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Al Scale is limited by Compute

 Computeis the primary challenge of training massive models

e Ambitious Model Scale and Time to Train

Model Model Size Hardware | Days to Train
Megatron-LM GPT-2 8.3B 512 V100 GPU 9.2 days
OPT 175B 992 A100 GPU 56 days
MT-NLG 530B 2200 A100 GPU 60 days
PaLM 540B 6144 TPU v4 57 days

* Next jump in scale:
* next generation of hardware

* significant investment in GPUs



Next Al Scale on current hardware

e Can we achieve next generation model quality on current generation of hardware?

* From a training perspective MoE provides a promising path
* Scale at sub-linear cost

* MoE is promising but is it practical?
* Limited Scope: Does it work for NLG or NLR or other models?
* Massive Memory Requirements: 8-10x in size compared to quality equivalent dense
* Limited Inference Performance: Massive model size == slow and expensive inference?



Cheaper NLG Model Training with MoE
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PR-MoE: a parameter efficient Mok model design
* New architecture: Pyramid-Residual MoE (PR-MoE) H H

* Pyramid MoE: 2x experts in last two layers

* Residual MoE: a fixed MLP plus a chosen expert H -
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* Mixture-of-Student (layer reduced version of PR-MoE)

* First MoE-to-MoE distillation work -
* A novel staged knowledge distillation algorithm .ﬂ.- .
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Standard MoE vs. PR-MoE + MoS

* PR-MoOE: model size reduction from 1.7xto 3.2x; no performance degradation

* PR-MoE + MoS: model size reduction from 1.9x to 3.7x; maintaining >99% performance

Model size LAMBADA: PIQA: BoolQ: RACE-h: TriviaQA: WebQs:
(Reduction) completion commonsense reading reading question question

prediction reasoning comprehension comprehension answering answering

MoE NLG with 350M base model:

(1) MoE 13B (1x) 62.70 74.59 60.46 35.60 16.58 5.17
(2) PR-MoE I 4.08 (3.2x) 63.65 73.99 59.88 35.69 16.30 4.73
(3) PR-MOE + MoS I[3.58 (3.7x) 63.46 73.34 58.07 34.83 13.69 5.22

MoE NLG with 1.3B base model:
(4) MoE 52B (1x) 69.84 76.71 64.92 38.09 31.29 7.19

(5) PR-MoE 31B (1.7x) 70.60 77.75 67.16 38.09 28.86 7.73
(6) PR-MoE + MoS 27B (1.9x) 70.17 77.69 65.66 36.94 29.05 8.22




Designing a highly scalable MoE Inference System

e Key Challenge:

* 4x larger MoE model size than quality-equivalent-dense models (QEDM)
* Requires 4x higher bandwidth/parallelism/scalability for latency parity

* Goal:
* Achieve aggregate memory bandwidth across hundreds of devices

* Three main area of optimizations for maximizing aggregate bandwidth
* A symphony of parallelism
» Careful orchestration of tensor, data and expert parallelism
e Parallelism coordinated Communication Optimization Strategies
* Minimize communication overhead
* Kernel Optimizations
* Maximize bandwidth utilization per device



DeepSpeed-MokE: Powering the next generation of Al Scale

High performance MoE inference

10x lower MoE inference latency

Efficient MoE architecture

3.7x fewer parameters with PR-MoE +MoS

Cheaper NLG model training

5x less training time and cost
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To Learn more: www.deepspeed.ai 8



Lower-latency & Higher-throughput at Unprecedented Scale

e 7.2x faster inference .
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