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Conversely, if we have a model (3, R) in .#, we let
W= {{a| <% RY F Fa*} | G, Ry b ((Qx Fx)*}.

Itis straightforward that <, W) is a countable weak L.Q-model satisfying
KI1-K5 and LQY - elementary equivalent to <%, R)>. This gives

THEOREM 6. For any F e LQ, the following are equivalent:

(1) Fis true in all LQ-models.

(2) Fis true in all weak LQ-models satisfying K1-K5.
(3) Fis derivable from K1-KS in first-order logic.

(4) F* is true in all models in M.

(5) F* is derivable from M1-MS.

This gives Result C.
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0. Introduction

This paper consists of two parts. The first is devoted to the formulation
of what seems to me to be the most natural notion of model for intuition-
istic theories which either are type theories by their very definition, or
else may be viewed as such because of the correspondence between for-
mulae and type symbols discovered by Curry and Feys [2] and Howard
[91. The second analyzes the notion of definitional equality and its formal
counterpart, convertibility, and advocates a change in the current defini-
tion of convertibility for systems in which explicit definitions are repre-
sented by means of lambda abstraction rather than the introduction of
constants or the special constants called combinators. Because of the
correspondence between lambda terms and natural deductions, this
change is equally called for in Prawitz’s definition of convertibility [19]
(or equivalence, as he says) for natural deductions.

1. Models

The notion of model with which we shall be concerned can be formu-
lated at least for

(1) the positive implicational calculus,
(2) intuitionistic propositional logic,
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(3) intuitionistic first order predicate logic,

(4) the system of primitive recursive functions,

(5) primitive recursive arithmetic,

(6) intuitionistic first order arithmetic,

(7) the system of primitive recursive functionals of finite type,
(8) Godel’s theory T,

(9) intuitionistic arithmetic of finite type,

(10) intuitionistic ramified analysis,

(11) intuitionistic theories of generalized inductive definitions as for-
malized by Kreisel and Troelstra [14], Howard [11] and Martin-
Lof [16], ,

(12) the intuitionistic theory of types of Martin-Lof [17],

(13) the system F of Girard [6] or, what amounts to essentially the
same, intuitionistic second order logic with O-ary predicate vari-
ables only,

(14) the theory of species,

(15) intuitionistic simple type theory.

The most important omissions in this list are systems containing axioms
for choice sequences such as those of Kleene and Vesley [12] and Kreisel
and Troelstra [14].

In the study of models of intuitionistic theories, one has the choice
between classical and intuitionistic abstractions on the metalevel. Exam-
ples of classically described notions of model are the algebraic and topo-
logical interpretations, the Beth and Kripke semantics, Léuchli’s ab-
stract notion of realizability and the models of Stenlund {20] and Girard
[7]. Examples of intuitionistic models are Kleene’s realizability inter-
pretation and the closely related model of convertible terms, first con-
structed by Tait [21] for Godel’s theory 7. An obstacle to the formula-
tion of a general intuitionistic notion of model has been the lack of a
sufficiently welldeveloped intuitionistic notion of set.

Using the type-theoretic abstractions described in [17], Tintend in the
following to formulate an intuitionistic notion of model which is appli-
cable to any one of the theories listed above and which is wide enough
to include the realizability interpretation as well as the term model of
the theory in question.

The transition to infuitionistic abstractions on the metalevel is both
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essential and nontrivial. Essential, because in what seems to me to be
the most fruitful notion of model, the interpretation of the convertibility
relation conv, is standard, that is, it is interpreted as definitional equality
= ger in the model, and definitional equality is a notion which is unmen-
tionable within the classical set theoretic framework, Nontrivial, because
of certain novelties which I would like to exemplify at once.

In the realizability interpretation, when described classically, one puts

A = 4 the set of natural numbers that realize the formula or type
symbol A4,

Ap (e, m) = {e} (m),

where, in the latter definition, it is supposed that m and e are natural
numbers that realize 4 and 4 — B, respectively. Intuitionistically, this
no longer works, because there is no function in the intuitionistic sense
which takes m and e into {e}(m). Instead, we have to put

A = the species of natural numbers that realize A,
def

Obj (A) = g4es (Eme N) A(m) = 4¢r the type of pairs whose first compo-
nentis a natural number m and whose second component is a proof
that m realizes 4,

Ap (b, @) = p(q (b, a)).

def
Here it is supposed that @ and b are objects of types Obj(4) and
Obj (4 — B), respectively, and that

e realizes A — B = (Yx € Obj (4)) @y € Obj (B)) ({e} (p(x)) = p(»))

def

which is logically equivalent (but not definitionally equal) to the more
usual form

(Vm e N) (m realizes A — (3In € N) (n realizes B & {e}(m) =~ n)).
The functions p and g are the left and right projections of types
(ZxeA)B(x) > A and (lIze(Zxe 4) B(x)) B(p(z)),
respectively, which are defined by the schema
| P((@,B) =a a,
q((a, b)) =ges b,
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X being replaced by 3 if we think of B(a) for a of type A as a proposition

rather than a type.
Similarly, in the term model, when described classically, one puts

A = the set of closed normal terms with type symbol 4,
def

Ap (b, a) =4 the normal form of b(a) which exists and is unique
by virtue of the normalization theorem and the Church-Rosser

property.

Again, this does not work intuitionistically, because the normal form of
b(a) is not a function of g and b alone. Instead, we have to put

A = C, = the species of computable terms with type symbol 4,
def def

Obj (A) =gt (Za e Term (A4)) C(a) =q4er the type of pairs whose
first component is a closed term a with type symbol 4 and whose
second component is a proof that a is computable,

Ap (b, @) = p (g (b, 2)).

def

Here a and b are objects of types Obj (4) and Obj (4 — B), respectively,

and
C4-5(b) = (Vx € Obj (4)) (Fy € Obj (B)) (b (p(x)) red p(»))

def
which is logically equivalent to
(Va e Term (4)) (C4(a) - (3d € Term (B)) (Cp(d) & b(a) red d)).

Since the number of clauses needed in order to define what is a model
of a certain theory grows in proportion to the number of clauses that
specify the theory in question, I shall limit myself from now on to the
positive implicational calculus and intuitionistic second order logic with
0O-ary predicate variables only. Having given the complete definition for
these, it should be clear how to extend it to the other theories listed
above.
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1.1. The positive implicational calculus

A model for the positive implicational calculus consists of the following
data.

(a) A type Typ.

(b) A function Obj which to an arbitrary object 4 of type Typ assigns
a type Obj (4).

(c) A function F of type Typ — Typ — Typ. Here and in the follow-
ing parentheses are associated to the right. When there is no risk of con-
fusion, I shall allow myself to write 4 — B instead of F (4, B).

(d) A function Ap of type Obj (F(4, B)) » Obj(4) — Obj (B) for
every pair of objects 4 and B of type Typ. Ap (- Ap (Ap (b, @1),a2) ...,a,)
will be abbreviated b (ay, ..., a,).

(e) Closure under explicit definitions. For every finite sequence of
objects 4;,..., 4, and B of type Typ and every term b [x,, ..., x,] of
type Obj (B) built up from variables x,, ..., x, of types Obj(4,), ...,
Obj (4,), respectively, by means of the operation Ap, there shall exist
an object

feObj(4; - - 4, —~ B)
such that

flay,....,a)) = blay, ..., a.].

def

By the combinatorial completeness property, it suffices in fact to have,
for every triple of objects 4, B and C of type Typ, objects I, K and S of
types Obj (4 — A4),0bj(4 — B - A)and Obj (4 » B—> C) = (4 — B)
- A — C), respectively, such that

I(a) = a,
def

K(a, b) = a,

def

S (c, b, a) = c(a, b(a)).

Besides the use of the intuitionistic type theoretic abstractions instead of
the classical set theoretic ones on the metalevel, the most important dif-
ference between this notion of model and the models defined by Sten-
lund [20] and Girard [7] is the requirement that the equality in the equa-
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tion f(ay, ..., @) =aer b (a1, ..., a,] be definitional and not merely set-
theoretic equality or equality with respect to some arbitrary equivalence
relation. i

Suppose now that we are given an assighment of an object A of type
Typ to every atomic formula A of the positive implicational calculus.
Extend this assignment to composite formulae by putting 4 - B
= 4ot F (4, B). In classical model theory one verifies that a formula which
is formally derivable is true in an arbitrary model of the theory. For us,
this step corresponds to showing how to assign to a closed term a with
type symbol A an object @ of type Obj (4). The definition of a is by
induction on the construction of a. However, during the induction we
have to consider open terms as well. We put

X =4 @ variable of type Obj (4), provided x is a variable with
type symbol 4, _ .
e 5@ = Ap (6, a),

def

F =4t the object of type Obj (4; — -+ = 4, — B) such that
f(a19"-:atx) zdefl_)[ala-'-aan] for Ay, eees Ay of types
Obj (4y), ..., Obj (4,), respectively, provided f is the con-
stant with type symbol 4, — .- —» 4, - B introduced by
the schema f(ay, ..., a,) conv b [a,, ...,a,].

The assignment of @ to a is clearly such that,

if @ conv b, then @ = b.
def

Thus the interpretation of the convertibility relation is standard.

1.1.1. Example. Intended interpretation.
(a) Typ = ger the type of propositions.
(b) Obj (A) = s the type of proofs of the proposition 4.
(¢) F (A, B) = 4. the proposition 4 implies B.
(d) Ap = 4. modus ponens.
() Closure under explicit definitions is trivially fulfilled.

1.1.2. ExampLE. Realizability interpretation.
(a) Typ =g the type of species of natural numbers.
(b) Obj (4) = ger (Zm € N) A(m).
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(c) F (A, B) =4 the species of all nataral numbers e such that
(Vx € Obj (4)) 3y € Obj (B)) ({e} (p(x)) =~ p(¥)).

(d) Ap (ba a) =der U (q (bs a))'
(e) Closure under explicit definitions is verified in very much the
same way as in the term model which we shall construct next.

1.1.3. ExaAMPLE. Term model.

(@) Typ = e the type of pairs (4, @), where 4 is a type symboland g a
species of closed terms with type symbol A.

(6) OB (4, 9)) = et (Za & Term (4)) p(a).

(©) F((4, 9), (B, ¥)) =g (4 — B, the species of all closed terms b with
type symbol 4 — B such that

(Vx € Obj (4, 9))) (3y € Obj (B, 9)) (& (p()) red p(3).

(d) Ap (b, a) =det P (q (b’ a))'

(¢) We shall verify closure under explicit definitions by considering a
typical case, namely, we shall show how to interpret the constant K with
type symbol 4 — B — A which is defined by the schema

K (a, b) conv a.

Its interpretation K is simply the pair consisting of the constant K and
the usual proof that K is computable (see Tait [21]),

K =g (K, (Ax) (K (p(x)), (2) (x, the proof that K (p(x), p(»)) red p(x))),
the proof that K (p(x)) red K (p(x))))

where, of course, the use of the lambda notation is informal. For this
K and a and b of types Obj (4) and Obj (B), respectively, we have

K (a, b) =Ap (Ap (K, a),b) = p(q(r (¢ (K, a), b)) s

def

as desired. This finishes the construction of the term model for the posi-
tive implicational calculus.

1.2. Intuitionistic second order logic

‘We shall now extend the notion of model just introduced for the posi-
tive implicational calculus to the second order. A model for the fragment
of intuitionistic second order logic in which only O-ary predicate vari-
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ables are allowed or, what amounts to essentially the same, the system F
of Girard [6] consists of the following data.

(a) A type Typ.

(b) A function Obj which to an object 4 of type Typ assigns a type
Obj (A).

(c) An assignment to every closed formula A4 of the extended language,
obtained by adding the objects of type Typ as constants, of an object 4
of type Typ such that

A=A

def
if A is (the constant for) an object of type Typ, and, furthermore, the
substitution propert . -

property B[] = B[4]

def
is fulfilled. Observe that the equality here is definitional. In particular,
the function F required for the positive implicational calculus is given by

F(4,By=A—> B

def
where, of course, A — B is the formula of the extended language ob-
tained by applying the connective — to the constants 4 and B.

(d) For all closed formulae in the extended language of the forms
A - B and (VX) B[X], there shall be functions

Ap € Obj (4 - B) — Obj (d) — Obj (B),
Ap e Obj ((VX) B[X1) - (IX € Typ) Obj (B[X]),

respectively.
(e) Closure under explicit definitions. If

(VXl) o (va) (BI g Bn - C)

is a closed second order formula, and ¢ [X,, ..., X,,, V1, ..., V4] 1S & term
of type Obj (C [X;, ..., X,,]) built up from variables X;, ..., X,, of type
Typ, terms of type Typ of the form 4 [X;, ..., X,,], where 4 [X|, ..., X,,]
is a second order formula, and variables y, ..., ¥, of types

Ob] (Bl [Xls LR IYmDa ey Obj (Bn [Xla ey er]):
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respectively, by means of the functions Ap, there shall exist an object

fe0bj (VX)) - (VX,,) (B, — - = B, - C))
such that

f(A15 '”,Amabla "'sbn) =c [Al’ "'>Ama bl} tees bn]-
def

Here it has been assumed, for notational simplicity, that all the universal
quantifiers precede all the implications in the formula

(VXI) v (VXMI) (Bl e Bn - C)

In general, they may occur in an arbitrary order.

The mapping of a closed term a with type symbol A into an object @
of type Obj (4) already defined for the positive implicational calculus is
extended in the obvious way to the second order. That is, we add the

new clause — .
b(4) = Ap (b, 4)

def

and change the third of the previous clauses to

F =aer the object of type Obj ((¥X,) -+ (VX,) (B, = - — B, = C))
such that f(Ala vers Am, b15 tees bn) = def ¢ [Al’ sres Ama bl; L] bn]
which we have required to exist provided fis a constant with type
symbol (VX)) (VX,) (B; = -+ = B, —» C) introduced by the
schema f(Ay, ..., Ay, b1, ..., b)) conv ¢ [4y, ..., Ay, by,y.ony byl

There is, however, one essential novelty that arises and which was over-
looked by Stenlund [20]. Namely, we have to verify that _b(_AS = Ap (b, 4)
is an object of type Obj (B[4]) provided 4 and b are the objects of types
Typ and Obj ((VX ) B[X ]) associated with the formula 4 and the term b
with type symbol (VX) B[X], respectively. One sees immediately that
Bb(A) is an object of type Obj (B[4)). But B[A] =4 B[A] by the substitu-
tion property and hence b(4) is indeed an object of type Obj (M}
Note that the last step in the argument is an application of the informal
counterpart of the formal rule of type conversion formulated in [17].

Just as in the case of the positive implicational calculus, it is clear that
the interpretation of the convertibility relation is standard, that is, that
a conv b implies @ = g4¢r b.
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1.2.1. ExampLE. Intended interpretation. Typ and Obj are defined as in
the case of the positive implicational calculus. Moreover, for every for-
mula 4 of the extended language, we put
A = the proposition denoted by A.
def
We take the first of the functions Ap to be modus ponens just as before
and the second to be

Ap = universal instantiation.
def

Closure under explicit definitions is trivially fulfilled.

1.2.2. ExampLE. Realizability interpretation. The extension to the second
order is due to Kreisel and Troelstra [14].

(a) Typ =4 the type of species of natural numbers.

(b) Obj (4) =ger (2m € N) A(m).

(c) For a closed formula 4 of the extended language, the definition
of the species 4 is by induction on the construction of 4.

If A4 is a constant, then A4 is the object of type Typ which it is a con-
stant for.

A~ Ble) = (Vx € Obj () @y € Obj (B)) ({e} (p(x)) = p(»)).
(VX) B[X](e) = (VX e Typ) @y € Obj (B[X])) (e = p(»))

which is equivalent (but not definitionally equal) to the definition of
Kreisel and Troelstra [14].
The verification of the substitution property B[A] = Em is imme-
diate by induction on the construction of the formula B[X].
(d) The first of the functions Ap is defined just as in the case of the
positive implicational calculus and the second by
Ap (b, 4) = p (g (b, 4)).

def
(¢) Closure under explicit definitions. Let the constant f of type

(VXl) o (V/Ym) (Bl - = B, = C)
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be introduced by the schema

f(Ala "-3Amsb13 se

ves Xots Vi oevs ooes Val is & derivation

3 b") COHV c [Al’ vy Anl’ bl? ey bll]’
where ¢ [X;, .

-Bl [Xla cevsy X;n] v Bn [Xla tees X;,,]

C[X19 -"s‘X;il]

with free variables and assumptions as indicated. In the proof that every
derivable formula is realizable, one shows how to associate with such a
derivation a G6del number e and a proof that, for all species of natural
numbers 4, ..., A, if e; realizes B; [Xi, ..., X,,] relative to 4y, ..., 4,
forj =1, ..., n, then {e} (e, ..., &,) is defined and realizes C[X,..., X,;]
relative to 4,, ..., 4,,. The number e together with this proof is essen-
tially the object f of type Obj ((VX ) (VX,) (B, » -+ » B, — C)) that
interprets the constant . The verification that

f(Alz --'>Ama bla ""bn) =C [Al’ "'sAma bl: ~"9bn]
. def

will be omitted since it is completely analogous to the corresponding
verification for the term model.

1.2.3. ExampLE. Term model. The extension to the second order is due
to Girard [6].

(a) Typ =qer the type of pairs of the form (4, @), where 4 is a closed
second order formula and ¢ a species of closed terms with type sym-
bol 4.

(b) Obj (4, ) = ger (Za € Term (4)) p(a), where Term (A) denotes the
type of closed terms with type symbol 4.

(c) For a closed formula A4 of the extended language, the definition of
the object 4 of type Typ is by induction on the construction of A.

A = A4 if A is (the constant for) an object of type Typ.

def

For an implication the definition is as in the case of the positive impli-
cational calculus.
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(VX) B[X] =g4¢ (VX) B[X], the species of all closed terms b with
type symbol (VX) B[X] such that

(VX e Typ) @y € Obj (BX])) (B(p(X)) red p(1))).

Here parameters have been suppressed for the sake of nota-
tional simplicity.

The fact that B[A] = 4¢¢ B[A], which is seen by induction on the construc-
tion of the formula B[X], is essentially the content of the substitution
lemma in Girard [6]. However, it has to be observed as in [15] that the
equality in the substitution lemma is definitional and not merely exten-
sional.
(d) Application.
Ap (b, a) ot 4 (g (b, @)).

Ap (b, 4) oF (g (b, 4)).

(¢) Closure under explicit definitions. Just as in the case of the posi-
tive implicational calculus, we shall verify this by considering a typical
case. Let the constant I with type symbol (VX) (X — X) be defined by
the schema

I(4,b)convb.

We construct its interpretation I of type Obj ((VX YX - X )) by taking
the pair consisting of the constant I and the proof that 7 is computable,

I =4t (I, 2X) ((I (p(X)), (Ap) (», the proof that T (p(X), p(»)) red p(»))),
the proof that I (p(X)) red I (p(X)))).

Then
def

ef def

for A of type Typ and b of type Obj (4) as desired.
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2. Definitional equality

By definitional equality, I mean the relation which is used on almost
every page of an informal mathematical text and which is denoted by =,
= 4o¢ O most often but less felicitously simply =. Asan example, one can
take the first part of this paper where it has been used more than fifty
times. Being informal, it occurs in the left column of the following dic-
tionary which shows the relation between certain informal notions and
their formal counterparts.

informal formal

proposition formula

proof derivation, proof figure
type type symbol
mathematical object term

defining equation rule of conversion
definiendum redex

definiens contractum
definitional equality convertibility

Thus the formal counterpart of definitional equality is the relation of
convertibility studied in combinatory logic and proof theory.

Definitional equality is a relation between linguistic expressions and
not between the abstract entities which they denote and which are the
same. This is the view that Frege [3] took of the relation of equality of
content (Inhaltsgleichheit) which enters into his Begriffsschrift but which
he later abandoned.

1 claim that the relation of definitional equality is determined by the
following three principles and by these principles alone.

(i) A definiens is always definitionally equal to its definiendum.

(i) Definitional equality is preserved under substitution. That is, if we
substitute two definitionally equal expressions for a variable in a
given expression, then the resulting expressions are also definition-
ally equal.

(iii) Definitional equality is an equivalence relation, that is, it is re-
flexive, symmetric and transitive.
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This claim is supported by the following heuristic evidence. The only
place where the relation of definitional equality is used in a crucial way
except in the definitional schemata themselves is in arguments of the
form

if ¢ is an object of type 4 and A =4, B, then a is an object of
type B, and, correspondingly for propositions and proofs,

if @ is a proof of the proposition 4 and 4 =4 B, then ais a proof
of the proposition B.

This principle is accepted on the basis thatif 4 =4, B, then 4 and B are

merely notational variants of one and the same abstract type or pro-

position, as the case may be. Detailed case studies show that the relation

of definitional equality with respect to which this principle is applied has

to satisfy precisely the above three conditions. Here is a typical example.
Define a type valued function F by the schema

F(O) =ger N,
Fn+ 1) =45 F(n) = F(n).

Then, given a function f of type (I/n e N) F(n), we can define a func-
tion g of the same type by putting

g(n) df{f(n + 1, /().

Indeed, if # is an arbitrary natural number, f(#) and f(n + 1) are objects
of types F(n) and F (n + 1), respectively, But F (n + 1) = 4o F(1) —» F(n)
and hence f(n + 1) is a function of type F(n) — F(n), so that we can
apply it to f(n), thereby getting an object f(n + 1, f(n)) of type F(n).

Let us now see what corresponds to the three principles determining
the relation of definitional equality on the formal level. Clearly, they are
turned into the conversion rules

aconvc

redex conv contractum, — ———-—o
bla] conv bfc]

4
aconv b a;conv b bconve
aconv a,

? H
b conv a aconv ¢
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in the second of which the terms ¢ and ¢ must have the same type sym-
bol as the variable x in b[x] for which they are substituted. The cor-
responding reduction relation is obtained by omitting the symmetry rule
and the strict reduction relation by omitting the reflexivity as well.

In particular, in the positive implicational calculus (or, what amounts
to the same, the basic theory of functionality in [2]) when formulated
with constants, the conversion rules are equivalent to the following

f(ala very ll,,) COIlVb [ala sees (l,,],

aconv ¢ bconvd
b(a)conv b(c) ~ b(a) conv d(a)

aconv b aconvb bconve

aconva, ,
bconva aconv ¢

which generate the convertibility and, if symmetry is left out, reduction
relations which are called weak in combinatory logic. When only the
special constants called combinators are allowed, the first rule of con-
version specializes to

I(a) conv a,
K (a, b) conv a,
S (¢, b, a) conv ¢ (a, b(a)).

On the other hand, if we consider the typed lambda calculus, which is
isomorphic to the natural deduction formulation of the positive impli-
cational calculus, then the above rules of conversion reduce to

aconv ¢
2x) b[x] (a) conv blal, _
(4x) blx] (@) [a] bla] conv ble]
aconvb aconvb bconve
aconv a, , .
bconva aconv ¢

The corresponding reduction relation, which is obtained by leaving out
the symmetry rule, is precisely the restricted (as opposed to general) re-
duction relation introduced by Howard [10]. But, and this is the impoz-
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tant point, the convertibility relation generated by these rules is not (the
typed version of) the usual convertibility relation between lambda terms
as defined in [1] and [2], because the rule

blx] conv d[x]
(Ax) b[x] conv (Ax) d[x]

é)

which cannot be derived from the others, has been left out. Similarly,
the reduction relation between natural deductions introduced by Pra-
witz [18] corresponds not to the restricted but to the general reduction
relation, because in a reduction step as defined by him

A
. B A
A A B red
B B

there may be open assumptions in the subderivation

which become closed (discharged or cancelled) further down in the deri-
vation, that is, below the downmost occurrence of the formula B.

The outcome of the foregoing analysis is that the rule (£) is unac-
ceptable as a rule of conversion. Of course, we are free to define
many different relationis between terms and call them convertibility rela-
tions, but my claim is that only one of these correctly formalizes the
informal notion of definitional equality. And a correct definition of con-
vertibility is vital in all systems, in particular, in all higher type systems
like Godel’s 7, intuitionistic arithmetic of finite type and intuitionistic
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simple type theory, whose formulae alias type symbols are not necessarily
in normal form, because we then need the rule of inference

—4 A conv B
B

alias the rule of term formation

if @ is a term with type symbol 4 and 4 conv B, then ais a term
with type symbol B.

Hence a change in the definition of convertibility may change the stock
of derivations alias terms of the theory and even the derivability relation.
This difficulty does not arise in systems whose formulae alias type sym-
bols are all in normal form, because then the derivations alias terms can
be generated separately, that is, without reference to the convertibility

“relation, whose definition can wait until afterwards. Examples of such

systems are intuitionistic first order predicate logic and Girard’s Sys-
tem F.

2.1. Positive effects of abolishing the conversion rule (&)

2.1.1. For the models described in the first part of this paper, we achieve
that @ conv b implies @ = 4 5. In particular, in the realizability interpreta~
tion, we achieve that, if a and b are two interconvertible derivations of
the formula 4, then the corresponding numbers which realize 4 as well
as the proofs which show that they do so are definitionally equal. Simi-
larly, in the term model, we achieve that, if @ conv b, then the normal
forms of @ and b as well as the proofs which show that they are com-
putable (hereditarily normalizable) are definitionally equal.

2.1.2. When defining his notion of model for functional systems up to
the level of intuitionistic simple type theory, Girard [7] introduces a
relation reduction * between closed terms of an extended language ob-
tained by adding as new constants elements of certain sets of arbitrary
cardinality. The relation reduction % is obtained from the usual reduc-
tion relation for lambda terms by not allowing a redex to be contracted
unless it is closed. Now, since we are only dealing with closed terms, this
is precisely the same restriction as the one that has been advocated above.

7 Kanger, Symposium
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Girard [7] also notes that the realizability interpretation alias the model
of the hereditarily recursive operations is not a model with respect to
the general reduction relation for lambda terms. This is his reason for
introducing the restricted relation reduction .

2.1.3. For the natural transformations from lambda terms to terms built
up from constants or combinators and vice versa, denoted by the super-
scripts Oand ®, respectively, we achieve that, for lambda terms ¢ and b

a conv b implies a° conv b°

while preserving the property that, for terms ¢ and b built up from con-
stants or combinators,

a conv b implies a® conv 5®.

The transformations © and ® are defined as follows.

2.1.3.1. For a variable in the lambda calculus, we put
x° = x.
def
Furthermore,

(B(@)° = b7(a®),
() b lays ., @y, XD = faF, ..., a)),

where ay,...,a, are the (necessarily disjoint) maximal subterms of
bla,, ..., a,, x]that do not contain any free occurrences of the variable x,
and f'is the function constant introduced by the schema

fay, ..., a,, a) conv b° lay, ..., q,,al.
If we only allow the special constants I, K and S, we have to put instead
((Ax) BIxD® = (2x) 5°[x],
where der

) x =1

def

(Ax) a = K(a)
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provided x does not occur free in a, and
(4x) (blx] (a[X]))d=f S ((Ax) blx], (Ax) alx])

provided x occurs free in at least one of the terms a[x] and b[x] (other-
wise the previous clause is applicable).

2.1.3.2. Conversely,

x® = x,

def

(b(@))® = 5%(a®)
def
and, if f'is a function constant introduced by the schema

f(ala "-aan) COI’lVb [ab "'aan]a

then
f. = (lxl) o (z'xn) b® [xla ceesy xn]

so that, in particular,

I® = (Ax) x,

def

K® = (Ax) (4y) x,
def

s® = (22) () (Ax) (z (x, y(x))).

2.1.4. The proof of normalization for my intuitionistic type theory (see
{17]) becomes locally formalizable in the theory itself. When the dubious
rule of lambda conversion was allowed, I could not carry out
the proof of normalization for every specific term in the theory itself,
contrary to what one would expect from one’s experience with other full
scale formal theories. The reason for this failure was that, when 4 conv B
in the old sense, I was only able to prove C, and Cjy to be extensionally
equal, whereas one would like to have C; =4, Cgz. Here C, and Cjy are
the computability predicates associated with the type symbols 4 and B,
respectively.
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2.1.5. By forbidding the rule
b[x] conv dfx]
(Ax) b[x] conv (Ax) d[x] ’

Howard [10] was able to achieve, for his unique assignment of ordinals
to the terms of Godel’s T, that

if a reduces strictly to b, then & > §,
where « and § are the ordinals <&, assigned to the terms @ and b, respec-
tively. For general reductions, this property is no longer known to hold.
2.2. Further rules of conversion which do not correctly formalize the notion
of definitional equality as understood in this paper
2.2.1. Curry’s rule of #-conversion,
(Ax) (b(x)) conv b

provided the variable x does not occur free in the term b, and the combi-
natory axioms which correspond to it. Equally unacceptable is the cor-
responding rule for cartesian products,

(p(0), 4(0)) conv c,

although, as shown below, the abstract objects denoted by (p(c), ¢{c))
and ¢ can be proved to be identical.

2.2.2. In systems of natural deduction, the following rules which are all
formulated in [19]. First, the permutative rules for v and 3,

A B
AvB C C
C
D 4 B
N e
conv AvB D D
D
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and
Blx] Blx]
C - conv (3x) B[x] D
D D

provided the inference from C to D neither binds any free variable nor
discharges any assumption in the derivation of 4 v B and (3x) B[x],
respectively. Second, the simplification rules which are used to get rid of
redundant applications of the elimination rules for v and 3. Third, the
expansion rules, one for each of the logical operations, which in the case
of implication reads

A—-»B 4
—_— CONnVv ¢
A— B

A- B

and corresponds to Curry’s rule of #-conversion.

2.3. Definitional equality versus idéntity

It is necessary to distinguish carefully between, on the one hand, the
relation of definitional equality which, according to what has been said
above, is a relation between linguistic expressions and, on the other
hand, the relation of identity between the abstract entities that they
denote.

I regard the identity relation @ = b between objects @ and b of some
type A as defined by the axiom of =-introduction

a=a
alias the object
r{a) of type a = a

analogously to the way in which the logical operations &, v and 3 and *
the type N are defined by their respective introduction rules. The cor-
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responding axiom of =-elimination is
(Vxed) Clx,x,1(x)] > (Vzea = b) Ca, b, z]

which, in case the predicate C[a, b, ] does not depend on the proof ¢
of the proposition a = b, reduces to

(Vxed)Clx,x] - (@a= b~ Clab).

This, in turn, is equivalent (modulo the axioms of implication and uni-
versal quantification) to the usual eliminatory axiom of identity

a = b — (Cla] - C[b]).

In one direction, the relation between definitional equality and identity
is as follows.
If @ =4 b, then @ = b holds,

and, on the formal level,
if @ conv b, then a = b is derivable.

Informally, we argue that @ = a is an axiom and that a = 4 b implies
(a = a) =4 (@ = b) so that ¢ = g and a = b have the same meaning and
we can conclude @ = b. The last step in the argument amounts on the
formal level to an application of the (indispensable) rule of formula alias
type conversion formulated in [17].

In the other direction, there seems to be little hope of showing that,
if a=b holds, then a = 4¢b, or even that, if @ and b are terms of a formally
delimited theory, the validity of ¢ = b should imply a conv b. Little
hope, because to say that ¢ = b holds intuitionistically means only that
we suppose that we have a completely arbitrary abstract proof of @ = b,
and it seems too much to hope for that we should be able to pass from
such an abstract proof to the sequence of combinatorial transformations
that would establish @ conv b. However, if we assume not only that a =5
holds but that @ = b is derivable in a formally delimited theory, then we
have the following precise answer.

THEOREM. If there exists a closed derivation of a = b, then the terms a
and b are interconvertible.

Proor. This follows, for any one of the theories listed in the first part of
this paper, as a combinatorial corollary to the normalization theorem for
the theory in question. Suppose namely that there exists a closed deriva-
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tion of @ = b. (Then the terms a and b are necessarily closed too.) Using
the normalization theorem, we can reduce it to normal form. Now, a
closed normal derivation must necessarily have introduction form. In
particular, when the end formula is @ = b, it must have the form

C =

(a = b) conv (¢ = ¢).

The assumption that there is precisely one application of the rule of
formula conversion between the axiom ¢ = ¢ and the end formula
a = b implies no essential restriction of generality, because, if there were
several, we could condense them into one, and, if there were none, we
could insert a redundant application of the rule in question. From
(a = b) conv (¢ = c) the Church-Rosser theorem allows us to conclude
that @ = b and ¢ = ¢ have a common reduct. Hence so do, on the one
hand, a and ¢, and, on the other hand, & and ¢. Therefore, the terms a
and b are interconvertible as was to be proved.

The theorem is not so interesting as it may seem, in particular, it
proves nothing about the adequacy of the definition of convertibility
(cf. [13]), because the relation with respect to which we conclude that
a and b are interconvertible is just the convertibility relation which we
put into the theory via the rule of formula alias type conversion,

The following counterexample shows that the theorem is no longer
true for open terms, Consider a cartesian product 4 x B and let p and ¢
be the associated projections with type symbols 4 x B — 4 and 4 x B
— B, respectively, defined by the schema

p ((a, b)) conv g,
q ((a, b)) conv b,
Then, for free variables x and y with type symbols 4 and B, respectively,
*x,) = (%)
is an instance of the law of identity from which we can infer
(P (%, 1)), 4 (x5 9)) = (%, )
by formula conversion. The latter formula taken together with the axiom

(Vxe d) Vye B) C{(x,»)] — (Vze A x B) C[z]
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yields
(p(2), 9(2)) = z

for a free variable z with type symbol 4 x B, although the term (p(2), ¢(2))
does not convert into z with respect to the above rules of conversion.
On the other hand, if ¢ is a closed term with type symbol 4 x B, then
(p(c), g(c)) conv ¢, because a closed term with type symbol 4 x B neces-
sarily reduces to one of the form (a, b).

2.4. Discussion of the conjecture about identity of proofs formulated by
Prawitz [19].

The conjecture was that two derivations represent the same proof if
and only if they are equivalent. Here equivalent means interconvertible.

Clearly, the conjecture hinges upon what we understand by two proofs
being the same. Two, and only two, interpretations seem possible.

Either we mean by saying that two proofs are the same that they are
definitionally equal which, according to what has been said above, is an
assertion about the proofs thought of as linguistic expressions, In that
case, the conjecture is turned into the thesis which has been advocated
above, namely, that the relation of convertibility as defined in this paper
correctly formalizes the notion of definitional equality.

Or else we really have the abstract proofs in mind and not their lin-
guistic representations. Then sameness must mean identity, and the con-
jecture is turned into the assertion that two derivations are interconver-
tible if and only if the abstract proofs that they represent are identical.
As was argued above, there seems to be little hope of proving the con-
jecture in this form unless identical is replaced by provably identical in
which case the theorem and the remarks following it give a complete
answer.

2.5. On the treatment of equality in Frege’s writings

As was mentioned earlier, equality appears in §8 of Frege’s Begriffs-
schrift as equality of content (Inhaltsgleichheit) which he denotes by =
and which is a relation between names and not between their contents.
It seems reasonable to identify Frege’s equality of content (provided one
disregards the geometrical example that he gives) with definitional equality

ABOUT MODELS FOR INTUITIONISTIC TYPE THEORIES 105

or, on the formal level, convertibility as understood in the present
paper.

So far so good, but later, in §20 and §21, the axioms of identity are
written (in modern notation)

= b — (4(a) = A()),
a=a.

This is no longer compatible with the analysis of the relation = given
earlier, because if = is viewed as a relation between names, then a = b
is not a proposition on a par with the propositions inside the formal
theory like A(a) and A(b) which we prove by means of possibly logically
complicated proofs. In particular, it cannot be combined with these into
compound propositions by means of the logical operations. Thus, for
example, a = b — (4(a) - A(b)) is meaningless because in ¢ = b the
entities @ and b are names, that is, they stand for themselves, whereas
in A(a) and A(b) they stand for their contents. This caused Frege [4, 5]
to abandon the relation of equality of content = and replace it by the
relation of identity =.
Similarly, something like
for all natural numbers n, n = n
def

is meaningless and, accordingly, (Vx € N) (x conv x) is not a wellformed
formula, because the variable x ranges over the natural numbers and
not over the numerical terms of some formal theory. On the other hand,

for all natural numbers n, n = n

is a meaningful and true proposition which is expressed by the formula
(Vx e N) (x = x). Also meaningful and true is the proposition

for all numerical terms a, a conv a,

but it can only be expressed in the formal theory after arithmetization.

2.6. Equality in Gédel’s T

The relation of equality enters into Godel’s theory T in two different
ways, on the one hand in the definitional schemata of the primitive recur-



106 PER MARTIN-LOF

sive functionals, and on the other in the associated deductive theory. In
the definitional schemata, the equality relation is clearly definitional
which implies that they should be written formally

f(ala ...,a,,) COIlVb [als -“yan]’

{f(al: ...,a,,,O) conva [ala ey an]:

f(al’ ey Gy, al) Coan [alﬂ ey Qys a’f(ali veey y, [I)].

In the deductive theory, on the other hand, the equality relation has to
be understood as identity and not as intensional or definitional equality
as suggested by Godel [8], because there we prove equalities by means
of the axioms of identity

a="5b Alad

i H

A[b]

and the induction schema
Alx]
A[0]  A[x"]
Ala]

of whose validity we cannot convince ourselves unless, when reading the
formulae, we associate with the terms not themselves but the abstract
objects which they denote. To complete the formulation of the deductive
part of the theory, we only have to add the rule of formula conversion

—4- A conv B,
B

If we allow as formulae not only equalities between terms of arbitrary
finite type but also propositional combinations of such, then we shall
have to add the rules of intuitionistic propositional logic, because we
have no right to assert

(a=b)v —(a=0b)

intuitionistically except at the lowest type in which case it is derivable
from the other axioms, provided — A is definedas 4 — 0 = 1.
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This should be compared with the fact that, as proved by Tait [21] for
all terms a and b of an arbitrary finite type,

(aconv b) v —(aconv b).

However, the decidability of the convertibility relation provides no evi-
dence whatever for the decidability of the identity relation, the former
being a relation between terms and the latter a relation between the
abstract objects which the terms denote.

The identity relation on an arbitrary type is decidable if and only if
there exists a numerical valued equality functional E such that

. E(a,b) =0ea=b,

and hence we have just as little right to postulate the existence of such a
functional as the decidability of the identity relation except at the lowest
type where we can put E(a, b) =4 |a — b]. On the other hand, Tait’s
proof of the decidability of the convertibility relation provides us for
every finite type with a function E such that

E(a,b) = 0 aconvb.

However, this function E is defined for the terms and not for the abstract
objects of the type in question, and hence it is not on a par with the
functions that are defined by the ordinary definitional schemata of expli-
cit definition and recursion.

Because of what has been said above, the system of intuitionistic arith-
metic of finite type formulated by Tait [21] is not intuitionistically accept-
able unless the axiom (@ = b) v —(a = b) is abolished at higher types.
And, in the intensional version of the system formulated by Troelstra
[22], not only this axiom but also the equality functional has to be thrown
out.
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