
Sourcery G++ Lite

ARM uClinux

Sourcery G++ Lite 2010q1-189

Getting Started

Sourcery G++ Lite: ARM uClinux: Sourcery G++ Lite 2010q1-
189: Getting Started
CodeSourcery, Inc.
Copyright © 2005, 2006, 2007, 2008, 2009, 2010 CodeSourcery, Inc.
All rights reserved.

Abstract

This guide explains how to install and build applications with Sourcery G++ Lite, CodeSourcery's
customized, validated, and supported version of the GNU Toolchain. Sourcery G++ Lite includes
everything you need for application development, including C and C++ compilers, assemblers,
linkers, and libraries.

When you have finished reading this guide, you will know how to use Sourcery G++ from the
command line.

Table of Contents
Preface ... iv

1. Intended Audience .. v
2. Organization .. v
3. Typographical Conventions ... vi

1. Quick Start .. 1
1.1. Installation and Set-Up ... 2
1.2. Configuring Sourcery G++ Lite for the Target System ... 2
1.3. Building Your Program ... 2
1.4. Running and Debugging Your Program .. 2

2. Installation and Configuration ... 4
2.1. Terminology ... 5
2.2. System Requirements ... 5
2.3. Downloading an Installer ... 6
2.4. Installing Sourcery G++ Lite .. 6
2.5. Installing Sourcery G++ Lite Updates .. 9
2.6. Setting up the Environment .. 9
2.7. Uninstalling Sourcery G++ Lite .. 11

3. Sourcery G++ Lite for ARM uClinux ... 13
3.1. Included Components and Features .. 14
3.2. Library Configurations .. 14
3.3. Using VFP Floating Point .. 15
3.4. ABI Compatibility .. 16
3.5. Building uClinux Applications .. 17
3.6. GDB Server .. 17

4. Using Sourcery G++ from the Command Line ... 18
4.1. Building an Application ... 19
4.2. Running Applications on the Target System ... 19
4.3. Running Applications from GDB .. 20

5. Sourcery G++ Debug Sprite .. 21
5.1. Probing for Debug Devices .. 22
5.2. Invoking Sourcery G++ Debug Sprite ... 22
5.3. Sourcery G++ Debug Sprite Options .. 23
5.4. Remote Debug Interface Devices ... 24
5.5. Actel FlashPro Devices ... 24
5.6. Debugging a Remote Board ... 25
5.7. Supported Board Files ... 25
5.8. Board File Syntax .. 26

6. Next Steps with Sourcery G++ .. 29
6.1. Sourcery G++ Knowledge Base .. 30
6.2. Manuals for GNU Toolchain Components ... 30

A. Sourcery G++ Lite Release Notes ... 31
A.1. Changes in Sourcery G++ Lite for ARM uClinux .. 32

B. Sourcery G++ Lite Licenses ... 47
B.1. Licenses for Sourcery G++ Lite Components .. 48
B.2. Sourcery G++ Software License Agreement .. 49
B.3. Attribution .. 52

iii

Preface
This preface introduces the Sourcery G++ Lite Getting Started guide. It explains the structure
of this guide and describes the documentation conventions used.

iv

1. Intended Audience
This guide is written for people who will install and/or use Sourcery G++ Lite. This guide provides
a step-by-step guide to installing Sourcery G++ Lite and to building simple applications. Parts of
this document assume that you have some familiarity with using the command-line interface.

2. Organization
This document is organized into the following chapters and appendices:

Chapter 1, “Quick Start” This chapter includes a brief checklist to follow when in-
stalling and using Sourcery G++ Lite for the first time. You
may use this chapter as an abbreviated guide to the rest of this
manual.

Chapter 2, “Installation and Config-
uration”

This chapter describes how to download, install and configure
Sourcery G++ Lite. This section describes the available install-
ation options and explains how to set up your environment so
that you can build applications.

Chapter 3, “Sourcery G++ Lite for
ARM uClinux”

This chapter contains information about using Sourcery G++
Lite that is specific to ARM uClinux targets. You should read
this chapter to learn how to best use Sourcery G++ Lite on
your target system.

Chapter 4, “Using Sourcery G++
from the Command Line”

This chapter explains how to build applications with Sourcery
G++ Lite using the command line. In the process of reading
this chapter, you will build a simple application that you can
use as a model for your own programs.

Chapter 5, “Sourcery G++ Debug
Sprite”

This chapter describes the use of the Sourcery G++ Debug
Sprite for remote debugging. The Sprite is provided for debug-
ging of the uClinux kernel on the target board. This chapter
includes information about the debugging devices and boards
supported by the Sprite for ARM uClinux.

Chapter 6, “Next Steps with Sourcery
G++”

This chapter describes where you can find additional docu-
mentation and information about using Sourcery G++ Lite
and its components. It also provides information about
Sourcery G++ subscriptions. CodeSourcery customers with
Sourcery G++ subscriptions receive comprehensive support
for Sourcery G++.

Appendix A, “Sourcery G++ Lite
Release Notes”

This appendix contains information about changes in this re-
lease of Sourcery G++ Lite for ARM uClinux. You should
read through these notes to learn about new features and bug
fixes.

Appendix B, “Sourcery G++ Lite
Licenses”

This appendix provides information about the software li-
censes that apply to Sourcery G++ Lite. Read this appendix
to understand your legal rights and obligations as a user of
Sourcery G++ Lite.

v

Preface

3.Typographical Conventions
The following typographical conventions are used in this guide:

> command arg ... A command, typed by the user, and its output. The “>” character is the
command prompt.

command The name of a program, when used in a sentence, rather than in literal
input or output.

literal Text provided to or received from a computer program.

placeholder Text that should be replaced with an appropriate value when typing a
command.

\ At the end of a line in command or program examples, indicates that a
long line of literal input or output continues onto the next line in the
document.

vi

Preface

Chapter 1
Quick Start
This chapter includes a brief checklist to follow when installing and using Sourcery G++
Lite for the first time. You may use this chapter as an abbreviated guide to the rest of this
manual.

1

Sourcery G++ Lite for ARM uClinux is intended for developers working on embedded uClinux ap-
plications. It may also be used for uClinux kernel development and debugging, or to build a uClinux
distribution.

Follow the steps given in this chapter to install Sourcery G++ Lite and build and run your first ap-
plication program. The checklist given here is not a tutorial and does not include detailed instructions
for each step; however, it will help guide you to find the instructions and reference information you
need to accomplish each step. Note that this checklist is also oriented towards application debugging
rather than kernel debugging.

You can find additional details about the components, libraries, and other features included in this
version of Sourcery G++ Lite in Chapter 3, “Sourcery G++ Lite for ARM uClinux”.

1.1. Installation and Set-Up
Install Sourcery G++ Lite on your host computer. You may download an installer package
from the Sourcery G++ web site1, or you may have received an installer on CD. The installer is an
executable program that pops up a window on your computer and leads you through a series of dialogs
to configure your installation. If the installation is successful, it will offer to launch the Getting
Started guide. For more information about installing Sourcery G++ Lite, including host system re-
quirements and tips to set up your environment after installation, refer to Chapter 2, “Installation
and Configuration”.

1.2. Configuring Sourcery G++ Lite for the Tar-
get System
Identify your target libraries. Sourcery G++ Lite supports libraries optimized for different targets.
Libraries are selected automatically by the linker, depending on the processor and other options you
have specified. Refer to Section 3.2, “Library Configurations” for details. You must identify the
multilib appropriate for your target in order to find the correct gdbserver executable to use for
debugging your applications, as described in Section 3.6, “GDB Server”.

1.3. Building Your Program
Build your program with Sourcery G++ command-line tools. Create a simple test program,
and follow the directions in Chapter 4, “Using Sourcery G++ from the Command Line” to compile
and link it using Sourcery G++ Lite.

1.4. Running and Debugging Your Program
The steps to run or debug your program depend on your target system and how it is configured.
Choose the appropriate method for your target.

Run your program on the target system. Copy your program to the target system and run it
from the command line.

Debug your program on the target using GDB server. You can debug a program on a remote
ARM uClinux target using GDB server. Copy your program to the target system. Follow the instruc-
tions in Section 3.6, “GDB Server” to install and run gdbserver on your target system. Then, you
can connect to GDB server from the debugger running on your host system. Refer to Section 4.3,

1 http://www.codesourcery.com/gnu_toolchains/

2

Quick Start

http://www.codesourcery.com/gnu_toolchains/
http://www.codesourcery.com/gnu_toolchains/

“Running Applications from GDB” for instructions on connecting to the target from command-line
GDB.

3

Quick Start

Chapter 2
Installation and Configuration
This chapter explains how to install Sourcery G++ Lite.You will learn how to:

1. Verify that you can install Sourcery G++ Lite on your system.

2. Download the appropriate Sourcery G++ Lite installer.

3. Install Sourcery G++ Lite.

4. Configure your environment so that you can use Sourcery G++ Lite.

4

2.1.Terminology
Throughout this document, the term host system refers to the system on which you run Sourcery
G++ while the term target system refers to the system on which the code produced by Sourcery G++
runs. The target system for this version of Sourcery G++ is arm-uclinuxeabi.

If you are developing a workstation or server application to run on the same system that you are using
to run Sourcery G++, then the host and target systems are the same. On the other hand, if you are
developing an application for an embedded system, then the host and target systems are probably
different.

2.2. System Requirements
2.2.1. Host Operating System Requirements

This version of Sourcery G++ supports the following host operating systems and architectures:

• Microsoft Windows NT 4, Windows 2000, Windows XP, Windows Vista, and Windows 7 systems
using IA32, AMD64, and Intel 64 processors.

• GNU/Linux systems using IA32, AMD64, or Intel 64 processors, including Debian 3.1 (and later),
Red Hat Enterprise Linux 3 (and later), and SuSE Enterprise Linux 8 (and later).

Sourcery G++ is built as a 32-bit application. Therefore, even when running on a 64-bit host system,
Sourcery G++ requires 32-bit host libraries. If these libraries are not already installed on your system,
you must install them before installing and using Sourcery G++ Lite. Consult your operating system
documentation for more information about obtaining these libraries.

Installing on Ubuntu and Debian GNU/Linux Hosts

The Sourcery G++ graphical installer is incompatible with the dash shell, which is the
default /bin/sh for recent releases of the Ubuntu and Debian GNU/Linux distributions.
To install Sourcery G++ Lite on these systems, you must make /bin/sh a symbolic link
to one of the supported shells: bash, csh, tcsh, zsh, or ksh.

For example, on Ubuntu systems, the recommended way to do this is:

> sudo dpkg-reconfigure -plow dash
Install as /bin/sh? No

This is a limitation of the installer and uninstaller only, not of the installed Sourcery G++
Lite toolchain.

2.2.2. Host Hardware Requirements

In order to install and use Sourcery G++ Lite, you must have at least 128MB of available memory.

The amount of disk space required for a complete Sourcery G++ Lite installation directory depends
on the host operating system and the number of target libraries included. Typically, you should plan
on at least 400MB.

In addition, the graphical installer requires a similar amount of temporary space during the installation
process. On Microsoft Windows hosts, the installer uses the location specified by the TEMP environ-
ment variable for these temporary files. If there is not enough free space on that volume, the installer

5

Installation and Configuration

prompts for an alternate location. On Linux hosts, the installer puts temporary files in the directory
specified by the IATEMPDIR environment variable, or /tmp if that is not set.

2.2.3.Target System Requirements

See Chapter 3, “Sourcery G++ Lite for ARM uClinux” for requirements that apply to the target
system.

2.3. Downloading an Installer
If you have received Sourcery G++ Lite on a CD, or other physical media, then you do not need to
download an installer. You may skip ahead to Section 2.4, “Installing Sourcery G++ Lite”.

You can download Sourcery G++ Lite from the Sourcery G++ web site1. This free version of Sourcery
G++, which is made available to the general public, does not include all the functionality of Code-
Sourcery's product releases. If you prefer, you may instead purchase or register for an evaluation of
CodeSourcery's product toolchains at the Sourcery G++ Portal2.

Once you have navigated to the appropriate web site, download the installer that corresponds to your
host operating system. For Microsoft Windows systems, the Sourcery G++ installer is provided as
an executable with the .exe extension. For GNU/Linux systems Sourcery G++ Lite is provided as
an executable installer package with the .bin extension. You may also install from a compressed
archive with the .tar.bz2 extension.

On Microsoft Windows systems, save the installer to the desktop. On GNU/Linux systems, save the
download package in your home directory.

2.4. Installing Sourcery G++ Lite
The method used to install Sourcery G++ Lite depends on your host system and the kind of installation
package you have downloaded.

2.4.1. Using the Sourcery G++ Lite Installer on Microsoft Windows

If you have received Sourcery G++ Lite on CD, insert the CD in your computer. On most computers,
the installer then starts automatically. If your computer has been configured not to automatically run
CDs, open My Computer, and double click on the CD. If you downloaded Sourcery G++ Lite,
double-click on the installer.

After the installer starts, follow the on-screen dialogs to install Sourcery G++ Lite. The installer is
intended to be self-explanatory and on most pages the defaults are appropriate.

1 http://www.codesourcery.com/gnu_toolchains/
2 https://support.codesourcery.com/GNUToolchain/

6

Installation and Configuration

http://www.codesourcery.com/gnu_toolchains/
https://support.codesourcery.com/GNUToolchain/
http://www.codesourcery.com/gnu_toolchains/
https://support.codesourcery.com/GNUToolchain/

Running the Installer. The graphical installer guides you through the steps to
install Sourcery G++ Lite.

You may want to change the install directory pathname and customize the shortcut installation.

Choose Install Folder. Select the pathname to your install directory.

7

Installation and Configuration

Choose Shortcut Folder. You can customize where the installer creates
shortcuts for quick access to Sourcery G++ Lite.

When the installer has finished, it asks if you want to launch a viewer for the Getting Started guide.
Finally, the installer displays a summary screen to confirm a successful install before it exits.

Install Complete. You should see a screen similar to this after a successful
install.

If you prefer, you can run the installer in console mode rather than using the graphical interface. To
do this, invoke the installer with the -i console command-line option. For example:

> /path/to/package.exe -i console

2.4.2. Using the Sourcery G++ Lite Installer on GNU/Linux Hosts

Start the graphical installer by invoking the executable shell script:

8

Installation and Configuration

> /bin/sh ./path/to/package.bin

After the installer starts, follow the on-screen dialogs to install Sourcery G++ Lite. For additional
details on running the installer, see the discussion and screen shots in the Microsoft Windows section
above.

If you prefer, or if your host system does not run the X Window System, you can run the installer
in console mode rather than using the graphical interface. To do this, invoke the installer with the
-i console command-line option. For example:

> /bin/sh ./path/to/package.bin -i console

2.4.3. Installing Sourcery G++ Lite from a Compressed Archive

You do not need to be a system administrator to install Sourcery G++ Lite from a compressed archive.
You may install Sourcery G++ Lite using any user account and in any directory to which you have
write access. This guide assumes that you have decided to install Sourcery G++ Lite in the $HOME/
CodeSourcery subdirectory of your home directory and that the filename of the package you
have downloaded is /path/to/package.tar.bz2. After installation the toolchain will be in
$HOME/CodeSourcery/sourceryg++-2010q1.

First, uncompress the package file:

> bunzip2 /path/to/package.tar.bz2

Next, create the directory in which you wish to install the package:

> mkdir -p $HOME/CodeSourcery

Change to the installation directory:

> cd $HOME/CodeSourcery

Unpack the package:

> tar xf /path/to/package.tar

2.5. Installing Sourcery G++ Lite Updates
If you have already installed an earlier version of Sourcery G++ Lite for ARM uClinux on your
system, it is not necessary to uninstall it before using the installer to unpack a new version in the
same location. The installer detects that it is performing an update in that case.

If you are installing an update from a compressed archive, it is recommended that you remove any
previous installation in the same location, or install in a different directory.

Note that the names of the Sourcery G++ commands for the ARM uClinux target all begin with
arm-uclinuxeabi. This means that you can install Sourcery G++ for multiple target systems in
the same directory without conflicts.

2.6. Setting up the Environment
As with the installation process itself, the steps required to set up your environment depend on your
host operating system.

9

Installation and Configuration

2.6.1. Setting up the Environment on Microsoft Windows Hosts

2.6.1.1. Setting the PATH

In order to use the Sourcery G++ tools from the command line, you should add them to your PATH.
You may skip this step if you used the graphical installer, since the installer automatically adds
Sourcery G++ to your PATH.

To set the PATH on a Microsoft Windows Vista system, use the following command in a cmd.exe
shell:

> setx PATH "%PATH%;C:\Program Files\Sourcery G++\bin"

where C:\Program Files\Sourcery G++ should be changed to the path of your Sourcery
G++ Lite installation.

To set the PATH on a system running a Microsoft Windows version other than Vista, from the desktop
bring up the Start menu and right click on My Computer. Select Properties, go to the
Advanced tab, then click on the Environment Variables button. Select the PATH variable
and click the Edit. Add the string ;C:\Program Files\Sourcery G++\bin to the end,
and click OK. Again, you must adjust the pathname to reflect your installation directory.

You can verify that your PATH is set up correctly by starting a new cmd.exe shell and running:

> arm-uclinuxeabi-g++ -v

Verify that the last line of the output contains: Sourcery G++ Lite 2010q1-189.

2.6.1.2. Working with Cygwin

Sourcery G++ Lite does not require Cygwin or any other UNIX emulation environment. You can
use Sourcery G++ directly from the Windows command shell. You can also use Sourcery G++ from
within the Cygwin environment, if you prefer.

The Cygwin emulation environment translates Windows path names into UNIX path names. For
example, the Cygwin path /home/user/hello.c corresponds to the Windows path c:\cygwin\
home\user\hello.c. Because Sourcery G++ is not a Cygwin application, it does not, by default,
recognize Cygwin paths.

If you are using Sourcery G++ from Cygwin, you should set the CYGPATH environment variable.
If this environment variable is set, Sourcery G++ Lite automatically translates Cygwin path names
into Windows path names. To set this environment variable, type the following command in a Cygwin
shell:

> export CYGPATH=cygpath

To resolve Cygwin path names, Sourcery G++ relies on the cygpath utility provided with Cygwin.
You must provide Sourcery G++ with the full path to cygpath if cygpath is not in your PATH.
For example:

> export CYGPATH=c:/cygwin/bin/cygpath

directs Sourcery G++ Lite to use c:/cygwin/bin/cygpath as the path conversion utility. The
value of CYGPATH must be an ordinary Windows path, not a Cygwin path.

10

Installation and Configuration

2.6.2. Setting up the Environment on GNU/Linux Hosts

If you installed Sourcery G++ Lite using the graphical installer then you may skip this step. The in-
staller does this setup for you.

Before using Sourcery G++ Lite you should add it to your PATH. The command you must use varies
with the particular command shell that you are using. If you are using the C Shell (csh or tcsh),
use the command:

> setenv PATH $HOME/CodeSourcery/Sourcery_G++/bin:$PATH

If you are using Bourne Shell (sh), the Korn Shell (ksh), or another shell, use:

> PATH=$HOME/CodeSourcery/Sourcery_G++/bin:$PATH
> export PATH

If you are not sure which shell you are using, try both commands. In both cases, if you have installed
Sourcery G++ Lite in an alternate location, you must replace the directory above with bin subdir-
ectory of the directory in which you installed Sourcery G++ Lite.

You may also wish to set the MANPATH environment variable so that you can access the Sourcery
G++ manual pages, which provide additional information about using Sourcery G++. To set the
MANPATH environment variable, follow the same steps shown above, replacing PATH with MANPATH,
and bin with share/doc/sourceryg++-arm-uclinuxeabi/man.

You can test that your PATH is set up correctly by running the following command:

> arm-uclinuxeabi-g++ -v

Verify that the last line of the output contains: Sourcery G++ Lite 2010q1-189.

2.7. Uninstalling Sourcery G++ Lite
The method used to uninstall Sourcery G++ Lite depends on the method you originally used to install
it. If you have modified any files in the installation it is recommended that you back up these changes.
The uninstall procedure may remove the files you have altered. In particular, the arm-uclinuxeabi
directory located in the install directory will be removed entirely by the uninstaller.

2.7.1. Using the Sourcery G++ Lite Uninstaller on Microsoft Windows

You should use the provided uninstaller to remove a Sourcery G++ Lite installation originally created
by the graphical installer. Start the graphical uninstaller by invoking the executable Uninstall execut-
able located in your installation directory, or use the uninstall shortcut created during installation.
After the uninstaller starts, follow the on-screen dialogs to uninstall Sourcery G++ Lite.

You can run the uninstaller in console mode, rather than using the graphical interface, by invoking
the Uninstall executable found in your Sourcery G++ Lite installation directory with the -i console
command-line option.

To uninstall third-party drivers bundled with Sourcery G++ Lite, first disconnect the associated
hardware device. Then use Add or Remove Programs (non-Vista) or Uninstall a
program (Vista) to remove the drivers separately. Depending on the device, you may need to reboot
your computer to complete the driver uninstall.

11

Installation and Configuration

2.7.2. Using the Sourcery G++ Lite Uninstaller on GNU/Linux

You should use the provided uninstaller to remove a Sourcery G++ Lite installation originally created
by the executable installer script. Start the graphical uninstaller by invoking the executable Uninstall
shell script located in your installation directory. After the uninstaller starts, follow the on-screen
dialogs to uninstall Sourcery G++ Lite.

You can run the uninstaller in console mode, rather than using the graphical interface, by invoking
the Uninstall script with the -i console command-line option.

2.7.3. Uninstalling a Compressed Archive Installation

If you installed Sourcery G++ Lite from a .tar.bz2 file, you can uninstall it by manually deleting
the installation directory created in the install procedure.

12

Installation and Configuration

Chapter 3
Sourcery G++ Lite for ARM
uClinux
This chapter contains information about features of Sourcery G++ Lite that are specific to
ARM uClinux targets.You should read this chapter to learn how to best use Sourcery G++
Lite on your target system.

13

3.1. Included Components and Features
This section briefly lists the important components and features included in Sourcery G++ Lite for
ARM uClinux, and tells you where you may find further information about these features.

NotesVersionComponent

GNU programming tools

Separate manual included.4.4.1GNU Compiler Collection

Includes assembler, linker, and other utilities.
Separate manuals included.

2.19.51GNU Binary Utilities

Debugging support and simulators

Separate manual included.7.0.50GNU Debugger

Provided for kernel debugging only. See
Chapter 5, “Sourcery G++ Debug Sprite”.

2010q1-189Sourcery G++ Debug Sprite for ARM

Included with GDB. See Section 3.6, “GDB
Server”.

N/AGDB Server

Target libraries

0.9.30uClibc C Library

2.6.32Linux Kernel Headers

Other utilities

N/AELF-to-FLT Conversion Utility

Build support on Windows hosts.N/AGNU Make

Build support on Windows hosts.N/AGNU Core Utilities

3.2. Library Configurations
Sourcery G++ includes copies of run-time libraries that have been built with optimizations for different
target architecture variants or other sets of build options. Each such set of libraries is referred to as
a multilib. When you link a target application, Sourcery G++ selects the multilib matching the build
options you have selected.

Each multilib corresponds to a sysroot directory that contains the files that should be installed on
the target system. You can find the sysroot directories provided with Sourcery G++ in the
arm-uclinuxeabi/libc directory of your installation.

3.2.1. Included Libraries

The following library configurations are available in Sourcery G++ Lite for ARM uClinux.

ARMv4T - Little-Endian, Soft-Float

defaultCommand-line option(s):

./Sysroot subdirectory:

ARMv6-M Thumb - Little-Endian, Soft-Float

-mthumb -march=armv6-mCommand-line option(s):

armv6-m/Sysroot subdirectory:

14

Sourcery G++ Lite for ARM uClinux

ARMv7 Thumb-2 - Little-Endian, Soft-Float

-mthumb -march=armv7 -mfix-cortex-m3-ldrdCommand-line option(s):

thumb2/Sysroot subdirectory:

3.2.2. Library Selection

A given multilib may be compatible with additional processors and build options beyond those listed
above. However, even if a particular set of command-line options produces code compatible with
one of the provided multilibs, those options may not be sufficient to identify the intended library to
the linker. For example, on some targets, specifying only a processor option on the command line
may imply architecture features or floating-point support for compilation, but not for library selection.
The details of the mapping from command-line options to multilibs are target-specific and quite
complex. Therefore, it is recommended that your link command line include exactly the options listed
in the tables above for your intended target multilib. In some cases, you may need to supply different
options for linking than for compilation.

If you are uncertain which multilib is selected by a particular set of command-line options, GCC can
tell you if you invoke it with the -print-multi-directory option in addition to your other
build options. For example:

> arm-uclinuxeabi-gcc -print-multi-directory options...

The output of this command is a directory name for the multilib, which you can look up in the tables
given previously.

3.3. Using VFP Floating Point
3.3.1. Enabling Hardware Floating Point

GCC provides three basic options for compiling floating-point code:

• Software floating point emulation, which is the default. In this case, the compiler implements
floating-point arithmetic by means of library calls.

• VFP hardware floating-point support using the soft-float ABI. This is selected by the
-mfloat-abi=softfp option. When you select this variant, the compiler generates VFP
floating-point instructions, but the resulting code uses the same call and return conventions as
code compiled with software floating point.

• VFP hardware floating-point support using the VFP ABI, which is the VFP variant of the Procedure
Call Standard for the ARM® Architecture (AAPCS). This ABI uses VFP registers to pass function
arguments and return values, resulting in faster floating-point code. To use this variant, compile
with -mfloat-abi=hard.

You can freely mix code compiled with either of the first two variants in the same program, as they
both use the same soft-float ABI. However, code compiled with the VFP ABI is not link-compatible
with either of the other two options. If you use the VFP ABI, you must use this option to compile
your entire program, and link with libraries that have also been compiled with the VFP ABI. For
example, you may need to use the VFP ABI in order to link your program with other code compiled
by the ARM RealView® compiler, which uses this ABI.

15

Sourcery G++ Lite for ARM uClinux

Sourcery G++ Lite for ARM uClinux includes libraries built with software floating point, which are
compatible with VFP code compiled using the soft-float ABI. While the compiler is capable of
generating code using the VFP ABI, no compatible runtime libraries are provided for uClinux targets.

Note that, in addition to selecting hard/soft float and the ABI via the -mfloat-abi option, you
can also compile for a particular FPU using the -mfpu option. For example, -mfpu=neon selects
VFPv3 with NEON coprocessor extensions.

3.3.2. NEON SIMD Code

Sourcery G++ includes support for automatic generation of NEON SIMD vector code. Autovector-
ization is a compiler optimization in which loops involving normal integer or floating-point code
are transformed to use NEON SIMD instructions to process several data elements at once.

To enable generation of NEON vector code, use the command-line options -ftree-vectorize
-mfpu=neon -mfloat-abi=softfp. The -mfpu=neon option also enables generation of
VFPv3 scalar floating-point code.

Sourcery G++ also includes support for manual generation of NEON SIMD code using C intrinsic
functions. These intrinsics, the same as those supported by the ARM RealView® compiler, are
defined in the arm_neon.h header and are documented in the 'ARM NEON Intrinsics' section of
the GCC manual. The command-line options -mfpu=neon -mfloat-abi=softfp must be
specified to use these intrinsics; -ftree-vectorize is not required.

3.3.3. Half-Precision Floating Point

Sourcery G++ for ARM uClinux includes support for half-precision (16-bit) floating point, including
the new __fp16 data type in C and C++, support for generating conversion instructions when
compiling for processors that support them, and library functions for use in other cases.

To use half-precision floating point, you must explicitly enable it via the -mfp16-format command-
line option to the compiler. For more information about __fp16 representations and usage from C
and C++, refer to the GCC manual.

3.4. ABI Compatibility
The Application Binary Interface (ABI) for the ARM Architecture is a collection of standards, pub-
lished by ARM Ltd. and other organizations. The ABI makes it possible to combine tools from dif-
ferent vendors, including Sourcery G++ and ARM RealView®.

Sourcery G++ implements the ABI as described in these documents, which are available from the
ARM Information Center1:

• BSABI - ARM IHI 0036B (28 October 2009)

• BPABI - ARM IHI 0037B (28 October 2009)

• EHABI - ARM IHI 0038A (28 October 2009)

• CLIBABI - ARM IHI 0039B (4 November 2009)

• AADWARF - ARM IHI 0040A (28 October 2009)

1 http://infocenter.arm.com

16

Sourcery G++ Lite for ARM uClinux

http://infocenter.arm.com
http://infocenter.arm.com
http://infocenter.arm.com

• CPPABI - ARM IHI 0041C (5 October 2009)

• AAPCS - ARM IHI 0042D (16 October 2009)

• RTABI - ARM IHI 0043C (19 October 2009)

• AAELF - ARM IHI 0044D (28 October 2009)

• ABI Addenda - ARM IHI 0045C (4 November 2009)

Sourcery G++ currently produces DWARF version 2, rather than DWARF version 3 as specified in
AADWARF.

3.5. Building uClinux Applications
When you use GCC to link a uClinux application, it creates two output files. The executable file, as
specified by the -o command-line option, is a uClinux FLAT format binary (bFLT) file. This is the
file you should copy to and run on your uClinux target. The second output file is an ELF-format file
containing additional debug and symbol table information to allow you to debug your program with
GDB, as described in Section 3.6, “GDB Server”. This file has a .gdb extension.

For example, if you specify the command

arm-uclinuxeabi-gcc foo.c -o bar

then bar is the FLAT-format executable and bar.gdb is the ELF-format file.

3.6. GDB Server
Sourcery G++ Lite contains a gdbserver for running on the target. The server executable is located
in the sysroot/usr/bin directory of your installation, where sysroot is the pathname to the
sysroot, as documented in Section 3.2, “Library Configurations”. You need to copy the appropriate
gdbserver executable to your target system and then invoke it as

gdbserver :port program

port can be any available TCP port; 5000 is a common choice. gdbserver waits for a connection
from gdb and then commences serving requests for it. To connect to gdbserver from your host
system, start gdb, but specify the special .gdb version of your program.

> arm-uclinuxeabi-gdb program.gdb

Then connect to the target system:

(gdb) target remote host:port

At this point you are able to debug as usual.

17

Sourcery G++ Lite for ARM uClinux

Chapter 4
Using Sourcery G++ from the
Command Line
This chapter demonstrates the use of Sourcery G++ Lite from the command line.

18

4.1. Building an Application
This chapter explains how to build an application with Sourcery G++ Lite using the command line.
As elsewhere in this manual, this section assumes that your target system is arm-uclinuxeabi, as in-
dicated by the arm-uclinuxeabi command prefix.

Using an editor (such as notepad on Microsoft Windows or vi on UNIX-like systems), create a
file named main.c containing the following simple factorial program:

#include <stdio.h>

int factorial(int n) {
 if (n == 0)
 return 1;
 return n * factorial (n - 1);
}

int main () {
 int i;
 int n;
 for (i = 0; i < 10; ++i) {
 n = factorial (i);
 printf ("factorial(%d) = %d\n", i, n);
 }
 return 0;
}

Compile and link this program using the command:

> arm-uclinuxeabi-gcc -o factorial main.c

There should be no output from the compiler. (If you are building a C++ application, instead of a C
application, replace arm-uclinuxeabi-gcc with arm-uclinuxeabi-g++.)

4.2. Running Applications on the Target System
To run your program on a uClinux target system, use the command:

> factorial

You should see:

factorial(0) = 1
factorial(1) = 1
factorial(2) = 2
factorial(3) = 6
factorial(4) = 24
factorial(5) = 120
factorial(6) = 720
factorial(7) = 5040
factorial(8) = 40320
factorial(9) = 362880

19

Using Sourcery G++ from the Command Line

4.3. Running Applications from GDB
You can run GDB, the GNU Debugger, on your host system to debug programs running remotely
on a target board or system.

When starting GDB, give it the pathname to the program you want to debug as a command-line ar-
gument. For example, if you have built the factorial program as described in Section 4.1, “Building
an Application”, enter:

> arm-uclinuxeabi-gdb factorial.gdb

For uClinux you must specify the ELF binary, not the FLT binary that you load onto your target.

While this section explains the alternatives for using GDB to run and debug application programs,
explaining the use of the GDB command-line interface is beyond the scope of this document. Please
refer to the GDB manual for further instructions.

4.3.1. Connecting to the Sourcery G++ Debug Sprite

The Sourcery G++ Debug Sprite is a program that runs on the host system to support hardware de-
bugging devices. You can use the Debug Sprite to run and debug programs on a target board without
an operating system, or to debug an operating system kernel. See Chapter 5, “Sourcery G++ Debug
Sprite” for detailed information about the supported devices.

You can start the Sprite directly from within GDB:

(gdb) target remote | arm-uclinuxeabi-sprite arguments

Refer to Section 5.2, “Invoking Sourcery G++ Debug Sprite” for a full description of the Sprite ar-
guments.

4.3.2. Connecting to an External GDB Server

Sourcery G++ Lite includes a program called gdbserver that can be used to debug a program
running on a remote ARM uClinux target. Follow the instructions in Chapter 3, “Sourcery G++ Lite
for ARM uClinux” to install and run gdbserver on your target system.

From within GDB, you can connect to a running gdbserver or other debugging stub that uses the
GDB remote protocol using:

(gdb) target remote host:port

where host is the host name or IP address of the machine the stub is running on, and port is the
port number it is listening on for TCP connections.

20

Using Sourcery G++ from the Command Line

Chapter 5
Sourcery G++ Debug Sprite
This chapter describes the use of the Sourcery G++ Debug Sprite for remote debugging.
The Sprite is provided for debugging of the uClinux kernel on the target board.This chapter
includes information about the debugging devices and boards supported by the Sprite for
ARM uClinux.

21

Sourcery G++ Lite contains the Sourcery G++ Debug Sprite for ARM uClinux. This Sprite is provided
to allow debugging of programs running on a bare board. You can use the Sprite to debug a program
when there is no operating system on the board, or for debugging the operating system itself. If the
board is running an operating system, and you wish to debug a program running on that OS, you
should use the facilities provided by the OS itself (for instance, using gdbserver).

The Sprite acts as an interface between GDB and external debug devices and libraries. Refer to
Section 5.2, “Invoking Sourcery G++ Debug Sprite” for information about the specific devices sup-
ported by this version of Sourcery G++ Lite.

Note for uClinux users

The Debug Sprite provided with Sourcery G++ Lite allows remote debugging of the uClinux
kernel running on the target. For remote debugging of application programs, you should
use gdbserver instead. See Chapter 3, “Sourcery G++ Lite for ARM uClinux” for details
about how to install and run gdbserver on the target.

Important

The Sourcery G++ Debug Sprite is not part of the GNU Debugger and is not free or open-
source software. You may use the Sourcery G++ Debug Sprite only with the GNU Debugger.
You may not distribute the Sourcery G++ Debug Sprite to any third party.

5.1. Probing for Debug Devices
Before running the Sourcery G++ Debug Sprite for the first time, or when attaching new debug
devices to your host system, it is helpful to verify that the Sourcery G++ Debug Sprite recognizes
your debug hardware. From the command line, invoke the Sprite with the -i option:

> arm-uclinuxeabi-sprite -i

This prints out a list of supported device types. For devices that can be autodetected, it additionally
probes for and prints out a list of attached devices. For instance:

CodeSourcery ARM Debug Sprite
 (Sourcery G++ Lite 2010q1-189)
armusb: [speed=<n:0-7>] ARMUSB (Stellaris) device
 armusb:///0B01000C - Stellaris Evaluation Board (0B01000C)
rdi: (rdi-library=<file>&rdi-config=<file>) RDI Device
 rdi:/// - RDI Device

This shows that ARMUSB and RDI devices are supported. The exact set of supported devices depends
on your host system and the version of Sourcery G++ you have installed; refer to Section 5.2, “In-
voking Sourcery G++ Debug Sprite” for complete information.

Note that it may take several seconds for the Debug Sprite to probe for all types of supported devices.

5.2. Invoking Sourcery G++ Debug Sprite
The Debug Sprite is invoked as follows:

> arm-uclinuxeabi-sprite [options] device-url board-file

The device-url specifies the debug device to use to communicate with the board. It follows the
standard format:

22

Sourcery G++ Debug Sprite

scheme:scheme-specific-part[?device-options]

Most device URL schemes also follow the regular format:

scheme:[//hostname:[port]]/path[?device-options]

The meanings of hostname, port, path and device-options parts depend on the scheme
and are described below. The following schemes are supported in Sourcery G++ Lite for ARM uC-
linux:

rdi Use an RDI debugging device. Refer to Section 5.4, “Remote Debug Interface
Devices”.

flashpro Use a FlashPro debugging device. Refer to Section 5.5, “Actel FlashPro Devices”.

The optional ?device-options portion is allowed in all schemes. These allow additional device-
specific options of the form name=value. Multiple options are concatenated using &.

The board-file specifies an XML file that describes how to initialize the target board, as well
as other properties of the board used by the debugger. If board-file refers to a file (via a relative
or absolute pathname), it is read. Otherwise, board-file can be a board name, and the toolchain's
board directory is searched for a matching file. See Section 5.7, “Supported Board Files” for the list
of supported boards, or invoke the Sprite with the -b option to list the available board files. You
can also write a custom board file; see Section 5.8, “Board File Syntax” for more information about
the file format.

Both the device-url and board-file command-line arguments are required to correctly
connect the Sprite to a target board.

5.3. Sourcery G++ Debug Sprite Options
The following command-line options are supported by the Sourcery G++ Debug Sprite:

-b Print a list of board-file files in the board config directory.

-h Print a list of options and their meanings. A list of device-url syntaxes
is also shown.

-i Print a list of the accessible devices. If a device-url is also specified,
only devices for that device type are scanned. Each supported device type is
listed along with the options that can be appended to the device-url. For
each discovered device, the device-url is printed along with a description
of that device.

-l [host]:port Specify the host address and port number to listen for a GDB connection. If
this option is not given, the Debug Sprite communicates with GDB using
stdin and stdout. If you start the Sprite from within GDB using the target
remote | arm-uclinuxeabi-sprite ... command, you do not
need this option.

-m Listen for multiple sequential connections. Normally the Debug Sprite ter-
minates after the first connection from GDB terminates. This option instead
makes it listen for a subsequent connection. To terminate the Sprite, open a
connection and send the string END\n.

23

Sourcery G++ Debug Sprite

-q Do not print any messages.

-v Print additional messages.

If any of -b, -i or -h are given, the Debug Sprite terminates after providing the information rather
than waiting for a debugger connection.

5.4. Remote Debug Interface Devices
Remote Debug Interface (RDI) devices are supported. The RDI device URL accepts no hostname,
port or path components, so the device-url is specified as follows:

rdi:[///][?device-options]

The following device-options are required:

rdi-library=library Specify the library (DLL or shared object) implementing the RDI
target you wish to use.

rdi-config=configfile Specify a file containing configuration information for library.
The format of this file is specific to the RDI library you are using,
but tends to constitute a list of key=value pairs. Consult the
documentation of your RDI library for details.

5.5. Actel FlashPro Devices
On Windows hosts, Sourcery G++ Lite supports FlashPro devices used with Actel Cortex-M1 devel-
opment kits.

For FlashPro devices, the device-url has the following form:

flashpro:[//usb12345/][?jtagclock=rate]

The optional usb12345 part indicates the ID of the FlashPro device to connect to, which is useful
if you have more than one such device attached to your computer. If the ID is omitted, the Debug
Sprite connects automatically to the first detected FlashPro device. You can enumerate the connected
FlashPro devices by invoking the Sprite with the -i switch, as follows:

> arm-uclinuxeabi-sprite -i flashpro:

The jtagclock option allows the communication speed with the target board to be altered. The
rate is specified in Hz and may range between 93750 and 4000000. The default is 93750, the
slowest speed supported by the FlashPro device. Depending on your target board, you may be able
to increase this rate, but beware that communication errors may occur above a certain threshold. If
you encounter communication errors with a higher-than-default speed selected, try reducing the
speed.

5.5.1. Installing FlashPro Windows drivers

Windows drivers for the FlashPro device are included with the FlashPro software provided by Actel.
Refer to Actel's documentation for details on installing this software. You must use the Actel FlashPro
software to configure the FPGA on your Cortex-M1 board, but it does not need to be running when
using the Debug Sprite.

24

Sourcery G++ Debug Sprite

Once you have set up your board using the FlashPro software, you can check that it is recognized
by the Sourcery G++ Debug Sprite by running the following command:

> arm-uclinuxeabi-sprite -i
flashpro: [jtagclock=<n:93750-4000000>] FlashPro device
 flashpro://usb12345/ - FlashPro Device
 ...

If output similar to the above does not appear, your FlashPro device is not working correctly. Contact
CodeSourcery for further guidance in that case.

5.6. Debugging a Remote Board
You can run the Sourcery G++ Debug Sprite on a different machine from the one on which GDB is
running. For example, if your board is connected to a machine in your lab, you can run the debugger
on your laptop and connect to the remote board. The Sourcery G++ Debug Sprite must run on the
machine that is connected to the target board. You must have Sourcery G++ installed on both ma-
chines.

To use this mode, you must start the Sprite with the -l option and specify the port on which you
want it to listen. For example:

> arm-uclinuxeabi-sprite -l :10000 device-url board-file

starts the Sprite listening on port 10000.

When running GDB from the command line, use the following command to connect GDB to the
remote Sprite:

(gdb) target remote host:10000

where host is the name of the remote machine. After this, debugging is just as if you are debugging
a target board connected to your host machine.

For more detailed instructions on using the Sourcery G++ Debug Sprite in this way, please refer to
the Sourcery G++ Knowledge Base1.

5.7. Supported Board Files
The Sourcery G++ Debug Sprite for ARM uClinux includes support for the following target boards.
Specify the appropriate board-file as an argument when invoking the Sprite from the command
line.

ConfigBoard

cycloneiii-cm1Altera Cyclone III Cortex-M1

armulatorARMulator (RDI)

1 https://support.codesourcery.com/GNUToolchain/kbentry132

25

Sourcery G++ Debug Sprite

https://support.codesourcery.com/GNUToolchain/kbentry132
https://support.codesourcery.com/GNUToolchain/kbentry132

5.8. Board File Syntax
The board-file can be a user-written XML file to describe a non-standard board. The Sourcery
G++ Debug Sprite searches for board files in the arm-uclinuxeabi/lib/boards directory
in the installation. Refer to the files in that directory for examples.

The file's DTD is:

<!-- Board description files

 Copyright (c) 2007-2009 CodeSourcery, Inc.

 THIS FILE CONTAINS PROPRIETARY, CONFIDENTIAL, AND TRADE
 SECRET INFORMATION OF CODESOURCERY AND/OR ITS LICENSORS.

 You may not use or distribute this file without the express
 written permission of CodeSourcery or its authorized
 distributor. This file is licensed only for use with
 Sourcery G++. No other use is permitted.
 -->

<!ELEMENT board
 (properties?, feature?, initialize?, memory-map?)>

<!ELEMENT properties
 (description?, property*)>

<!ELEMENT initialize
 (write-register | write-memory | delay
 | wait-until-memory-equal | wait-until-memory-not-equal)* >
<!ELEMENT write-register EMPTY>
<!ATTLIST write-register
 address CDATA #REQUIRED
 value CDATA #REQUIRED
 bits CDATA #IMPLIED>
<!ELEMENT write-memory EMPTY>
<!ATTLIST write-memory
 address CDATA #REQUIRED
 value CDATA #REQUIRED
 bits CDATA #IMPLIED>
<!ELEMENT delay EMPTY>
<!ATTLIST delay
 time CDATA #REQUIRED>
<!ELEMENT wait-until-memory-equal EMPTY>
<!ATTLIST wait-until-memory-equal
 address CDATA #REQUIRED
 value CDATA #REQUIRED
 timeout CDATA #IMPLIED
 bits CDATA #IMPLIED>
<!ELEMENT wait-until-memory-not-equal EMPTY>
<!ATTLIST wait-until-memory-not-equal
 address CDATA #REQUIRED
 value CDATA #REQUIRED

26

Sourcery G++ Debug Sprite

 timeout CDATA #IMPLIED
 bits CDATA #IMPLIED>

<!ELEMENT memory-map (memory-device)*>
<!ELEMENT memory-device (property*, description?, sectors*)>
<!ATTLIST memory-device
 address CDATA #REQUIRED
 size CDATA #REQUIRED
 type CDATA #REQUIRED
 device CDATA #IMPLIED>

<!ELEMENT description (#PCDATA)>
<!ELEMENT property (#PCDATA)>
<!ATTLIST property name CDATA #REQUIRED>
<!ELEMENT sectors EMPTY>
<!ATTLIST sectors
 size CDATA #REQUIRED
 count CDATA #REQUIRED>

<!ENTITY % gdbtarget SYSTEM "gdb-target.dtd">
%gdbtarget;

All values can be provided in decimal, hex (with a 0x prefix) or octal (with a 0 prefix). Addresses
and memory sizes can use a K, KB, M, MB, G or GB suffix to denote a unit of memory. Times must
use a ms or us suffix.

The following elements are available:

<board> This top-level element encapsulates the entire description of the board. It
can contain <properties>, <feature>, <initialize> and
<memory-map> elements.

<properties> The <properties> element specifies specific properties of the target
system. This element can occur at most once. It can contain a
<description> element.

It can also contain <property> elements with the following names:

banked-regs The banked-regs property specifies that the CPU
of the target board has banked registers for different
processor modes (supervisor, IRQ, etc.).

has-vfp The has-vfp property specifies that the CPU of the
target board has VFP registers.

system-v6-m The system-v6-m property specifies that the CPU
of the target board has ARMv6-M architecture system
registers.

system-v7-m The system-v7-m property specifies that the CPU
of the target board has ARMv7-M architecture system
registers.

core-family The core-family property specifies the ARM
family of the target. The body of the <property>

27

Sourcery G++ Debug Sprite

element may be one of arm7, arm9, arm11, and
cortex.

system-clock This property specifies the target clock frequency (in
Hertz) after reset. It is used to configure flash program-
ming algorithms.

<initialize> The <initialize> element defines an initialization sequence for the
board, which the Sprite performs before downloading a program. It can
contain <write-register>, <write-memory> and <delay>
elements.

<feature> This element is used to inform GDB about additional registers and peri-
pherals available on the board. It is passed directly to GDB; see the GDB
manual for further details.

<memory-map> This element describes the memory map of the target board. It is used by
GDB to determine where software breakpoints may be used and when
flash programming sequences must be used. This element can occur at
most once. It can contain <memory-device> elements.

<memory-device> This element specifies a region of memory. It has four attributes:
address, size, type and device. The address and size attributes
specify the location of the memory device. The type attribute specifies
that device as ram, rom or flash. The device attribute is required for
flash regions; it specifies the flash device type. The
<memory-device> element can contain a <description> element.

<write-register> This element writes a value to a control register. It has three attributes:
address, value and bits. The bits attribute, specifying the bit
width of the write operation, is optional; it defaults to 32.

<write-memory> This element writes a value to a memory location. It has three attributes:
address, value and bits. The bits attribute is optional and defaults
to 32. Bit widths of 8, 16 and 32 bits are supported. The address written
to must be naturally aligned for the size of the write being done.

<delay> This element introduces a delay. It has one attribute, time, which specifies
the number of milliseconds, or microseconds to delay by.

<description> This element encapsulates a human-readable description of its enclosing
element.

<property> The <property> element allows additional name/value pairs to be
specified. The property name is specified in a name attribute. The property
value is the body of the <property> element.

28

Sourcery G++ Debug Sprite

Chapter 6
Next Steps with Sourcery G++
This chapter describes where you can find additional documentation and information about
using Sourcery G++ Lite and its components.

29

6.1. Sourcery G++ Knowledge Base
The Sourcery G++ Knowledge Base is available to registered users at the Sourcery G++ Portal1.
Here you can find solutions to common problems including installing Sourcery G++, making it work
with specific targets, and interoperability with third-party libraries. There are also additional example
programs and tips for making the most effective use of the toolchain and for solving problems
commonly encountered during debugging. The Knowledge Base is updated frequently with additional
entries based on inquiries and feedback from customers.

6.2. Manuals for GNU Toolchain Components
Sourcery G++ Lite includes the full user manuals for each of the GNU toolchain components, such
as the compiler, linker, assembler, and debugger. Most of the manuals include tutorial material for
new users as well as serving as a complete reference for command-line options, supported extensions,
and the like.

When you install Sourcery G++ Lite, links to both the PDF and HTML versions of the manuals are
created in the shortcuts folder you select. If you elected not to create shortcuts when installing
Sourcery G++ Lite, the documentation can be found in the share/doc/
sourceryg++-arm-uclinuxeabi/ subdirectory of your installation directory.

In addition to the detailed reference manuals, Sourcery G++ Lite includes a Unix-style manual page
for each toolchain component. You can view these by invoking the man command with the pathname
of the file you want to view. For example, you can first go to the directory containing the man pages:

> cd $INSTALL/share/doc/sourceryg++-arm-uclinuxeabi/man/man1

Then you can invoke man as:

> man ./arm-uclinuxeabi-gcc.1

Alternatively, if you use man regularly, you'll probably find it more convenient to add the directory
containing the Sourcery G++ man pages to your MANPATH environment variable. This should go in
your .profile or equivalent shell startup file; see Section 2.6, “Setting up the Environment” for
instructions. Then you can invoke man with just the command name rather than a pathname.

Finally, note that every command-line utility program included with Sourcery G++ Lite can be invoked
with a --help option. This prints a brief description of the arguments and options to the program
and exits without doing further processing.

1 https://support.codesourcery.com/GNUToolchain/

30

Next Steps with Sourcery G++

https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/

Appendix A
Sourcery G++ Lite Release Notes
This appendix contains information about changes in this release of Sourcery G++ Lite for
ARM uClinux. You should read through these notes to learn about new features and bug
fixes.

31

A.1. Changes in Sourcery G++ Lite for ARM
uClinux
This section documents Sourcery G++ Lite changes for each released revision.

A.1.1. Changes in Sourcery G++ Lite 2010q1-189

Improved NEON code generation for 0.0 constants. The compiler now generates better code
for loading double float 0.0 constants on processors supporting NEON instructions.

Incorrect linker-generated functions. A bug that caused some linker-generated functions (in-
cluding stubs to support interworking from ARM mode to Thumb mode and stubs to implement long
branches) to jump to invalid offsets has been fixed.

Improved support for debugging RealView® programs with inlined functions . GDB has
been enhanced to better handle debug information for inlined functions contained in binaries produced
by the ARM RealView® compiler. Formerly, local variables in inner function scopes would become
unavailable at calls to static inline functions. GDB now also includes inlined functions in the stack
trace in binaries produced by RealView® versions earlier than 4.0. In addition, GDB's support for
stepping over inline functions in programs built with such compilers has been improved.

Improved code generation for if statements. The compiler can now generate better code for
if statements when the then and else clauses contain similar code.

Assembler encoding bug fixes. Several bugs in the assembler have been fixed that caused selection
of incorrect encodings for some instructions that have multiple encodings. The incorrect encodings
are not believed to have affected runtime behavior but were not in conformance with the canonical
encodings specified by the ARM ARM. The objdump command has also been fixed to decode such
instructions correctly.

ARMv7-A performance improvements. The compiler has been enhanced to produce faster code
for the ARM architecture, particularly for ARMv7-A cores, when compiling using the -O2 option.
This results in a significant improvement in performance relative to CodeSourcery's 2009q3 releases.

Linker performance improvement. A bug in the linker that caused applications with many input
files to link slowly has been fixed.

IPSR register. A bug in the Sourcery G++ Debug Sprite that caused only five bits of the M-
profile IPSR register to be displayed in the debugger has been fixed.

Weak symbols. An assembler bug has been fixed that caused incorrect code to be generated for
references to weak symbols when a default definition is also provided in the same file.

Optimization of ARM NEON vdupq_n* intrinsics. The compiler now generates better code
for vdupq_n* intrinsics to load particular constants.

Linker bug fix for --section-start. A linker bug that caused --section-start to
fail to work as documented if the section is defined in multiple object files has been fixed.

GCC inline assembly bug fixes. A bug that caused NEON/VFP registers specified in the clobber
list of inline assembly statements to be saved and restored incorrectly has been fixed. Another bug
that caused incorrect code when double-precision or quad-precision registers were specified in the
clobber list has also been fixed.

32

Sourcery G++ Lite Release Notes

Assembler segmentation fault fix. A bug has been fixed that caused the assembler to crash when
processing some data filling directives, such as .fill 0, 0, 0.

Linker bug with Cortex-A8 erratum fix. A bug in the --fix-cortex-a8 linker option,
which is enabled by default when linking ARMv7-A objects, has been fixed. The bug could cause
the linker to generate incorrect shared libraries.

Improved code generation for Cortex-A5. The compiler has been enhanced to provide instruction
scheduling for Cortex-A5 cores. To take advantage of this, use the -mcpu=cortex-a5 command-
line option.

Improved support for debugging RealView® programs . GDB has been enhanced to handle
some debug information contained in binaries produced by the ARM RealView® compiler. Formerly,
GDB sometimes crashed on these programs and libraries.

Better use of NEON instructions on Cortex-A8. The compiler now generates better code when
optimizing for the Cortex-A8 by being less eager to use NEON instructions.

Assembler segmentation fault fix. A bug has been fixed that caused the assembler to crash when
assembling some Thumb-only instructions in ARM mode. The assembler now gives an error on all
incorrect uses of Thumb-only instructions in ARM mode.

GCC internal compiler error. A bug has been fixed that caused GCC to crash when compiling
some C++ code using templates at -O2 or -O3.

GCC internal compiler error with optimize attribute. A bug has been fixed that caused the
compiler to crash when invoked with the -O0 or -O1 option on code using the optimize attribute
to specify higher optimization levels for individual functions.

C++ array initializer optimization. The compiler now generates better code for some non-constant
array initializations in C++.

A.1.2. Changes in Sourcery G++ Lite 2010q1-154

Support for ARM Cortex-M4 cores. Sourcery G++ now includes support for ARM Cortex-M4
cores. Use the -mcpu=cortex-m4 command-line option.

Debugging preprocessed source code. A compiler bug has been fixed that caused debug output
to erroneously contain the name of the intermediate preprocessed file.

Thumb-2 size optimization improvements. The compiler has been enhanced to produce smaller
code for the ARM architecture, particularly for Thumb-2 mode, when compiling using the -Os option.
This results in a significant improvement in code size relative to CodeSourcery's 2009q3 releases.

GDB update. The included version of GDB has been updated to 7.0.50.20100218. This update
adds numerous bug fixes and new features, including improved C++ language support, automatic
caching of stack memory, and Position Independent Executable (PIE) support.

Incorrect symbol addresses bug fix. A bug in the linker that caused it to assign incorrect addresses
to symbols has been fixed. The bug occurred when the input objects contained sections not explicitly
mentioned in the linker script.

Linker fix for data-only sections. A bug has been fixed that caused the linker to incorrectly
mark parts of the output as containing code, rather than data, when linking data-only sections not
explicitly tagged as such. The bug resulted in incorrect disassembly.

33

Sourcery G++ Lite Release Notes

C++ name-mangling of va_list. The compiler no longer issues the mangling of 'va_
list' has changed warnings for references to std::va_list within system header files.

Static constructor and destructor ordering fixes. The linker now correctly ensures that static
destructors with priorities are executed after destructors without priorities. Another linker bug that
caused incorrect static constructor and destructor ordering with partial linking involved has been
fixed.

GDB asynchronous mode fix. GDB can now be used from the command line in asynchronous
mode with remote targets. Previously, GDB did not accept user input while asynchronous commands
(such as continue &) were running.

GDB interrupt handling bug fix. A bug in GDB has been fixed that caused it to sometimes fail
to indicate that the target had stopped after being interrupted. The bug affected clients using GDB's
MI front end.

GDB and programs linked with the --gc-sections linker option. GDB has been improved
to better handle debug information found in programs and libraries linked with the --gc-sections
option. GDB formerly selected the wrong debug information in some cases, resulting in incorrect
behavior when stepping over a function or displaying local variables, for example.

GDB memory find bug fix. A bug in GDB's find command has been fixed. The bug caused
searches on large memory areas to fail or report matches at incorrect addresses.

Frame manipulation bug fix. A bug in GDB has been fixed that caused frame manipulation
commands to report an internal error in some cases when used on arbitrary stack frames specified
by an address.

Read watchpoints bug fix. A GDB bug has been fixed that caused watchpoints set to trigger on
memory reads to be silently ignored in some cases.

GDB load improvement. GDB now automatically initializes ARM Cortex-M devices to Thumb
mode on the load command. This is helpful, for example, when an incorrect program image was
previously flashed onto the board, causing it to enter an invalid state on reset.

Setting thread-specific breakpoints in GDB. A bug in GDB has been fixed that caused a syntax
error for the break *expression thread threadnum command.

Backtracing through noreturn functions. A compiler bug that made it impossible to obtain a
backtrace through functions declared with the noreturn attribute has been fixed. This fix makes
it possible for the debugger to present a useful stack backtrace for applications that call abort.

Improved code generation for Cortex-A9. The compiler has been enhanced to provide better
instruction scheduling for Cortex-A9 cores. To take advantage of this, use the -mcpu=cortex-a9
command-line option.

Improved NEON code generation. GCC's code generation for NEON targets (e.g., when com-
piling with -mfpu=neon) has been improved. In particular, the compiler can now make use of
NEON instructions for many 64-bit integer operations.

Indirect function call optimization. The instruction sequence used to implement calls via a
function pointer has been improved to give better branch-prediction performance on some processors.

Thumb-2 function call optimization. The compiler has been enhanced to generate improved
code on Thumb-2 targets for functions that return via calls to other functions.

34

Sourcery G++ Lite Release Notes

vcvt assembly bug fix. A bug that caused vcvt.s32.f64 instructions to be misassembled
as vcvtr.s32.f64 has been fixed.

Additional error checks in the assembler. The assembler has been improved to perform a
number of additional checks for invalid inputs. In particular, it now diagnoses additional invalid uses
of the PC and SP registers, as specified in the ARM documentation. The assembler now also rejects
invalid NEON alignment qualifiers, such as vld1.8 {d0}, [r0, :128] and vld1.8 {q0},
[r0, :256].

Branches between ARM and Thumb fix. An assembler bug that caused incorrect branches
between ARM and Thumb code in different sections has been fixed.

Assembler segmentation fault fix. A bug has been fixed that caused the assembler to crash when
processing code containing invalid Thumb-mode instructions such as ldr r0, 0. The assembler
now produces an error message in such cases.

Assembler fix for Thumb-2. A bug that caused the assembler to reject some valid Thumb-2
strexd instructions has been fixed.

NEON assembler fix. The assembler now correctly handles the three-operand form of NEON
logic instructions, such as vorr.i32 q0, q0, #0xff

Warning for deprecated instructions. The assembler now issues warnings about uses of swp
or swpb instructions on architectures where they have been deprecated.

Disassembler bug fix. A bug in the disassembler has been fixed that caused incorrect output for
data objects, including literal pools and the interrupt vector.

Optimizer bug fix. A bug in GCC that caused internal compiler errors at -O2 or above has been
fixed. The bug also occurred at other optimization levels when the -fpromote-loop-indices
command-line option was used.

Debug Sprite multiple connections fix. When started with the -m option, the Sourcery G++
Debug Sprite no longer exits if the connection to GDB is lost when sending a response. Instead, it
goes back to waiting for another connection.

Watchpoint fix. A bug in the Sourcery G++ Debug Sprite that sometimes prevented watchpoints
on Cortex-M targets from functioning has been fixed.

Out-of-range branch error. A compiler bug has been fixed that caused out-of-range branch errors
from the assembler. The bug only affected code compiled in Thumb-2 mode.

Linker relocation diagnostics. A bug that caused the linker to incorrectly diagnose overflows
for some valid relocations has been fixed.

Thumb-2 internal compiler error fix. A bug that caused an internal compiler error when
building the QT library for Thumb-2 has been fixed.

Thumb-2 multiply fix. A bug that caused an invalid muls instruction to be generated in certain
circumstances has been fixed. This affected code compiled for Thumb-2, and resulted in an error
from the assembler.

Internal compiler error fix. A bug that caused an internal compiler error when using
-fno-omit-frame-pointer to compile code for Thumb-2 has been fixed.

35

Sourcery G++ Lite Release Notes

A.1.3. Changes in Sourcery G++ Lite 2009q3-66

GDB crash fix. A GDB bug has been fixed that caused GDB to crash when unloading shared
libraries or switching executables.

@FILE fix. A bug has been fixed in the processing of @FILE command-line options by GCC,
GDB, and other tools. The bug caused any options in FILE following a blank line to be ignored.

Preprocessor error handling. The preprocessor now treats failing to find a file referenced via
#include as a fatal error.

NEON improvements. The compiler now generates improved NEON vector code when copying
memory or storing constants to memory using the NEON coprocessor. The compiler also generates
better code for accessing data arrays that are not known to have 64-bit alignment. In addition, a bug
that caused internal compiler errors when compiling for Thumb-2 with NEON enabled has been
fixed, as has another bug that caused some vector shift NEON operations to be wrongly rejected.

ELF file corruption with strip. A bug that caused strip to corrupt unusual ELF files has
been fixed.

GDB support for Cygwin pathnames. A bug in GDB's translation of Cygwin pathnames has
been fixed.

Compiler errors with float32_t. A bug has been fixed that caused compiler errors when
using the float32_t type from arm_neon.h.

Support for ARM Cortex-A5 cores. Sourcery G++ now includes basic support for ARM Cortex-
A5 cores. Use the -mcpu=cortex-a5 command-line option.

Static variables and asm statements bug fix. A bug in GCC that caused functions containing
static variables and asm statements to be miscompiled at -O2 or above has been fixed. The bug also
occurred at other optimization levels when the -fremove-local-statics command-line option
was used.

Warnings for naked functions. A compiler bug that resulted in incorrect warnings about missing
return statements in non-void functions declared with the naked attribute has been fixed.

Optimizer bug fix. A bug in GCC that caused functions with complex loop nests to be miscompiled
at -O2 or above has been fixed. The bug also occurred at other optimization levels when the
-fpromote-loop-indices command-line option was used.

VFPv4 support. Sourcery G++ now includes support for VFPv4, VFPv4-D16 and NEON-VFPv4
coprocessors. Use the -mfpu=vfpv4, -mfpu=vfpv4-d16 or -mfpu=neon-vfpv4 options,
respectively.

GCC internal compiler error. A bug has been fixed that caused the compiler to crash when
optimizing code that casts between structure types and the type of the first field.

ELF Program Headers. The linker now better diagnoses errors in the usage of FILEHDR and
PHDRS keywords in PHDRS command of linker scripts. Refer to the linker manual for more inform-
ation.

36

Sourcery G++ Lite Release Notes

A.1.4. Changes in Sourcery G++ Lite 2009q3-36

Improved optimization for ARM. GCC now automatically enables loop unrolling and
-fpromote-loop-indices when -O2 or -O3 is specified. Loop unrolling is limited at -O2
to control code growth. These changes improve performance by more than 5%.

VFP assembly mnemonics. The assembler now accepts unified assembly mnemonics for VFP
instructions (e.g. VADD.f32 s0, s0) in legacy syntax mode.

ARM Cortex-R4F assembler bug fix. The assembler now correctly recognizes the
-mcpu=cortex-r4f command-line option to select the Cortex-R4F processor.

VFP half-precision extensions. Sourcery G++ now includes support for VFP coprocessors with
half-precision floating-point extensions. This can be enabled with the -mfpu=vfpv3-d16-fp16
or -mfpu=vfpv3-fp16 command-line options.

Linux kernel headers update. Linux kernel header files have been updated to version 2.6.30.

Optimizer improvements. When optimizing for speed, the compiler now uses improved heuristics
to limit certain types of optimizations that may adversely affect both code size and speed. This change
also makes it possible to produce better code when optimizing for space rather than speed.

Improved optimization for Thumb-2. GCC now supports instruction scheduling for Thumb-2
code. This optimization is enabled when compiling with -O2, -O3, or -Os, and can improve per-
formance substantially.

ARM VFP assembler bug fix. The assembler now correctly assembles the vmls, vnmla and
vnmls mnemonics. Previously these were incorrectly assembled to different instructions.

GDB finish internal error. A bug has been fixed that caused a GDB internal error when using
the finish command. The bug occurred when debugging optimized code.

Mixed PIC and non-PIC code. The elf2flt utility, automatically run by Sourcery G++ when
linking uClinux applications, now gives an error when an attempt is made to link mixed PIC and
non-PIC code, which is not supported on uClinux targets. Formerly, it silently produced an invalid
executable in such cases.

GDB update. The included version of GDB has been updated to 6.8.50.20090630. This update
adds numerous bug fixes and new features, including support for multi-byte and wide character sets
and improved C++ template support.

New assembler directive .inst. The assembler now accepts the new .inst directive to gen-
erate an instruction from its integer encoding.

GDB and third-party compilers. Some bugs that caused GDB to crash when debugging programs
compiled with third-party tools have been fixed. These bugs did not affect programs built with
Sourcery G++.

Remote debugging hardware watchpoint bug fix. A GDB bug has been fixed that caused
hardware watchpoint hits to be incorrectly reported in some cases.

Internal error in assembler. An assembler bug that caused an internal error when .thumb or
.arm appears after an invalid instruction has been fixed.

37

Sourcery G++ Lite Release Notes

GDB internal warning fix. A GDB bug has been fixed that caused warnings of the form
warning: (Internal error: pc address in read in psymtab, but not
in symtab.).

Improved bit counting operation. The __builtin_ctz built-in function, which returns the
number of trailing zero bits in a value, has been improved to use a shorter instruction sequence for
ARMv6T2 and later.

Out-of-range branch errors. A Thumb-2 code generation defect in the compiler that caused
branch out of range errors from the assembler has been eliminated.

Binutils update. The binutils package has been updated to version 2.19.51.20090709 from the
FSF trunk. This update includes numerous bug fixes.

Assembler validation improvements. The assembler now issues a warning when a section finishes
with an unclosed IT instruction block at the end of the input file. It also now rejects unwinding dir-
ectives that appear outside of a .fnstart/.fnend pair. Additionally, 32-bit Thumb instructions
are now correctly rejected when assembling for cores that do not support these instructions.

Assembler validations fix. A bug in the assembler that caused some addw and subw instructions
with SP or PC as operand to be wrongly rejected has been fixed.

-mauto-it assembler option replaced with -mimplicit-it . The -mauto-it command-
line option to the assembler has been replaced with a more general -mimplicit-it option to
control the behavior of the assembler when conditional instructions appear outside an IT instruction
block. If you were previously using -mauto-it, you should now use -mimplicit-it=always.
Other -mimplicit-it modes allow you to separately control implicit IT instruction insertion
behavior in ARM and Thumb-2 code. For more information, refer to the assembler manual. In addition
to renaming the option, a number of bugs in the implicit IT generation have been fixed.

GDB backwards compatibility fix. A bug has been fixed that caused GDB to crash when loading
symbols from binaries built by very old versions of GCC.

Debug information for variadic functions. A compiler bug that resulted in incorrect debug in-
formation for functions with variable arguments has been fixed.

Overlay sections. arm-uclinuxeabi-readelf now correctly recognizes section headers
for ARM_DEBUGOVERLAY and ARM_OVERLAYSECTION sections.

Code generation improvements. The compiler has been changed to make better use of VFP re-
gisters in mixed integer and floating-point code, resulting in faster code.

Register variable corruption. A compiler bug has been fixed that caused incorrect code to be
generated when the frame pointer or other special-use registers are used as explicit local register
variables, introduced via the asm keyword on their declarations.

Startup code debugging fixes. Two GDB bugs have been fixed that caused errors when debugging
startup code. One bug caused an internal error message; the other caused the error Cannot find
bounds of current function.

Assembler fix for mixed Thumb and ARM mode. A bug in the assembler has been fixed where
mapping symbols were sometimes incorrectly placed at section boundaries. This could lead to incorrect
disassembly in some cases.

C++ exception matching. A C++ conformance defect has been fixed. According to clause 15.3
of the standard, given a derived class D with base B, a thrown D * object is not caught by a handler

38

Sourcery G++ Lite Release Notes

with type B *& (that is, a reference to pointer B). The compiler formerly treated this case incorrectly
as if the handler had type B *, which does catch D *.

-fremove-local-statics optimization. The -fremove-local-statics optimization
is now enabled by default at -O2 and higher optimization levels.

Elimination of spurious warnings about NULL . The C++ compiler no longer issues spurious
warnings about comparisons between pointers to members and NULL.

Vectorizer improvements. The compiler now generates improved code for accesses to static
nested array variables (e.g. static int foo[8][8];).

Linker bug fix. A bug that caused the linker to crash when .ARM.exidx sections were discarded
by a linker script has been fixed.

Configuration file required for Debug Sprite. When invoking the Sourcery G++ Debug Sprite
from the command line, it is now required to specify a board configuration file argument. This change
eliminates a source of confusion and errors resulting from accidental omission of the configuration
file argument, since recent improvements to debugger functionality depend on properties specified
in the configuration file. Refer to Chapter 5, “Sourcery G++ Debug Sprite” for more details on in-
voking the Sourcery G++ Debug Sprite from the command line.

uClibc upgrade. uClibc has been updated to version 0.9.30 plus additional updates from the uc-
libc.org repository as of June 2009. Programs linked with uClibc shared libraries from a previous
version of Sourcery G++ must be recompiled to run with the new version of uClibc.

GCC version 4.4.1. Sourcery G++ Lite for ARM uClinux is now based on GCC version 4.4.1.
For more information about changes from GCC version 4.3 that was included in previous releases,
see http://gcc.gnu.org/gcc-4.4/changes.html.

Watchpoint support. The Sourcery G++ Debug Sprite now implements watchpoints on all cur-
rently-supported debugging devices.

Linker map address sorting. The map generated by the linker -Map option now lists symbols
sorted by address.

A.1.5. Changes in Sourcery G++ Lite 2009q1-163

Incorrect placement of linker-generated functions. A bug that caused some linker-generated
functions (including stubs to support interworking from ARM mode to Thumb mode and stubs to
avoid processor errata) to be placed in data sections has been fixed.

New option for automatically generating IT blocks. The assembler now allows use of condi-
tional Thumb-2 instructions without requiring explicit IT instructions. Use the -mauto-it command-
line option to enable this automatic generation of IT instructions.

Incorrect code when using -falign-labels . A bug that caused the compiler to generate
incorrect code for switch statements when the -falign-labels option is used has been fixed.

Reduced compilation time. Compilation and build times when using Sourcery G++ Lite are now
slightly faster. This performance improvement is the result of building the compilers and other host
tools with a recent version of Sourcery G++, rather than an older GCC version.

Assembler bug fix. A bug in the assembler that caused duplicate and missing mapping symbols
has been fixed. The bug caused incorrect objdump output and incorrect byte-swapping for BE8
configurations.

39

Sourcery G++ Lite Release Notes

Stack backtracing and C++ exception handling. Improvements have been made to the linker
in support of C++ runtime exception handling and stack backtracing. A problem that caused crashes
during the backtrace of C routines that were not compiled with the -fexceptions option has
been fixed. In addition, the linker generates more compact stack unwinding tables which can lead
to smaller executables.

Incorrect linker-generated functions. A bug that caused some linker-generated functions (such
as stubs to support interworking from ARM mode to Thumb mode) to contain only nop instructions
instead of correct code sequences has been fixed.

Assembler diagnostics for invalid instructions. The assembler now issues diagnostics for invalid
ADR and ADRL instructions. Formerly, these invalid instructions were silently mis-assembled. This
assembler bug did not affect correct code.

Sprite's failure to reset the target. A bug has been fixed that sometimes caused the Sourcery
G++ Debug Sprite to fail to reset the target when using the multiple sequential connection feature
(enabled via the -m command-line option). This problem was specific to running the Debug Sprite
on Microsoft Windows hosts.

Loop optimization improvements. A new option, -fpromote-loop-indices, has been
added to the compiler. Specifying this option enables an optimization that improves the performance
of loops with index variables of integer types narrower than the target machine word size, such as
char or short. This optimization also applies to int on 64-bit targets.

Disassembler bug fix. A bug has been fixed that caused incorrect disassembly of some object
files with multiple sections whose symbol tables included symbols in the middle of functions. These
typically resulted from hand-written assembly.

Extraneous linker error messages. A linker bug that caused extraneous error messages of the
form Dwarf Error: Offset (507) greater than or equal to .debug_str
size (421). has been corrected. This bug did not affect the correctness of output binaries.

Linker crash with very large applications. A linker bug that caused a crash when linking very
large applications with the --fix-cortex-a8 command-line option has been fixed.

Assembler marking of data. Data generated using the assembler directives .ascii, .asciz,
.dc.d, .dc.s, .dc.x, .dcb, .dcb.b, .dcb.d, .dcb.l, .dcb.s, .dcb.w, .dcb.x, .ds,
.ds.b, .ds.d, .ds.l, .ds.p, .ds.s, .ds.w, .ds.x, .double, .fill, .float, .incbin,
.single, .space, .skip, .string, .string8, .string16, .string32, .string64,
and .zero is now correctly marked by the assembler as data rather than code. This fixes incorrect
byte-swapping of such data when linking for BE8 configurations.

arm-uclinuxeabi-objcopy bug fix. A bug has been fixed that caused
arm-uclinuxeabi-objcopy to issue an error when generating output in the Intel HEX format
and using --change-section-lma to change section addresses.

Linker script search path. The bug in the linker has been fixed that caused it not to follow its
documented behavior for searching for linker scripts named with the -T option. Now scripts are
looked up first in the current directory, then in library directories specified with -L command-line
options, and finally in the default system linker script directory.

Cortex-A8 erratum workaround enabled for ARMv7-A. The workaround for the erratum in
Cortex-A8 processors mentioned below is now enabled by default if you are targeting the ARMv7-
A architecture profile. The workaround can be disabled by passing the --no-fix-cortex-a8
option to the linker.

40

Sourcery G++ Lite Release Notes

Improved vectorization. Automatic vectorization for NEON now uses the fused multiply-add
(VMLA) and fused multiply-subtract (VMLS) instructions. These fused instructions are faster than the
equivalent two-instruction sequence consisting of a multiply followed by an add or subtract.

Internal compiler error when optimizing. A bug has been fixed that caused internal
compiler error: in build2_stat when compiling.

GDB quit error. A bug in GDB has been fixed that caused quit to report Quitting: You
can't do that without a process to debug. when debugging a core dump file.

Out-of-bounds accesses to stack arrays. A bug has been fixed that caused internal compiler
errors when some code involving out-of-bounds accesses to stack-allocated arrays was compiled
with the -mthumb option. Such code is not valid C; although it is now accepted by the compiler
and no diagnostic is issued, it has undefined behavior if executed.

Erratum workaround for Cortex-A8 processors. The linker now implements a workaround
for an erratum in Cortex-A8 processors. If you are targeting an affected part and wish to use the
workaround, pass the --fix-cortex-a8 option to the linker. Please contact ARM for further
details of the erratum.

Maximum code alignment increased. The maximum allowed code alignment has been increased
from 32 to 64 bytes. This change affects the .p2align and .align assembler directives and the
-falign-functions GCC option.

Corruption of block-scope variables. A compiler optimization bug that sometimes caused cor-
ruption of stack-allocated variables has been fixed. The bug affected variables declared in a local
block scope in functions containing multiple non-overlapping lexical block scopes, a technique
commonly used by programmers to reduce stack frame size. In some rare cases, other optimizations
performed by the compiler were ignoring the local extent of such block-scope variables.

A.1.6. Changes in Sourcery G++ Lite 2009q1-118

GCC version 4.3.3. Sourcery G++ Lite for ARM uClinux is now based on GCC version 4.3.3.
This is a bug fix update to GCC. For more information about changes from GCC version 4.3.2 that
was included in previous releases, see http://gcc.gnu.org/gcc-4.3/changes.html.

Improved NOP generation for Thumb-2 cores. The assembler now generates Thumb-2/ARMv6K
architectural NOP instructions when alignment padding is required in code sections.

Internal compiler error with -O3 or -fpredictive-commoning. A bug has been fixed
that caused internal compiler errors when compiling some code with -O3 or
-fpredictive-commoning.

CS3 board and processor support. CS3 board and processor support has been cleaned up to
remove entries that are not appropriate for or supported by Sourcery G++ Lite on ARM uClinux
targets. This includes processors for which Sourcery G++ Lite does not include appropriate run-time
libraries. In addition, CS3 support for boards based on Cortex-M3 processors has been removed as
these boards are not sufficiently powerful to run uClinux. These changes are intended to simplify
processor and board selection.

C++ named operators bug fix. A bug has been fixed that caused the compiler to crash in some
cases when the C++ operators and_eq, bitand, bitor, compl, not_eq, or_eq and xor_eq
were used in contexts where the preprocessor converts their names to strings.

41

Sourcery G++ Lite Release Notes

Debug information for anonymous structure types. A GCC bug in the generation of debug
information for anonymous structure types in C++ code has been fixed. The bug caused printing the
type information for such structures in the debugger (via the ptype command) to fail with an error
message.

Linker errors on non-ELF input. A bug has been fixed that caused internal errors from the
linker when linking non-ELF input files (with the -b or --format linker options).

Undefined weak references in shared libraries. A linker bug has been fixed affecting calls from
Thumb code in shared libraries to functions that are undefined weak references when the shared
library is linked. Such calls executed as nops whether or not the functions were defined at run time.

uClibc splice, vmsplice and tee functions. uClibc now provides the functions splice,
vmsplice and tee.

Improved code generation. The compiler has been improved to generate better code for an integer
multiplication whose result feeds into an addition.

Installer fails during upgrade. The Sourcery G++ installer for Microsoft Windows hosts could
fail during an upgrade while waiting for the previous version to be uninstalled. This bug has been
fixed.

Performance improvements. Tuning parameters for ARM code generation have been adjusted
to improve performance of the generated code.

Uninstaller removed by upgrade. The uninstaller could be incorrectly deleted during an upgrade
on Microsoft Windows hosts. This bug has been fixed.

Remote debugging connection auto-retry. The target remote command within GDB now
uses a configurable auto-retry timeout when establishing TCP connections. This is useful in avoiding
race conditions when the remote GDB stub or GDB server is launched simultaneously with GDB.
The auto-retry behavior is enabled by default; refer to the GDB manual for details.

CMP Thumb-2 instruction. The assembler no longer issues an error about CMP instructions in
which the second argument is the stack pointer (r13), as these are valid instructions. However, use
of the stack pointer in this context is deprecated in the current ARM architecture specification and
the assembler now warns about the deprecated use.

DMB, DSB, and ISB instructions on ARMv6-M. The assembler now accepts the DMB, DSB, and
ISB instructions on ARMv6-M CPUs, including Cortex-M0 and Cortex-M1. These instructions
were incorrectly rejected on these CPUs in previous releases.

Thumb half-precision floating point bug fix. A compiler bug has been fixed that formerly
caused incorrect code to be generated in Thumb mode for functions using half-precision floating-
point constants. The bug did not affect Thumb-2 code.

Improved code generation. The compiler has been improved to generate better code for integer
multiplication by certain constants.

Thumb-2 switch code generation bug fix. A bug has been fixed that caused incorrect Thumb-
2 code to be generated for some switch statements.

Internal compiler errors when optimizing. A defect that occasionally caused internal compiler
errors when partial redundancy elimination (PRE) optimization was enabled has been corrected.

42

Sourcery G++ Lite Release Notes

Install directory pathnames. Bugs in the install and uninstall scripts for Linux hosts that caused
errors or incorrect behavior when the Sourcery G++ install directory pathname contains whitespace
characters have been fixed.

Internal compiler error with large NEON types. A bug has been fixed that caused internal
compiler errors when compiling code using NEON types at least 32 bytes wide.

Temporary files on Microsoft Windows. On Microsoft Windows hosts, Sourcery G++ Lite now
uses the standard Windows algorithm to choose the directory in which to place temporary files. This
change eliminates a crash that occurred if none of the TEMP, TMP, or TMPDIR variables were set to
a suitable directory.

Vectorized shift fix. A bug has been fixed that caused incorrect code for loops containing a right
shift by a constant. The bug affected code compiled with -mfpu=neon and loop vectorization enabled
with -O3 or -ftree-vectorize.

Incorrect code for nested functions. A bug in GCC that caused the compiler to generate incorrect
code for nested functions has been fixed. The bug resulted in incorrect stack alignments in the affected
functions.

Binutils update. The binutils package has been updated to version 2.19.51.20090205 from the
FSF trunk. This update includes numerous bug fixes.

ARM build attributes conformance improvements. Several ARM EABI 2.07 conformance
issues relating to the handling of build attributes in the assembler and linker have been fixed. All
build attribute types are now recognized, and can now be declared by name, in addition to by number.
Support for merging attributes in the linker has been improved, and the linking of incompatible objects
is now detected and rejected in more cases.

Internal compiler error with -fremove-local-statics. An internal compiler error that
occurred when using the -fremove-local-statics option has been fixed. The error occurred
when compiling code with function-local static array or structure variables.

GDB update. The included version of GDB has been updated to 6.8.50.20081022. This update
includes numerous bug fixes.

Linker crash on incompatible input files. Some third-party compilers, including ARM
RealView® 4.0, produce a build attribute marking output files that are not compatible with the ABI
for the ARM Architecture. This attribute sometimes caused the linker to crash. The linker now cor-
rectly issues an error message.

A.1.7. Changes in Sourcery G++ Lite 2008q3-68

Bug fix for assembly listing. A bug that caused the assembler to produce corrupted listings (via
the -a option) on Windows hosts has been fixed.

Optimizer bug fix. A bug that caused an unrecognizable insn internal compiler error
when compiling at optimization levels above -O0 has been fixed.

VFP compiler fix. A compiler bug that resulted in internal compiler error: output_
operand: invalid expression as operand when generating VFP code has been fixed.

GDB display of source. A bug has been fixed that prevented GDB from locating debug inform-
ation in some cases. The debugger failed to display source code for or step into the affected functions.

43

Sourcery G++ Lite Release Notes

Workaround for Cortex-M3 CPU errata. Errata present in some Cortex-M3 cores can cause
data corruption when overlapping registers are used in LDRD instructions. The compiler avoids
generating these problematic instructions when the -mfix-cortex-m3-ldrd or
-mcpu=cortex-m3 command-line options are used. The Sourcery G++ runtime libraries have
also been updated to include this workaround.

GDB segment warning. Some compilers produce binaries including uninitialized data regions,
such as the stack and heap. GDB incorrectly displayed the warning Loadable segment "name"
outside of ELF segments for such binaries; the warning has now been fixed.

Misaligned NEON memory accesses. A bug has been fixed that caused the compiler to use
aligned NEON load/store instructions to access misaligned data when autovectorizing certain loops.
The bug affected code compiled with -mfpu=neon and loop vectorization enabled with -O3 or
-ftree-vectorize.

Sprite crash on error. A bug has been fixed which sometimes caused the Sourcery G++ Debug
Sprite to crash when it attempted to send an error message to GDB.

Persistent remote server connections. A GDB bug has been fixed that caused the target
extended-remote command to fail to tell the remote server to make the connection persistent
across program invocations.

A.1.8. Changes in Sourcery G++ Lite 2008q3-42

Definition of va_list. In order to conform to the ABI for the ARM Architecture, the definition
of the type of va_list (defined in stdarg.h) has been changed. This change impacts only the
mangled names of C++ entities. For example, the mangled name of a C++ function taking an argument
of type va_list, or va_list *, or another type involving va_list has changed. Since this is
an incompatible change, you must recompile and relink any modules defining or using affected va_
list-typed entities.

Thumb-2 assembler fixes. The Thumb-2 encodings of QADD, QDADD, QSUB, and QDSUB have
been corrected. Previous versions of the assembler generated incorrect object files for these instruc-
tions. The assembler now accepts the ORN, QASX, QSAX, RRX, SHASX, SHSAX, SSAX, USAX,
UHASX, UQSAX, and USAX mnemonics. The assembler now detects and issues errors for invalid
uses of register 13 (the stack pointer) and register 15 (the program counter) in many instructions.

Printing casted values in GDB. A GDB bug that caused incorrect output for expressions contain-
ing casts, such as in the print *(Type *)ptr command, has been fixed.

Bug fix for objcopy/strip. An objcopy bug that corrupted COMDAT groups when creating new
binaries has been fixed. This bug also affected strip -g.

Improved support for debugging RealView® objects . GDB support for programs compiled
by the ARM RealView® compiler has been improved.

Binutils support for DWARF Version 3. The addr2line command now supports binaries
containing DWARF 3 debugging information. The ld command can display error messages with
source locations for input files containing DWARF 3 debugging information.

NEON improvements. Several improvements and bug fixes have been made to the NEON Ad-
vanced SIMD Extension support in GCC. A problem that caused the autovectorizer to fail in some
circumstances has been fixed. Also, many of the intrinsics available via the arm_neon.h header
file now have improved error checking for out-of-bounds arguments, and the vget_lane intrinsics
that return signed values now produce improved code.

44

Sourcery G++ Lite Release Notes

NEON compiler fix. A compiler bug that resulted in incorrect NEON code being generated has
been fixed. Typically the incorrect code occurred when NEON intrinsics were used inside small if
statements.

Connecting to the target using a pipe. A bug in GDB's target remote | program
command has been fixed. When launching the specified program failed, the bug caused GDB to
crash, hang, or give a message Error: No Error.

Mixed-case NEON register aliases. An assembler bug that prevented NEON register aliases
from being created with mixed-case names using the .dn and .qn directives has been fixed. Previ-
ously only aliases created with all-lowercase or all-uppercase names worked correctly.

Improvements to elf2flt utility. The elf2flt utility, automatically run by Sourcery G++ when
linking uClinux applications, is now compatible with the linker option --gc-sections. Previously,
applications linked with --gc-sections terminated at startup with an illegal instruction error.

Janus 2CC support. GCC now includes a work-around for a hardware bug in Avalent Janus
2CC cores. To compile and link for these cores, use the -mfix-janus-2cc compiler option. If
you are using the linker directly use the --fix-janus-2cc linker option.

ARM exception handling bug fix. A bug in the runtime library has been fixed that formerly
caused throwing an unexpected exception in C++ to crash instead of calling the unexpected exception
handler. The bug only affected C++ code compiled by non-GNU compilers such as ARM RealView®.

Mangling of NEON type names. A bug in the algorithm used by the C++ compiler for mangling
the names of NEON types, such as int8x16_t, has been fixed. These mangled names are used
internally in object files to encode type information in addition to the programmer-visible names of
the C++ variables and functions. The new mangled name encoding is more compact and conforms
to the ARM C++ ABI.

LinuxThreads support. The included uClibc now supports the LinuxThreads implementation
of POSIX threads for the ARMv4T multilib. Please note that this feature is not yet supported by the
ARMv6-M Thumb and ARMv7 Thumb-2 multilibs.

Errors after loading the debugged program. An intermittent GDB bug has been fixed. The
bug could cause a GDB internal error after the load command.

Half-precision floating point. Sourcery G++ now includes support for half-precision floating
point via the __fp16 type in C and C++. The compiler can generate code using either hardware
support or library routines. For more information, see Section 3.3.3, “Half-Precision Floating Point”.

A.1.9. Changes in Sourcery G++ Lite 2008q3-9

GDB update. The included version of GDB has been updated to 6.8.50.20080821. This update
adds numerous bug fixes and new features, including support for decimal floating point, improved
Thumb mode support, the new find command to search memory, the new /m (mixed source and
assembly) option to the disassemble command, and the new macro define command to
define C preprocessor macros interactively.

Uppercase operands to IT instructions. The assembler now accepts both uppercase and lowercase
operands for the IT family of instructions.

NEON autovectorizer fix. A compiler bug that caused generation of bad VLD1 instructions has
been fixed. The bug affected code compiled with -mfpu=neon -ftree-vectorize.

45

Sourcery G++ Lite Release Notes

Remote debugging improvements. The gdbserver utility now supports a more efficient
communications protocol that can reduce latency during remote debugging. The protocol optimizations
are enabled automatically when gdbserver operates over a TCP connection. Refer to the GDB
manual for more information.

Output files removed on error. When GCC encounters an error, it now consistently removes
any incomplete output files that it may have created.

Memory access errors when setting breakpoints. A GDB bug that caused spurious "Cannot
access memory" errors has been fixed. The errors occurred when setting breakpoints after the program
being debugged exited or was killed.

ARMv7 offset out of range errors. An assembler bug that resulted in offset out of
range errors when compiling for ARMv7 processors has been fixed.

Thumb-2 MUL encoding. In Thumb-2 mode, the assembler now encodes MUL as a 16-bit instruction
(rather than as a 32-bit instruction) when possible. This fix results in smaller code, with no loss of
performance.

ARM C++ ABI utility functions. Vector utility functions required by the ARM C++ ABI no
longer crash when passed null pointers. The affected functions are __aeabi_vec_dtor_cookie,
__aeabi_vec_delete, __aeabi_vec_delete3, and __aeabi_vec_delete3_nodtor.
These functions are not intended for use by application programmers; they are only called by compiler-
generated code. They are not presently used by the GNU C++ compiler, but are used by some other
compilers, including ARM's RealView® compiler.

GCC version 4.3.2. Sourcery G++ Lite for ARM uClinux is now based on GCC version 4.3.2.
For more information about changes from GCC version 4.2 that was included in previous releases,
see http://gcc.gnu.org/gcc-4.3/changes.html.

Smaller Thumb-2 code. When optimizing for size (i.e., when -Os is in use), GCC now generates
the 16-bit MULS Thumb-2 multiply instruction instead of the 32-bit MUL instruction.

Thumb-2 RBIT encoding. An assembler bug that resulted in incorrect encoding of the Thumb-
2 RBIT instruction has been fixed.

Sprite communication improvements. The Sourcery G++ Debug Sprite now uses a more efficient
protocol for communicating with GDB. This can result in less latency when debugging, especially
when running the Sprite on a remote machine over a network connection.

Marvell Feroceon compiler bug fix. A bug that caused an internal compiler error when optim-
izing for Marvell Feroceon CPUs has been fixed.

Misaligned accesses to packed structures fix. A bug that caused GCC to generate misaligned
accesses to packed structures has been fixed.

Bug fix for objdump on Windows. An objdump bug that caused the -S option not to work on
Windows in some cases has been fixed.

A.1.10. Changes in Older Releases

For information about changes in older releases of Sourcery G++ Lite for ARM uClinux, please refer
to the Getting Started guide packaged with those releases.

46

Sourcery G++ Lite Release Notes

Appendix B
Sourcery G++ Lite Licenses
Sourcery G++ Lite contains software provided under a variety of licenses. Some components
are “free” or “open source” software, while other components are proprietary.This appendix
explains what licenses apply to your use of Sourcery G++ Lite.You should read this appendix
to understand your legal rights and obligations as a user of Sourcery G++ Lite.

47

B.1. Licenses for Sourcery G++ Lite Compon-
ents
The table below lists the major components of Sourcery G++ Lite for ARM uClinux and the license
terms which apply to each of these components.

Some free or open-source components provide documentation or other files under terms different
from those shown below. For definitive information about the license that applies to each component,
consult the source package corresponding to this release of Sourcery G++ Lite. Sourcery G++ Lite
may contain free or open-source components not included in the list below; for a definitive list,
consult the source package corresponding to this release of Sourcery G++ Lite.

LicenseComponent

GNU General Public License 3.0
http://www.gnu.org/licenses/gpl.html

GNU Compiler Collection

GNU General Public License 3.0
http://www.gnu.org/licenses/gpl.html

GNU Binary Utilities

GNU General Public License 3.0
http://www.gnu.org/licenses/gpl.html

GNU Debugger

CodeSourcery LicenseSourcery G++ Debug Sprite for ARM

GNU Lesser General Public License 2.1
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html

uClibc C Library

GNU General Public License 2.0
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

Linux Kernel Headers

GNU General Public License 2.0
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

ELF-to-FLT Conversion Utility

GNU General Public License 2.0
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

GNU Make

GNU General Public License 2.0
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

GNU Core Utilities

The CodeSourcery License is available in Section B.2, “Sourcery G++ Software License Agreement”.

Important

Although some of the licenses that apply to Sourcery G++ Lite are “free software” or “open
source software” licenses, none of these licenses impose any obligation on you to reveal
the source code of applications you build with Sourcery G++ Lite. You can develop propri-
etary applications and libraries with Sourcery G++ Lite.

Sourcery G++ Lite may include some third party example programs and libraries in the share/
sourceryg++-arm-uclinuxeabi-examples subdirectory. These examples are not covered
by the Sourcery G++ Software License Agreement. To the extent permitted by law, these examples
are provided by CodeSourcery as is with no warranty of any kind, including implied warranties of
merchantability or fitness for a particular purpose. Your use of each example is governed by the license
notice (if any) it contains.

48

Sourcery G++ Lite Licenses

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

B.2. Sourcery G++™ Software License Agree-
ment
1. Parties. The parties to this Agreement are you, the licensee (“You” or “Licensee”) and

CodeSourcery. If You are not acting on behalf of Yourself as an individual, then “You” means
Your company or organization.

2. The Software. The Software licensed under this Agreement consists of computer programs
and documentation referred to as Sourcery G++™ Lite Edition (the “Software”).

3. Definitions.

3.1. CodeSourcery Proprietary Components. The components of the Software that are
owned and/or licensed by CodeSourcery and are not subject to a “free software” or
“open source” license, such as the GNU Public License. The CodeSourcery Proprietary
Components of the Software include, without limitation, the Sourcery G++ Installer,
any Sourcery G++ Eclipse plug-ins, and any Sourcery G++ Debug Sprite. For a complete
list, refer to the Getting Started Guide included with the distribution.

3.2. Open Source Software Components. The components of the Software that are
subject to a “free software” or “open source” license, such as the GNU Public License.

3.3. Proprietary Rights. All rights in and to copyrights, rights to register copyrights,
trade secrets, inventions, patents, patent rights, trademarks, trademark rights, confidential
and proprietary information protected under contract or otherwise under law, and other
similar rights or interests in intellectual or industrial property.

3.4. Redistributable Components. The CodeSourcery Proprietary Components that are
intended to be incorporated or linked into Licensee object code developed with the
Software. The Redistributable Components of the Software include, without limitation,
the CSLIBC run-time library and the CodeSourcery Common Startup Code Sequence
(CS3). For a complete list, refer to the Getting Started Guide included with the distribu-
tion.

4. License Grant to Proprietary Components of the Software. You are granted a non-exclus-
ive, royalty-free license (a) to install and use the CodeSourcery Proprietary Components of the
Software, (b) to transmit the CodeSourcery Proprietary Components over an internal computer
network, (c) to copy the CodeSourcery Proprietary Components for Your internal use only, and
(d) to distribute the Redistributable Component(s) in binary form only and only as part of Li-
censee object code developed with the Software that provides substantially different function-
ality than the Redistributable Component(s).

5. Restrictions. You may not: (i) copy or permit others to use the CodeSourcery Proprietary
Components of the Software, except as expressly provided above; (ii) distribute the CodeSourcery
Proprietary Components of the Software to any third party, except as expressly provided above;
or (iii) reverse engineer, decompile, or disassemble the CodeSourcery Proprietary Components
of the Software, except to the extent this restriction is expressly prohibited by applicable law.

6. “Free Software” or “Open Source” License to Certain Components of the Software.
This Agreement does not limit Your rights under, or grant You rights that supersede, the license
terms of any Open Source Software Component delivered to You by CodeSourcery. Sourcery
G++ includes components provided under various different licenses. The Getting Started Guide
provides an overview of which license applies to different components. Definitive licensing

49

Sourcery G++ Lite Licenses

information for each “free software” or “open source” component is available in the relevant
source file.

7. CodeSourcery Trademarks. Notwithstanding any provision in a “free software” or “open
source” license agreement applicable to a component of the Software that permits You to dis-
tribute such component to a third party in source or binary form, You may not use any Code-
Sourcery trademark, whether registered or unregistered, including without limitation, Code-
Sourcery™, Sourcery G++™, the CodeSourcery crystal ball logo, or the Sourcery G++ splash
screen, or any confusingly similar mark, in connection with such distribution, and You may not
recompile the Open Source Software Components with the --with-pkgversion or
--with-bugurl configuration options that embed CodeSourcery trademarks in the resulting
binary.

8. Term and Termination. This Agreement shall remain in effect unless terminated pursuant
to this provision. CodeSourcery may terminate this Agreement upon seven (7) days written
notice of a material breach of this Agreement if such breach is not cured; provided that the un-
authorized use, copying, or distribution of the CodeSourcery Proprietary Components of the
Software will be deemed a material breach that cannot be cured.

9. Transfers. You may not transfer any rights under this Agreement without the prior written
consent of CodeSourcery, which consent shall not be unreasonably withheld. A condition to
any transfer or assignment shall be that the recipient agrees to the terms of this Agreement. Any
attempted transfer or assignment in violation of this provision shall be null and void.

10. Ownership. CodeSourcery owns and/or has licensed the CodeSourcery Proprietary Com-
ponents of the Software and all intellectual property rights embodied therein, including copyrights
and valuable trade secrets embodied in its design and coding methodology. The CodeSourcery
Proprietary Components of the Software are protected by United States copyright laws and in-
ternational treaty provisions. CodeSourcery also owns all rights, title and interest in and with
respect to its trade names, domain names, trade dress, logos, trademarks, service marks, and
other similar rights or interests in intellectual property. This Agreement provides You only a
limited use license, and no ownership of any intellectual property.

11. Warranty Disclaimer; Limitation of Liability. CODESOURCERY AND ITS LICENSORS
PROVIDE THE SOFTWARE “AS-IS” AND PROVIDED WITH ALL FAULTS. CODE-
SOURCERY DOES NOT MAKE ANY WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED. CODESOURCERY SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES
OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, SYSTEM INTEGRATION, AND DATA ACCURACY. THERE IS NO WAR-
RANTY OR GUARANTEE THAT THE OPERATION OF THE SOFTWARE WILL BE
UNINTERRUPTED, ERROR-FREE, OR VIRUS-FREE, OR THAT THE SOFTWARE WILL
MEET ANY PARTICULAR CRITERIA OF PERFORMANCE, QUALITY, ACCURACY,
PURPOSE, OR NEED. YOU ASSUME THE ENTIRE RISK OF SELECTION, INSTALLA-
TION, AND USE OF THE SOFTWARE. THIS DISCLAIMER OF WARRANTY CONSTI-
TUTES AN ESSENTIAL PART OF THIS AGREEMENT. NO USE OF THE SOFTWARE
IS AUTHORIZED HEREUNDER EXCEPT UNDER THIS DISCLAIMER.

12. Local Law. If implied warranties may not be disclaimed under applicable law, then ANY
IMPLIED WARRANTIES ARE LIMITED IN DURATION TO THE PERIOD REQUIRED
BY APPLICABLE LAW.

13. Limitation of Liability. INDEPENDENT OF THE FORGOING PROVISIONS, IN NO
EVENT AND UNDER NO LEGAL THEORY, INCLUDING WITHOUT LIMITATION,
TORT, CONTRACT, OR STRICT PRODUCTS LIABILITY, SHALL CODESOURCERY
BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY INDIRECT, SPECIAL, INCID-

50

Sourcery G++ Lite Licenses

ENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND, INCLUDING WITHOUT
LIMITATION, DAMAGES FOR LOSS OF GOODWILL, WORK STOPPAGE, COMPUTER
MALFUNCTION, OR ANY OTHER KIND OF COMMERCIAL DAMAGE, EVEN IF
CODESOURCERY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
THIS LIMITATION SHALL NOT APPLY TO LIABILITY FOR DEATH OR PERSONAL
INJURY TO THE EXTENT PROHIBITED BY APPLICABLE LAW. IN NO EVENT SHALL
CODESOURCERY'S LIABILITY FOR ACTUAL DAMAGES FOR ANY CAUSE WHAT-
SOEVER, AND REGARDLESS OF THE FORM OF ACTION, EXCEED THE AMOUNT
PAID BY YOU IN FEES UNDER THIS AGREEMENT DURING THE PREVIOUS ONE
YEAR PERIOD.

14. Export Controls. You agree to comply with all export laws and restrictions and regulations
of the United States or foreign agencies or authorities, and not to export or re-export the Software
or any direct product thereof in violation of any such restrictions, laws or regulations, or without
all necessary approvals. As applicable, each party shall obtain and bear all expenses relating to
any necessary licenses and/or exemptions with respect to its own export of the Software from
the U.S. Neither the Software nor the underlying information or technology may be electronically
transmitted or otherwise exported or re-exported (i) into Cuba, Iran, Iraq, Libya, North Korea,
Sudan, Syria or any other country subject to U.S. trade sanctions covering the Software, to in-
dividuals or entities controlled by such countries, or to nationals or residents of such countries
other than nationals who are lawfully admitted permanent residents of countries not subject to
such sanctions; or (ii) to anyone on the U.S. Treasury Department's list of Specially Designated
Nationals and Blocked Persons or the U.S. Commerce Department's Table of Denial Orders.
By downloading or using the Software, Licensee agrees to the foregoing and represents and
warrants that it complies with these conditions.

15. U.S. Government End-Users. The Software is a “commercial item,” as that term is defined
in 48 C.F.R. 2.101 (Oct. 1995), consisting of “commercial computer software” and “commercial
computer software documentation,” as such terms are used in 48 C.F.R. 12.212 (Sept. 1995).
Consistent with 48 C.F.R. 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (June 1995),
all U.S. Government End Users acquire the Software with only those rights set forth herein.

16. Licensee Outside The U.S. If You are located outside the U.S., then the following provisions
shall apply: (i) Les parties aux presentes confirment leur volonte que cette convention de meme
que tous les documents y compris tout avis qui siy rattache, soient rediges en langue anglaise
(translation: “The parties confirm that this Agreement and all related documentation is and will
be in the English language.”); and (ii) You are responsible for complying with any local laws
in your jurisdiction which might impact your right to import, export or use the Software, and
You represent that You have complied with any regulations or registration procedures required
by applicable law to make this license enforceable.

17. Severability. If any provision of this Agreement is declared invalid or unenforceable, such
provision shall be deemed modified to the extent necessary and possible to render it valid and
enforceable. In any event, the unenforceability or invalidity of any provision shall not affect
any other provision of this Agreement, and this Agreement shall continue in full force and effect,
and be construed and enforced, as if such provision had not been included, or had been modified
as above provided, as the case may be.

18. Arbitration. Except for actions to protect intellectual property rights and to enforce an ar-
bitrator's decision hereunder, all disputes, controversies, or claims arising out of or relating to
this Agreement or a breach thereof shall be submitted to and finally resolved by arbitration under
the rules of the American Arbitration Association (“AAA”) then in effect. There shall be one
arbitrator, and such arbitrator shall be chosen by mutual agreement of the parties in accordance
with AAA rules. The arbitration shall take place in Granite Bay, California, and may be conducted

51

Sourcery G++ Lite Licenses

by telephone or online. The arbitrator shall apply the laws of the State of California, USA to
all issues in dispute. The controversy or claim shall be arbitrated on an individual basis, and
shall not be consolidated in any arbitration with any claim or controversy of any other party.
The findings of the arbitrator shall be final and binding on the parties, and may be entered in
any court of competent jurisdiction for enforcement. Enforcements of any award or judgment
shall be governed by the United Nations Convention on the Recognition and Enforcement of
Foreign Arbitral Awards. Should either party file an action contrary to this provision, the other
party may recover attorney's fees and costs up to $1000.00.

19. Jurisdiction And Venue. The courts of Placer County in the State of California, USA and
the nearest U.S. District Court shall be the exclusive jurisdiction and venue for all legal proceed-
ings that are not arbitrated under this Agreement.

20. Independent Contractors. The relationship of the parties is that of independent contractor,
and nothing herein shall be construed to create a partnership, joint venture, franchise, employ-
ment, or agency relationship between the parties. Licensee shall have no authority to enter into
agreements of any kind on behalf of CodeSourcery and shall not have the power or authority
to bind or obligate CodeSourcery in any manner to any third party.

21. Force Majeure. Neither CodeSourcery nor Licensee shall be liable for damages for any
delay or failure of delivery arising out of causes beyond their reasonable control and without
their fault or negligence, including, but not limited to, Acts of God, acts of civil or military au-
thority, fires, riots, wars, embargoes, or communications failure.

22. Miscellaneous. This Agreement constitutes the entire understanding of the parties with respect
to the subject matter of this Agreement and merges all prior communications, representations,
and agreements. This Agreement may be modified only by a written agreement signed by the
parties. If any provision of this Agreement is held to be unenforceable for any reason, such
provision shall be reformed only to the extent necessary to make it enforceable. This Agreement
shall be construed under the laws of the State of California, USA, excluding rules regarding
conflicts of law. The application of the United Nations Convention of Contracts for the Interna-
tional Sale of Goods is expressly excluded. This license is written in English, and English is its
controlling language.

B.3. Attribution
This version of Sourcery G++ Lite may include code based on work under the following copyright
and permission notices:

B.3.1. Android Open Source Project

/*
 * Copyright (C) 2008 The Android Open Source Project
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * * Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

52

Sourcery G++ Lite Licenses

 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

53

Sourcery G++ Lite Licenses

	Sourcery G++ Lite
	Table of Contents
	Preface
	1. Intended Audience
	2. Organization
	3. Typographical Conventions

	Chapter 1 Quick Start
	1.1. Installation and Set-Up
	1.2. Configuring Sourcery G++ Lite for the Target System
	1.3. Building Your Program
	1.4. Running and Debugging Your Program

	Chapter 2 Installation and Configuration
	2.1. Terminology
	2.2. System Requirements
	2.2.1. Host Operating System Requirements
	2.2.2. Host Hardware Requirements
	2.2.3. Target System Requirements

	2.3. Downloading an Installer
	2.4. Installing Sourcery G++ Lite
	2.4.1. Using the Sourcery G++ Lite Installer on Microsoft Windows
	2.4.2. Using the Sourcery G++ Lite Installer on GNU/Linux Hosts
	2.4.3. Installing Sourcery G++ Lite from a Compressed Archive

	2.5. Installing Sourcery G++ Lite Updates
	2.6. Setting up the Environment
	2.6.1. Setting up the Environment on Microsoft Windows Hosts
	2.6.1.1. Setting the PATH
	2.6.1.2. Working with Cygwin

	2.6.2. Setting up the Environment on GNU/Linux Hosts

	2.7. Uninstalling Sourcery G++ Lite
	2.7.1. Using the Sourcery G++ Lite Uninstaller on Microsoft Windows
	2.7.2. Using the Sourcery G++ Lite Uninstaller on GNU/Linux
	2.7.3. Uninstalling a Compressed Archive Installation

	Chapter 3 Sourcery G++ Lite for ARM uClinux
	3.1. Included Components and Features
	3.2. Library Configurations
	3.2.1. Included Libraries
	3.2.2. Library Selection

	3.3. Using VFP Floating Point
	3.3.1. Enabling Hardware Floating Point
	3.3.2. NEON SIMD Code
	3.3.3. Half-Precision Floating Point

	3.4. ABI Compatibility
	3.5. Building uClinux Applications
	3.6. GDB Server

	Chapter 4 Using Sourcery G++ from the Command Line
	4.1. Building an Application
	4.2. Running Applications on the Target System
	4.3. Running Applications from GDB
	4.3.1. Connecting to the Sourcery G++ Debug Sprite
	4.3.2. Connecting to an External GDB Server

	Chapter 5 Sourcery G++ Debug Sprite
	5.1. Probing for Debug Devices
	5.2. Invoking Sourcery G++ Debug Sprite
	5.3. Sourcery G++ Debug Sprite Options
	5.4. Remote Debug Interface Devices
	5.5. Actel FlashPro Devices
	5.5.1. Installing FlashPro Windows drivers

	5.6. Debugging a Remote Board
	5.7. Supported Board Files
	5.8. Board File Syntax

	Chapter 6 Next Steps with Sourcery G++
	6.1. Sourcery G++ Knowledge Base
	6.2. Manuals for GNU Toolchain Components

	Appendix A Sourcery G++ Lite Release Notes
	A.1. Changes in Sourcery G++ Lite for ARM uClinux
	A.1.1. Changes in Sourcery G++ Lite 2010q1-189
	A.1.2. Changes in Sourcery G++ Lite 2010q1-154
	A.1.3. Changes in Sourcery G++ Lite 2009q3-66
	A.1.4. Changes in Sourcery G++ Lite 2009q3-36
	A.1.5. Changes in Sourcery G++ Lite 2009q1-163
	A.1.6. Changes in Sourcery G++ Lite 2009q1-118
	A.1.7. Changes in Sourcery G++ Lite 2008q3-68
	A.1.8. Changes in Sourcery G++ Lite 2008q3-42
	A.1.9. Changes in Sourcery G++ Lite 2008q3-9
	A.1.10. Changes in Older Releases

	Appendix B Sourcery G++ Lite Licenses
	B.1. Licenses for Sourcery G++ Lite Components
	B.2. Sourcery G++ Software License Agreement
	B.3. Attribution
	B.3.1. Android Open Source Project

