
typeset from original PDF

22.2.1987

The Logic of Judgements
Workshop on General Logic, Laboratory for Foundations of Computer
Science, University of Edinburgh, 23-27 February 1987

 

type 
object

judge- 
ments 

as 
types 

← judgement 
proof

set 
theory

logical 
theory

set 
element

← 
propo- 
sitions 

as 
sets 

proposition 
truth

 

P.M.-L, On the meanings of the logical constants and the justification of
the logical laws

http://archive-pml.github.io/martin-lof/pdfs/The-logic-of-judgements-1987.pdf


Peter Schroeder-Heister, Judgements of higher levels and standardized
rules for logical constants in Martin-Löf’s theory of logic, June 1985

The logical theory cannot be entirely logical since it needs at least one
set for the quantifiers to ranger over.

Type formation

set : type

 

elem(A) : type
A : set

 

(fun x : α)β : type

  

α : type
(x : α)
β : type

     

(x : α)β =

AUTOMATH

CONSTRUCTIONS

↓
⌈x : α⌉β =

LF

↓
Πx : α.β



 does not depend on 

Object formation

Equality

refl., symm., trans.

equals for equals, spec.

(α)β = (x : α)β ∧J β x

 (assumption)
x : α

α : type

 (abstraction)
 

(x)b : (x : α)β
λx : α.b ⟵ LF

 

(x : α)
b : β

 (application)
c(a) : β(a/x)

c : (x : α)β a : α

 (β)
((x)b)(a) = b(a/x) : β(a/x)

   

a : α
(x : α)
b : β

 (η)
c = (x)c(x) : (x : α)β

c : (x : α)β

 

a : β
a : α α = β : type

a : elem(B)
a : elem(A) A = B : set



Since LF has no equality judgements,  has to be
expressed by

and  by

The equality judgements are badly needed for formalizing intuitionistic
set theory in the logical framework.

A theory, like first order predicate logic or intuitionistic set theory, is
specified by typing the constants which make up its signature and
writing down the finitely many definitional equations that relate certain
combinations of those constants.

In a sensible theory, it is decidable whether or not an expression is
wellformed (meaningful) as well as whether or not two wellformed
(meaningful) expressions are definitionally equal (have the same
meaning).

type checking = checking the wellformedness (meaningfulness) of an
expression

  

α : type
a : α

α = β : type
a = b : α

α = β : type

α,β : type, α =  β,βη

a = b : α

a, b : α, a = b.βη



In the propositions as sets interpretation, we put

 

but it is not necessary for what follows that we have made that
identification.

prop : type

proof(A) : type
A

A : prop

prop = set : type

proof(A) = elem(A) : type



Judgement formation

 

 

A true : judg
true(A)

A

A : prop

 

 

I∣J : judg
→ (Gentzen)

⇒ (Schroeder-Heister)

⊢ (LF)

I : judg J : judg

 

 

∣  J : judgx:α

→  x:α

⇒  x:α

⊢  x:α

  

α : type
(x : α)

J : Judg



Proof rules

A context (sequence of assumptions) in this system has the form

 (assumption)
J

J : judg

  

I∣J

 

(I)
J

J

I∣J I

  

∣  Jx:α

 

(x : α)
J

J(a/x)
∣  J a : αx:α

x  : α  , ...,x  : α  ,  1 1 m m

permutable

 J  , ...,J  1 n



Judgements as types

 

 

 

With a proof of  by means of the proof rules above, we can associate
an object

judg = type

true(A) = proof(A)

I∣J = (I)J

∣  J = (x : α)Jx:α

J

proof object ⟶  

analytic judgement

 c :  

synthetic judgement

 J



Generalized logical operations

The ordinary implication and conjunction are easy enough to type

but how do we type the generalized implication and conjunction?

Type formation

A ⊃ B prop

&

   

A prop

(A true)
B prop

   

⊃
&

:
:

(prop)(prop)prop
− " −

 

I∣β : type

  

I : judg
(I)

β : type



Object formation

  

⊃
&

:
:

(X : prop)(X∣prop)prop
X true

true(X)

  

b : I∣β

 

(I)
b : β

b : β
b : I∣β I

 

A ⊃ B : prop
&

 

A : prop B : A true∣prop

 

(A true)
B : prop


