simulator model:

C = 1 : x ∼ p(x|θ) ⇔ ω ∼ p(ω), x = g(ω, θ) (65)
C = 0 : x ∼ p(x) ⇔ ω ∼ p(ω), θ ∼ p(θ), x = g(ω, θ)

(66)
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Contrastive approach

▶ Learned nonlinearity ĥ = argminh J(h) provides an estimate of
r(x, θ):

ĥ(x, θ) ≈ r(x, θ) = log p(x|θ)
p(x) (67)

▶ Hence
log p̂(θ|x)︸ ︷︷ ︸

interest

= ĥ(x, θ)︸ ︷︷ ︸
learned difference

+ log p(θ)︸ ︷︷ ︸
reference

(68)

▶ We can re-use the learned ratio ĥ(x, θ) for any value of x
(amortisation with respect to the data).
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Contrastive approach

▶ Let us have a closer look at the loss J̄(h): (using the large-sample
formulation for ease of the argument)

J̄(h) =Ep(x|θ) log
[
1 + νe−h(x)

]
+ νEp(x) log

[
1 + 1

ν
eh(x)

]
(69)

▶ The nonlinearity only takes x as input and not also θ. Small
tweak: h(x) → h(x, θ)

▶ The loss above is formulated for a specific (fixed) θ. That is
ok if we would like to learn the ratio and evaluate the
posterior for a specific θ.

▶ But we can also learn it for a range of θ by averaging J̄(h)
over an auxiliary distribution f (θ).

▶ Learns the complete posterior function rather than the value
of the posterior at a specific θ. Sometimes called amortisation
with respect to θ.
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Contrastive approach
▶ Denote the averaged loss by J̄f (h)

J̄f (h) = Ef (θ)
[
J̄(h)

]
(70)

= Ef (θ)Ep(x|θ) log
[
1 + νe−h(x,θ)

]
+ νEf (θ)Ep(x) log

[
1 + 1

ν
eh(x,θ)

]
(71)

▶ Equivalent to using J̄(h) and targetting the ratio

r(x, θ) = log p(x|θ)f (θ)
p(x)f (θ) (72)

Learns log p(x|θ)
p(x) due to cancellation of f (θ).

▶ As before
log p̂(θ|x) = ĥ(x, θ) + log p(θ) (73)
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Illustration on the toy example

▶ A latent process z(t) follows the ODE ż = rz(1 − z/k). We
observe x ∼ N (x |z(t), σ2) at some fixed time t (say t = 5).

▶ Assuming a Gamma prior on k (and r known), what are
plausible values of the carrying capacity k given x?

(Gamma prior has a shape parameter 9, and scale parameter 0.5, giving a prior
mean of 4.5 and std 1.5. "True" value of k: 5, std of observation noise: 0.3)
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Illustration on the toy example

▶ Reference posterior (via numerical integration) and posterior
estimated via contrastive learning.

▶ Take away: Contrastive learning allows us to estimate
posteriors p(θ|D) for simulator models without access to L(θ).
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Illustration on the toy example

▶ The method is amortised with respect to the observed data: it
returns p(θ|D) for any value of D without new learning.
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Question 3: experimental design for simulator models

▶ Consider a simulator model specified as

x = g(θ, d, ω), ω ∼ p(ω) (74)

where g is not known in closed form but implemented as a
computer programme so that p(x|θ, d) is not available.

▶ We would like to compute the value of d that maximises the
expected information gain about θ.

▶ Problem: The expected information gain cannot be
computed/maximised when p(x|θ, d) is not tractable.

▶ Question: How to obtain a design d that approximately
maximises the expected information gain without access to
the model pdf p(x|θ, d)?
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Ecology example: when to measure?
▶ The figure shows realisations of the population growth z(t)

for different values of the parameter of the model, the
carrying capacity K .

▶ We asked: When should we best measure the population to
learn about K?
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Ecology example: when to measure?
▶ t = 5 is not bad but later seems better

(a) Measurement at t = 1 (b) Measurement at t = 2

(c) Measurement at t = 5 (d) Measurement at t = 8
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Ecology example: when to measure?
EIG(d) = Ep(x,θ|d)

[
log p(x,θ|d)

p(x|d)p(θ|d)

]
= KL(p(x, θ|d)||p(x|d)p(θ|d))

▶ We can use the expected information gain (EIG) to decide
when to take the measurement.

▶ Typically intractable to compute. In the toy example,
numerical integration can be used:
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Contrastive approach (the direct way)

▶ The EIG features density ratios that we can estimate by
contrastive learning:

EIG(d) = Ep(x,θ|d) log
[ p(x, θ|d)

p(x|d)p(θ|d)

]
= Ep(x,θ|d) log

[p(x|θ, d)
p(x|d)

]
(75)

▶ For d fixed, we estimate

hd(x, θ) = log p(x|θ, d) − log p(x|d), (76)

and maximise the sample average of hd(x, θ) with respect to d
▶ Static setting: Kleinegesse and Gutmann, AISTATS 2019
▶ Sequential setting where we update our belief about θ as we

sequentially acquire the data: Kleinegesse, Drovandi and
Gutmann, Bayesian Analysis 2020
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Contrastive approach (with lower bound)

d̂ = argmaxd Ep(x,θ|d) log
[

p(x|θ,d)
p(x|d)

]
▶ Learning the ratio hd(x, θ) and approximating the EIG is

computationally costly.
▶ But we do not need to estimate the EIG accurately

everywhere! Only around it’s maximum.
▶ Suggests an approach where we lower bound the EIG (or

proxy quantities), and then concurrently tighten the bound
and maximise the (proxy) EIG.
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Contrastive approach (with lower bound)

▶ While the EIG is defined in terms of the KL-divergence, we
use a proxy measure that is defined in terms of another
divergence, the Jensen-Shannon divergence.

EIG(d) = KL(p(x, θ|d)||p(x|d)p(θ|d)) (77)
proxy(d) = JSDp(x, θ|d)||p(x|d)p(θ|d)) (78)

= 1
2

(
KL(p(x, θ|d)||m(x, θ|d))+

KL(p(x|d)p(θ|d)||m(x, θ|d))
)

(79)

m(x, θ|d) = 1
2 (p(x, θ|d) + p(x|d)p(θ|d)) (80)

▶ The JSD is a symmetrized and smoothed version of the KL
divergence. Considered more robust.
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Contrastive approach (with lower bound)
(Kleinegesse and Gutmann, ICML 2020; arXiv:2105.04379)

▶ Recall:
JSD(p, q) ≥ log 2 − 1

2 J̄(h) (81)

where h is the regression function and J̄ the logistic loss.
▶ Use with

p ≡ p(x, θ|d) q ≡ p(x|d)p(θ|d) (82)

▶ The loss is, using ν = 1 and making the d dependency explicit:

J̄(h, d) = Ep(x,θ|d) log
[
1 + e−h(x,θ,d)

]
+

Ep(x|d)p(θ|d) log
[
1 + eh(x.θ,d)

]
(83)

▶ Minimise sample version jointly with respect to h and d:

ĥ, d̂ = argmin
h,d

J(h, d) (84)
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Contrastive aproach (with lower bound)

▶ Optim with respect to h tightens the bound to approximate
the JSD.

▶ Optim with respect to d to obtain the optimal design.
▶ Allows for computational savings as we only aim to

approximate the JSD accurately around its maximiser d̂. (This
is because we optimise iteratively, changing both d and h as we proceed.)
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Contrastive approach (with lower bound)

▶ As before, ĥ approximates the log-ratio of the distributions in
the expectations of the logistic loss.

▶ Provides an estimate of the posterior: Since

ĥ(x, θ, d) ≈ log p(x, θ|d)
p(x|d)p(θ|d) = log p(θ|x, d)

p(θ|d) (85)

we have log p̂(θ|x, d) = ĥ(x, θ, d) + log p(θ|d)
▶ Use for values of d around the optimal design d̂. May not be

accurate for other d.
▶ Estimated posterior is amortised with respect to θ and the

data x.
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Illustration on the toy example

▶ For the simple toy example, we can numerically compute the
JSD as a function of the measurement time.

▶ Similar behaviour as the EIG: later measurements are optimal.

Michael U. Gutmann Selfsupervised learning 86 / 98



Illustration on the toy example

▶ To find the optimal design, we learn a lower bound on the JSD
and jointly tighten the bound and determine its maximiser.

▶ Take away: Contrastive learning enables and accelerates exp
design with simulator models by only approximating the JSD
around its maximiser d̂.
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Illustration on the toy example

▶ The method also returns posteriors p(θ|D, d̂) that are
amortised with respect to the observed data.
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Summary

▶ Contrastive learning has two main ingredients:
1. Learning/measuring the difference
2. Constructing the reference

▶ Minimising the logistic loss allows us to learn the difference
between two distributions p and q.

▶ Key properties:
▶ h∗ = argminh J̄(h) = log p − log q
▶ JSD(p||q) ≥ − 1

2 J̄(h) + log 2 and the bound is tight for h∗.
▶ A number of diverse kinds of problems can be solved with

contrastive learning.
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Summary
1. Deep energy-based models: What learning principles can we

use to efficiently estimate θ when the model pdf p(x|θ) is
only available up to Z (θ)?
⇒ Use contrastive learning to target log exp(−fθ(x))

q(x) where q is
a preliminary model, e.g. representing our current belief about
x.

2. Inference for simulator models: How can we compute or
sample from p(θ|D) without access to the model pdf p(x|θ)?
⇒ Use contrastive learning to target log p(x|θ)��f (θ)

p(x)��f (θ) where f (θ)
is an auxiliary distribution.

3. Exp design for simulator models: How to obtain a design d
that approximately maximises the expected information gain
without access to the model pdf p(x|θ, d)?
⇒ Use contrastive learning to lower bound and maximise
JSD(p(x, θ|d)||p(x|d)p(θ|d)) with respect to d. Targets
log p(x,θ|d)

p(x|d)p(θ|d) .
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Main messages

1. The likelihood function is a main workhorse in statistics and
ML but becomes easily computationally intractable. ✓

2. Contrastive learning is an intuitive and computationally
feasible alternative to likelihood-based approaches. ✓

3. It is broadly applicable. Here: (1) parameter estimation, (2)
Bayesian inference, and (3) Bayesian experimental design. ✓
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Directions to go from here

b︸︷︷︸
reference

+ a − b︸︷︷︸
difference

⇒ a︸︷︷︸
interest

▶ Contrastive learning has two main ingredients:
1. Learning/measuring the difference
2. Constructing the reference

▶ Multiple directions are possible. Classify them broadly into
three:

1. Other loss functions to learn the difference.
2. Construction of the reference distribution.
3. Applications.

Michael U. Gutmann Selfsupervised learning 94 / 98



Other loss functions

▶ Other loss functions than logistic loss can be used.
▶ Multinomial logistic loss where we contrast more than two

data points:
▶ Ma and M. Collins, Conference on Empirical Methods in

Natural Language Processing 2018. Noise contrastive
estimation and negative sampling for conditional models:
Consistency and statistical efficiency.

▶ Srivastava et al, TMLR 2023. Estimating the Density Ratio
between Distributions with High Discrepancy using
Multinomial Logistic Regression.

▶ Bregman and other divergences:
▶ Pihlaja et al, UAI, 2010. A family of computationally efficient

and simple estimators for unnormalized statistical models
▶ Gutmann and Hirayama, 2011. Bregman divergence as general

framework to estimate unnormalized statistical models
▶ Uehera et al, AISTATS 2020. A Unified Statistically Efficient

Estimation Framework for Unnormalized Models
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Construction of the reference distribution

▶ The reference depends on the problem-class studied.
▶ Research has mostly focussed on the case of energy-based

models.
▶ We can iterate and choose as reference the model from the

previous iteration (Gutmann and Hyvärinen, 2010).
▶ Iterate and use as reference a normalising flow

(Gao et al, NeurIPS 2019. Flow-contrastive estimation.)

▶ Use a kernel-density estimate of the data distribution
(Uehera et al, AISTATS 2020)

▶ We can generate the reference data conditionally on the
observed data
(Ceylan and Gutmann, ICML 2019. Conditional noise-contrastive estimation of unnormalised models)

▶ We can investigate which fixed reference distribution gives the
smallest error
(Chehab et al, AISTATS 2022. The optimal noise in noise-contrastive learning is not what you think)

▶ Adaptive construction of the reference distribution gives raise
to GANs if a simulator model instead of a EBM is used.
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Further applications

▶ Change-point detection (e.g. Puchkin et al, AISTATS 2023)

▶ Recommendation systems (e.g. Wu et al, SIGIR 2019)

▶ Representation learning, e.g. Word2Vec (Mikolov et al, 2013),
InfoNCE (van den Oord, et al, arXiv:1807.03748), or SimCL (Chen et al, ICML 2020).
For a recent review paper in this domain, see A Cookbook of
Self-Supervised Learning (Balestriero et al, arXiv:2304.12210)

▶ Sequential experimental design
(e.g. Ivanova et al, NeurIPS 2021. Implicit Deep Adaptive Design [. . . ])

▶ . . .
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Conclusions

▶ Introduced energy-based and simulator models.
▶ Pointed out that their likelihood function is typically

computationally intractable, which hampers inference and
experimental design.

▶ Contrastive learning is an intuitive and computationally
feasible alternative to likelihood-based approaches.

▶ Contrastive learning is closely related to classification, logistic
regression, and ratio estimation.

▶ Explained how to use it to solve various difficult statistical
problems:

1. Parameter estimation for energy-based models
2. Bayesian inference for simulator models
3. Bayesian experimental design for simulator models

▶ For papers and code, see
https://michaelgutmann.github.io
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